Cohomology of higher categories

Yonatan Harpaz

CNRS, Université Paris 13

GDR Topologie Algébrique, Colloque 2017

Yonatan Harpaz

★ ∃ →

Classical idea

- ₹ 🖬 🕨

э

Classical idea

Filter Y by its **Postnikov tower**

$$\dots \longrightarrow P_n(Y) \longrightarrow \dots \longrightarrow P_1(Y) \longrightarrow P_0(Y)$$

Classical idea

Filter Y by its **Postnikov tower**

$$\dots \longrightarrow P_n(Y) \longrightarrow \dots \longrightarrow P_1(Y) \longrightarrow P_0(Y)$$

Here $P_n(Y)$ is *n*-truncated and we have a natural *n*-equivalence $Y \longrightarrow P_n(Y)$ such that $Y \xrightarrow{\simeq} \lim_{n \to \infty} \lim_{n \to \infty} P_n(Y)$.

Classical idea

Filter Y by its **Postnikov tower**

$$\dots \longrightarrow P_n(Y) \longrightarrow \dots \longrightarrow P_1(Y) \longrightarrow P_0(Y)$$

Here $P_n(Y)$ is *n*-truncated and we have a natural *n*-equivalence $Y \longrightarrow P_n(Y)$ such that $Y \xrightarrow{\simeq} \lim_{n \to \infty} \lim_{n \to \infty} P_n(Y)$.

⇒ Problem broken to smaller pieces: given a map $f: X \longrightarrow P_n(Y)$, understand all lifts of f to $\overline{f}: X \longrightarrow P_{n+1}(Y)$ (up to homotopy over $P_n(Y)$).

k-invariants

k-invariants

Suppose Y is simply connected (so that $P_1(Y) \simeq *$).

∃ >

k-invariants

Suppose Y is simply connected (so that $P_1(Y) \simeq *$). For $n \ge 1$

 $P_{n+1}(Y) \longrightarrow P_n(Y)$

is a **principal fibration** with structure group $K(\pi_{n+1}(Y), n+1)$, classified by the *k*-invariant $k_n \in H^{n+2}(P_n(Y); \pi_{n+1}(Y))$.

k-invariants

Suppose Y is simply connected (so that $P_1(Y) \simeq *$). For $n \ge 1$

 $P_{n+1}(Y) \longrightarrow P_n(Y)$

is a **principal fibration** with structure group $K(\pi_{n+1}(Y), n+1)$, classified by the *k*-invariant $k_n \in H^{n+2}(P_n(Y); \pi_{n+1}(Y))$.

⇒ if $f: X \longrightarrow P_n(Y)$ is a map then f lifts to $P_{n+1}(Y)$ if and only if $f^*k_n \in H^{n+2}(X; \pi_{n+1}(Y))$ vanishes.

k-invariants

Suppose Y is simply connected (so that $P_1(Y) \simeq *$). For $n \ge 1$

 $P_{n+1}(Y) \longrightarrow P_n(Y)$

is a **principal fibration** with structure group $K(\pi_{n+1}(Y), n+1)$, classified by the *k*-invariant $k_n \in H^{n+2}(P_n(Y); \pi_{n+1}(Y))$.

 $\Rightarrow \text{ if } f: X \longrightarrow P_n(Y) \text{ is a map then } f \text{ lifts to } P_{n+1}(Y) \text{ if and only} \\ \text{ if } f^*k_n \in H^{n+2}(X; \pi_{n+1}(Y)) \text{ vanishes. In this case the possible lifts} \\ \overline{f}: X \longrightarrow P_{n+1}(Y) \text{ (up to homotopy over } P_n(Y)) \text{ form a torsor} \\ \text{ under } H^{n+1}(X; \pi_{n+1}(Y)). \end{aligned}$

向 ト イヨ ト イヨ ト

э

• The obstruction theoretic process can be streamlined into a Bousfield-Kan **spectral sequence** starting from $H^{s}(X; \pi_{t}(Y))$ and abutting to $\pi_{t-s} \operatorname{Map}(X, Y)$.

- The obstruction theoretic process can be streamlined into a Bousfield-Kan spectral sequence starting from H^s(X; π_t(Y)) and abutting to π_{t-s} Map(X, Y).
- If Y is not simply connected then π_t(Y) (for t ≥ 2) is a local system of abelian groups on Y, and H^s(X; π_t(Y)) should be interpreted as cohomology with local coefficients.

- The obstruction theoretic process can be streamlined into a Bousfield-Kan spectral sequence starting from H^s(X; π_t(Y)) and abutting to π_{t-s} Map(X, Y).
- If Y is not simply connected then π_t(Y) (for t ≥ 2) is a local system of abelian groups on Y, and H^s(X; π_t(Y)) should be interpreted as cohomology with local coefficients.
- Given maps i: A → X and f₀: A → Y one can also use the above machinery to study all the maps f : X → Y which extend f₀ along i (up to homotopy), this time using the **relative** cohomology with local coefficients H[•](X, A; π_•(Y)).

