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Soit V' un espace de Hilbert (sur R), K une partie de V', .J une fonction définie sur V" a valeurs
dans R . On dit que » est minimum local de J sur K si u appartient & K et s’il existe un voisinage
U de u dans K tel que

Vo e U, J(u) < J(v) (1.1)

Si la relation précédente est vraie pour tout v dans K, on dit que « est minimum global de J sur
K. On définit un probleme de minimisation sur K par

" K_7 - (1.2)
J(u) = vlgff{ J(v)

On dit alors que u est solution optimale du probléme de minimisation sur K. Le probleme de
minimisation est dit sans contrainte si V' = K, avec contraintes si V' # K.

Bien évidemment, on définit un probléme de maximisation, en remplacant < par > dans (1.1)
et inf par sup dans (1.2). On parlera en général de probléme d’optimisation. On passe de I’un a
I’autre en définissant la fonctionnelle opposée. Dans ce cours tous les résultats sont établis sur les
problémes de minimisation.

1.1 Théoreme de Weierstrass

Théoréme 1.1 . Si K est un compact non vide et si J est continue sur K, le probléme de minimi-
sation (1.2) admet une solution.

Remarque 1.1 . C’est un théoréme d’existence, mais il ne donne pas de résultat d’unicité.

Remarque 1.2 . Dans les problémes d’optimisation, les ensembles de contraintes sont en géneéral
fermés bornés, mais pas forcément compacts. Par contre ils sont souvent convexes.



1.2 Cas convexe
On rappelle qu’une partie K de V' est convexe si
V(z,y) € K,¥0 € [0,1],0x + (1 —0)y € K (1.3)

Une fonction J définie sur un convexe K est dite
— convexe Si

Y(z,y) € K,¥0 € [0,1],J(0x + (1 — 0)y) < 0J(z) + (1 — 0)J(y),  (1.4)
— strictement convexe si
V(z,y) € K,z # y,¥0 €]0,1[, J(0z + (1 — 0)y) < 0J(x) + (1 — 0)J(y),  (L5)
— o convexe si

V(z,y) € K,¥0 € [0,1], J(0z + (1 — 0)y) < 0J(x)+(1 — 0)J(y)—

2oy

Théoréme 1.2 . Si J est convexe, tout minimum local est global, et I’ensemble des solutions opti-
males est convexe.

Théoréme 1.3 . Si J est strictement convexe, la solution optimale, si elle existe, est unique.

Théoréme 1.4 ( Théoréme fondamental) . Soit K un convexe fermé non vide, J une fonction
définie sur K a valeurs dans R convexe continue. On suppose que J est infinie a I’infini (i.e.
J(v) — oo lorsque ||v|| — +o0) ou que K est borné. A lors le probléeme de minimisation admet
une solution.

Corollaire 1.1 . Soit K un convexe fermé non vide, J une fonction définie sur K a valeurs dans
R, a-convexe continue. Alors le probléme de minimisation admet une solution et une seule. De
plus toute suite minimisante converge vers u.

1.3 Rappels de calcul différentiel

Soit J une fonctionnelle définie sur un Hilbert V" a valeurs dans R. On note V' le dual de V/,
i.e. I’espace vectoriel des applications linéaires continues sur V' a valeurs dans R.

1.3.1 Dérivées premiéres

Définition 1.1 (Différentiabilité) .J est différentiable (au sens de Fréchet) en u € V' s’il existe [,
dans V' telle que,

Vw eV, J(u+w) = J(u) + ly(w) + e(w)|Jw]], lirr(l)e(w) =0 (1.7)
I, est la dérivée de J et se note J'(u). On écrira J'(u) - v = 1, (v).

Remarque 1.3 Par le théoreme de Riesz puisque J'(u) est dans V', il existe un unique élément
de V noté V.J(u) tel que pour tout v dans V' on ait

J(u) v = (VJ(u),v)



Exemples de base

1. Les formes linéaires J(u) = (c,u), ou ¢ est un vecteur donné dans V. Alors J'(u).v =
(c,v), VJ(u) =c.

2. Lesfonctions J(u) = a(u, u), ou a est une forme bilinéaire continue sur V.. Alors J'(u).v =
a(u,v) + a(v,u), et si a est symétrique J'(u).v = 2a(u,v).

