Cohomology of higher categories

Yonatan Harpaz

CNRS, Université Paris 13

GDR Topologie Algébrique, Colloque 2017
Fundamental goal of algebraic topology: understand maps $X \to Y$ between spaces, up to homotopy.
Fundamental goal of algebraic topology: understand maps $X \rightarrow Y$ between spaces, up to homotopy.

Classical idea
Fundamental goal of algebraic topology: understand maps $X \to Y$ between spaces, up to homotopy.

Classical idea

Filter Y by its **Postnikov tower**

$$\cdots \to P_n(Y) \to \cdots \to P_1(Y) \to P_0(Y)$$
Fundamental goal of algebraic topology: understand maps $X \to Y$ between spaces, up to homotopy.

Classical idea

Filter Y by its Postnikov tower

\[\ldots \to P_n(Y) \to \ldots \to P_1(Y) \to P_0(Y) \]

Here $P_n(Y)$ is n-truncated and we have a natural n-equivalence $Y \to P_n(Y)$ such that $Y \sim \lim_n P_n(Y)$.
Fundamental goal of algebraic topology: understand maps $X \to Y$ between spaces, up to homotopy.

Classical idea

Filter Y by its **Postnikov tower**

$$
\cdots \to P_n(Y) \to \cdots \to P_1(Y) \to P_0(Y)
$$

Here $P_n(Y)$ is n-truncated and we have a natural n-equivalence $Y \to P_n(Y)$ such that $Y \xrightarrow{\sim} \lim_n P_n(Y)$.

⇒ Problem broken to smaller pieces: given a map $f : X \to P_n(Y)$, understand all lifts of f to $\bar{f} : X \to P_{n+1}(Y)$ (up to homotopy over $P_n(Y)$).
Second step: understand the small pieces.
Second step: understand the small pieces.

k-invariants

Suppose Y is simply connected (so that $P_1(Y)/\sim$). For $n \geq 1$, $P_n + 1(Y)$ is a principal fibration with structure group $K(\pi_n + 1(Y), n + 1)$, classified by the k_n-invariant $k_n \in H^{n+2}(P_n(Y); \pi_n + 1(Y))$.

⇒ If $f : X \to P_n(Y)$ is a map then f lifts to $P_n + 1(Y)$ if and only if $f^* k_n \in H^{n+2}(X; \pi_n + 1(Y))$ vanishes.

In this case the possible lifts $f : X \to P_n + 1(Y)$ (up to homotopy over $P_n(Y)$) form a torsor under $H^{n+1}(X; \pi_n + 1(Y))$.
Second step: understand the small pieces.

\textit{k}-invariants

Suppose Y is \textit{simply connected} (so that $P_1(Y) \cong \ast$).
Second step: understand the small pieces.

k-invariants

Suppose \(Y \) is **simply connected** (so that \(P_1(Y) \simeq \ast \)). For \(n \geq 1 \)

\[
P_{n+1}(Y) \longrightarrow P_n(Y)
\]

is a **principal fibration** with structure group \(K(\pi_{n+1}(Y), n + 1) \), classified by the **\(k \)-invariant** \(k_n \in H^{n+2}(P_n(Y); \pi_{n+1}(Y)) \).

Yonatan Harpaz
Obstruction theory

Second step: understand the small pieces.

k-invariants

Suppose Y is simply connected (so that $P_1(Y) \simeq \ast$). For $n \geq 1$

$$P_{n+1}(Y) \longrightarrow P_n(Y)$$

is a principal fibration with structure group $K(\pi_{n+1}(Y), n+1)$, classified by the **k-invariant** $k_n \in H^{n+2}(P_n(Y); \pi_{n+1}(Y))$.

\Rightarrow if $f : X \longrightarrow P_n(Y)$ is a map then f lifts to $P_{n+1}(Y)$ if and only if $f^* k_n \in H^{n+2}(X; \pi_{n+1}(Y))$ vanishes.
Second step: understand the small pieces.

k-invariants

Suppose Y is simply connected (so that $P_1(Y) \simeq *$). For $n \geq 1$

$$P_{n+1}(Y) \longrightarrow P_n(Y)$$

is a principal fibration with structure group $K(\pi_{n+1}(Y), n+1)$, classified by the k-invariant $k_n \in H^{n+2}(P_n(Y); \pi_{n+1}(Y))$.

⇒ if $f : X \longrightarrow P_n(Y)$ is a map then f lifts to $P_{n+1}(Y)$ if and only if $f^*k_n \in H^{n+2}(X; \pi_{n+1}(Y))$ vanishes. In this case the possible lifts $\bar{f} : X \longrightarrow P_{n+1}(Y)$ (up to homotopy over $P_n(Y)$) form a torsor under $H^{n+1}(X; \pi_{n+1}(Y))$.

Yonatan Harpaz
The obstruction theoretic process can be streamlined into a Bousfield-Kan spectral sequence starting from $H^s(X; \pi_t(Y))$ and abutting to $\pi_{t-s}(\text{Map}(X, Y))$. If Y is not simply connected then $\pi_t(Y)$ (for $t \geq 2$) is a local system of abelian groups on Y, and $H^s(X; \pi_t(Y))$ should be interpreted as cohomology with local coefficients.

Given maps $i: A \to X$ and $f_0: A \to Y$ one can also use the above machinery to study all the maps $f: X \to Y$ which extend f_0 along i (up to homotopy), this time using the relative cohomology with local coefficients $H^\bullet(X, A; \pi^\bullet(Y))$.

Yonatan Harpaz
The obstruction theoretic process can be streamlined into a Bousfield-Kan spectral sequence starting from $H^s(X; \pi_t(Y))$ and abutting to $\pi_{t-s} \text{Map}(X, Y)$. If Y is not simply connected then $\pi_t(Y)$ (for $t \geq 2$) is a local system of abelian groups on Y, and $H^s(X; \pi_t(Y))$ should be interpreted as cohomology with local coefficients.

Given maps $i : A \to X$ and $f_0 : A \to Y$ one can also use the above machinery to study all the maps $f : X \to Y$ which extend f_0 along i (up to homotopy), this time using the relative cohomology with local coefficients $H^\bullet(X, A; \pi^\bullet(Y))$.
The obstruction theoretic process can be streamlined into a Bousfield-Kan spectral sequence starting from $H^s(X; \pi_t(Y))$ and abutting to $\pi_{t-s} \text{Map}(X, Y)$.