伺 と く ヨ と く ヨ と

The Hurewicz principle

The Bousfield-Kan spectral sequence can also be used to obtain qualitative results.

The Hurewicz principle

The Bousfield-Kan spectral sequence can also be used to obtain qualitative results. For example, if $i : A \longrightarrow X$ a map such that $H^{\bullet}(X, A; M) = 0$ for every local coefficient system M on X then any square of the form

admits an essentially unique dotted lift.

The Hurewicz principle

The Bousfield-Kan spectral sequence can also be used to obtain qualitative results. For example, if $i : A \longrightarrow X$ a map such that $H^{\bullet}(X, A; M) = 0$ for every local coefficient system M on X then any square of the form

admits an essentially unique dotted lift.

Corollary (The Hurewicz principle for spaces)

A map $f : A \longrightarrow X$ is an equivalence if and only if

- f induces an equivalence on fundamental groupoids.
- f induces an isomorphism on cohomology for every local coefficient system on X.

Can we obtain a similar theory when spaces are replaced with $\infty\text{-}\textbf{categories}?$

Can we obtain a similar theory when spaces are replaced with $\infty\text{-}\textbf{categories}?$

Questions

• What should replace cohomology with local coefficients?

Can we obtain a similar theory when spaces are replaced with $\infty\text{-}categories?}$

- What should replace cohomology with local coefficients?
- What should replace homotopy groups?

Can we obtain a similar theory when spaces are replaced with $\infty\text{-}categories?}$

- What should replace cohomology with local coefficients?
- What should replace homotopy groups?
- Can we make such an obstruction theory accessible and computable?

Can we obtain a similar theory when spaces are replaced with $\infty\text{-}categories?}$

- What should replace cohomology with local coefficients?
- What should replace homotopy groups?
- Can we make such an obstruction theory accessible and computable?
- Can we get an associated Hurewicz principle?

Question

What kind of cohomologies do we know for spaces?

Question

What kind of cohomologies do we know for spaces?

Answer

• Cohomology with coefficients.

Question

What kind of cohomologies do we know for spaces?

Answer

• Cohomology with (local) coefficients.

Question

What kind of cohomologies do we know for spaces?

Answer

- Cohomology with (local) coefficients.
- Generalized cohomology theories coefficients in a spectrum.

Question

What kind of cohomologies do we know for spaces?

Answer

- Cohomology with (local) coefficients.
- Generalized cohomology theories coefficients in a spectrum.
- Twisted generalized cohomology theories coefficients in a **parameterized spectrum** (i.e, a local system of spectra).

Question

What kind of cohomologies do we know for spaces?

Answer

- Cohomology with (local) coefficients.
- Generalized cohomology theories coefficients in a spectrum.
- Twisted generalized cohomology theories coefficients in a **parameterized spectrum** (i.e, a local system of spectra).

Can one generalize the notion of parameterized spectrum outside the realm of spaces?

 ${\mathcal D}$ - a presentable $\infty\text{-category},\ X\in {\mathcal D}$ an object.

∃ >

 ${\mathcal D}$ - a presentable $\infty\text{-category},\ X\in {\mathcal D}$ an object.

Definition

A parameterized spectrum over X is an Ω -spectrum object in the slice ∞ -category $\mathcal{D}_{/X}$, i.e., an object of

$$\operatorname{Sp}(\mathcal{D}_{/X}) = \lim_{\longleftarrow} \left[\dots \longrightarrow (\mathcal{D}_{/X})_* \xrightarrow{\Omega} (\mathcal{D}_{/X})_* \xrightarrow{\Omega} \dots \xrightarrow{\Omega} (\mathcal{D}_{/X})_* \right]$$

 ${\mathcal D}$ - a presentable $\infty\text{-category},\ X\in {\mathcal D}$ an object.

Definition

A parameterized spectrum over X is an Ω -spectrum object in the slice ∞ -category $\mathcal{D}_{/X}$, i.e., an object of

$$\mathsf{Sp}(\mathcal{D}_{/X}) = \lim_{\longleftarrow} \left[\dots \longrightarrow (\mathcal{D}_{/X})_* \xrightarrow{\Omega} (\mathcal{D}_{/X})_* \xrightarrow{\Omega} \dots \xrightarrow{\Omega} (\mathcal{D}_{/X})_* \right]$$

A canonical adjunction:

$$\Sigma^{\infty}_{+}: \mathcal{D}_{/X} \stackrel{\longrightarrow}{\leftarrow} \operatorname{Sp}(\mathcal{D}_{/X}): \Omega^{\infty}.$$

 ${\mathcal D}$ - a presentable $\infty\text{-category},\ X\in {\mathcal D}$ an object.