3.SiV=R"J(u) = (FL(u), -, ZL(w) et J'(u).v = 37y FL(w)vs.

1.3.2 Dérivées secondes

SiJ:V =R, J :V— V' admet une différentielle .J” et pour tout u, J"(u) € L(V, V"),
espace des applications linéaires continues de V' dans V’. Cet espace s’identifie a £2(1), espace
des applications bilinéaires continues de V' x V dans R. On notera J” (u) - v - w.

Exemples de base

1. J(u) = (¢c,u), J”(u) = 0.

2. J(u) = a(u,u), alors J"(u).v.w = a(v,w) + a(w,v), et si a est symétrique J" (u).v.w
2a(v,w). SiV =R", J(u) = 3(Au,u) ol A est une matrice symétrique, alors J” (u) =
pour tout .

A

3. Si V =R", J"(u) est la matrice des dérivées partielles secondes 8228{0 ~(u).

1.3.3 Formules de Taylor

Taylor Mac-Laurinordre 1 Si J : V +— R est définie et continue sur [, v], différentiable sur
Ju, v, il existe 6 €]0, 1] tel que

J() = J(u) + J'(u+6(v—u)) - (v —u)

Taylor Mac-Laurin ordre 2 Si J : V — R est définie et continue sur [u, v], 2 fois différentiable
sur Ju, v], il existe 6 €]0, 1] tel que

T(0) = J(w) + J'(u) - (v — ) + %J”(u O —u))- (v —u) - (v —u)

Taylor Young Si J : V +— RP est définie et continue sur [u,v], de classe C! sur [u,v], 2 fois
différentiable dans un voisinage de wu,

J) = Ju) +J (u) - (v—1u)+e(v—u)|v—ul, lii%e(v—u) =0

Théoréme 1.5 (caractérisation des fonctions convexes) . J est convexe si et seulement si I’une
des conditions suivantes est vérifiée :

1. Si J est différentiable, le graphe de .J est au-dessus de I’hyperplan tangent, i.e.

Vu,v € V,JJ(v) = J(u) + J'(u) - (v —u) (1.8)
2. Si J est différentiable, J’ est un opérateur monotone, i.e.

Vu,v € V, (J'(v) = J'(u)) - (v —u) =0 (1.9)
3. Si J est deux fois différentiable, J” est un opérateur non négatif, i.e.

Vu,w e V, J" (u)w.w >0 (1.10)



Pour une fonction « -convexe, on a :

Théoréme 1.6 (caractérisation des fonctions « -convexes) . J est a- convexe si et seulement si
I’une des conditions suivantes est verifiee :

1. Si J est différentiable,
Vu,v € V, J(v) = J(u) + J' (u) - (v —u) + % | v—ul? (1.11)
2. Si J est différentiable,
Vu,v € V,(J'(v) =T (u)- (v —u) = alv—ul? (1.12)
3. Si J est deux fois différentiable,
Vu,w € V, J"(w)ww > a || w|*. (1.13)

En particulier les fonctionnelles de la forme J(u) = a(u, ), ou a est une forme bilinéaire symé-
trique continue sur V' sont a-convexes si et seulement si

Vu € V, 2a(w,w) > al|w|?
Si I’on est dans R™, avec J(u) = 1 (Au,u), ceci revient a
Vu €V, (Aw,w) > aljwl?