If Y is not simply connected then $\pi_t(Y)$ (for $t \geq 2$) is a **local system** of abelian groups on Y, and $H^s(X; \pi_t(Y))$ should be interpreted as cohomology with **local coefficients**.
Remarks

- The obstruction theoretic process can be streamlined into a Bousfield-Kan spectral sequence starting from $H^s(X; \pi_t(Y))$ and abutting to $\pi_{t-s} \text{Map}(X, Y)$.

- If Y is not simply connected then $\pi_t(Y)$ (for $t \geq 2$) is a local system of abelian groups on Y, and $H^s(X; \pi_t(Y))$ should be interpreted as cohomology with local coefficients.

- Given maps $i : A \to X$ and $f_0 : A \to Y$ one can also use the above machinery to study all the maps $f : X \to Y$ which extend f_0 along i (up to homotopy), this time using the relative cohomology with local coefficients $H^\bullet(X, A; \pi_\bullet(Y))$.

Yonatan Harpaz
The Hurewicz principle

The Bousfield-Kan spectral sequence can also be used to obtain qualitative results.
The Hurewicz principle

The Bousfield-Kan spectral sequence can also be used to obtain qualitative results. For example, if \(i : A \to X \) a map such that \(H^\bullet(X, A; M) = 0 \) for every local coefficient system \(M \) on \(X \) then any square of the form

\[
\begin{array}{ccc}
A & \to & Y \\
\downarrow & & \downarrow \\
X & \to & P_1(Y)
\end{array}
\]

admits an essentially unique dotted lift.
The Hurewicz principle

The Bousfield-Kan spectral sequence can also be used to obtain qualitative results. For example, if \(i : A \to X \) a map such that \(H^\bullet(X, A; M) = 0 \) for every local coefficient system \(M \) on \(X \) then any square of the form

\[
\begin{array}{ccc}
A & \rightarrow & Y \\
\downarrow & & \downarrow \\
X & \rightarrow & P_1(Y)
\end{array}
\]

admits an essentially unique dotted lift.

Corollary (The Hurewicz principle for spaces)

A map \(f : A \to X \) is an equivalence if and only if

- \(f \) induces an equivalence on fundamental groupoids.
- \(f \) induces an isomorphism on cohomology for every local coefficient system on \(X \).
Towards higher categories

Can we obtain a similar theory when spaces are replaced with ∞-categories?

Questions

What should replace cohomology with local coefficients?

What should replace homotopy groups?

Can we make such an obstruction theory accessible and computable?

Can we get an associated Hurewicz principle?
Towards higher categories

Can we obtain a similar theory when spaces are replaced with ∞-categories?

Questions

- What should replace cohomology with local coefficients?
Can we obtain a similar theory when spaces are replaced with ∞-categories?

Questions

- What should replace cohomology with local coefficients?
- What should replace homotopy groups?
Towards higher categories

Can we obtain a similar theory when spaces are replaced with ∞-categories?

Questions

- What should replace cohomology with local coefficients?
- What should replace homotopy groups?
- Can we make such an obstruction theory accessible and computable?
Towards higher categories

Can we obtain a similar theory when spaces are replaced with ∞-categories?

Questions
- What should replace cohomology with local coefficients?
- What should replace homotopy groups?
- Can we make such an obstruction theory accessible and computable?
- Can we get an associated Hurewicz principle?
What is cohomology?

To generalize cohomology outside spaces, we should start from the most general form we know for spaces.
What is cohomology?

To generalize cohomology outside spaces, we should start from the most general form we know for spaces.

Question
What kind of cohomologies do we know for spaces?

Answer
- Cohomology with coefficients.
- Generalized cohomology theories - coefficients in a spectrum.
- Twisted generalized cohomology theories - coefficients in a parameterized spectrum (i.e., a local system of spectra).

Can one generalize the notion of parameterized spectrum outside the realm of spaces?
To generalize cohomology outside spaces, we should start from the most general form we know for spaces.

Question
What kind of cohomologies do we know for spaces?

Answer
- Cohomology with coefficients.

Generalized cohomology theories - coefficients in a spectrum.

Twisted generalized cohomology theories - coefficients in a parameterized spectrum (i.e., a local system of spectra).

Can one generalize the notion of parameterized spectrum outside the realm of spaces?

Yonatan Harpaz
To generalize cohomology outside spaces, we should start from the most general form we know for spaces.

Question

What kind of cohomologies do we know for spaces?

Answer

- Cohomology with (local) coefficients.
To generalize cohomology outside spaces, we should start from the most general form we know for spaces.

Question
What kind of cohomologies do we know for spaces?

Answer
- Cohomology with \textit{(local)} coefficients.
- Generalized cohomology theories - coefficients in a \textit{spectrum}.
What is cohomology?

To generalize cohomology outside spaces, we should start from the most general form we know for spaces.

Question
What kind of cohomologies do we know for spaces?

Answer
- Cohomology with (local) coefficients.
- Generalized cohomology theories - coefficients in a spectrum.
- Twisted generalized cohomology theories - coefficients in a parameterized spectrum (i.e., a local system of spectra).
What is cohomology?

To generalize cohomology outside spaces, we should start from the most general form we know for spaces.

Question

What kind of cohomologies do we know for spaces?

Answer

- Cohomology with (local) coefficients.
- Generalized cohomology theories - coefficients in a spectrum.
- Twisted generalized cohomology theories - coefficients in a parameterized spectrum (i.e, a local system of spectra).

Can one generalize the notion of parameterized spectrum outside the realm of spaces?
The cotangent complex formalism (Lurie)

\(\mathcal{D} \) - a presentable \(\infty \)-category, \(X \in \mathcal{D} \) an object.

Definition

A parameterized spectrum over \(X \) is an \(\Omega \)-spectrum object in the slice \(\infty \)-category \(\mathcal{D}/X \), i.e., an object of \(\text{Sp}(\mathcal{D}/X) = \lim_{\leftarrow / \text{alt}}^{\text{} \rightarrow / \text{alt}} (\mathcal{D}/X)^* \).