Definition

A parameterized spectrum over X is an Ω -spectrum object in the slice ∞ -category $\mathcal{D}_{/X}$, i.e., an object of

$$\mathsf{Sp}(\mathcal{D}_{/X}) = \lim_{\longleftarrow} \left[\dots \longrightarrow (\mathcal{D}_{/X})_* \xrightarrow{\Omega} (\mathcal{D}_{/X})_* \xrightarrow{\Omega} \dots \xrightarrow{\Omega} (\mathcal{D}_{/X})_* \right]$$

A canonical adjunction:

$$\Sigma^{\infty}_{+}: \mathcal{D}_{/X} \stackrel{\longrightarrow}{\leftarrow} \operatorname{Sp}(\mathcal{D}_{/X}): \Omega^{\infty}.$$

Definition

$$L_X \coloneqq \Sigma^{\infty}_+(\mathrm{Id}_X) \in \mathrm{Sp}(\mathcal{D}_{/X})$$

the **abstract cotangent complex** of X.

Yonatan Harpaz

Quillen cohomology

The cotangent complex

$$L_X \coloneqq \Sigma^{\infty}_+(\operatorname{Id}_X) \in \operatorname{Sp}(\mathcal{D}_{/X})$$

æ
The cotangent complex

$$L_X \coloneqq \Sigma^{\infty}_+(\mathrm{Id}_X) \in \mathrm{Sp}(\mathcal{D}_{/X})$$

Example

When $\mathcal{D} = S$ is the ∞ -category of spaces we may identify $Sp(S_{/X}) \simeq Fun(X, Sp)$ with local systems of spectra, and L_X with the constant local system with value the sphere spectrum $S \in Sp$.

The cotangent complex

$$L_X \coloneqq \Sigma^{\infty}_+(\operatorname{Id}_X) \in \operatorname{Sp}(\mathcal{D}_{/X})$$

Example

When $\mathcal{D} = S$ is the ∞ -category of spaces we may identify $Sp(S_{/X}) \simeq Fun(X, Sp)$ with local systems of spectra, and L_X with the constant local system with value the sphere spectrum $S \in Sp$.

For a parametertized spectrum $M \in \text{Sp}(\mathcal{D}_{/X})$, define the *n*'th **Quillen cohomology** of X with coefficients in M by

 $\mathrm{H}^{n}_{\mathrm{Q}}(X;M) = \pi_{0} \operatorname{Map}_{\operatorname{Sp}(\mathcal{D}_{/X})}(L_{X},M[n])$

「ヨート・イヨート・

where M[n] is the *n*'th suspension of *M* in $Sp(\mathcal{D}_{/X})$.

In spaces, the Quillen cohomology groups of a space X with coefficient in $M \in \text{Sp}(S_{/X}) \simeq \text{Fun}(X, \text{Sp})$ are just the homotopy groups of the limit spectrum $\lim_X M$.

In spaces, the Quillen cohomology groups of a space X with coefficient in $M \in \text{Sp}(S_{/X}) \simeq \text{Fun}(X, \text{Sp})$ are just the homotopy groups of the limit spectrum $\lim_X M$. What about ∞ -categories?

In spaces, the Quillen cohomology groups of a space X with coefficient in $M \in \text{Sp}(S_{/X}) \simeq \text{Fun}(X, \text{Sp})$ are just the homotopy groups of the limit spectrum $\lim_X M$. What about ∞ -categories?

The twisted arrow category

Recall that for an ∞ -category \mathcal{C} the **twisted arrow category** Tw(\mathcal{C}) is the ∞ -category whose objects are the morphisms of \mathcal{C} and such that maps from $f: X \longrightarrow Y$ to $g: Z \longrightarrow W$ are given by commutative diagrams of the form

э

- 4 同 6 4 日 6 4 日 6

In spaces, the Quillen cohomology groups of a space X with coefficient in $M \in \text{Sp}(S_{/X}) \simeq \text{Fun}(X, \text{Sp})$ are just the homotopy groups of the limit spectrum $\lim_X M$. What about ∞ -categories?

The twisted arrow category

Recall that for an ∞ -category \mathcal{C} the **twisted arrow category** Tw(\mathcal{C}) is the ∞ -category whose objects are the morphisms of \mathcal{C} and such that maps from $f: X \longrightarrow Y$ to $g: Z \longrightarrow W$ are given by commutative diagrams of the form

э

- 4 同 6 4 日 6 4 日 6

Such diagrams can be encoded by 3-simplices in C.

In spaces, the Quillen cohomology groups of a space X with coefficient in $M \in \text{Sp}(S_{/X}) \simeq \text{Fun}(X, \text{Sp})$ are just the homotopy groups of the limit spectrum $\lim_X M$. What about ∞ -categories?

The twisted arrow category

Recall that for an ∞ -category \mathcal{C} the **twisted arrow category** Tw(\mathcal{C}) is the ∞ -category whose objects are the morphisms of \mathcal{C} and such that maps from $f: X \longrightarrow Y$ to $g: Z \longrightarrow W$ are given by commutative diagrams of the form

Such diagrams can be encoded by 3-simplices in \mathbb{C} . Similarly, the *n*-simplicies of $\mathsf{Tw}(\mathbb{C})$ are the (2n+1)-simplices of \mathbb{C} .

э

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (J. Nuiten, M. Prasma, H.)

