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Chapitre 1

Résultats d’existence
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1.3.1 Dérivées premières . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.2 Dérivées secondes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.3 Formules de Taylor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Soit V un espace de Hilbert (sur R), K une partie de V , J une fonction définie sur V à valeurs
dans R . On dit que u est minimum local de J sur K si u appartient à K et s’il existe un voisinage
U de u dans K tel que

∀v ∈ U, J(u) ≤ J(v) (1.1)

Si la relation précédente est vraie pour tout v dans K , on dit que u est minimum global de J sur
K . On définit un problème de minimisation sur K par

{

u ∈ K,

J(u) = inf
v∈K

J(v) (1.2)

On dit alors que u est solution optimale du problème de minimisation sur K . Le problème de
minimisation est dit sans contrainte si V = K , avec contraintes si V 6= K .

Bien évidemment, on définit un problème de maximisation, en remplaçant 6 par > dans (1.1)
et inf par sup dans (1.2). On parlera en général de problème d’optimisation. On passe de l’un à
l’autre en définissant la fonctionnelle opposée. Dans ce cours tous les résultats sont établis sur les
problèmes de minimisation.

1.1 Théorème de Weierstrass

Théorème 1.1 . Si K est un compact non vide et si J est continue sur K , le problème de minimi-
sation (1.2) admet une solution.

Remarque 1.1 . C’est un théorème d’existence, mais il ne donne pas de résultat d’unicité.

Remarque 1.2 . Dans les problèmes d’optimisation, les ensembles de contraintes sont en général
fermés bornés, mais pas forcément compacts. Par contre ils sont souvent convexes.
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1.2 Cas convexe

On rappelle qu’une partie K de V est convexe si

∀(x, y) ∈ K,∀θ ∈ [0, 1], θx + (1 − θ)y ∈ K (1.3)

Une fonction J définie sur un convexe K est dite
– convexe si

∀(x, y) ∈ K,∀θ ∈ [0, 1], J(θx + (1 − θ)y) 6 θJ(x) + (1 − θ)J(y), (1.4)

– strictement convexe si

∀(x, y) ∈ K,x 6= y,∀θ ∈]0, 1[, J(θx + (1 − θ)y) 6 θJ(x) + (1 − θ)J(y), (1.5)

– α convexe si

∀(x, y) ∈ K,∀θ ∈ [0, 1], J(θx + (1 − θ)y) 6 θJ(x)+(1 − θ)J(y)−

−
α

2
θ(1 − θ)||x − y||2.

(1.6)

Théorème 1.2 . Si J est convexe, tout minimum local est global, et l’ensemble des solutions opti-
males est convexe.

Théorème 1.3 . Si J est strictement convexe, la solution optimale, si elle existe, est unique.

Théorème 1.4 ( Théorème fondamental) . Soit K un convexe fermé non vide, J une fonction
définie sur K à valeurs dans R convexe continue. On suppose que J est infinie à l’infini (i.e.
J(v) → +∞ lorsque ||v|| → +∞) ou que K est borné. A lors le problème de minimisation admet
une solution.

Corollaire 1.1 . Soit K un convexe fermé non vide, J une fonction définie sur K à valeurs dans
R, α-convexe continue. Alors le problème de minimisation admet une solution et une seule. De
plus toute suite minimisante converge vers u.

1.3 Rappels de calcul différentiel

Soit J une fonctionnelle définie sur un Hilbert V à valeurs dans R. On note V ′ le dual de V ,
i.e. l’espace vectoriel des applications linéaires continues sur V à valeurs dans R.

1.3.1 Dérivées premières

Définition 1.1 (Différentiabilité) J est différentiable (au sens de Fréchet) en u ∈ V s’il existe lu
dans V ′ telle que,

∀w ∈ V, J(u + w) = J(u) + lu(w) + ε(w)‖w‖, lim
ε→0

ε(w) = 0 (1.7)

lu est la dérivée de J et se note J ′(u). On écrira J ′(u) · v = lu(v).

Remarque 1.3 Par le théorème de Riesz puisque J ′(u) est dans V ′, il existe un unique élément
de V noté ∇J(u) tel que pour tout v dans V on ait

J ′(u) · v = (∇J(u), v)
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Exemples de base

1. Les formes linéaires J(u) = (c, u), où c est un vecteur donné dans V . Alors J ′(u).v =
(c, v), ∇J(u) = c.

2. Les fonctions J(u) = a(u, u), où a est une forme bilinéaire continue sur V . Alors J ′(u).v =
a(u, v) + a(v, u), et si a est symétrique J ′(u).v = 2a(u, v).