La matrice A étant symétrique, elle diagonalise en base orthonormée, A = PDPT, ol D est la
matrice des valeurs propres d; et P la matrice des vecteurs propres. On a alors

n

(Aw,w) =Y di(Pw)i)* = (mini<i<ndi) >_((Pw);)?
=1

=1
(Aw, w) > (mini<i<nd;)||Pw|® = (miny<i<nd;)||wl|®

car, puisque P est orthogonale, ||[Pw| = |lw]||. Si A est définie positive, a fonctionnelle est
minlgigndi-COHVGXG.
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Caractérisation des extrema
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2.1 Equation d’Euler, cas géneral

Théoréme 2.1 (condition nécessaire) . Si u est minimum local de J dans V, alors
1. Si J est différentiable, J'(u) = 0,
2. Si Jest deux fois différentiable, on a de plus Vw € V, J” (u)w.w > 0.

Théoréme 2.2 (condition suffisante) . Soit J une fonction différentiable dans V' et » un point de
V tel que J'(u) =0
1. Si J est deux fois différentiable dans un voisinage de « et s’il existe un voisinage €2 de w tel
que Yo € Q,YVw € V, J"(v)w.w > 0, alors u est minimum local de J.

2. Si J est deux fois différentiable,et s’il existe « > 0 tel que
vw e V,J" (www > o | w %

alors u est minimum local strict pour J.

2.2 Inéquation d’Euler, cas convexe

Dans cette section on considére le probléme de minimisation avec contraintes. On suppose que
K est un convexe fermé non vide et que J est différentiable.

Théoréme 2.3 . Si u est solution optimale on a I’inéquation d’Euler

ue K
{ Vo e K, J'(u).(v —u) = 0. (2.2)

Réciproquement si on a I’inéquation d *Euler en u et si de plus .J est convexe, alors w est solution
optimale.

11



Corollaire 2.1 [Projection sur un convexe fermé]. Soit K une partie convexe fermée non vide
d’un espace de Hilbert V, et w un point de V' n’appartenant pas & K. alors il existe un unique
point de K, noté P -w tel que

{ Pxw € K, 22)
—P — inf _ .
lw — Prewl = inf |lw - o]
Il est caractérisé par
Vo € K, (Prw —w,v — Pgw) >0 (2.3)

Les cas particuliers sont trés importants.
1. K=V Onale

Théoreme 2.4 . Si J est convexe différentiable, alors « réalise le minimum de J sur V' si et
seulement si J'(u) = 0.

Remarque 2.1 . En particulier si J est a-convexe, il existe une unique solution optimale,
caractérisée par J'(u) = 0.

2. K sous-espace affine engendré par I’espace vectoriel fermé E, i.e. K = {ug + v,v € E},

alors
(21) =" K (2.4)
Vw e K, J'(u)w =0

Si E est défini par m contraintes, £ = {w € V, (a;,w) = 0,1 < i < m}, alors

ue kK

m

NG Ay VI () + > Aiag = 0
=1

(21) (2.5)

Remarque 2.2 Si I’on définit les fonctions affines F;(w) = (w — ug, a;), alors K = {w €
V, F;(w) = 0}, et (2.5) se réécrit

ue K

(2.1) & (2.6)

3N ey A, VI (u) + > NF] = 0.
=1

3. K cfne convexe fermé de sommet uy. On note K le cOne de sommet O qui lui est paralléle.
Alors
ue K

(21) & ¢ J'(u).(up —u) =0 (2.7)
Vw € Ky, J' (u).w > 0.
Pour M cOne convexe fermé de sommet O, on définit le cone dual par

M*={ceV,Yv e M, (c,v) >0} (2.8)

Si M est engendré par un nombre fini de vecteurs, alors on peut décrire M ™ :

Théoréme 2.5 (Lemme de Farkas) .
SiM = {c e V,Vi € {1,..,m},(c,a;) < 0}, alors ¢ € M* si et seulement si —c ap-
partient au cone convexe engendré par les a;, i.e. il existe {\,.., \;,} tous > 0 tels que

m
C= — E )\zaz
=1

12



Intéressons nous maintenant au cas ou K est défini par m contraintes, Ko = {w €
V,(a;,w) < 0,1 < i < m}. Alors la troisieme ligne dans (2.7) exprime que —J’(u)
est dans K, et donc (??) se reécrit

ue K
(2.1) & < J'(u).(ug — u) =0 (2.9)
El()\l, e ,)\m) 2 0, VJ(U) + Z;il )\iai =0