For an ∞ -category \mathbb{C} there is a natural equivalence

 $\mathsf{Sp}((\mathsf{Cat}_{\infty})_{/\mathcal{C}}) \simeq \mathsf{Fun}(\mathsf{Tw}(\mathcal{C}),\mathsf{Sp})$

between parameterized specra over \mathbb{C} and functors from the twisted arrow category of \mathbb{C} to spectra. The cotangent complex of \mathbb{C} is the constant functor with value $\mathbb{S}[-1]$.

Theorem (J. Nuiten, M. Prasma, H.)

For an ∞ -category \mathbb{C} there is a natural equivalence

 $\mathsf{Sp}((\mathsf{Cat}_{\infty})_{/\mathcal{C}}) \simeq \mathsf{Fun}(\mathsf{Tw}(\mathcal{C}),\mathsf{Sp})$

between parameterized specra over \mathcal{C} and functors from the twisted arrow category of \mathcal{C} to spectra. The cotangent complex of \mathcal{C} is the constant functor with value $\mathbb{S}[-1]$.

This means that Quillen cohomology of ∞ -categories can be described as a functor cohomology: its coefficients are functors $M: \operatorname{Tw}(\mathbb{C}) \longrightarrow \operatorname{Sp}$ and the corresponding Quillen cohomology groups are (up to a shift) the homotopy groups of the limit $\lim_{\operatorname{Tw}(\mathbb{C})} M$.

A few words about the proof:

æ

A few words about the proof:

 The statement that we prove is actually more general, and pertains to enriched ∞-categories. Roughly speaking, we prove that the data of a parameterized spectrum over an enriched ∞-category C is equivalent to data of choosing in a suitably compatible way a parameterized spectrum over each mapping object Map_C(x, y).

A few words about the proof:

- The statement that we prove is actually more general, and pertains to enriched ∞-categories. Roughly speaking, we prove that the data of a parameterized spectrum over an enriched ∞-category C is equivalent to data of choosing in a suitably compatible way a parameterized spectrum over each mapping object Map_C(x, y).
- To prove this statement for a particular enriched ∞-category C we show that one can restrict attention to enriched ∞-categories with a **fixed set of objects**.

A few words about the proof:

- The statement that we prove is actually more general, and pertains to enriched ∞-categories. Roughly speaking, we prove that the data of a parameterized spectrum over an enriched ∞-category C is equivalent to data of choosing in a suitably compatible way a parameterized spectrum over each mapping object Map_C(x, y).
- To prove this statement for a particular enriched ∞-category C we show that one can restrict attention to enriched ∞-categories with a **fixed set of objects**.
- Enriched ∞-categories with a fixed set of objects can also be described as ∞-categories of algebras over a suitable colored operad. We then use a previous joint result which involves identifying parameterized spectra over algebras objects with parameterized spectra over module objects.

Infinite loop ∞ -categories

In light of the theorem above we may identify functors $M: Tw(\mathcal{C}) \longrightarrow Sp$ with parameterized spectra over \mathcal{C} .

Infinite loop ∞-categories

In light of the theorem above we may identify functors $M: Tw(\mathcal{C}) \longrightarrow Sp$ with parameterized spectra over \mathcal{C} .

Question

Given $M : \mathsf{Tw}(\mathcal{C}) \longrightarrow \mathsf{Sp}$, can we describe the associated ∞ -category $\Omega^{\infty}(M) \longrightarrow \mathcal{C}$ in explicit terms?

伺 ト く ヨ ト く ヨ ト

Infinite loop ∞-categories

In light of the theorem above we may identify functors $M: Tw(\mathcal{C}) \longrightarrow Sp$ with parameterized spectra over \mathcal{C} .

Question

Given $M : \mathsf{Tw}(\mathfrak{C}) \longrightarrow \mathsf{Sp}$, can we describe the associated ∞ -category $\Omega^{\infty}(M) \longrightarrow \mathfrak{C}$ in explicit terms?

Answer

Yes. We may identify $\Omega^{\infty}(M)$ with the ∞ -category whose objects are pairs (X, η) with $X \in \mathbb{C}$ and η is a map $\eta : \mathbb{S}[-1] \longrightarrow M(\mathrm{Id}_X)$. Maps from (X, η) to (X', η') are pairs (f, H) where $f : X \longrightarrow X'$ is a map in \mathbb{C} and H is a homotopy between the two resulting maps $f_*\eta, f^*\eta' : \mathbb{S}[-1] \longrightarrow M(f)$.

(《聞》 《문》 《문》 - 문

Infinite loop ∞-categories

In light of the theorem above we may identify functors $M: Tw(\mathcal{C}) \longrightarrow Sp$ with parameterized spectra over \mathcal{C} .

Question

Given $M : \mathsf{Tw}(\mathcal{C}) \longrightarrow \mathsf{Sp}$, can we describe the associated ∞ -category $\Omega^{\infty}(M) \longrightarrow \mathcal{C}$ in explicit terms?