A canonical adjunction:

\[\Sigma_\infty^+ \vdash \mathcal{D}/X \leftarrow \text{Sp}(\mathcal{D}/X) : \Omega_\infty \].

Definition

\(L_X = \Sigma_\infty^+ (\text{Id}_X) \in \text{Sp}(\mathcal{D}/X) \)

the abstract cotangent complex of \(X \).
\(\mathcal{D} \) - a presentable \(\infty \)-category, \(X \in \mathcal{D} \) an object.

Definition

A **parameterized spectrum** over \(X \) is an \(\Omega \)-spectrum object in the slice \(\infty \)-category \(\mathcal{D}/X \), i.e., an object of

\[
\text{Sp}(\mathcal{D}/X) = \lim_{\leftarrow} [\ldots \xrightarrow{\Omega} (\mathcal{D}/X)_* \xrightarrow{\Omega} (\mathcal{D}/X)_* \xrightarrow{\Omega} \ldots \xrightarrow{\Omega} (\mathcal{D}/X)_*]
\]

A canonical adjunction:

\[
\Sigma_{\infty}^+ : \mathcal{D}/X \xrightarrow{\perp} \text{Sp}(\mathcal{D}/X) : \Omega_{\infty}.
\]

Definition

\(\mathcal{L}_X := \Sigma_{\infty}^+ (\text{Id}_X) \in \text{Sp}(\mathcal{D}/X) \) the **abstract cotangent complex** of \(X \).
The cotangent complex formalism (Lurie)

\(\mathcal{D}\) - a presentable \(\infty\)-category, \(X \in \mathcal{D}\) an object.

Definition

A **parameterized spectrum** over \(X\) is an \(\Omega\)-spectrum object in the slice \(\infty\)-category \(\mathcal{D}/X\), i.e., an object of

\[
\text{Sp}(\mathcal{D}/X) = \lim_{\leftarrow/\Rightarrow} \left[\ldots \longrightarrow (\mathcal{D}/X)_\ast \xrightarrow{\Omega} (\mathcal{D}/X)_\ast \xrightarrow{\Omega} \ldots \xrightarrow{\Omega} (\mathcal{D}/X)_\ast \right]
\]

A canonical adjunction:

\[
\Sigma^\infty : \mathcal{D}/X \xleftrightarrow{\bot} \text{Sp}(\mathcal{D}/X) : \Omega^\infty.
\]

Yonatan Harpaz
\(\mathcal{D} \) - a presentable \(\infty \)-category, \(X \in \mathcal{D} \) an object.

Definition

A **parameterized spectrum** over \(X \) is an \(\Omega \)-spectrum object in the slice \(\infty \)-category \(\mathcal{D}/X \), i.e., an object of

\[
\text{Sp}(\mathcal{D}/X) = \lim_{\leftarrow} \left[\ldots \to (\mathcal{D}/X)_* \xrightarrow{\Omega} (\mathcal{D}/X)_* \xrightarrow{\Omega} \ldots \xrightarrow{\Omega} (\mathcal{D}/X)_* \right]
\]

A canonical adjunction:

\[
\Sigma^\infty_+: \mathcal{D}/X \leftrightarrow \text{Sp}(\mathcal{D}/X) : \Omega^\infty.
\]

Definition

\[
L_X := \Sigma^\infty_+(\text{Id}_X) \in \text{Sp}(\mathcal{D}/X)
\]

the **abstract cotangent complex** of \(X \).
The cotangent complex

\[L_X := \Sigma^\infty_+ (\text{Id}_X) \in \text{Sp}(\mathcal{D}/\mathcal{X}) \]
Quillen cohomology

The cotangent complex

\[L_X := \Sigma_+^\infty (\text{Id}_X) \in \text{Sp}(\mathcal{D}/\mathcal{L}_X) \]

Example

When \(\mathcal{D} = \mathcal{S} \) is the \(\infty \)-category of spaces we may identify \(\text{Sp}(\mathcal{S}/\mathcal{L}_X) \simeq \text{Fun}(X, \text{Sp}) \) with local systems of spectra, and \(L_X \) with the constant local system with value the sphere spectrum \(\mathcal{S} \in \text{Sp} \).
The cotangent complex

\[L_X := \Sigma^\infty_+ (\text{Id}_X) \in \text{Sp}(\mathcal{D}/X) \]

Example

When \(\mathcal{D} = S \) is the \(\infty \)-category of spaces we may identify \(\text{Sp}(S/X) \simeq \text{Fun}(X, \text{Sp}) \) with local systems of spectra, and \(L_X \) with the constant local system with value the sphere spectrum \(S \in \text{Sp} \).

For a parametized spectrum \(M \in \text{Sp}(\mathcal{D}/X) \), define the \(n \)'th **Quillen cohomology** of \(X \) with coefficients in \(M \) by

\[H^n_{Q}(X; M) = \pi_0 \text{Map}_{\text{Sp}(\mathcal{D}/X)}(L_X, M[n]) \]

where \(M[n] \) is the \(n \)'th suspension of \(M \) in \(\text{Sp}(\mathcal{D}/X) \).
Twisted arrow categories

In spaces, the Quillen cohomology groups of a space X with coefficient in $M \in \text{Sp}(S/X) \simeq \text{Fun}(X, \text{Sp})$ are just the homotopy groups of the limit spectrum $\lim_X M$.

What about ∞-categories?

The twisted arrow category $\text{Tw}(C)$ of an ∞-category C is the ∞-category whose objects are the morphisms of C and such that maps from $f : X \to Y$ to $g : Z \to W$ are given by commutative diagrams of the form:

\[
\begin{array}{ccc}
X & \to & Y \\
\downarrow & & \downarrow \\
Z & \to & W
\end{array}
\]

Such diagrams can be encoded by 3-simplices in C. Similarly, the n-simplices of $\text{Tw}(C)$ are the $(2n+1)$-simplices of C.

Yonatan Harpaz
In spaces, the Quillen cohomology groups of a space X with coefficient in $M \in \text{Sp}(S/X) \simeq \text{Fun}(X, \text{Sp})$ are just the homotopy groups of the limit spectrum $\lim_X M$. What about ∞-categories?