Remarquons comme dans le cas précédent que K se définit icicomme K = {w € V, F;(w) <
0,1 <i < m},et(2.9)sécrit

u e K
(2.1) & < J'(u).(up — u) =0 (2.10)

2.3 Multiplicateurs de Lagrange, cas général

Le lemme de Farkas va nous permettre de trouver des conditions nécessaires d’optimalité dans
le cas général.
Pour K fermé non vide, pour tout v dans K, nous définissons le cOne des directions admissibles
K (v). C’est un cOne fermé de sommet O, défini par

K(v) ={0}u{weV,

. L me—v w (2.11)
3 CK lim v, =wv,v v pour tout &, lim =
{Uk}kEN k00 k k 7& p koo ||Uk — U|| ||’UJ||}

Théoréme 2.6 . Si J a un minimum local en u € K et si J est différentiable en w, alors J'(u) €
K(u)*.

Remarque 2.3 . Si K et J sont convexes, alors c’est une condition nécessaire et suffisante.

2.3.1 contraintes égalités

K={veV,F(v)=0} (2.12)
ou F est une fonction C! de V' dans R™, ses coordonnées sont Fi, .., F},.

Définition 2.1 . Les contraintes sont réguliéres en u € K si les F/(u) sont linéairement indépen-
dantes. On dit alors que u est un point régulier.

On peut alors caractériser le cOne des directions admissibles :

Lemme 2.1 . Si les contraintes sont regulieres en u € K, alors
Ku)={weV,F/(u)w=0,1<i<m} (2.13)

et en déduire I’existence de multiplicateurs de Lagrange :

Théoréme 2.7 . Si u € K, u régulier, est minimum local pour J, il existe m réels p1, .., p,, tels
que

J'(u) + Y piFi(u) =0. (2.14)
=1
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Remarque 2.4 . Si K et J sont convexes, alors c’est une condition nécessaire et suffisante.

Remarque 2.5 . Introduisons le lagrangien défini sur V' x R™ a valeurs dans R par

L(v,q) = J(v) + Y a:Fi(v), (2.15)
=1
alors
/ — a£ !/ % /
‘CU(U7Q) = a_(vv Q) =J (U) + Z QZE (U)
v or i=1 (2.16)
Ly(v,q) = 8—q(07Q) = F(v)
et
ue K& VqgeR™ L (u,q) =0 (2.17)
u minimum local < 3p € R™, £; (u,p) =0 '
2.3.2 contraintes inégalités
K={veV,F(v) <0} (2.18)

ou F est une fonction C'! de V dans R™, ses coordonnées sont F, .., F},.

Définition 2.2 . Pour u € K, on appelle I(u) I’ensemble des contraintes actives ou saturées,
i.e.Fi(u) =0sii e I(u), F;(u) < 0sinon. Les contraintes sont dites qualifiées en « si

Jw € V,Vi € I(u), (F(u),w) < 0 (resp. < 0si Fest affine). (2.19)
On peut encore caractériser le cone des directions admissibles :
Lemme 2.2 . Si les contraintes sont qualifiées en u € K, alors
K(u) = {w € V,Vi € I(u), F (u).w < 0} (2.20)
Le lemme de Farkas permet alors d’établir le

Théoréme 2.8 . Si u € K, ou les contraintes sont qualifiées, est minimum local pour J, il existe
m reels py, .., pm > 0 tels que

J'(u) + ) piFi(u) =0
=1

m (2.21)
> piFi(u) =0
=1
Remarque 2.6 . Le lagrangien est maintenant défini sur V' x R?, et I’on peut écrire
u € K solution optimale = dp € R, (2.22)

L,(u,p) = L4(u,p).p = 0.

