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1. Introduction

A fundamental question in arithmetic geometry is to understand when a given
variety X, say smooth and projective, defined over a number field k (e.g., the field
k = Q of rational numbers), has a rational points (that is, a point defined over
k). In more explicit terms, if we consider for example the case where X ⊆ Pnk
is given by collection of homogeneous polynomial equations f1(x0, ..., xn) = ⋯ =

fm(x0, ..., xn) = 0, then our question becomes whether this set of equations has a
solution with all the variables x0, ..., xn taking values in k.

A standard approach to this problem is to start by considering the easier question
of existence of points defined over every completion kv of k. Given a place v on k
(that is, a suitable equivalence class of absolute values defined on k), the field kv
obtained by completing k with respect to the corresponding absolute value. The
absolute value may be archimedean, in which case we have kv = C or kv = R, or
nonarchimedean, in which case kv is a finite extension of the field Qp of p-adic
numbers for some prime p. When kv = C it is in particular algebraically close,
and the question of determining whether or not kv-points exists becomes purely
algebraic (and easy in practice). If kv = R then we can can determine whether or
not X as a kv-point “analytically”, by performing a kind of a (finite time) Newton
Raphson algorithm. This procedure can be done also in the nonarchimedean case.
In particular, we can determine in a finite time (and also easily in practice) whether
X has points over kv. In fact, even though k always has infinitely many places,
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one can determine in finitely many steps whether or not X has kv-points for all
completions kv. When this happens, we say that X has points every locally. We
note that when X is smooth and projective the product space ∏vX(kv) is also
known as the space of adelic points, and is denote by X(Ak).

Of course, if X(kv) = ∅ for at least one place v then we know that X(k) ≠ ∅.
The question of existence of rational points can then be essentially reduced to the
following: supposing that X has points everywhere locally, does it have a rational
point? types of varieties for which the answer to this question is positive are said
to satisfy the local–global principle, or the Hasse principle. The latter name
comes from the famous Hasse-Minkowski theorem, which asserts that if X ⊆ Pnk is
determined by a single quadratic equation then X has rational points as soon as it
has points everywhere locally.

It is known that the Hasse principle does not hold in general: there are smooth
projective varieties X over k which have points everywhere locally but do not have
rational points. One the simplest examples of such a variety is Selmer’s cubic curve

3X3
+ 4y3

+ 5z3
= 0,

and many other examples are known. In 1970 Manin [1717] found a way to explain
all the violations of the Hasse principle known at his time via what is now known
as the Brauer-Manin obstruction. Manin’s construction uses the Brauer group
Br(X) of X. This group can be defined in terms of equivalences classes of Azumaya
algebras over X, but when X is smooth and projective (which will be our case
throughout this minicourse) it is also naturally isomorphic to the étale cohomology
group H2(X,Gm). Given an adelic point (xv) ∈X(Ak) =∏vX(kv) and an element
β ∈ Br(X), we can restrict β along xv ∶ spec(kv)Ð→X for each place v to obtain a
Brauer element x∗vβ ∈ Br(kv). Local class field theory then tells us that there are
canonical isomorphisms invv ∶ Br(kv)Ð→ Q/Z which fit in a short exact sequence

(1.1) 0 // Br(k) // ⊕
v

Br(kv)
∑ invv // Q/Z // 0 .

We may then consider the pairing

(1.2) X(Ak) ×Br(k) // Q/Z
((xv), β)

� // ∑v invv x
∗
vβ.

We note that the sum above is well-defined because for a given β ∈ Br(X) there
exists a finite set of places S such that x∗vβ = 0 for every v ∉ S and every xv ∈X(kv).
In particular, by the exactness of (1.11.1) we get that if (xv) is the image of a rational
point x ∈X(k) under the diagonal embedding X(k)Ð→X(Ak) then ∑v invv x

∗
vβ ∈

Q/Z must vanish for every β ∈ Br(X), and hence that (xv) belongs in that case to
the left kernel of the pairing (1.21.2). This left kernel is known as the Brauer set of
X, and is denote by X(Ak)Br ⊆ X(Ak). When X(Ak) ≠ ∅ but X(Ak)Br = ∅ we
say that there is a Brauer–Manin obstruction to the Hasse principle on X.