Twisted arrow categories

Recall that for an ∞-category C the twisted arrow category $\text{Tw}(C)$ is the ∞-category whose objects are the morphisms of C and such that maps from $f : X \to Y$ to $g : Z \to W$ are given by commutative diagrams of the form

$$
\begin{array}{ccc}
X & \to & Y \\
\downarrow & & \downarrow \\
Z & \to & W \\
\end{array}
$$

Such diagrams can be encoded by 3-simplices in C. Similarly, the n-simplicies of $\text{Tw}(C)$ are the $(2n+1)$-simplices of C.

Yonatan Harpaz
Twisted arrow categories

In spaces, the Quillen cohomology groups of a space \(X \) with coefficient in \(M \in \text{Sp}(S/X) \cong \text{Fun}(X, \text{Sp}) \) are just the homotopy groups of the limit spectrum \(\lim_X M \). What about \(\infty \)-categories?

The twisted arrow category

Recall that for an \(\infty \)-category \(C \) the **twisted arrow category** \(\text{Tw}(C) \) is the \(\infty \)-category whose objects are the morphisms of \(C \) and such that maps from \(f : X \rightarrow Y \) to \(g : Z \rightarrow W \) are given by commutative diagrams of the form

\[
\begin{array}{ccc}
X & \rightarrow & Y \\
\uparrow & & \downarrow \\
Z & \rightarrow & W
\end{array}
\]
Twisted arrow categories

In spaces, the Quillen cohomology groups of a space X with coefficient in $M \in \text{Sp}(S/X) \simeq \text{Fun}(X, \text{Sp})$ are just the homotopy groups of the limit spectrum $\lim_X M$. What about ∞-categories?

The twisted arrow category

Recall that for an ∞-category \mathcal{C} the **twisted arrow category** $\text{Tw}(\mathcal{C})$ is the ∞-category whose objects are the morphisms of \mathcal{C} and such that maps from $f : X \to Y$ to $g : Z \to W$ are given by commutative diagrams of the form

\[
\begin{array}{ccc}
X & \to & Y \\
\uparrow & & \downarrow \\
Z & \to & W
\end{array}
\]

Such diagrams can be encoded by 3-simplices in \mathcal{C}.
In spaces, the Quillen cohomology groups of a space \(X \) with coefficient in \(M \in \text{Sp}(S/X) \cong \text{Fun}(X, \text{Sp}) \) are just the homotopy groups of the limit spectrum \(\lim_X M \). What about \(\infty \)-categories?

The twisted arrow category

Recall that for an \(\infty \)-category \(\mathcal{C} \) the **twisted arrow category** \(\text{Tw}(\mathcal{C}) \) is the \(\infty \)-category whose objects are the morphisms of \(\mathcal{C} \) and such that maps from \(f : X \to Y \) to \(g : Z \to W \) are given by commutative diagrams of the form

\[
\begin{array}{ccc}
X & \longrightarrow & Y \\
\uparrow & & \downarrow \\
Z & \longrightarrow & W
\end{array}
\]

Such diagrams can be encoded by 3-simplices in \(\mathcal{C} \). Similarly, the \(n \)-simplices of \(\text{Tw}(\mathcal{C}) \) are the \((2n+1) \)-simplices of \(\mathcal{C} \).
Theorem (J. Nuiten, M. Prasma, H.)

For an ∞-category \mathcal{C} there is a natural equivalence

$$\text{Sp}((\text{Cat}_\infty)/\mathcal{C}) \simeq \text{Fun}(\text{Tw}(\mathcal{C}), \text{Sp})$$

between parameterized spectra over \mathcal{C} and functors from the twisted arrow category of \mathcal{C} to spectra. The cotangent complex of \mathcal{C} is the constant functor with value $S[-1]$.
Main result

Theorem (J. Nuiten, M. Prasma, H.)

For an ∞-category \mathcal{C} there is a natural equivalence

$$\text{Sp}((\text{Cat}_\infty)/_{\mathcal{C}}) \simeq \text{Fun}(\text{Tw}(\mathcal{C}), \text{Sp})$$

between parameterized spectra over \mathcal{C} and functors from the twisted arrow category of \mathcal{C} to spectra. The cotangent complex of \mathcal{C} is the constant functor with value $\mathbb{S}[-1]$.

This means that Quillen cohomology of ∞-categories can be described as a functor cohomology: its coefficients are functors $\mathcal{M} : \text{Tw}(\mathcal{C}) \longrightarrow \text{Sp}$ and the corresponding Quillen cohomology groups are (up to a shift) the homotopy groups of the limit $\lim_{\text{Tw}(\mathcal{C})} \mathcal{M}$.

Yonatan Harpaz
A few words about the proof:

The statement that we prove is actually more general, and pertains to enriched ∞-categories. Roughly speaking, we prove that the data of a parameterized spectrum over an enriched ∞-category C is equivalent to data of choosing in a suitably compatible way a parameterized spectrum over each mapping object $\text{Map}_C(x, y)$.

To prove this statement for a particular enriched ∞-category C we show that one can restrict attention to enriched ∞-categories with a fixed set of objects. Enriched ∞-categories with a fixed set of objects can also be described as ∞-categories of algebras over a suitable colored operad. We then use a previous joint result which involves identifying parameterized spectra over algebra objects with parameterized spectra over module objects.
A few words about the proof:

- The statement that we prove is actually more general, and pertains to enriched ∞-categories. Roughly speaking, we prove that the data of a parameterized spectrum over an enriched ∞-category \mathcal{C} is equivalent to data of choosing in a suitably compatible way a parameterized spectrum over each mapping object $\text{Map}_\mathcal{C}(x, y)$.
A few words about the proof:

- The statement that we prove is actually more general, and pertains to enriched ∞-categories. Roughly speaking, we prove that the data of a parameterized spectrum over an enriched ∞-category \mathcal{C} is equivalent to data of choosing in a suitably compatible way a parameterized spectrum over each mapping object $\text{Map}_\mathcal{C}(x, y)$.

- To prove this statement for a particular enriched ∞-category \mathcal{C} we show that one can restrict attention to enriched ∞-categories with a fixed set of objects.
The proof

A few words about the proof:

- The statement that we prove is actually more general, and pertains to enriched ∞-categories. Roughly speaking, we prove that the data of a parameterized spectrum over an enriched ∞-category \mathcal{C} is equivalent to data of choosing in a suitably compatible way a parameterized spectrum over each mapping object $\text{Map}_\mathcal{C}(x, y)$.