Answer

Yes. We may identify $\Omega^{\infty}(M)$ with the ∞ -category whose objects are pairs (X, η) with $X \in \mathbb{C}$ and η is a map $\eta : \mathbb{S}[-1] \longrightarrow M(\operatorname{Id}_X)$. Maps from (X, η) to (X', η') are pairs (f, H) where $f : X \longrightarrow X'$ is a map in \mathbb{C} and H is a homotopy between the two resulting maps $f_*\eta, f^*\eta' : \mathbb{S}[-1] \longrightarrow M(f)$.

We note that $\Omega^{\infty}(M)$ is naturally an \mathbb{E}_{∞} -group object in $(\operatorname{Cat}_{\infty})_{/\mathcal{C}}$. In particular, we can sum objects which lie in the same fiber: $(X, \eta) \boxplus (X, \eta') = (X, \eta + \eta')$.

Back to the abstract setting: \mathcal{D} a presentable ∞ -category and $X \in \mathcal{D}$ an object. How can we use Quillen cohomology to do a Bousfield-Kan type obstruction theory and spectral sequence?

Quillen obstruction theory

Back to the abstract setting: \mathcal{D} a presentable ∞ -category and $X \in \mathcal{D}$ an object. How can we use Quillen cohomology to do a Bousfield-Kan type obstruction theory and spectral sequence?

Small extensions

A small extension of $X \in \mathcal{D}$ with coefficients in $M \in \operatorname{Sp}(\mathcal{D}_{/X})$ is a Cartesian square in $\mathcal{D}_{/X}$ of the form: $\begin{array}{c} Y \longrightarrow \Omega^{\infty}(0) \\ \downarrow \\ X \xrightarrow{\alpha} \Omega^{\infty}(M[1]) \end{array}$ where the right vertical map is obtained by applying the functor $\Omega^{\infty} : \operatorname{Sp}(\mathcal{D}_{/X}) \longrightarrow \mathcal{D}_{/X}$ to the 0-map $0 \longrightarrow M[1]$.

Quillen obstruction theory

Back to the abstract setting: \mathcal{D} a presentable ∞ -category and $X \in \mathcal{D}$ an object. How can we use Quillen cohomology to do a Bousfield-Kan type obstruction theory and spectral sequence?

Small extensions

A small extension of $X \in \mathcal{D}$ with coefficients in $M \in \text{Sp}(\mathcal{D}_{/X})$ is a Cartesian square in $\mathcal{D}_{/X}$ of the form: $Y \longrightarrow \Omega^{\infty}(0)$

 $\begin{array}{c} {}^{p} \downarrow & \downarrow \\ X \xrightarrow{\alpha} \Omega^{\infty}(M[1]) \end{array}$

where the right vertical map is obtained by applying the functor $\Omega^{\infty} : \operatorname{Sp}(\mathcal{D}_{/X}) \longrightarrow \mathcal{D}_{/X}$ to the 0-map $0 \longrightarrow M[1]$.

The data of $\alpha: X \longrightarrow \Omega^{\infty}(M[1])$ is equivalent by adjunction to the data of a map $L_X \longrightarrow M[1]$ and hence determines a class $[\alpha] \in H^1_Q(X; M)$. We consider p as a geometric incarnation of $[\alpha]$.

Let $Y \longrightarrow X$ be a small extension of X with coefficients in M and corresponding class $[\alpha] \in H^1_Q(X; M)$. Then:

Let $Y \longrightarrow X$ be a small extension of X with coefficients in M and corresponding class $[\alpha] \in H^1_Q(X; M)$. Then:

• $\Omega^{\infty}(M) \longrightarrow X$ is an \mathbb{E}_{∞} -group object in $\mathcal{C}_{/X}$ and $p: Y \longrightarrow X$ is a **torsor** under $\Omega^{\infty}(M)$.

Let $Y \longrightarrow X$ be a small extension of X with coefficients in M and corresponding class $[\alpha] \in H^1_{\mathcal{O}}(X; M)$. Then:

- $\Omega^{\infty}(M) \longrightarrow X$ is an \mathbb{E}_{∞} -group object in $\mathcal{C}_{/X}$ and $p: Y \longrightarrow X$ is a **torsor** under $\Omega^{\infty}(M)$.
- p: Y → X has a section if and only if [α] = 0, in which case Y is equivalent over X to Ω[∞](M).

Let $Y \longrightarrow X$ be a small extension of X with coefficients in M and corresponding class $[\alpha] \in H^1_{\mathcal{O}}(X; M)$. Then:

- $\Omega^{\infty}(M) \longrightarrow X$ is an \mathbb{E}_{∞} -group object in $\mathcal{C}_{/X}$ and $p: Y \longrightarrow X$ is a **torsor** under $\Omega^{\infty}(M)$.
- p: Y → X has a section if and only if [α] = 0, in which case Y is equivalent over X to Ω[∞](M).
- If f: A → X is any map then f lifts to f̄: A → Y if and only if the pulled back class f*[α] ∈ H¹_Q(X; f*M) vanishes.

