FEUILLE D'EXERCICES N°4

Résolution numérique des équations non linéaires

EXERCICE 1: ORDRE DE CONVERGENCE.

Soit I un intervalle fermé de \mathbb{R} , et soit $g:I\longrightarrow I$ une fonction assez régulière admettant un point fixe $a\in I$. On considère la suite des itérés suivante :

$$\begin{cases} x_0 \in I, \\ x_{n+1} = g(x_n), \ \forall n \in \mathbb{N} \end{cases}$$
 (1)

Calculer l'erreur $e_n = x_n - a$ et donner une condition pour que la méthode du point fixe (1) soit d'ordre $p \ge 1$.

EXERCICE 2: EXEMPLES D'APPLICATION.

1) On considère l'équation

$$e^{-x} = x \quad \text{dans } [0, +\infty[. \tag{2})$$

1.a) On définit la méthode itérative suivante :

$$\begin{cases} x_0 \in [0, +\infty[, \\ x_{n+1} = e^{-x_n}, \ \forall n \in \mathbb{N} \end{cases}$$
 (3)

Montrer que la méthode (3) est convergente et donner l'ordre de convergence.

- 1.b) Appliquer la méthode de Newton à l'équation (2) et montrer que la convergence est quadratique.
- 2) Montrer que l'équation x = -ln(x) pour $x \in]0, +\infty[$ admet une unique solution. Montrer que la méthode itérative

$$\begin{cases} x_0 \in [0, +\infty[, \\ x_{n+1} = -\ln(x_n), \ \forall n \in \mathbb{N} \end{cases}$$

diverge. Proposer une méthode d'approximation de la solution.

EXERCICE 3: POINTS FIXES ATTRACTIFS, RÉPULSIFS.

Soient I un intervalle fermé de \mathbb{R} , et $\phi: I \longrightarrow I$ une fonction dans $\mathcal{C}^1(I)$ admettant un point fixe $a \in I$ (i.e $\phi(a) = a$). On considère une suite des itérés définie par :

$$\begin{cases} x_0 \in I, \\ x_{n+1} = \phi(x_n), \ \forall n \in \mathbb{N} \end{cases}$$
 (4)

- 1) On suppose que $|\phi'(a)| < 1$.
 - **1.a)** Soit k tel que $|\phi'(a)| < k < 1$. Montrer que :

$$\exists h > 0; \quad |\phi'(x)| \le k \quad \forall x \in [a - h, a + h].$$

- **1.b)** Prouver que $\phi([a-h,a+h]) \subset [a-h,a+h]$ et que la suite $(x_n)_{n \in \mathbb{N}}$ donnée par (4) converge vers a pour tout $x_0 \in [a-h,a+h]$.
- 2) On suppose maintenant que $|\phi'(a)| > 1$. Peut-on utiliser l'algorithme (4) pour approcher a?
- 3) Enfin, on étudie le cas où $|\phi'(a)| = 1$. En prenant $\phi(x) = \sin(x)$, $I = [0, \frac{\pi}{2}]$, et a = 0, puis $\phi(x) = \sin(x)$, $I = [0, +\infty[$, et a = 0. Conclure.

EXERCICE 4 : EXTRACTION DE RACINES CARRÉES.

Pour un réel λ positif, on considère la fonction f_{λ} définie par : $f_{\lambda}(x) = x^2 - \lambda$ où $x \in \mathbb{R}$.

- 1) Pour un réel x_0 fixé, donner l'algorithme de Newton pour la résolution de l'équation $f_{\lambda}(x) = 0$.
- 2) On suppose maintenant que $x_0 > 0$.
 - **2.a)** Montrer que la suite $(x_k)_{k\in\mathbb{N}}$ des itérées de Newton est minorée par $\sqrt{\lambda}$.
 - **2.b)** Montrer que la suite $(x_k)_{k\in\mathbb{N}}$ convergence et déterminer sa limite.

EXERCICE 5: RACINES DE POLYNÔMES.

Soit p un polynôme de degré $n \ge 2$ à coefficients réels et on suppose qu'il a n racines distinctes réelles $x_n > x_{n-1} > \cdots > x_1$.