- To prove this statement for a particular enriched ∞-category \mathcal{C} we show that one can restrict attention to enriched ∞-categories with a fixed set of objects.

- Enriched ∞-categories with a fixed set of objects can also be described as ∞-categories of algebras over a suitable colored operad. We then use a previous joint result which involves identifying parameterized spectra over algebras objects with parameterized spectra over module objects.
In light of the theorem above we may identify functors $M : \text{Tw}(\mathcal{C}) \to \text{Sp}$ with parameterized spectra over \mathcal{C}.
In light of the theorem above we may identify functors
\(M : \text{Tw}(\mathcal{C}) \to \text{Sp} \) with parameterized spectra over \(\mathcal{C} \).

Question

Given \(M : \text{Tw}(\mathcal{C}) \to \text{Sp} \), can we describe the associated \(\infty \)-category \(\Omega^\infty(M) \to \mathcal{C} \) in explicit terms?
In light of the theorem above we may identify functors $M : \text{Tw}(\mathcal{C}) \rightarrow \text{Sp}$ with parameterized spectra over \mathcal{C}.

Question

Given $M : \text{Tw}(\mathcal{C}) \rightarrow \text{Sp}$, can we describe the associated ∞-category $\Omega^\infty(M) \rightarrow \mathcal{C}$ in explicit terms?

Answer

Yes. We may identify $\Omega^\infty(M)$ with the ∞-category whose objects are pairs (X, η) with $X \in \mathcal{C}$ and η is a map $\eta : S[-1] \rightarrow M(\text{Id}_X)$. Maps from (X, η) to (X', η') are pairs (f, H) where $f : X \rightarrow X'$ is a map in \mathcal{C} and H is a homotopy between the two resulting maps $f_*\eta, f_*\eta' : S[-1] \rightarrow M(f)$.
In light of the theorem above we may identify functors $M : \text{Tw}(C) \to \text{Sp}$ with parameterized spectra over C.

Question

Given $M : \text{Tw}(C) \to \text{Sp}$, can we describe the associated ∞-category $\Omega^\infty(M) \to C$ in explicit terms?

Answer

Yes. We may identify $\Omega^\infty(M)$ with the ∞-category whose objects are pairs (X, η) with $X \in C$ and η is a map $\eta : S[-1] \to M(\text{Id}_X)$. Maps from (X, η) to (X', η') are pairs (f, H) where $f : X \to X'$ is a map in C and H is a homotopy between the two resulting maps $f_* \eta, f_* \eta' : S[-1] \to M(f)$.

We note that $\Omega^\infty(M)$ is naturally an \mathbb{E}_∞-group object in $(\text{Cat}_\infty)_{/C}$. In particular, we can sum objects which lie in the same fiber: $(X, \eta) \boxplus (X, \eta') = (X, \eta + \eta')$.
Back to the abstract setting: \mathcal{D} a presentable ∞-category and $X \in \mathcal{D}$ an object. How can we use Quillen cohomology to do a Bousfield-Kan type obstruction theory and spectral sequence?
Back to the abstract setting: \mathcal{D} a presentable ∞-category and $X \in \mathcal{D}$ an object. How can we use Quillen cohomology to do a Bousfield-Kan type obstruction theory and spectral sequence?

Small extensions

A *small extension* of $X \in \mathcal{D}$ with coefficients in $M \in \text{Sp}(\mathcal{D}/X)$ is a Cartesian square in \mathcal{D}/X of the form:

$$
\begin{array}{ccc}
Y & \longrightarrow & \Omega^\infty(0) \\
\downarrow & & \downarrow \\
\downarrow & & \\
X & \xrightarrow{\alpha} & \Omega^\infty(M[1])
\end{array}
$$

where the right vertical map is obtained by applying the functor $\Omega^\infty : \text{Sp}(\mathcal{D}/X) \longrightarrow \mathcal{D}/X$ to the 0-map $0 \longrightarrow M[1]$.
Quillen obstruction theory

Back to the abstract setting: \mathcal{D} a presentable ∞-category and $X \in \mathcal{D}$ an object. How can we use Quillen cohomology to do a Bousfield-Kan type obstruction theory and spectral sequence?

Small extensions

A **small extension** of $X \in \mathcal{D}$ with coefficients in $M \in \text{Sp}(\mathcal{D}/X)$ is a Cartesian square in \mathcal{D}/X of the form:

$$
\begin{array}{ccc}
Y & \xrightarrow{p} & \Omega^\infty(0) \\
\downarrow & & \downarrow \\
X & \xrightarrow{\alpha} & \Omega^\infty(M[1])
\end{array}
$$

where the right vertical map is obtained by applying the functor $\Omega^\infty : \text{Sp}(\mathcal{D}/X) \to \mathcal{D}/X$ to the 0-map $0 \to M[1]$.

The data of $\alpha : X \to \Omega^\infty(M[1])$ is equivalent by adjunction to the data of a map $L_X \to M[1]$ and hence determines a class $[\alpha] \in H^1_Q(X; M)$. We consider p as a geometric incarnation of $[\alpha]$.

Yonatan Harpaz
Small extensions

Let $Y \longrightarrow X$ be a small extension of X with coefficients in M and corresponding class $[\alpha] \in H^1_Q(X; M)$. Then:

1. $\Omega^\infty(M) \rightarrow X$ is an E^∞-group object in \mathcal{C}/\mathcal{X} and $p: Y \rightarrow X$ is a torsor under $\Omega^\infty(M)$.
2. $p: Y \rightarrow X$ has a section if and only if $[\alpha] = 0$, in which case Y is equivalent over X to $\Omega^\infty(M)$.
3. If $f: A \rightarrow X$ is any map then f lifts to $f: A \rightarrow Y$ if and only if the pulled back class $f^* [\alpha] \in H^1_Q(X; f^* M)$ vanishes.

Example: If Y is a space then for every $n \geq 1$ the map $P^n+1(Y) \rightarrow P^n(Y)$ is a small extension with coefficients in the local system of Eilenberg-MacLane spectra $\mathcal{E}_{K}(\pi_{n+1}(Y), n+1)$, whose Quillen cohomology class is $k^n \in H^{n+2}(Y; \pi_{n+1}(Y)) = H^1_Q(Y; \mathcal{E}_{K}(\pi_{n+1}(Y), n+1))$.