3. Si V = R
n, J ′(u) = ( ∂J

∂x1
(u), · · · , ∂J

∂xn
(u)) et J ′(u).v =

∑n
i=1

∂J
∂xi

(u)vi.

1.3.2 Dérivées secondes

Si J : V 7→ R, J ′ : V 7→ V ′ admet une différentielle J ′′ et pour tout u, J ′′(u) ∈ L(V, V ′),
espace des applications linéaires continues de V dans V ′. Cet espace s’identifie à L2(V ), espace
des applications bilinéaires continues de V × V dans R. On notera J”(u) · v · w.

Exemples de base

1. J(u) = (c, u), J”(u) = 0.

2. J(u) = a(u, u), alors J ′′(u).v.w = a(v, w) + a(w, v), et si a est symétrique J ′′(u).v.w =
2a(v, w). Si V = R

n, J(u) = 1
2
(Au, u) où A est une matrice symétrique, alors J”(u) = A

pour tout u.

3. Si V = R
n, J ′′(u) est la matrice des dérivées partielles secondes ∂2J

∂xi∂xj
(u).

1.3.3 Formules de Taylor

Taylor Mac-Laurin ordre 1 Si J : V 7→ R est définie et continue sur [u, v], différentiable sur
]u, v[, il existe θ ∈]0, 1[ tel que

J(v) = J(u) + J ′(u + θ(v − u)) · (v − u)

Taylor Mac-Laurin ordre 2 Si J : V 7→ R est définie et continue sur [u, v], 2 fois différentiable
sur ]u, v[, il existe θ ∈]0, 1[ tel que

J(v) = J(u) + J ′(u) · (v − u) +
1

2
J ′′(u + θ(v − u)) · (v − u) · (v − u)

Taylor Young Si J : V 7→ R
p est définie et continue sur [u, v], de classe C1 sur [u, v], 2 fois

différentiable dans un voisinage de u,

J(v) = J(u) + J ′(u) · (v − u) + ε(v − u)‖v − u‖, lim
ε→0

ε(v − u) = 0

Théorème 1.5 (caractérisation des fonctions convexes) . J est convexe si et seulement si l’une
des conditions suivantes est vérifiée :

1. Si J est différentiable, le graphe de J est au-dessus de l’hyperplan tangent, i.e.

∀u, v ∈ V, J(v) > J(u) + J ′(u) · (v − u) (1.8)

2. Si J est différentiable, J ′ est un opérateur monotone, i.e.

∀u, v ∈ V, (J ′(v) − J ′(u)) · (v − u) > 0 (1.9)

3. Si J est deux fois différentiable, J ′′ est un opérateur non négatif, i.e.

∀u,w ∈ V, J ′′(u)w.w > 0 (1.10)
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Pour une fonction α -convexe, on a :

Théorème 1.6 (caractérisation des fonctions α -convexes) . J est α- convexe si et seulement si
l’une des conditions suivantes est vérifiée :

1. Si J est différentiable,

∀u, v ∈ V, J(v) > J(u) + J ′(u) · (v − u) +
α

2
‖ v − u ‖2, (1.11)

2. Si J est différentiable,

∀u, v ∈ V, (J ′(v) − J ′(u)) · (v − u) > α ‖ v − u ‖2, (1.12)

3. Si J est deux fois différentiable,

∀u,w ∈ V, J ′′(u)w.w > α ‖ w ‖2 . (1.13)

En particulier les fonctionnelles de la forme J(u) = a(u, u), où a est une forme bilinéaire symé-
trique continue sur V sont α-convexes si et seulement si

∀u ∈ V, 2a(w,w) > α‖w‖2

Si l’on est dans R
n, avec J(u) = 1

2
(Au, u), ceci revient à

∀u ∈ V, (Aw,w) > α‖w‖2

La matrice A étant symétrique, elle diagonalise en base orthonormée, A = PDP T , où D est la
matrice des valeurs propres di et P la matrice des vecteurs propres. On a alors

(Aw,w) =

n
∑

i=1

di((Pw)i)
2

> (min1≤i≤ndi)

n
∑

i=1

((Pw)i)
2

(Aw,w) > (min1≤i≤ndi)‖Pw‖2 = (min1≤i≤ndi)‖w‖2

car, puisque P est orthogonale, ‖Pw‖ = ‖w‖. Si A est définie positive, a fonctionnelle est
min1≤i≤ndi-convexe.
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Chapitre 2