Attention, contrairement au cas des contraintes égalités, on n’a qu’une condition nécessaire.Le
développement d’une condition nécéssaire et suffisante est I’objet du chapitre suivant.
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Chapitre 3

Lagrangien et point selle

Sommaire
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3.2 Théoriede KuhnetTucker . . ... ... ... . . ... . .. . .. ..... 16

3.1 Point selle

Soient V et M deux espaces de Hilbert, U une partie de V et P une partie de M. On définit le
lagrangien comme une application de U x P dans R et on le note L.

Exemple 3.1 au probléme d’optimisation du chapitre précédent,

F @)
J(u) —;g}f{ J(v)

nous avons associé de facon naturelle un lagrangien dans les cas suivants :

K={v,F(v)<0}; L: K xR} —=R

K={v,F(t)=0}; £: K xR™ - R (32)
ouF:V —R™ et
L(v,q) = J(v) + (F(v),q) (3.3)
(.,.) désigne le produit scalaire dans R™.
Lemme 3.1 .
sup inf L(v,q) < inf sup L(v,q) (3:4)
Remarquons que I’on n’interdit pas les valeurs +oo et —oo.
Définition 3.1 .(u, p) est point selle du lagrangien si
sup £(u,q) = £(u,p) = inf L(v,p) (35)

qeP

15



Lemme 3.2 . Si (u, p) est point selle du lagrangien, alors

sup inf L(v,q) = L(u,p) = inf sup L(v,q) (3.6)
qgep veU velU gep

On associe maintenant au lagrangien un probléme primal et un probléme dual. On définit d’une
part K et J par

K ={veUsupL(v,q) < +o0},
qeP

et pour v dans K,

J(v) =sup L(v, q).
qeP

Le probléeme primal associé s’écrit :

(P) Trouver u € K tel que J(u) = %f( J(v)

On définit également K* et G par K* = {q € P, in[f] L(v,q) > —oo}, et pour ¢ dans K*,
ve
G(q) = in[fjﬁ(v, q). Le probléeme dual associé s’écrit :
ve

(P*) Trouver p € K* tel que G(p) = sup G(q)
qeK*

Théoréeme 3.1 . (u,p) est point selle du lagrangien si et seulement si « est solution de (P), p est
solution de (P*), et J(u) = G(p).

3.2 Théorie de Kuhn et Tucker
On considere maintenant le probléme de minimisation convexe avec contraintes inégalité :
K={veV,F(v) <0} (3.7

ou F est une fonction convexe C'!' de V dans R™, ses coordonnées sont F, .., F},. On suppose .J
convexe et on définit le lagrangien sur V' x R’ par

L(v,q) = J(v) + (F(v),q) (3.8)

On a vu au chapitre précédent une condition nécessaire de minimum local, au moyen des
multiplicateurs de Lagrange. On va maintenant établir une réciproque.

Définition 3.2 . Les contraintes sont qualifiées si
Jv € V,Vi,1 < i <m,F;(v) <0 (resp. < 0si Fj; est affine). (3.9)

Remarque 3.1 .

1. Si aucune des F; n’est affine, la définition 3.2 se résume a K # (). Si toutes les F; sont
affines, elle signifie que K £ ().

16



2. Si les contraintes sont qualifiées en ce sens, elles sont qualifiées en tout point au sens de la
définition 2.2 du chapitre 2.

Théoreme 3.2 . Sous les hypotheses de qualification de la définition 3.2, si u est solution de (P),
il existe p dans R”" tel que (u, p) soit point selle du lagrangien.

Donc dans le cas convexe, avec I’hypothése de qualification des contraintes de la définition
3.2, on a le schéma suivant :

(Th 2.8)

J'(w) + ) pif(u) =0
u solution optimale de (1.2) '=—="3p € R} =1

> piFi(u) =0
=1

(Th3.1) _ . (Th3.2) _ _
— (u,p) point selle du lagrangien ~=—=" u solution optimale de (1.2).