Yonatan Harpaz
Let $Y \rightarrow X$ be a small extension of X with coefficients in M and corresponding class $[\alpha] \in H^1_Q(X; M)$. Then:

- $\Omega^\infty(M) \rightarrow X$ is an E_∞-group object in \mathcal{C}/X and $p: Y \rightarrow X$ is a torsor under $\Omega^\infty(M)$.
Let $Y \to X$ be a small extension of X with coefficients in M and corresponding class $[\alpha] \in H^1_Q(X; M)$. Then:

- $\Omega^\infty(M) \to X$ is an E_∞-group object in \mathcal{C}/X and $p : Y \to X$ is a torsor under $\Omega^\infty(M)$.
- $p : Y \to X$ has a section if and only if $[\alpha] = 0$, in which case Y is equivalent over X to $\Omega^\infty(M)$.

Example: If Y is a space then for every $n \geq 1$ the map $P_{n+1}(Y) \to P_n(Y)$ is a small extension with coefficients in the local system of Eilenberg-MacLane spectra $H^1(K(\pi_n+1(Y), n+1))$, whose Quillen cohomology class is $k_n \in H^{n+2}(Y; \pi_{n+1}(Y)) = H^1_Q(Y; H^1(K(\pi_n+1(Y), n+1))) = H^1_Q(Y; M)$.

Yonatan Harpaz
Let $Y \to X$ be a small extension of X with coefficients in M and corresponding class $[\alpha] \in H^1_Q(X; M)$. Then:

- $\Omega^\infty(M) \to X$ is an E_∞-group object in C/X and $p : Y \to X$ is a torsor under $\Omega^\infty(M)$.

- $p : Y \to X$ has a section if and only if $[\alpha] = 0$, in which case Y is equivalent over X to $\Omega^\infty(M)$.

- If $f : A \to X$ is any map then f lifts to $\overline{f} : A \to Y$ if and only if the pulled back class $f^*[\alpha] \in H^1_Q(X; f^* M)$ vanishes.
Small extensions

Let \(Y \rightarrow X \) be a small extension of \(X \) with coefficients in \(M \) and corresponding class \([\alpha] \in H^1_Q(X; M) \). Then:

- \(\Omega^\infty(M) \rightarrow X \) is an \(\mathbb{E}_\infty \)-group object in \(\mathcal{C}/X \) and \(p: Y \rightarrow X \) is a torsor under \(\Omega^\infty(M) \).
- \(p: Y \rightarrow X \) has a section if and only if \([\alpha] = 0 \), in which case \(Y \) is equivalent over \(X \) to \(\Omega^\infty(M) \).
- If \(f: A \rightarrow X \) is any map then \(f \) lifts to \(\bar{f}: A \rightarrow Y \) if and only if the pulled back class \(f^*[\alpha] \in H^1_Q(X; f^*M) \) vanishes.

Example

If \(Y \) is a space then for every \(n \geq 1 \) the map \(P_{n+1}(Y) \rightarrow P_n(Y) \) is a small extension with coefficients in the local system of Eilenberg-MacLane spectra \(\mathbb{H}K(\pi_{n+1}(Y), n + 1) \), whose Quillen cohomology class is

\[
k_n \in H^{n+2}(Y; \pi_{n+1}(Y)) = H^1_Q(Y; \mathbb{H}K(\pi_{n+1}(Y), n + 1))
\]
Recall that we may identify parameterized spectra over \mathcal{C} with functors $M : \text{Tw}(\mathcal{C}) \to \text{Sp}$.
Small extensions of ∞-categories

Recall that we may identify parameterized spectra over \mathcal{C} with functors $M : \text{Tw}(\mathcal{C}) \longrightarrow \text{Sp}$.

Question

Given $\alpha \in \text{Map}(\mathbb{S}[-1], \lim_{\text{Tw}(\mathcal{C})} M[1]) \cong \text{Map}_{\mathcal{C}}(\mathcal{C}, \Omega^\infty M[1])$, can we describe the small extension $p_\alpha : \mathcal{C}_\alpha \longrightarrow \mathcal{C}$ corresponding to α in explicit terms?
Recall that we may identify parameterized spectra over \mathcal{C} with functors $M : \text{Tw}(\mathcal{C}) \rightarrow \text{Sp}$.

Question

Given $\alpha \in \text{Map}(\mathbb{S}[-1], \lim_{\text{Tw}(\mathcal{C})} M[1]) \simeq \text{Map}_\mathcal{C}(\mathcal{C}, \Omega^\infty M[1])$, can we describe the small extension $p_\alpha : \mathcal{C}_\alpha \rightarrow \mathcal{C}$ corresponding to α in explicit terms?

Answer

Yes. We may identify \mathcal{C}_α with the ∞-category whose objects are pairs (X, η) with $X \in \mathcal{C}$ and η is a null-homotopy of the Id_X component $\alpha_{\text{Id}_X} : \mathbb{S}[-1] \rightarrow M(\text{Id}_X)[1]$ of α. Maps from (X, η) to (X', η') are pairs (f, H) where $f : X \rightarrow X'$ is a map in \mathcal{C} and H is a homotopy between the two resulting null homotopies $f_* \eta, f_* \eta'$ of $\alpha_f : \mathbb{S}[-1] \rightarrow M(f)[1]$.
Postnikov towers for ∞-categories

$\text{Ho}_n(\mathcal{C})$ - the ∞-category obtained from \mathcal{C} by replacing each mapping object with its n'th Postnikov piece.
Postnikov towers for ∞-categories

$\text{Ho}_n(C)$ - the ∞-category obtained from C by replacing each mapping object with its n'th Postnikov piece.

$\pi_{n+1}(C) : \text{Tw}(\text{Ho}_1(C)) \longrightarrow \text{Ab}$ the functor which sends an arrow $f : X \longrightarrow Y$ to $\pi_{n+1}(\text{Map}(X, Y), f)$.
Postnikov towers for ∞-categories

$\text{Ho}_n(\mathcal{C})$ - the ∞-category obtained from \mathcal{C} by replacing each mapping object with its n'th Postnikov piece.

