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Let D be a category with finite limits. The notion of an abelian group can
be generalized to this abstract setting by defining an abelian group object
in D to be an object X ∈ D equipped with maps m ∶ X ×X Ð→ X, e ∶ ∗ Ð→ X
and inv ∶ X Ð→ X which satisfy (diagramatically) all the axioms of an abelian
group. In favorable cases (such as when D is presentable) the forgetful functor
Ab(D) Ð→ D admits a left adjoint D Ð→ Ab(D). For an object X ∈ D one
should consider ZX as the free abelian group object generated from X.
Our starting point is the following notion:

Definition 1. Let C be a category which admits finite limits and let X ∈ C an
object. A Beck module over X is an abelian group object in the category of
C/X of objects equipped with a map to X. We denote by Ab(C/X) the category
of Beck modules. We will denote by Z/X ∶ C Ð→ C/X a left adjoint to the
forgetful functor (when exists).

Examples 2.

1. Let Set be the category of sets. Then for every set A the category
Ab(Set/A) is equivalent to the category AbX of tuples of abelian groups
(Ga)a∈A indexed by A. If f ∶ B Ð→ A is a map of sets then Z/A(B) =
(Zf−1(a))a∈A where Z ∶ SetÐ→ Ab is the usual free abelian group functor.
More generally, if T is a topos and X ∈ T is an object then T/X is a topos as
well, and one can find a small site CX ⊆ T/X such that T/X is the category
of sheaves of sets on CX . In this case Ab(T/X) is the category of sheaves
of abelian groups on CX .

2. Let Ring be the category of associative rings. Given an associative ring A
and an A-bimiodule M one may form the square-zero extension ring
M ⋊A whose underlying abelian group is M ⊕A and whose multiplcation
is given by (m,a)(n, b) = (mb + an, ab). One may then show that M ⋊A,
together with the canonical projection M ⋊ A Ð→ A possess a natural
structure of an abelian group object in the category Ring/A. Furthermore,
the formation of square-zero extensions induces an equivalence between
the category of A-bimodules and the category of abelian group objects
in Ring/A. Under this equivalence the free abelian group functor can be
identified with the functor which sends a map B Ð→ A of rings to the
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A-bimodule A ⊗B IB ⊗B A, where IB is the kernel of the multiplication
map B ⊗B Ð→ B considered as a map of B-bimodules.

3. Let Ring be the category of commutative rings. Given an commutative
ring A and an A-miodule M one may canonically consider M as an A-
bimodule and consequently form the square-zero extension ring M ⋊ A
as above, which will now be a commutative ring. One can then simi-
larly show that the formation of square-zero extension induces an equiv-
alence between Mod(A) and Ab(CRing/A). Under this equivalence the
free abelian group functor can be identified with the functor which sends
a map B Ð→ A of rings to the A-bimodule (IB/I2

B) ⊗B A = ΩB ⊗B A,
where ΩB is the module of Kähler differentials, or global 1-forms.

Given a map f ∶ X Ð→ Y we may then consider the induced map f∗ ∶
Z/YX Ð→ Z/Y Y as the abelian “shadow” of f . It turns out that this passage
to a suitable abelianization is esspecially useful when one is doing homotopy
theory. To fully appriciate this statement one should first understand what will
be a good analogue of an abelian group in a higher categorical context. Suppose
that M is a model category. A first possibility is to take the category Ab(M)
of abelian group objects in M (which will carry an induced model structure in
favorable cases). However, this construction is not well-behaved from a homo-
topical point of view. For example, it is possible that M and M′ are Quillen
equivalent model categories but Ab(M) and Ab(M′) are not Quillen equivalent.
Focusing on the specific case of simplicial sets, it was long recognized that there
are objects which should be considered as homotopical abelian groups, such as
infinite loop spaces, but which cannot be modelled by simplicial abelian groups
(nor by topological abelian groups). As algebraic topology developped it was
realized that the best behaved higher analogue of an abelian group is not a space
with additional structure, but something that is not a space at all, namely, a
spectrum, or more precisely, an Ω-spectrum, i.e., a sequence of Kan complexes

X0,X1, ..., equipped with homotopy equivalences fn ∶ Xn
≃Ð→ ΩXn+1. This was

backed by results showing that Ω-spectra classify generalized cohomology theo-
ries (which can be considered as all possible well-behaved “abelian” invariants),
and that the homotopy category of spectra is a triangulated category, a notion
that was indepedently observed as being a good extension of the notion of an
abelian category from the point of view of homological algebra.