Théoréme 3.3 (Kuhn et Tucker) . On suppose que les fonctions J et {F; }1<;<n sont convexes
différentiables et que (3.9) est vérifiée. Soit

K ={v,F;(v) <0,1 <i<m}.

Alors u est minimum de .J sur K si et seulement si il existe p dans R" tel que

J'(u) + Y piF{(u) =0
m =1 (3.10)
> piFi(u) =0

De plus p est solution du probléme dual (P*).
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Deuxieme partie

Algorithmes
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Chapitre 4

Méthodes de descente. Problemes sans
contraintes
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4.1 Principe

On se place dans un espace de Hilbert V/, et on cherche a calculer numériquement un = (qui
n’est pas forcément unique) tel que

vy eV, J(z) < J(y) (4.1)
Le principe est de construire un algorithme itératif de la forme

k+1 k

aFH = ok — ppd” (4.2)

d" est la direction de descente, py, est le pas. Il est, soit fix¢, éventuellement le méme pour toutes
les étapes (on parle alors de méthode a pas variable), soit calculé a chaque étape de fagon a
minimiser J dans la direction d* (on parle alors de méthode a pas optimal).

4.2 Méthode de relaxation

On se place en dimension finie, i.e. V.= R™. Pour passer de z* & z**1, on minimise successi-
vement dans les n directions de la base canonique.
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1. 2™ est défini par
J(zP) = inf J(2® — peq)

pER
ou encore
= (@} — pr, @k, . 2)
Onnote z¥*! = zb —
2. al’étape iona
Pt = (;U]fﬂ, ..,xf“,azf, k)

2 +1 est maintenant défini par

J(mk’iﬂ) = inf J(mk’i — peit1)
D
3. bt = ghn

Théoréeme 4.1 . Si J est a-convexe C! sur R”, I’algorithme de relaxation est bien défini et
converge vers la solution optimale.

Remarque 4.1 . Dans le cas ol J est quadratique, i.e. J(v) = $(Av,v) — (b, v), on retrouve
I’algoritme de Gauss-Seidel ou S.0.R. pour la résolution du systéme linéaire Ax = b.

4.3 Meéthode du gradient

Ici on choisit & chaque étape d* = V.J(z%).

4.3.1 Meéthode a pas variable

On se donne le pas pg, il peut etre différent d’une étape a I’autre.

Théoréme 4.2 . Si J est a-convexe dérivable sur V, si VJ est uniformément lipschitzien de

constante de Lipschitz M, I’algorithme de gradient a pas variable converge vers la solution
. 2

optimale pour 0 < a < p, < b < MO; .

Remarque 4.2 . Si J est 2 fois différentiable, I’hypothese est

sup [|[D?J(v)[| < M
veV

4.3.2 Meéthode a pas optimal

Ici on choisit a chaque étape p;, de fagon que
J(z* — pp VI (%)) = inf J(zF — pVJ(z*)) (4.3)
p

Théoréme 4.3 . Si J est a-convexe dérivable sur V, si VJ est uniformément lipschitzien de
constante de Lipschitz M, I’algorithme de gradient a pas optimal est bien défini et converge vers
la solution optimale.

Remarque 4.3 . Les directions de descente sont orthogonales, i.e.

VJ(z).VJ (") = 0.
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4.4 Estimations et convergence dans le cas quadratique

Ici la fonctionnelle J est quadratique sur R"™ :

1
J(v) = E(Av,v) — (b,v)
ou la matrice A est symétrique définie positive. La solution = du probléme de minimisation

vérifie Az = b. On appellera résidu a I’étape k la quantité r* = Az* — b

4.4.1 Meéthode a pas optimal

On prend ici une direction de descente d* quelconque dans R™, non orthogonale a r*. A chaque
étape, la valeur du paramétre optimal p;, est donnée par

_(Mdb)
= A @) 9
etPPona (r* 1 d*) = 0.
Notons E(v) = 3(A(v — u),v — u), on a alors
E(zFY) = (1 — v E(z) (4.5)
avec
_1 G dY (4.6)