$\pi_{n+1}(\mathcal{C}) : \text{Tw}(\text{Ho}_1(\mathcal{C})) \rightarrow \text{Ab}$ the functor which sends an arrow $f : X \rightarrow Y$ to $\pi_{n+1}(\text{Map}(X, Y), f)$.

Fact (Goes back to Dwyer and Kan)

The tower

$$\ldots \rightarrow \text{Ho}_n(\mathcal{C}) \rightarrow \ldots \rightarrow \text{Ho}_1(\mathcal{C})$$

converges to \mathcal{C} and each $\text{Ho}_{n+1}(\mathcal{C}) \rightarrow \text{Ho}_n(\mathcal{C})$ is a small extension with coefficients in $\mathbb{H}K(\pi_{n+1}(\mathcal{C}), n + 1)$.

Yonatan Harpaz
Postnikov towers for ∞-categories

$\text{Ho}_n(C)$ - the ∞-category obtained from C by replacing each mapping object with its n'th Postnikov piece.

$\pi_{n+1}(C) : \text{Tw} (\text{Ho}_1(C)) \to \text{Ab}$ the functor which sends an arrow $f : X \to Y$ to $\pi_{n+1}(\text{Map}(X, Y), f)$.

Fact (Goes back to Dwyer and Kan)

The tower

$$\ldots \to \text{Ho}_n(C) \to \ldots \to \text{Ho}_1(C)$$

converges to C and each $\text{Ho}_{n+1}(C) \to \text{Ho}_n(C)$ is a small extension with coefficients in $\mathbb{H}K(\pi_{n+1}(C), n + 1)$.

The elements $k_n \in H^1_Q(\text{Ho}_n(C), \mathbb{H}K(\pi_{n+1}(C), n + 1))$ classifying the small extensions $\text{Ho}_{n+1}(C) \to \text{Ho}_n(C)$ can be considered as the k-invariants of C.
Quillen obstruction theory for ∞-categories

Starting from a map $D \longrightarrow \text{Ho}_1(C)$ we now obtain an obstruction theory to the existence of a lift $D \longrightarrow C$ as well as a spectral sequence starting from

$$E_{1}^{t,s} = H_{Q}^{s}(D, \pi_{t}(C)) = \lim_{s+1}^{\infty} \text{Tw}(D) \pi_{t}(C) \quad s \geq -1, \ t \geq 2$$

and abutting to $\pi_{t-s} \text{Map}_{/\text{Ho}_1(C)}(D, C)$.

Example (Splitting homotopy idempotents)

Let Idem be the category with one object x_0 and one non-identify morphism $f : x_0 \longrightarrow x_0$ such that $f \circ f = f$. A direct computation shows that the category $\text{Tw}(\text{Idem})$ has cohomological dimension 1.

We may then conclude that every map $\text{Idem} \longrightarrow \text{Ho}_1(C)$ admits a non-empty and even simply-connected space of lifts $\text{Idem} \longrightarrow C$.

When C is idempotent complete we may conclude that a homotopy idempotent $\text{Idem} \longrightarrow \text{Ho}_1(C)$ splits if and only if it lifts to $\text{Ho}_1(C)$.

Yonatan Harpaz
Quillen obstruction theory for ∞-categories

Starting from a map $\mathcal{D} \longrightarrow \text{Ho}_1(\mathcal{C})$ we now obtain an obstruction theory to the existence of a lift $\mathcal{D} \longrightarrow \mathcal{C}$ as well as a spectral sequence starting from

$$E_1^{t,s} = \text{H}^s_Q(\mathcal{D}, \pi_t(\mathcal{C})) = \lim_{s+1}^{s+1} \pi_t(\text{Tw}(\mathcal{D})) \quad s \geq -1, \ t \geq 2$$

and abutting to $\pi_{t-s} \text{Map}/\text{Ho}_1(\mathcal{C})(\mathcal{D}, \mathcal{C})$.

Example (Splitting homotopy idempotents)

Let Idem be the category with one object x_0 and one non-identify morphism $f : x_0 \longrightarrow x_0$ such that $f \circ f = f$. A direct computation shows that the category $\text{Tw}(\text{Idem})$ has cohomological dimension 1. We may then conclude that every map $\text{Idem} \longrightarrow \text{Ho}_1(\mathcal{C})$ admits a non-empty and even simply-connected space of lifts $\text{Idem} \longrightarrow \mathcal{C}$. When \mathcal{C} is idempotent complete we may conclude that a homotopy idempotent $\text{Idem} \longrightarrow \text{Ho}(\mathcal{C})$ splits if and only if it lifts to $\text{Ho}_1(\mathcal{C})$.
Even higher categories

Can we do something similar for (∞, n)-categories?
Even higher categories

Can we do something similar for (∞, n)-categories?

Theorem (Nuiten, Prasma, H., cf. H. K. Nguyen)

Let \mathcal{C} be an (∞, n)-category and let $\text{Ho}_k(\mathcal{C})$ denote the (∞, n)-category obtained from \mathcal{C} by replacing each space of n-morphisms by its k’th Postnikov piece. Then

$$
\cdots \longrightarrow \text{Ho}_k(\mathcal{C}) \longrightarrow \cdots \longrightarrow \text{Ho}_1(\mathcal{C})
$$

is a tower of small extensions.
Even higher categories

Can we do something similar for \((\infty, n)\)-categories?

Theorem (Nuiten, Prasma, H., cf. H. K. Nguyen)

Let \(\mathcal{C}\) be an \((\infty, n)\)-category and let \(\text{Ho}_k(\mathcal{C})\) denote the \((\infty, n)\)-category obtained from \(\mathcal{C}\) by replacing each space of \(n\)-morphisms by its \(k\)'th Postnikov piece. Then

\[
\ldots \longrightarrow \text{Ho}_k(\mathcal{C}) \longrightarrow \ldots \longrightarrow \text{Ho}_1(\mathcal{C})
\]

is a tower of small extensions.