Let $Y \longrightarrow X$ be a small extension of X with coefficients in M and corresponding class $[\alpha] \in H^1_{\mathcal{O}}(X; M)$. Then:

- $\Omega^{\infty}(M) \longrightarrow X$ is an \mathbb{E}_{∞} -group object in $\mathcal{C}_{/X}$ and $p: Y \longrightarrow X$ is a **torsor** under $\Omega^{\infty}(M)$.
- p: Y → X has a section if and only if [α] = 0, in which case Y is equivalent over X to Ω[∞](M).
- If f: A → X is any map then f lifts to f̄: A → Y if and only if the pulled back class f*[α] ∈ H¹_Ω(X; f*M) vanishes.

Example

If Y is a space then for every $n \ge 1$ the map $P_{n+1}(Y) \longrightarrow P_n(Y)$ is a small extension with coefficients in the local system of Eilenberg-MacLane spectra $\mathbb{H}K(\pi_{n+1}(Y), n+1)$, whose Quillen cohomology class is

$$k_n \in H^{n+2}(Y; \pi_{n+1}(Y)) = \operatorname{H}^1_{\operatorname{Q}}(Y; \mathbb{H} K(\pi_{n+1}(Y), n+1))$$

Small extensions of ∞ -categories

Recall that we may identify parameterized spectra over \mathcal{C} with functors $M: \mathsf{Tw}(\mathcal{C}) \longrightarrow \mathsf{Sp}$.

Small extensions of ∞-categories

Recall that we may identify parameterized spectra over \mathcal{C} with functors $M: \mathsf{Tw}(\mathcal{C}) \longrightarrow \mathsf{Sp}$.

Question

Given $\alpha \in Map(\mathbb{S}[-1], \lim_{\mathsf{Tw}(\mathcal{C})} M[1]) \simeq Map_{\mathcal{C}}(\mathcal{C}, \Omega^{\infty} M[1])$, can we describe the small extension $p_{\alpha} : \mathcal{C}_{\alpha} \longrightarrow \mathcal{C}$ corresponding to α in explicit terms?

Small extensions of ∞-categories

Recall that we may identify parameterized spectra over \mathcal{C} with functors $M: \mathsf{Tw}(\mathcal{C}) \longrightarrow \mathsf{Sp}$.

Question

Given $\alpha \in Map(\mathbb{S}[-1], \lim_{\mathsf{Tw}(\mathcal{C})} M[1]) \simeq Map_{\mathcal{C}}(\mathcal{C}, \Omega^{\infty} M[1])$, can we describe the small extension $p_{\alpha} : \mathcal{C}_{\alpha} \longrightarrow \mathcal{C}$ corresponding to α in explicit terms?

Answer

Yes. We may identify \mathcal{C}_{α} with the ∞ -category whose objects are pairs (X, η) with $X \in \mathcal{C}$ and η is a null-homotopy of the Id_X component $\alpha_{Id_X} : \mathbb{S}[-1] \longrightarrow M(Id_X)[1]$ of α . Maps from (X, η) to (X', η') are pairs (f, H) where $f : X \longrightarrow X'$ is a map in \mathcal{C} and H is a homotopy between the two resulting null homotopies $f_*\eta, f^*\eta'$ of $\alpha_f : \mathbb{S}[-1] \longrightarrow M(f)[1]$. $Ho_n(\mathcal{C})$ - the ∞ -category obtained from \mathcal{C} by replacing each mapping object with its *n*'th Postnikov piece.

 $\operatorname{Ho}_n(\mathcal{C})$ - the ∞ -category obtained from \mathcal{C} by replacing each mapping object with its *n*'th Postnikov piece. $\pi_{n+1}(\mathcal{C}): \operatorname{Tw}(\operatorname{Ho}_1(\mathcal{C})) \longrightarrow \operatorname{Ab}$ the functor which sends an arrow $f: X \longrightarrow Y$ to $\pi_{n+1}(\operatorname{Map}(X, Y), f)$. $\operatorname{Ho}_n(\mathcal{C})$ - the ∞ -category obtained from \mathcal{C} by replacing each mapping object with its *n*'th Postnikov piece. $\pi_{n+1}(\mathcal{C}): \operatorname{Tw}(\operatorname{Ho}_1(\mathcal{C})) \longrightarrow \operatorname{Ab}$ the functor which sends an arrow $f: X \longrightarrow Y$ to $\pi_{n+1}(\operatorname{Map}(X, Y), f)$.

Fact (Goes back to Dwyer and Kan)

The tower

$$\dots \longrightarrow \operatorname{Ho}_n(\mathcal{C}) \longrightarrow \dots \longrightarrow \operatorname{Ho}_1(\mathcal{C})$$

converges to \mathcal{C} and each $\operatorname{Ho}_{n+1}(\mathcal{C}) \longrightarrow \operatorname{Ho}_n(\mathcal{C})$ is a small extension with coefficients in $\mathbb{H}K(\pi_{n+1}(\mathcal{C}), n+1)$.