Caractérisation des extrema

Sommaire

2.1 Equation d’Euler, cas général . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Inéquation d’Euler, cas convexe . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Multiplicateurs de Lagrange, cas général . . . . . . . . . . . . . . . . . . . 13

2.3.1 contraintes égalités . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 contraintes inégalités . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Equation d’Euler, cas général

Théorème 2.1 (condition nécessaire) . Si u est minimum local de J dans V , alors

1. Si J est différentiable, J ′(u) = 0,

2. Si J est deux fois différentiable, on a de plus ∀w ∈ V, J ′′(u)w.w > 0.

Théorème 2.2 (condition suffisante) . Soit J une fonction différentiable dans V et u un point de
V tel que J ′(u) = 0.

1. Si J est deux fois différentiable dans un voisinage de u et s’il existe un voisinage Ω de u tel
que ∀v ∈ Ω,∀w ∈ V, J ′′(v)w.w > 0, alors u est minimum local de J .

2. Si J est deux fois différentiable,et s’il existe α > 0 tel que

∀w ∈ V, J ′′(u)w.w > α ‖ w ‖2,

alors u est minimum local strict pour J .

2.2 Inéquation d’Euler, cas convexe

Dans cette section on considère le problème de minimisation avec contraintes. On suppose que
K est un convexe fermé non vide et que J est différentiable.

Théorème 2.3 . Si u est solution optimale on a l’inéquation d’Euler
{

u ∈ K

∀v ∈ K,J ′(u).(v − u) > 0.
(2.1)

Réciproquement si on a l’inéquation d ’Euler en u et si de plus J est convexe, alors u est solution
optimale.
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Corollaire 2.1 [Projection sur un convexe fermé]. Soit K une partie convexe fermée non vide
d’un espace de Hilbert V , et w un point de V n’appartenant pas à K . alors il existe un unique
point de K , noté PKw tel que

{

PKw ∈ K,

‖w − PKw‖ = inf
v∈K

‖w − v‖ (2.2)

Il est caractérisé par
∀v ∈ K, (PKw − w, v − PKw) > 0 (2.3)

Les cas particuliers sont très importants.

1. K = V On a le

Théorème 2.4 . Si J est convexe différentiable, alors u réalise le minimum de J sur V si et
seulement si J ′(u) = 0.

Remarque 2.1 . En particulier si J est α-convexe, il existe une unique solution optimale,
caractérisée par J ′(u) = 0.

2. K sous-espace affine engendré par l’espace vectoriel fermé E, i.e. K = {u0 + v, v ∈ E},
alors

(2.1) ⇔

{

u ∈ K

∀w ∈ K, J ′(u).w = 0
(2.4)

Si E est défini par m contraintes, E = {w ∈ V, (ai, w) = 0, 1 6 i 6 m}, alors

(2.1) ⇔











u ∈ K

∃λ1, .., λm,∇J(u) +

m
∑

i=1

λiai = 0
(2.5)

Remarque 2.2 Si l’on définit les fonctions affines Fi(w) = (w − u0, ai), alors K = {w ∈
V, Fi(w) = 0}, et (2.5) se réécrit

(2.1) ⇔











u ∈ K

∃λ1, .., λm,∇J(u) +

m
∑

i=1

λiF
′
i = 0.

(2.6)

3. K cône convexe fermé de sommet u0. On note K0 le cône de sommet O qui lui est parallèle.
Alors

(2.1) ⇔











u ∈ K

J ′(u).(u0 − u) = 0

∀w ∈ K0, J ′(u).w > 0.

(2.7)

Pour M cône convexe fermé de sommet O, on définit le cône dual par

M? = {c ∈ V,∀v ∈ M, (c, v) > 0} (2.8)

Si M est engendré par un nombre fini de vecteurs, alors on peut décrire M ? :

Théorème 2.5 (Lemme de Farkas) .
Si M = {c ∈ V,∀i ∈ {1, ..,m}, (c, ai) 6 0}, alors c ∈ M ? si et seulement si −c ap-
partient au cône convexe engendré par les ai, i.e. il existe {λ1, .., λm} tous > 0 tels que

c = −
m

∑

i=1

λiai .
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Intéressons nous maintenant au cas où K0 est défini par m contraintes, K0 = {w ∈
V, (ai, w) ≤ 0, 1 6 i 6 m}. Alors la troisième ligne dans (2.7) exprime que −J ′(u)
est dans K?