Tk = 9 AR, dF) (AT k)

Puisque la quantité ~; est par construction telle que 0 < ~; < 1, on a I’estimation suivante :
si la direction de descente est telle que

Tk dk 9
—— ——)" 2 u>0 (4.7)
G )
alors v, > v = Kl(LA) (ou K (A) est le conditionnement de A, c’est-a-dire le rapport de la

plus grande a la plus petite valeur propre), et donc

E(@*) < (1 —7)B(z") (4.8)

On dit que la méthode converge linéairement.
Dans le cas particulier de la méthode du gradient, gréace a I’inégalité de Kantorovitch on peut
écrire

2k
i) B (4.9)

Remarque 4.4 . Plus la matrice est bien conditionnée (i.e. K(A) proche de 1), plus la conver-
gence est rapide. Plus la matrice est mal conditionnée (i.e. K(A) »1), plus la convergence est
lente.
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4.4.2 Meéthode de gradient a pas constant

On choisit a chaque étape p, = p. On a alors I’estimation

ko < — o 1E 10 — .
e~ oo < [ma 11— pul)l2® — (.10

- ) . . 2
On en deduit que la méthode converge si et seulement si p < x ou )\, est la plus grande
- - Ve - n
valeur propre de A. Ici encore, la convergence est linéaire.

Remarque 4.5 Comparer avec le théoreme général 4.2.

4.5 Meéthode du gradient conjugué

On se place ici dans le cas ol la fonctionnelle .J est quadratique sur RY : J(v) = 3(Av,v) —
(b,v), la matrice A étant symétrique définie positive. La solution = du probléme de minimisation
veérifie Az = b.

4.5.1 Principe de la méthode

Les (k + 1) premigres itérées z°, .., % étant données, on cherche x**1, non plus dans la
direction du gradient, mais dans I’espace vectoriel engendré par tous les gradients précédents. On
note

Ly, = vect{VJ(z"), .., V.J(z")} (4.11)
et on définit z*+1 par :
R+1y _ k
J(x") = Alél[f/k J(z" + A) (4.12)

Ceci définit z*! de maniére unique (cf Corollaire 1.1, Partie 1) et

Théoréme 4.4 . On a les propriétés suivantes :
1. Les V.J(2*) forment un systéme orthogonal (donc libre),
2. I’algorithme converge en au plus NN itérations.

La premiére propriété traduit I’équation d’Euler (2.4, Partie I). Ce théoréme nous dit que la
méthode du gradient conjugué est en fait une méthode directe. La forme (4.12) n’est pas pratique,
aussi allons nous réécrire I’algorithme sous forme d’un algorithme de descente.

4.5.2 Ecriture comme algorithme de descente
Théoréme 4.5 . L’algorithme du gradient conjugué s’écrit sous la forme

:L’k+1

— 7k _pkdk
VI
&k = V. (zF I k—1
V@) T G P
p :W
" (AdR,dF)
(Tk+1,dk)20

(4.13)
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Il suffit de se donner d° = V.J(z).

N peut &tre trés grand, on peut alors compter le nombre d’opérations nécessaires pour réaliser
I’algorithme : une itération nécessite 2¢cN opérations élémentaires, ou ¢ est le nombre moyen de
coefficients non nuls par ligne de A. Si bien que pour une matrice pleine, le nombre d’opérations
élémentaires pour N itérations est 2/V3. Cela risquerait de disqualifier la méthode par rapport a
Cholewski (NTSopérations élémentaires), si I’on ne faisait une

4.5.3 Analyse de convergence

On introduit I’espace de Krylov
Kj, = vect{r?, Ar®, .., A¥0} (4.14)
etonale
Théoréme 4.6 . Sir/ # 0 pour j < k, alors K, = L,
On en déduit une premiére estimation de I’erreur

Théoreme 4.7
ky _ , N2 77,0
E(z") = Pég}f—l 11;1%}5\7[1 + NP(N)PE(2”) (4.15)

ou les \; sont les valeurs propres de A.
et par un calcul assez long sur les polyndmes de Tchebycheff,