Now let M be a model category. We will say that M is pointed if the canon-
ical map ∅ Ð→ ∗ from the initial to the terminal object is a weak equivalence.
In favorable cases (e.g., when one has functorial factorizations), one can use the
formation of homotopy limits to construct a functor Ω ∶MÐ→M modelling the
loop functor. In general Ω is only unique up to weak equivalence. Choosing such
a loop functor one can define the notion of an Ω-spectrum in M as a sequence

of objects X0,X1, ..., equipped with homotopy equivalences fn ∶Xn
≃Ð→ ΩXn+1.

The next step is to define a model category Sp(M) in which one can work
with such spectrum objects. As is generally the case when constructing model
categories, we do not expect all objects to look like Ω-specra, only the fibrant(-
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cofibrat) objects. If one can realize the suspension-loop adjunction as a Quillen
adjunction (for example, when M is a simplicial model category), then one can
mimic the classicial construction of spectra (under some assumptions on M)
in a straightforward way, i.e., consider sequences {Xn} of objects with struc-
ture maps fn ∶ Xn Ð→ ΩXn+1 which are not required to be equivalences (but
will be so for fibrant objects). In the project [HNP] we offer another model
for Sp(M) which does not require M to be simplicial. As with most construc-
tion, the model Sp(M) comes equipped with a canonical Quillen adjunction
Σ∞ ∶M⇄ Sp(M) ∶ Ω∞ which is the analogue of the classical suspension infinity-
loop infinty adjunction.

Definition 3. Let M be a pointed model category. We will say that M is
stable if the loop functor Ω ∶ Ho(M)Ð→ Ho(M) is an equivalence of categories
(equivalently, if the suspension functor is an equivalence of categories).

The passage from M to Sp(M) should be considered as a process of stabi-
lization. Indeed, one can show that Sp(M) itself is stable, and that it is, in
a suitable homotopy-theoretical sense, universal among stable model categories
recieving a left Quillen functor from M (warning: this is not true on the nose).
This leads to the following homotopy theoretic analogue of the notion of a Beck
module:

Remark 4.

1. The contruction of Sp(M) requires that M be combinatorial and left
proper. This last conditions can be hard to keep track of and doesn’t hold
in many examples of interest. It is hence important to note that of M is
just assume to be combinatorial, the construction of [HNP] still works to
produce a (left) semi-model category. The theory of semi-model cate-
gories is less well-known, although almost all of the favorable properties of
model categories hold for semi-model categories as well. In what follows
we will assume that all model categories in sight are combinatorial, and
will use the notation Sp(M) to denote the construction of [HNP] whether
the result is a model category or just a semi-model category.

2. The construction of Sp(M) requires that M is pointed. However, if M

is not pointed then we may replace it with the pointed model category
M∗ = M∗/ of objects equipped with a map from the terminal object. If
∗ is cofibrant or M is left proper then M∗ is homotopically well-behaved.

In this case we will denote Sp(M) def= Sp(M∗) without indicating it ex-
plicitely. If M is not left proper or ∗ is not cofibrant then there are other
ways to pointify. This pointification can be made functorial if one is work-
ing with semi-model categories. We will not elaborate more on this point.

Definition 5. Let M be a model category and let X ∈ M be an object. A
spectral Beck module is a spectrum object in the model category M/X , i.e.,
an object of Sp(M/X).
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Let us now consider a classical example. Let S denote the category of simpl-
cial sets and let Y ∈ S be an object. Then the category Sp(M/Y ) is a model for
the theory of parametrized spectra over Y . In particular, we should think of
Ω-spectra in Sp(M/Y ) as encding a family {Sy}y∈Y of spectra paramterized by
Y . Let Σ∞

/Y ∶M/Y Ð→ Sp(M/Y ) denotes the associated suspension-infinity func-
tor mentioned above. If f ∶ X Ð→ Y is a map, consider as an object of M/Y ,
then Σ∞

/Y ∈ Sp(M/Y ) corresponds under the above identification to the fam-

ily of spectra {Σ∞
+ (Xy)}y∈Y , where Xy denotes the homotopy fiber of f over

y ∈ Y , and Σ∞
+ is the (pointed) suspension-infinity functor of S. To illustrate

the interest of this construction, consider the following claim:

Theorem 6. Let f ∶ X Ð→ Y be a 1-connected map of simplicial sets. Then
f is a weak equivalence if and only if the map Σ∞

/Y (X) Ð→ Σ∞
/Y (Y ) is a weak

equivalence in Sp(S/Y )
Note that the parameterized specturm Σ∞

/Y (Y ) is just the constant family
over Y with value the sphere spectrum. Theorem 6 can be reduced to the fact
that if Z is a simply connected simplicial set then the terminal map Z Ð→ ∗
is a weak equivalence if and only if the map Σ∞

+ (Z) Ð→ Σ∞
+ (∗) = S is a weak

equivalence, which is iteself a consequence of Huerwicz’s theorem relating ho-
motopy and homology groups. One may interpret Theorem 6 as saying that
the problem of determining if a map is an equivalence can be reduced to low
dimensional computation (to check that f is 1-connected) followed by an anal-
ysis of the abelian or stable object Σ∞

/Y (X). Since the homotopy theory of
stable model categories is significatly simpler such reductions are truely useful
in practice. We will later see another case where a theorem such as 6 holds.