0 , et donc (??) se réécrit

(2.1) ⇔











u ∈ K

J ′(u).(u0 − u) = 0

∃(λ1, · · · , λm) > 0,∇J(u) +
∑m

i=1 λiai = 0

(2.9)

Remarquons comme dans le cas précédent que K se définit ici comme K = {w ∈ V, Fi(w) ≤
0, 1 6 i 6 m}, et (2.9) s’écrit

(2.1) ⇔











u ∈ K

J ′(u).(u0 − u) = 0

∃(λ1, · · · , λm) > 0,∇J(u) +
∑m

i=1 λiF
′
i = 0

(2.10)

2.3 Multiplicateurs de Lagrange, cas général

Le lemme de Farkas va nous permettre de trouver des conditions nécessaires d’optimalité dans
le cas général.
Pour K fermé non vide, pour tout v dans K , nous définissons le cône des directions admissibles
K(v). C’est un cône fermé de sommet O, défini par

K(v) = {0} ∪ {w ∈ V,

∃{vk}k∈N ⊂ K lim
k→+∞

vk = v, vk 6= v pour tout k, lim
k→+∞

vk − v

||vk − v||
=

w

||w||
}

(2.11)

Théorème 2.6 . Si J a un minimum local en u ∈ K et si J est différentiable en u, alors J ′(u) ∈
K(u)?.

Remarque 2.3 . Si K et J sont convexes, alors c’est une condition nécessaire et suffisante.

2.3.1 contraintes égalités

K = {v ∈ V, F (v) = 0} (2.12)

où F est une fonction C1 de V dans R
m, ses coordonnées sont F1, .., Fm.

Définition 2.1 . Les contraintes sont régulières en u ∈ K si les F ′
i (u) sont linéairement indépen-

dantes. On dit alors que u est un point régulier.

On peut alors caractériser le cône des directions admissibles :

Lemme 2.1 . Si les contraintes sont regulières en u ∈ K , alors

K(u) = {w ∈ V, F ′
i (u).w = 0, 1 ≤ i ≤ m} (2.13)

et en déduire l’existence de multiplicateurs de Lagrange :

Théorème 2.7 . Si u ∈ K , u régulier, est minimum local pour J , il existe m réels p1, .., pm tels
que

J ′(u) +
m

∑

i=1

piF
′
i (u) = 0. (2.14)
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Remarque 2.4 . Si K et J sont convexes, alors c’est une condition nécessaire et suffisante.

Remarque 2.5 . Introduisons le lagrangien défini sur V × R
m à valeurs dans R par

L(v, q) ≡ J(v) +

m
∑

i=1

qiFi(v), (2.15)

alors

L′
v(v, q) ≡

∂L

∂v
(v, q) = J ′(v) +

m
∑

i=1

qiF
′
i (v)

L′
q(v, q) ≡

∂L

∂q
(v, q) = F (v)

(2.16)

et
u ∈ K ⇔ ∀q ∈ R

m,L′
v(u, q) = 0

u minimum local ⇔ ∃p ∈ R
m,L′

q(u, p) = 0
(2.17)

2.3.2 contraintes inégalités

K = {v ∈ V, F (v) ≤ 0} (2.18)

où F est une fonction C1 de V dans R
m, ses coordonnées sont F1, .., Fm .

Définition 2.2 . Pour u ∈ K , on appelle I(u) l’ensemble des contraintes actives ou saturées,
i.e.Fi(u) = 0 si i ∈ I(u), Fi(u) < 0 sinon. Les contraintes sont dites qualifiées en u si

∃w̄ ∈ V,∀i ∈ I(u), (F ′
i (u), w̄) < 0 ( resp. ≤ 0 si Fiest affine). (2.19)

On peut encore caractériser le cône des directions admissibles :

Lemme 2.2 . Si les contraintes sont qualifiées en u ∈ K , alors

K(u) = {w ∈ V,∀i ∈ I(u), F ′
i (u).w ≤ 0} (2.20)

Le lemme de Farkas permet alors d’établir le

Théorème 2.8 . Si u ∈ K , où les contraintes sont qualifiées, est minimum local pour J , il existe
m réels p1, .., pm > 0 tels que