 $\operatorname{Ho}_n(\mathcal{C})$ - the ∞ -category obtained from \mathcal{C} by replacing each mapping object with its *n*'th Postnikov piece. $\pi_{n+1}(\mathcal{C}): \operatorname{Tw}(\operatorname{Ho}_1(\mathcal{C})) \longrightarrow \operatorname{Ab}$ the functor which sends an arrow $f: X \longrightarrow Y$ to $\pi_{n+1}(\operatorname{Map}(X, Y), f)$.

Fact (Goes back to Dwyer and Kan)

The tower

$$\dots \longrightarrow \operatorname{Ho}_n(\mathcal{C}) \longrightarrow \dots \longrightarrow \operatorname{Ho}_1(\mathcal{C})$$

converges to \mathbb{C} and each $\operatorname{Ho}_{n+1}(\mathbb{C}) \longrightarrow \operatorname{Ho}_n(\mathbb{C})$ is a small extension with coefficients in $\mathbb{H}K(\pi_{n+1}(\mathbb{C}), n+1)$.

The elements $k_n \in H^1_Q(Ho_n(\mathcal{C}), \mathbb{H}K(\pi_{n+1}(\mathcal{C}), n+1))$ classifying the small extensions $Ho_{n+1}(\mathcal{C}) \longrightarrow Ho_n(\mathcal{C})$ can be considered as the *k*-invariants of \mathcal{C} .

Quillen obstruction theory for ∞ -categories

Starting from a map $\mathcal{D} \longrightarrow Ho_1(\mathcal{C})$ we now obtain an obstruction theory to the existence of a lift $\mathcal{D} \longrightarrow \mathcal{C}$ as well as a spectral sequence starting from

 $E_1^{t,s} = \mathrm{H}^{s}_{\mathrm{Q}}(\mathcal{D}, \pi_t(\mathcal{C})) = \lim_{\mathsf{Tw}(\mathcal{D})} \pi_t(\mathcal{C}) \quad s \ge -1, t \ge 2$

and abutting to $\pi_{t-s} \operatorname{Map}_{/\operatorname{Ho}_1(\mathcal{C})}(\mathcal{D}, \mathcal{C}).$

Quillen obstruction theory for ∞ -categories

Starting from a map $\mathcal{D} \longrightarrow Ho_1(\mathcal{C})$ we now obtain an obstruction theory to the existence of a lift $\mathcal{D} \longrightarrow \mathcal{C}$ as well as a spectral sequence starting from

 $E_1^{t,s} = \mathrm{H}^{s}_{\mathrm{Q}}(\mathcal{D}, \pi_t(\mathcal{C})) = \lim_{\mathsf{Tw}(\mathcal{D})}^{s+1} \pi_t(\mathcal{C}) \quad s \ge -1, t \ge 2$

and abutting to $\pi_{t-s} \operatorname{Map}_{/\operatorname{Ho}_1(\mathcal{C})}(\mathcal{D}, \mathcal{C}).$

Example (Splitting homotopy idempotents)

Let Idem be the category with one object x_0 and one non-identify morphism $f : x_0 \longrightarrow x_0$ such that $f \circ f = f$. A direct computation shows that the category $\mathsf{Tw}(\mathsf{Idem})$ has cohomological dimension 1. We may then conclude that every map Idem $\longrightarrow \mathsf{Ho}_1(\mathbb{C})$ admits a non-empty and even simply-connected space of lifts Idem $\longrightarrow \mathbb{C}$. When \mathbb{C} is idempotent complete we may conclude that a homotopy idempotent Idem $\longrightarrow \mathsf{Ho}(\mathbb{C})$ splits if and only if it lifts to $\mathsf{Ho}_1(\mathbb{C})$.

Even higher categories

Can we do something similar for (∞, n) -categories?

Even higher categories

Can we do something similar for (∞, n) -categories?

Theorem (Nuiten, Prasma, H., cf. H. K. Nguyen)

Let \mathcal{C} be an (∞, n) -category and let $Ho_k(\mathcal{C})$ denote the (∞, n) -category obtained from \mathcal{C} by replacing each space of *n*-morphisms by its k'th Postnikov piece. Then

$$\dots \longrightarrow \operatorname{Ho}_k(\mathcal{C}) \longrightarrow \dots \longrightarrow \operatorname{Ho}_1(\mathcal{C})$$

is a tower of small extensions.
Even higher categories

Can we do something similar for (∞, n) -categories?

Theorem (Nuiten, Prasma, H., cf. H. K. Nguyen)

Let \mathcal{C} be an (∞, n) -category and let $Ho_k(\mathcal{C})$ denote the (∞, n) -category obtained from \mathcal{C} by replacing each space of *n*-morphisms by its k'th Postnikov piece. Then

$$\dots \longrightarrow \operatorname{Ho}_k(\mathcal{C}) \longrightarrow \dots \longrightarrow \operatorname{Ho}_1(\mathcal{C})$$

is a tower of small extensions.