- 1) Appliquer la méthode de Newton pour l'approximation des racines de p.
- 2) Démontrer que pour toute valeur initiale $x^0 > x_n$, la suite $(x^k)_{k \in \mathbb{N}}$ des itérées de Newton est strictement décroissante et converge vers la plus grande racine x_n .
- 3) Vérifier que la convergence est quadratique.

EXERCICE 6: CAS D'UN SYSTÈME NON LINÉAIRE.

On considère le système d'équations suivant :

$$\begin{cases}
-5x + 2\sin x + 2\cos y &= 0 \\
2\cos x + 2\sin y - 5y &= 0
\end{cases}$$
(5)

Notons $u = (x, y) \in \mathbb{R}^2$ et \bar{u} une solution du système (5).

1) Méthode du point fixe :

- **1.a)** Montrer que le système (5) se réécrit sous la forme $\phi(u) = u$ où ϕ est une fonction strictement contractante dans \mathbb{R}^2 pour la norme $\|.\|_1$.
 - **1.b)** Vérifier que la solution \bar{u} est unique.
- **1.c)** A partir de la fonction ϕ , construire une suite $(u_k)_{k\in\mathbb{N}}$ qui converge vers \bar{u} et estimer la vitesse de convergence.

2) Méthode de Newton:

- 2.a) Écrire un algorithme de Newton pour approcher la solution du système (5).
- **2.b)** La limite de cet algorithme est-elle toujours bien définie?

EXERCICE 7: CALCUL DES ÉLÉMENTS PROPRES.

Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice symétrique d'ordre n. Soient λ une valeur propre simple de A et e_{λ} le vecteur propre normé associé à λ . Pour calculer (λ, e_{λ}) , on applique la méthode de Newton au système non linéaire suivant :

$$\left\{ \begin{array}{l} Ax - \lambda x = 0 \\ x.x = 1 \end{array} \right..$$

Montrer que l'algorithme de Newton associé à ce problème est bien défini et localement convergent.

EXERCICE 8 : VARIANTE DE LA MÉTHODE DE NEWTON.

Soit $f \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$ et $a \in \mathbb{R}$ tel que f(a) = 0. Soient $x_0 \in \mathbb{R}$, $c \in \mathbb{R}^+_*$, $\lambda \in \mathbb{R}^+_*$.

On suppose que les hypothèses suivantes sont vérifiées :

- $a \in I = [x_0 c, x_0 + c],$ $|f(x_0)| \le \frac{c}{2\lambda},$
- $|f'(x) f'(y)| \le \frac{1}{2\lambda} \text{ pour } (x, y) \in I^2$,
- $|f'(x)| \ge \frac{1}{\lambda}$.

On définit la suite $(x^n)_{n\in\mathbb{N}}$ par :

$$\begin{cases} x^0 = x_0, \\ x^{n+1} = x^n - \frac{f(x^n)}{f'(y)}, \ \forall n \in \mathbb{N} \end{cases},$$
 (6)

où $y \in I$ choisi de manière arbitraire.

- 1) Montrer par récurrence que la suite définie par (6) satisfait $x^n \in I$ pour tout $n \in \mathbb{N}$ (On pourra utiliser que x^{n+1} s'écrit $x^{n+1} = x^n - x_0 - \frac{f(x^n) - f(x_0)}{f'(y)} - \frac{f(x_0)}{f'(y)}$.
- 2) Montrer que la suite $(x^n)_{n\in\mathbb{N}}$ définie par (6) vérifie

$$|x^n - a| \le \frac{c}{2^n}$$

et quelle converge vers a de manière au moins linéaire.

3) On remplace l'algorithme (6) par

$$\begin{cases} x^0 = x_0, \\ x^{n+1} = x^n - \frac{f(x^n)}{f'(y^n)}, \ \forall n \in \mathbb{N} \end{cases}$$

$$(7)$$

où la suite $(y^n)_{n\in\mathbb{N}}$ est une suite donnée d'éléments de I. Montrer que la suite $(x^n)_{n\in\mathbb{N}}$ converge vers a de manière au moins linéaire, et que cette convergence devient super-linéaire si $f'(y^n) \longrightarrow f'(a)$ quand n tend vers l'infini.

4) On suppose maintenant que $n \geq 1$ et que $f \in \mathcal{C}^1(\mathbb{R}^n, \mathbb{R}^n)$. La méthode définie par (6) ou (7) peut-elle se généraliser avec d'éventuelles modifications des hypothèses à la dimension n?