J ′(u) +

m
∑

i=1

piF
′
i (u) = 0

m
∑

i=1

piFi(u) = 0

(2.21)

Remarque 2.6 . Le lagrangien est maintenant défini sur V × R
m
+ , et l’on peut écrire

u ∈ K solution optimale ⇒ ∃p ∈ R
m
+ ,

L′
v(u, p) = L′

q(u, p).p = 0.
(2.22)

Attention, contrairement au cas des contraintes égalités, on n’a qu’une condition nécessaire.Le
développement d’une condition nécéssaire et suffisante est l’objet du chapitre suivant.
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Chapitre 3

Lagrangien et point selle

Sommaire

3.1 Point selle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
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3.1 Point selle

Soient V et M deux espaces de Hilbert, U une partie de V et P une partie de M . On définit le
lagrangien comme une application de U × P dans R et on le note L.

Exemple 3.1 au problème d’optimisation du chapitre précédent,

{

u ∈ K,

J(u) = inf
v∈K

J(v) (3.1)

nous avons associé de façon naturelle un lagrangien dans les cas suivants :

K = {v, F (v) ≤ 0} ; L : K × R
m
+ → R

K = {v, F (v) = 0} ; L : K × R
m → R

(3.2)

où F : V → R
m, et

L(v, q) = J(v) + (F (v), q) (3.3)

(.,.) désigne le produit scalaire dans R
m.

Lemme 3.1 .
sup
q∈P

inf
v∈U

L(v, q) ≤ inf
v∈U

sup
q∈P

L(v, q) (3.4)

Remarquons que l’on n’interdit pas les valeurs +∞ et −∞.

Définition 3.1 .(u, p) est point selle du lagrangien si

sup
q∈P

L(u, q) = L(u, p) = inf
v∈U

L(v, p) (3.5)
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Lemme 3.2 . Si (u, p) est point selle du lagrangien, alors

sup
q∈P

inf
v∈U

L(v, q) = L(u, p) = inf
v∈U

sup
q∈P

L(v, q) (3.6)

On associe maintenant au lagrangien un problème primal et un problème dual. On définit d’une
part K et J par

K = {v ∈ U, sup
q∈P

L(v, q) < +∞},

et pour v dans K ,

J(v) = sup
q∈P

L(v, q).

Le problème primal associé s’écrit :

(P) Trouver u ∈ K tel que J(u) = inf
v∈K

J(v)

On définit également K∗ et G par K∗ = {q ∈ P, inf
v∈U

L(v, q) > −∞}, et pour q dans K∗,

G(q) = inf
v∈U

L(v, q). Le problème dual associé s’écrit :

(P∗) Trouver p ∈ K∗ tel que G(p) = sup
q∈K∗

G(q)

Théorème 3.1 . (u, p) est point selle du lagrangien si et seulement si u est solution de (P), p est
solution de (P∗), et J(u) = G(p).

3.2 Théorie de Kuhn et Tucker

On considère maintenant le problème de minimisation convexe avec contraintes inégalité :

K = {v ∈ V, F (v) ≤ 0} (3.7)

où F est une fonction convexe C1 de V dans R
m, ses coordonnées sont F1, .., Fm . On suppose J

convexe et on définit le lagrangien sur V × R
m
+ par

L(v, q) = J(v) + (F (v), q) (3.8)

On a vu au chapitre précédent une condition nécessaire de minimum local, au moyen des
multiplicateurs de Lagrange. On va maintenant établir une réciproque.

Définition 3.2 . Les contraintes sont qualifiées si

∃v̄ ∈ V,∀i, 1 ≤ i ≤ m,Fi(v̄) < 0 (resp. ≤ 0 si Fi est affine). (3.9)

Remarque 3.1 .

1. Si aucune des Fi n’est affine, la définition 3.2 se résume à
◦

K 6= ∅. Si toutes les Fi sont
affines, elle signifie que K 6= ∅.
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2. Si les contraintes sont qualifiées en ce sens, elles sont qualifiées en tout point au sens de la
définition 2.2 du chapitre 2.

Théorème 3.2 . Sous les hypothèses de qualification de la définition 3.2, si u est solution de (P),
il existe p dans R

m
+ tel que (u, p) soit point selle du lagrangien.