Let M be a combinatorial model category and X ∈M an object. The model
category of spectral Beck modules over X can be informally considered as the
tangent model category to M at X. This leads to considering all the model
categories Sp(M/X) as X varies. One may achieve this by defining a suitable
category ∫X∈M Sp(M/X), known as the Grothendieck construction. The
objects of ∫X∈M Sp(M/X) are pairs (X,S) where X ∈ M is an object and S ∈
Sp(M/X) is a spectral Beck module over X, and morphisms are defined in a
suitable way. We then have the following result:

Theorem 7. Let M be a proper combinatorial model category. Then ∫X∈M Sp(M/X)
can be endowed with a canonical model structure (compatible with each individ-
ual Sp(M/X)), such that the projection ∫X∈M Sp(M/X)Ð→M is both a left and
a right Quillen functor.

If we think of each Sp(M/X) as the tangent model category to M at X,
then the model category ∫X∈M Sp(M/X) should be considered as the model
categorical tangent bundle of M. We will consequently denote it by

TM
def= ∫

X∈M
Sp(M/X)

To phrase our next theorem we will need to explain the notion of an operad.
Recall that an operad is a categorical gadget that is meant to encode a type of
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algebraic theory. To describe an operad (with values in sets) one needs to give
for every n ≥ 0 a set P(n) equipped with an action of the symmsetric group Σn.
We think of elements of P(n) as indexing the n-to-1 operations of our algebraic
theory. The action of Σn is then interpreted as a permutation of the entries.
The objects {P(n)} must then be given a structure which corresponds to all
the possible ways in which we can compose various multi-entry operations. For
example, if we are given a 3-to-1 operation and three 2-to-1 operations then
we should be able to compose them to get a 6-to-1 operation. Furthermore,
the actions of the symmsetric groups Σ2,Σ3 by permuting the entries should be
suitable compatible with the action of Σ6 on 6-to-1 operations. This be encoded,
for example, as a map of sets

[P(2)3 ×P(3)] ×(Σ2)3⋊Σ3
Σ6 Ð→ P(6). (1)

Now let M be a symmetric monoidal model category and let P be an
operad as above. An algebra over P is an object A ∈ M together with maps
µn ∶ P(n) ⊗Σn A

⊗n Ð→ A suitably compatible with the action maps of P. We

denote by AlgP(M) the category of P-algebras and algebra maps. Here the
tensor K ⊗X of a set K and an object X stands for the coproduct ∐k∈KX.
One may now observe that such algebras can be defined for a more general
notion of an operad. Using maps asin 1 one may then formally define an operad
with values in M to be a sequence of objects P(n) ∈M, with P(n) is equipped
with an action of Σn, and such that the entire sequence {P(n)} is equipped
with all the maps which encode composition of multi-entry operations (where
one replaced Cartesian products of sets as above with the monoidal structure of
M), subject that all the natural compatibility and associativity conditions these
compositions satisfy. Similarly, one may define what it means for an object
A ∈ M to have the structure of an algebra over such operad. If P is an operad
in M then we will denote AlgP(M) simply by AlgP.

We are now ready to describe our main result. Given an operad P in M, we
denote by P≤1 the operad whose 0-ary and 1-ary operations are those of P and
such that P(n) = ∅ ∈M for n ≥ 2. There is a natural map of operads P≤1 Ð→ P.
Finally, given any model category M let us denote by Maug =M/∅ the category
of objects equipped with a map to the initial object ∅ ∈ M (with its natural
model structure). We then have the following theorem:

Theorem 8. Let M be a differentiable combinatorial symmetric monoidal model
category and let P be a cofibrant operad in M. If P and P≤1 are both addimissible
then the free-forgetful adjunction

F ∶ Sp(AlgP≤1
aug)

//
Sp(AlgP

aug)⊥oo ∶ U

is a Quillen equivalence.

Remark 9.

1. In plain terms Theorem 8 says that for the process of stabilizing a category
of algebras does not depend on any of the higher oprations of the algebraic
theory.
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2. In practice, AlgP≤1
aug is a much simpler object than AlgP

aug, and its sta-
bilization is much more readily accessible. One should hence consider
Theorem 8 as offering a computation of AlgP

aug in terms of AlgP≤1
aug .