Corollary (The Hurewicz principle for \((\infty, n)\)-categories)

Let \(f : \mathcal{C} \longrightarrow \mathcal{D}\) be a functor between \((\infty, n)\)-categories. Then \(f\) is an equivalence if and only if

- \(f_* : \text{Ho}_1(\mathcal{C}) \longrightarrow \text{Ho}_1(\mathcal{D})\) is an equivalence of \((n + 1, n)\)-categories.
- \(f\) induces an isomorphism on Quillen cohomology for any choice of coefficients \(M \in \text{Sp}((\text{Cat}(\infty, n))/\mathcal{C})\).
The twisted 2-cell category

But what are parameterized spectra over an \((\infty, n)\)-category?
The twisted 2-cell category

But what are parameterized spectra over an \((\infty, n)\)-category? Well, at the moment we only know how to handle \(n = 2\).
The twisted 2-cell category

But what are parameterized spectra over an \((\infty, n)\)-category? Well, at the moment we only know how to handle \(n = 2\).

Theorem (Nuiten, Prasma, H.)

Let \(\mathcal{C}\) be an \((\infty, 2)\)-category. Then there exists a natural equivalence

\[
\text{Sp}((\text{Cat}_{\infty, 2})/\mathcal{C}) \simeq \text{Fun}(\text{Tw}_2(\mathcal{C}), \text{Sp})
\]

between parameterized spectra over \(\mathcal{C}\) and functors from what we call the **twisted 2-cell category** \(\text{Tw}_2(\mathcal{C})\) of \(\mathcal{C}\) to spectra.
But what are parameterized spectra over an (∞, n)-category? Well, at the moment we only know how to handle $n = 2$.

Theorem (Nuiten, Prasma, H.)

Let \mathcal{C} be an $(\infty, 2)$-category. Then there exists a natural equivalence

$$\operatorname{Sp}((\operatorname{Cat}_{\infty,2})/\mathcal{C}) \simeq \operatorname{Fun}(\operatorname{Tw}_2(\mathcal{C}), \operatorname{Sp})$$

between parameterized spectra over \mathcal{C} and functors from what we call the **twisted 2-cell category** $\operatorname{Tw}_2(\mathcal{C})$ of \mathcal{C} to spectra.

Conjecturally, there exists an analogue of the above theorem for all n, using a suitable **twisted n-cell category**.
Example: the classification of adjunctions

Let $\mathbf{1} = \bullet \xrightarrow{f} \bullet$ and let $\mathbf{1} \to \text{Adj}$ be the free 2-category generated from $\mathbf{1}$ by adding a right adjoint to f.

Proposition (Nuiten, Prasma, H.)

The induced map $\text{Tw}_2(\mathbf{1}) \to \text{Tw}_2(\text{Adj})$ is coinitial. In particular, the map $\mathbf{1} \to \text{Adj}$ induces an isomorphism on Quillen cohomology for any choice of coefficients $M : \text{Tw}_2(\text{Adj}) \to \text{Sp}$.

Corollary (cf. Riehl and Verity)

Any diagram of the form:

\[
\begin{array}{ccc}
\mathbf{1} & \downarrow & \mathbf{1} \\
\downarrow & & \downarrow \\
\Rightarrow & & \Rightarrow \\
\Rightarrow & & \Rightarrow \\
\text{C} & \to & \text{Adj} \\
\Rightarrow & & \Rightarrow \\
\text{Ho}_1(\text{C}) & \to & \text{Ho}_1(\text{Adj})
\end{array}
\]

admits a contractible space of lifts. This means, in effect, that homotopy coherent adjunctions are uniquely determined by explicit low dimensional data.
Example: the classification of adjunctions

Let $[1] = \bullet \xrightarrow{f} \bullet$ and let $[1] \xrightarrow{} \text{Adj}$ be the free 2-category generated from $[1]$ by adding a right adjoint to f.

Proposition (Nuiten, Prasma, H.)

The induced map $\text{Tw}_2([1]) \xrightarrow{} \text{Tw}_2(\text{Adj})$ is coinital. In particular, the map $[1] \xrightarrow{} \text{Adj}$ induces an isomorphism on Quillen cohomology for any choice of coefficients $M : \text{Tw}_2(\text{Adj}) \xrightarrow{} \text{Sp}$.

Corollary (cf. Riehl and Verity)

Any diagram of the form:

```
[1] \downarrow \downarrow \rightarrow \rightarrow \rightarrow \rightarrow C \downarrow \downarrow \rightarrow \rightarrow \rightarrow \rightarrow \text{Adj}
```

admits a contractible space of lifts. This means, in effect, that homotopy coherent adjunctions are uniquely determined by explicit low dimensional data.
Example: the classification of adjunctions

Let $[1] = \bullet \xrightarrow{f} \bullet$ and let $[1] \rightarrow \text{Adj}$ be the free 2-category generated from $[1]$ by adding a right adjoint to f.

Proposition (Nuiten, Prasma, H.)

The induced map $\text{Tw}_2([1]) \rightarrow \text{Tw}_2(\text{Adj})$ is coinitial. In particular, the map $[1] \rightarrow \text{Adj}$ induces an isomorphism on Quillen cohomology for any choice of coefficients $M : \text{Tw}_2(\text{Adj}) \rightarrow \text{Sp}$.

Corollary (cf. Riehl and Verity)

Any diagram of the form:

\[
\begin{array}{ccc}
[1] & \xrightarrow{} & \mathcal{C} \\
\downarrow & & \downarrow \\
\text{Adj} & \rightarrow & \text{Ho}_1(\mathcal{C})
\end{array}
\]

admits a contractible space of lifts.
Example: the classification of adjunctions

Let $\bullet \xrightarrow{f} \bullet$ and let $[1] \hookrightarrow \text{Adj}$ be the free 2-category generated from $[1]$ by adding a right adjoint to f.

Proposition (Nuiten, Prasma, H.)

The induced map $\text{Tw}_2([1]) \hookrightarrow \text{Tw}_2(\text{Adj})$ is coinitial. In particular, the map $[1] \hookrightarrow \text{Adj}$ induces an isomorphism on Quillen cohomology for any choice of coefficients $M : \text{Tw}_2(\text{Adj}) \rightarrow \text{Sp}$.

Corollary (cf. Riehl and Verity)

Any diagram of the form:

\[
\begin{array}{ccc}
[1] & \xrightarrow{\cdot} & \mathcal{C} \\
\downarrow & & \downarrow \\
\text{Adj} & \xrightarrow{\cdot} & \text{Ho}_1(\mathcal{C})
\end{array}
\]

admits a contractible space of lifts.

This means, in effect, that homotopy coherent adjunctions are uniquely determined by explicit low dimensional data.
Thank you!