The question of existence of rational points can then be essentially reduced to
the following:

Question 1.1. For which geometric types of varieties the Brauer–Manin obstruc-
tion is the only obstruction to the Hasse principle?

The term “geometric types” appearing in Question 1.11.1 is somewhat vague. It
can be given however the following precise meaning. First, it can be shown that the
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answer to Question 1.11.1 is a k-birational invariant of smooth, projective integral
varieties. In other words, if X and Y are two such varieties and X is k-birational to
Y (that is, X and Y have isomorphic function fields) then the answer to Question 1.11.1
is positive for X if and only if it is positive for Y . We may hence consider this
property as a property of an integral k-birational equivalence class (that is as a
property of finitely presented fields over k). We may then understand “geometric

type” as referring to an integral k-birational class, where k is an algebraic closure
of k. It is hence natural to phrase Question 1.11.1 in the following more precise
formalism:

Question 1.2. Which integral k-birational equivalence classes M have the property
that the Brauer–Manin obstruction is the only obstruction to the Hasse principle
for every k-birational equivalence class contained in M?

The simplest kind of a k-birational equivalence class for which we can consider
Question (1.21.2) is the class of (geometrically) rational varieties, that is, varieties

which are birational over k to projective space Pn. In this case the answer is
conjecturally positive:

Conjecture 1.3 (Colliot-Thélène–Sansuc). If X is a smooth, proper, integral va-

riety which is k-birational to Pn then X(Ak)Br ≠ ∅⇒X(k) ≠ ∅.

Conjecture 1.31.3 is known, for example, in the following cases:

Examples 1.4.

(1) If X is actually k-isomorphic to Pn (such varieties are known as Brauer-Severi
varieties).

(2) If X ⊆ Pn+1 is a smooth quadric. This is the Hasse–Minkowski theorem.
(3) If X is a k-birational to a torsor under an algebraic k-torus T (Voskresen-

skii [3131]). Furthermore, such a variety is k-birational to T itself as soon as it
has a rational point. In particular, in the latter case rational points are Zariski
dense.

Remark 1.5. The list above is by no means exhaustive. It is meant to give a pre-
liminary idea of varieties for which a positive answer to Conjecture 1.31.3 is classically
known without digressing to much from our main topic. We will see more known
cases in §33 below. In a similar vein, the statement of Conjecture 1.31.3 was actu-
ally conjectured by Colliot-Thélène to hold for more general birational equivalence
classes, namely, for all rationally connected varieties. For curves and surfaces,
however, which will be our main concern in this minicourse, the property of being
rationally connected coincides with being rational (over k).

We note that the interest in answering such a question is two-fold. On the one
hand, we wish to have a better conceptual understanding of the geometric, algebraic
and arithmetic properties of X which control the existence of rational points. On
the other hand, when the Brauer group Br(X) is finite, the question of whether
or not Br(Ak)Br is empty is in principle finitely determinable. In particular, if we
know that for a certain geometric type of varieties the Brauer-Manin obstruction
is the only obstruction to the Hasse principle, and we know that the Brauer group
is finite for varieties of this class, then we have an explicit and straightforward
receipt to determine the existence of a rational point on any given instance X of
this family. This can yield applications, for example, in cases where X is a variety
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whose rational points parameterize some interesting mathematical structures. For
example, if K/k is a finite extension and we have an element a ∈ k∗ then we can
ask if a is a norm from K. This can be encoded by the existence of a rational
point on certain quasi-projective algebraic variety V , which is a torsor under an
algebraic torus T (whose rational points correspond to elements of norm 1 in K).
The existence of rational points on any smooth compactification of V is controlled
by the Brauer–Manin obstruction by Example (3) above. In addition, the Brauer
group of such a compactification is finite. The determination of whether X has
rational points (in which case V has rational points as well) the becomes a finite
procedure involving points of norm a in the completions of K at finitely many
places and a certain explicitly computable finite Brauer group.