Donc dans le cas convexe, avec l’hypothèse de qualification des contraintes de la définition
3.2, on a le schéma suivant :

u solution optimale de (1.2)
(Th 2.8)
=⇒ ∃p ∈ R

m
+























J ′(u) +
m

∑

i=1

piF
′
i (u) = 0

m
∑

i=1

piFi(u) = 0

(Th 3.1)
=⇒ (u, p) point selle du lagrangien

(Th 3.2)
=⇒ u solution optimale de (1.2).

Théorème 3.3 (Kuhn et Tucker) . On suppose que les fonctions J et {Fi}1≤i≤m sont convexes
différentiables et que (3.9) est vérifiée. Soit

K = {v, Fi(v) ≤ 0, 1 ≤ i ≤ m}.

Alors u est minimum de J sur K si et seulement si il existe p dans R
m
+ tel que























J ′(u) +

m
∑

i=1

piF
′
i (u) = 0

m
∑

i=1

piFi(u) = 0

(3.10)

De plus p est solution du problème dual (P∗).
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Deuxième partie

Algorithmes
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Chapitre 4

Méthodes de descente. Problèmes sans
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4.1 Principe

On se place dans un espace de Hilbert V , et on cherche à calculer numériquement un x (qui
n’est pas forcément unique) tel que

∀y ∈ V, J(x) 6 J(y) (4.1)

Le principe est de construire un algorithme itératif de la forme

xk+1 = xk − ρkd
k (4.2)

dk est la direction de descente, ρk est le pas. Il est, soit fixé, éventuellement le même pour toutes
les étapes (on parle alors de méthode à pas variable), soit calculé à chaque étape de façon à
minimiser J dans la direction dk (on parle alors de méthode à pas optimal).

4.2 Méthode de relaxation

On se place en dimension finie, i.e. V = R
n. Pour passer de xk à xk+1, on minimise successi-

vement dans les n directions de la base canonique.
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1. xk,1 est défini par
J(xk,1) = inf

ρ∈R

J(xk − ρe1)

ou encore
xk,1 = (xk

1 − ρ1, x
k
2 , .., x

k
n)

On note xk+1
1 = xk

1 − ρ1

2. à l’étape i on a
xk,i = (xk+1

1 , .., xk+1
i , xk

i , .., x
k
n)

xk,i+1 est maintenant défini par

J(xk,i+1) = inf
ρ

J(xk,i − ρei+1)

3. xk+1 = xk,n

Théorème 4.1 . Si J est α-convexe C1 sur R
n, l’algorithme de relaxation est bien défini et

converge vers la solution optimale.

Remarque 4.1 . Dans le cas où J est quadratique, i.e. J(v) = 1
2
(Av, v) − (b, v), on retrouve

l’algoritme de Gauss-Seidel ou S.O.R. pour la résolution du système linéaire Ax = b.

4.3 Méthode du gradient

Ici on choisit à chaque étape dk = ∇J(xk).

4.3.1 Méthode à pas variable

On se donne le pas ρk, il peut être différent d’une étape à l’autre.

Théorème 4.2 . Si J est α-convexe dérivable sur V , si ∇J est uniformément lipschitzien de
constante de Lipschitz M , l’algorithme de gradient à pas variable converge vers la solution

optimale pour 0 < a ≤ ρk ≤ b <
2α

M2
.

Remarque 4.2 . Si J est 2 fois différentiable, l’hypothèse est

sup
v∈V

||D2J(v)|| ≤ M

4.3.2 Méthode à pas optimal

Ici on choisit à chaque étape ρk de façon que

J(xk − ρk∇J(xk)) = inf
ρ∈R

J(xk − ρ∇J(xk)) (4.3)

Théorème 4.3 . Si J est α-convexe dérivable sur V , si ∇J est uniformément lipschitzien de
constante de Lipschitz M , l’algorithme de gradient à pas optimal est bien défini et converge vers
la solution optimale.

Remarque 4.3 . Les directions de descente sont orthogonales, i.e.