Corollary (The Hurewicz principle for (∞, n) -categories)

Let $f : \mathbb{C} \longrightarrow \mathbb{D}$ be a functor between (∞, n) -categories. Then f is an equivalence if and only if

- $f_* : Ho_1(\mathcal{C}) \longrightarrow Ho_1(\mathcal{D})$ is an equivalence of (n+1, n)-categories.
- f induces an isomorphism on Quillen cohomology for any choice of coefficients M ∈ Sp((Cat_(∞,n))/_C).

But what are parameterized spectra over an (∞, n) -category?

But what **are** parameterized spectra over an (∞, n) -category? Well, at the moment we only know how to handle n = 2.

But what **are** parameterized spectra over an (∞, n) -category? Well, at the moment we only know how to handle n = 2.

Theorem (Nuiten, Prasma, H.)

Let \mathcal{C} be an $(\infty, 2)$ -category. Then there exists a natural equivalence

 $\mathsf{Sp}((\mathsf{Cat}_{\infty,2})_{/\mathcal{C}}) \simeq \mathsf{Fun}(\mathsf{Tw}_2(\mathfrak{C}),\mathsf{Sp})$

between parameterized spectra over C and functors from what we call the **twisted** 2-cell category $Tw_2(C)$ of C to spectra.

But what **are** parameterized spectra over an (∞, n) -category? Well, at the moment we only know how to handle n = 2.

Theorem (Nuiten, Prasma, H.)

Let \mathcal{C} be an $(\infty, 2)$ -category. Then there exists a natural equivalence

 $\mathsf{Sp}((\mathsf{Cat}_{\infty,2})_{/\mathcal{C}}) \simeq \mathsf{Fun}(\mathsf{Tw}_2(\mathfrak{C}),\mathsf{Sp})$

between parameterized spectra over C and functors from what we call the **twisted** 2-cell category $Tw_2(C)$ of C to spectra.

Conjecturally, there exists an analogue of the above theorem for all *n*, using a suitable **twisted** *n*-**cell category**.

Let $[1] = \bullet \xrightarrow{f} \bullet$ and let $[1] \longrightarrow$ Adj be the free 2-category generated from [1] by adding a right adjoint to f.

Let $[1] = \bullet \xrightarrow{f} \bullet$ and let $[1] \longrightarrow$ Adj be the free 2-category generated from [1] by adding a right adjoint to f.

Proposition (Nuiten, Prasma, H.)

The induced map $\mathsf{Tw}_2([1]) \longrightarrow \mathsf{Tw}_2(\mathsf{Adj})$ is coinitial. In particular, the map $[1] \longrightarrow \mathsf{Adj}$ induces an isomorphism on Quillen cohomology for any choice of coefficients $M : \mathsf{Tw}_2(\mathsf{Adj}) \longrightarrow \mathsf{Sp}$.

伺 と く ヨ と く ヨ と

Let $[1] = \bullet \xrightarrow{f} \bullet$ and let $[1] \longrightarrow$ Adj be the free 2-category generated from [1] by adding a right adjoint to f.

Proposition (Nuiten, Prasma, H.)

The induced map $\mathsf{Tw}_2([1]) \longrightarrow \mathsf{Tw}_2(\mathsf{Adj})$ is coinitial. In particular, the map $[1] \longrightarrow \mathsf{Adj}$ induces an isomorphism on Quillen cohomology for any choice of coefficients $M : \mathsf{Tw}_2(\mathsf{Adj}) \longrightarrow \mathsf{Sp}$.

Corollary (cf. Riehl and Verity)

Any diagram of the form:

$$\begin{bmatrix} 1 \end{bmatrix} \xrightarrow{} \mathcal{C} \\ \downarrow \\ \downarrow \\ \mathsf{Adj} \xrightarrow{} \mathsf{Ho}_1(\mathcal{C})$$

伺 ト く ヨ ト く ヨ ト

admits a contractible space of lifts.

Let $[1] = \bullet \xrightarrow{f} \bullet$ and let $[1] \longrightarrow$ Adj be the free 2-category generated from [1] by adding a right adjoint to f.

Proposition (Nuiten, Prasma, H.)

The induced map $\mathsf{Tw}_2([1]) \longrightarrow \mathsf{Tw}_2(\mathsf{Adj})$ is coinitial. In particular, the map $[1] \longrightarrow \mathsf{Adj}$ induces an isomorphism on Quillen cohomology for any choice of coefficients $M : \mathsf{Tw}_2(\mathsf{Adj}) \longrightarrow \mathsf{Sp}$.

Corollary (cf. Riehl and Verity)

Any diagram of the form:

$$\begin{bmatrix} 1 \end{bmatrix} \longrightarrow \mathbb{C} \\ \downarrow \qquad \qquad \downarrow \\ \mathsf{Adj} \longrightarrow \mathsf{Ho}_1(\mathbb{C})$$

admits a contractible space of lifts.

This means, in effect, that homotopy coherent adjunctions are uniquely determined by explicit low dimensional data.

Thank you!

æ

'≣ ▶

Im ▶ < 10</p>