Corollaire 4.1 . On a I’estimation d’erreur

K4) - 1)2kE 0y (4.16)

VEA) +1

De nouveau, la convergence est linéaire. Cette estimation est a comparer avec I’estimation
d’erreur (4.9) pour I’algorithme du gradient a pas optimal :

K(A) — 112
B(x") < (K(A) + 1) (=°)

Par exemple, d’aprés ces estimations pour K (A) = 100, pour obtenir une erreur de 1075,
il faudrait 340 itérations du gradient a pas optimal et seulement 34 itérations du gradient conju-
gue ! Comme les itérations sont comparables, ces performances font de cet algoritme le favori de
tous les gens qui font des calculs de grande taille. De nombreuses extensions ont été proposées :
BiCGSTAB, GMRES, etc, pour des problemes non symétriques, a coefficients complexes, etc..

E(z%) < 4(
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Chapitre 5

Méthodes pour les problemes avec
contraintes
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52 Algorithmed’Uzawa. . . . . . ... . ... .. 28

5.1 Meéthode de gradient projeté a pas variable

Soit le probleme de minimisation avec contraintes

" K_7 : (5.1)
J(u) = vlg}f{ J(v)

ou K est un convexe fermé non vide de I’espace de Hilbert V. On rappelle que si J est «
convexe, il existe un minimum unique (corollaire 1.1, Partie 1), caractérisé dans le cas différen-
tiable par (2.1, Partie I) :

ue K
{ Vo e K, J'(u).(v —u) = 0. (5.2)

On définit alors la suite des approximations «* par la relation de récurrence
uFtt = ]P’K(uk - pkrk) (5.3)

ol 7" est le résidu a I’étape k, i.e. r¥ = V.J(u¥), et P désigne la projection sur le convexe
fermé K (Partie 1,2.1).

Théoréme 5.1 . Si J est a-convexe dérivable sur V, si V.J est uniformément lipschitzien de
constante de Lipschitz M, I’algorithme de gradient projeté a pas variable converge vers la so-

. . 2 o
lution optimale pour 0 < a < pr < b < MO; . De plus il existe une constante § < 1 telle
que

¥ — ul| < B¥|[u® — ul (5.4)
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En général, on ne peut pas expliciter la projection, sauf quand V' = R™, et

K ={veV,Vi,1 <i<n,v; >0}, (5.5)
auquel cas
(Prw); = maz(w;,0),1 <i<n. (5.6)
Si K est le pavé []""_,[ai, bi], alors
a; si w; < aq;
(]P’Kw)i = W; si a; <w; <b; (57)
5.2 Algorithme d’Uzawa
Soit un probleme de minimisation avec contraintes inégalités
K ={v,F(v) <0} (5.8)
ou F': V — R™. On a défini un lagrangien
L(v,q) =J() + (F(v),q); L£:K xR —>R (5.9)
et le probléme dual :
K*={qeP, iIgllf],C(U,q) > —oo} (5.10)
et pour ¢ dans K*, G(q) = insz L(v, q). Le probléeme dual associé s’éecrit :
veE
(P*) Trouver p € K* tel que G(p) = sup G(q)
qeK*

L’idée est d’utiliser le probleme dual : si K* = R’ (ce qui est le cas pour des contraintes af-
fines), on peut mettre en ceuvre un algorithme de gradient projeté sur le multiplicateur de Lagrange
p. Pour ¢ dans K, on a défini u, comme la solution du probleme

inf = A1
32‘/ ‘C(,U7 Q) E(ulp Q) (5 )

L’algorithme se décrit alors comme suit :
Pk — uk = Up, — Pr+1 = Pr+(pr + pVG(pr)) (5.12)

Théoréme 5.2 . On suppose que V =R" et K = {v € V,Cv < d}. Alors K* = R et uy, — u,
unique solution de (P) . De plus si rgC' = m, p;, converge vers I’unique solution de (P*).
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