∇J(xk).∇J(xk+1) = 0.
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4.4 Estimations et convergence dans le cas quadratique

Ici la fonctionnelle J est quadratique sur R
n :

J(v) =
1

2
(Av, v) − (b, v)

où la matrice A est symétrique définie positive. La solution x du problème de minimisation
vérifie Ax = b. On appellera résidu à l’étape k la quantité rk = Axk − b

4.4.1 Méthode à pas optimal

On prend ici une direction de descente dk quelconque dans R
n, non orthogonale à rk. A chaque

étape, la valeur du paramètre optimal ρk est donnée par

ρk =
(rk, dk)

(Adk, dk)
(4.4)

et l’on a (rk+1, dk) = 0.
Notons E(v) = 1

2
(A(v − u), v − u), on a alors

E(xk+1) = (1 − γk)E(xk) (4.5)

avec

γk =
1

2

(rk, dk)2

(Adk, dk)(A−1rk, rk)
. (4.6)

Puisque la quantité γk est par construction telle que 0 ≤ γk ≤ 1, on a l’estimation suivante :
si la direction de descente est telle que

( rk

||rk||
,

dk

||dk||

)2
> µ > 0 (4.7)

alors γk > γ =
µ

K(A)
(où K(A) est le conditionnement de A, c’est-à-dire le rapport de la

plus grande à la plus petite valeur propre), et donc

E(xk+1) ≤ (1 − γ)E(xk) (4.8)

On dit que la méthode converge linéairement.
Dans le cas particulier de la méthode du gradient, grâce à l’inégalité de Kantorovitch on peut

écrire

E(xk) ≤
(K(A) − 1

K(A) + 1

)2k

E(x0) (4.9)

Remarque 4.4 . Plus la matrice est bien conditionnée (i.e. K(A) proche de 1), plus la conver-
gence est rapide. Plus la matrice est mal conditionnée (i.e. K(A) »1), plus la convergence est
lente.
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4.4.2 Méthode de gradient à pas constant

On choisit à chaque étape ρk = ρ. On a alors l’estimation

||xk − x||2 ≤
[

max
1≤i≤n

|1 − ρλi|
]k
||x0 − x||2 (4.10)

On en déduit que la méthode converge si et seulement si ρ <
2

λn
où λn est la plus grande

valeur propre de A. Ici encore, la convergence est linéaire.

Remarque 4.5 Comparer avec le théorème général 4.2.

4.5 Méthode du gradient conjugué

On se place ici dans le cas où la fonctionnelle J est quadratique sur R
N : J(v) = 1

2
(Av, v) −

(b, v), la matrice A étant symétrique définie positive. La solution x du problème de minimisation
vérifie Ax = b.

4.5.1 Principe de la méthode

Les (k + 1) premières itérées x0, .., xk étant données, on cherche xk+1, non plus dans la
direction du gradient, mais dans l’espace vectoriel engendré par tous les gradients précédents. On
note

Lk = vect{∇J(x0), ..,∇J(xk)} (4.11)

et on définit xk+1 par :

J(xk+1) = inf
∆∈Lk

J(xk + ∆) (4.12)

Ceci définit xk+1 de manière unique (cf Corollaire 1.1, Partie I) et

Théorème 4.4 . On a les propriétés suivantes :

1. Les ∇J(xk) forment un système orthogonal (donc libre),

2. l’algorithme converge en au plus N itérations.

La première propriété traduit l’équation d’Euler (2.4, Partie I). Ce théorème nous dit que la
méthode du gradient conjugué est en fait une méthode directe. La forme (4.12) n’est pas pratique,
aussi allons nous réécrire l’algorithme sous forme d’un algorithme de descente.

4.5.2 Ecriture comme algorithme de descente

Théorème 4.5 . L’algorithme du gradient conjugué s’écrit sous la forme































xk+1 = xk − ρkd
k

dk = ∇J(xk) +
||∇J(xk)||2

||∇J(xk−1)||2
dk−1

ρk =
||∇J(xk)||2

(Adk, dk)
(rk+1, dk) = 0

(4.13)
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Il suffit de se donner d0 = ∇J(x0).
N peut être très grand, on peut alors compter le nombre d’opérations nécessaires pour réaliser
l’algorithme : une itération nécessite 2cN opérations élémentaires, où c est le nombre moyen de
coefficients non nuls par ligne de A. Si bien que pour une matrice pleine, le nombre d’opérations
élémentaires pour N itérations est 2N 3. Cela risquerait de disqualifier la méthode par rapport à
Cholewski (N3

3
opérations élémentaires), si l’on ne faisait une

4.5.3 Analyse de convergence

On introduit l’espace de Krylov

Kk = vect{r0, Ar0, .., Akr0} (4.14)

et on a le

Théorème 4.6 . Si rj 6= 0 pour j ≤ k, alors Kk ≡ Lk

On en déduit une première estimation de l’erreur

Théorème 4.7
E(xk) = inf

P∈Pk−1

max
1≤i≤N

[1 + λiP (λi)]
2E(x0) (4.15)

où les λi sont les valeurs propres de A.