3. Let A ∈M be a P-algebra object. Then one can form another operad PA,
known as the enveloping operad of A, such that PA algebras are the
same as P-algebras equipped with a map from A. The category AlgPA

aug

of augmented PA-algebras is the same as the category of pointed objects
in AlgP

/A, and in particular Sp(AlgPA
aug) ≃ Sp(AlgP

/A). One can hence use
the above theorem to compute the stabilization not only of categories of
algebras but also for algebras over a fixed algebra A.

The following Corollary of Theorem 8 was proven in the setting of ∞-
categories and ∞-operads by Lurie (see[Lu14]).

Corollary 10. Let M and P be as in Theorem 8 and assume in addition that M
is pointed, stable and additive (e.g., M is a category of complexes). The for any

cofibrant P-algebra object A the stabilization Sp(AlgP
/A) is canonically Quillen

equivalent to the category of (operadic) A-modules.

Theorem 8 can also be used to compute stabilizations which were not known
before:

Corollary 11. Let M be the model category of simplicial (associative) monoids
and let X ∈M be a monoid. Then Sp(M/X) is equivalent to the model category
of X ×Xop-equivariant parametrized spectra over X.

Let S be the model category of simplicial sets and let TS = ∫X∈S Sp(S/X) be its

tangent bundle (recall that objects of TS are pairs (X,S) where X is a simplicial
set and S ∈ Sp(S/X) is a parametrized spectrum over X), equipped with the
model structure of Theorem 7. It can then be shown that TS is furthermore
a simplicial model category. A suitable generalization of 8 to the setting of
colored operads implies the following previously unknown result:

Proposition 12. Let Cat∆ be a the model category of small simplicial categories
and let C ∈ Cat∆ be a small simplicial category. Then Sp((Cat∆)/C) is equivalent
to the category of simplcial dotted lifts

TS

��
Cop × C

FC //

;;v
v

v
v

v
S

where FC ∶ Cop ×CÐ→ S is the mapping space functor FC(X,Y ) = MapC(X,Y ).

Let us now elaborate more on Corollary 10 in the case where M is the model
category fo complexes over a field k of characteristic 0, and P is the commutative
operad. In this case Corollary 10 says that for every CDGA A the stabilization
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Sp(CDGA/A) is canonically Quilen equivalent to the category Mod(A) of A-
module complexes. In this case one can track down the suspension-infinity
functor Σ∞ ∶ CDGA/A Ð→ Sp(CDGA/A) ≅ Mod(A) explicitely. Recall that
for a discrete k-algebra A one may consider its cotangent module ΩA, also
known as the module of Kähler differentials. If A is finitely generated then we
consider it as the algebra of functions on an affine variety X = spec(A) over C.
If X is smooth then ΩA can be identified with the module of (globally defined)
differentials 1-forms on X, and is an algebraic incarnation of the cotangent
bundle of the variety X. If X is not smooth then ΩA is not such a well-
behaved object. It turns out that one way to “fix” ΩA is to consider A as a
CDGA which is concentrated in degree 0. One may then extend the formation
of cotangent modules to this context. This yeilds a left Quillen functor, which
can consequently be derived (by precomposing it with a cofibrant replacement
functor). The resulting object LA = ΩAcof is now not a just an A-module, but a
complex of A-modules (or, alternatively, an A-module complex), and is known
as the cotangent complex of A. It turns out that LA is much better behaved
then ΩA when A is not smooth, and has many applications in deformation
theory and related fields. We may now relate the cotangent complex to our
previous discussion:

Proposition 13. Under the identification Sp(CDGA/A) ≃ Mod(A) the suspension-
infinity functor Σ∞(CDGA/A) Ð→ Sp(CDGA/A) corresponds to the functor

which sends a map of CDGA’s B Ð→ A to the base change LB ⊗L
B A of the

cotangent complex of B to A.

It then turns out that the model category CDGA admits an analogue of
Theorem 6: (see [Lu14, 7.4.3.4]):

Theorem 14 (The cotagent complex Whitehead theorem). Let f ∶ A Ð→
B be a map of non-negatively graded CDGA’s over C such that the induced
map π0(A) Ð→ π0(B) is an isomoprhism of C-algebras. Then f is a quasi-
isomorphism if and only if the induced map f∗ ∶ LB ⊗L

B A Ð→ LA is a quasi-
isomorphism of A-modules.

Corollary 10 now allows one to abstractly identify the claims of both The-
orem 14 and Theorem 14. In both cases one can reduce the problem of deter-
mining if a map is an equivalence to a low dimensional computation followed by
an analysis of a stable object which is obtained in both cases by applying the
suspension-infinity functor Σ∞ ∶ M/Y Ð→ Sp(M/Y ) to the map in question. It
is then a very interesting question to understand for what type of model cate-
gories one may expect a statement of this kind to hold. For example, using the
computation of Proposition 12 one has the formal tools needed to check if one
can obtain results such as 6 and 14 for simplicial categories.
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