et par un calcul assez long sur les polynômes de Tchebycheff,

Corollaire 4.1 . On a l’estimation d’erreur

E(xk) ≤ 4
(

√

K(A) − 1
√

K(A) + 1

)2k

E(x0) (4.16)

De nouveau, la convergence est linéaire. Cette estimation est à comparer avec l’estimation
d’erreur (4.9) pour l’algorithme du gradient à pas optimal :

E(xk) ≤
(K(A) − 1

K(A) + 1

)2k

E(x0)

Par exemple, d’après ces estimations pour K(A) = 100, pour obtenir une erreur de 10−6,
il faudrait 340 itérations du gradient à pas optimal et seulement 34 itérations du gradient conju-
gué ! Comme les itérations sont comparables, ces performances font de cet algoritme le favori de
tous les gens qui font des calculs de grande taille. De nombreuses extensions ont été proposées :
BiCGSTAB, GMRES, etc, pour des problèmes non symétriques, à coefficients complexes, etc..
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Méthodes pour les problèmes avec
contraintes

Sommaire

5.1 Méthode de gradient projeté à pas variable . . . . . . . . . . . . . . . . . . 27

5.2 Algorithme d’Uzawa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1 Méthode de gradient projeté à pas variable

Soit le problème de minimisation avec contraintes

{

u ∈ K,

J(u) = inf
v∈K

J(v) (5.1)

où K est un convexe fermé non vide de l’espace de Hilbert V . On rappelle que si J est α

convexe, il existe un minimum unique (corollaire 1.1, Partie I), caractérisé dans le cas différen-
tiable par (2.1, Partie I) :

{

u ∈ K

∀v ∈ K,J ′(u).(v − u) > 0.
(5.2)

On définit alors la suite des approximations uk par la relation de récurrence

uk+1 = PK(uk − ρkrk) (5.3)

où rk est le résidu à l’étape k, i.e. rk = ∇J(uk), et PK désigne la projection sur le convexe
fermé K (Partie I,2.1).

Théorème 5.1 . Si J est α-convexe dérivable sur V , si ∇J est uniformément lipschitzien de
constante de Lipschitz M , l’algorithme de gradient projeté à pas variable converge vers la so-

lution optimale pour 0 < a ≤ ρk ≤ b <
2α

M2
. De plus il existe une constante β < 1 telle

que

‖uk − u‖ ≤ βk‖u0 − u‖ (5.4)
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En général, on ne peut pas expliciter la projection, sauf quand V = R
n, et

K = {v ∈ V,∀i, 1 ≤ i ≤ n, vi > 0}, (5.5)

auquel cas

(PKw)i = max(wi, 0), 1 ≤ i ≤ n. (5.6)

Si K est le pavé
∏n

i=1[ai, bi], alors

(PKw)i =







ai si wi ≤ ai

wi si ai ≤ wi ≤ bi

bi si wi > bi

(5.7)

5.2 Algorithme d’Uzawa

Soit un problème de minimisation avec contraintes inégalités

K = {v, F (v) ≤ 0} (5.8)

où F : V → R
m. On a défini un lagrangien

L(v, q) = J(v) + (F (v), q); L : K × R
m
+ → R (5.9)

et le problème dual :

K∗ = {q ∈ P, inf
v∈U

L(v, q) > −∞} (5.10)

et pour q dans K∗, G(q) = inf
v∈U

L(v, q). Le problème dual associé s’écrit :

(P∗) Trouver p ∈ K∗ tel que G(p) = sup
q∈K∗

G(q)

L’idée est d’utiliser le problème dual : si K∗ = R
m
+ (ce qui est le cas pour des contraintes af-

fines), on peut mettre en œuvre un algorithme de gradient projeté sur le multiplicateur de Lagrange
p. Pour q dans K∗, on a défini uq comme la solution du problème

inf
v∈V

L(v, q) = L(uq, q) (5.11)

L’algorithme se décrit alors comme suit :

pk → uk = upk
→ pk+1 = PK∗(pk + ρ∇G(pk)) (5.12)

Théorème 5.2 . On suppose que V = R
n et K = {v ∈ V,Cv ≤ d}. Alors K∗ = R

m
+ et uk → u,

unique solution de (P) . De plus si rgC = m, pk converge vers l’unique solution de (P∗).
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