It is now known that the Brauer–Manin obstruction does not account for all
violations of the Hasse principle: there exists smooth projective varieties X for
which X(Ak)Br ≠ ∅ but X(k) = ∅. Most of these examples are based on the fact
that X has a non-abelian fundamental group, in which case one can often still
explain the violation of the Hasse principle by construction a certain intermediate
set

X(k) ⊆X(Ak)ét,Br
⊆X(Ak)Br,

defined by considering the Brauer sets of all finite étale covers of X (see [2424]). When
⊆ X(Ak)ét,Br = ∅ one says that there is an étale Brauer–Manin obstruction to
the existence of rational points. In 2001 Poonen [2020] constructed the first known
example of a smooth projective variety X for which X(Ak)ét,Br ≠ ∅ but X(k) = ∅.
Since then several other examples have been constructed (see [1313], [99]).

2. Curves

Let us now discuss Question 1.11.1 in the case where X is a (smooth, projective,
geometrically integral) curve. In this case the fundamental geometric invariant
of X is its genus g. If X is defined over the complex numbers then the space of
complex points X(C) is homeomorphic to a “donut” with g handles. In particular,
if g = 0 then X(C) is a sphere and if g = 1 then X(C) is a torus.

The genus, which is essentially a geometric invariant, also dramatically effects
the behavior of rational points on X when X is defined over a number field k:

Theorem 2.1. Let X be a smooth projective curve of genus g defined over k. If
g = 0 then X has a rational point as soon as it has a point everywhere locally. In
addition, in the latter case X is k-isomorphic to P1

k and has infinitely many rational
points. If g = 1 then X may violate the Hasse principle and may have finitely or
infinitely many rational points. If g ≥ 2 then X may violate the Hasse principle and
X(k) is always finite.

It is not known whether the Brauer–Manin obstruction is the only obstruction to
the Hasse principle on curves, though many authors conjecture this to be the case,
or that at least, the étale Brauer–Manin obstruction is sufficient (see, e.g., [2727]).
When g = 1 this is related to another conjecture, which has become standard: the
finiteness of the Tate-Shafarevich group of elliptic curves. Let us describe this case
in more details. Recall that:

Definition 2.2. An elliptic curve over k is smooth, projective geometrically
integral curve E/k of genus 1, equipped with a base point e ∈ E(k).
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Given an elliptic curve (E, e), there is a canonically defined multiplication oper-
ation E×E Ð→ E which endows E with the structure of commutative algebraic
group with e ∶ spec(k) Ð→ E as the unit. In fact, every smooth projective con-
nected algebraic group of dimension 1 is an elliptic curve. Now suppose that X is
a smooth projective curve of genus 1. Then X is does not necessarily carry a ratio-
nal point, and hence cannot in general be given the structure of an elliptic curve.
However, there is always a canonically associated elliptic curve J(X), known as the
Jacobian of X, which acts on X in free and transitive manner.

To construct J(X) let hence take X to be any smooth projective geometrically
integral curve (of arbitrary genus). We first define the Picard scheme of X. Given
a field K containing k let us denote by XK the base change of X from k to K.
Then for each K/k we may consider the Picard group Pic(XK) of XK defined as the
quotient of the group of zero-cycles on X defined over K, modulu those divisors
which are the zeros of rational functions defined over K. Here by a zero-cycle
defined over K we mean a formal combination of points z ∶= ∑i aixi where ai ∈ Z
and the xi’s are defined over some Galois extension L/K such that z is Gal(L/K)-
invariant as a linear combination. One can then prove that the étale sheafification
of the functor K ↦ Pic(XK) is represented by a group scheme Pic(X) defined
over k. The degree map ∑i aixi ↦ ∑i ai ∈ Z then descends to a homomorphism
Pic(X)Ð→ Z whose kernel Pic0

(X) is a connected algebraic group. This algebraic

group is in fact an elliptic curve J(X) = Pic0
(X), which we call the Jacobian of X.

Each point x on X can be considered as a zero-cycle of degree 1 (defined over the
same field as x). This determined a map X Ð→ Pic(X) whose image is contained

in the component Pic1
(X) of divisor classes of degree 1.

In general Pic0
(X) is a an abelian variety (that is, a commutative connected

projective algebraic group) of dimension g. We now specialize again to the case

where X has genus 1. In this case Pic0
(X) is an elliptic curve, and one can show

that the map X Ð→ Pic(X) yields an isomorphism of k-varieties X ≅ Pic1
(X).

We then have an associated action of J(X) = Pic0
(X) on X = Pic1

(X) simply by
addition of zero-cycles, and this action is free and transitive. In other words, X is a
torsor under J(X). Such a torsor is trivial (equivalent as a torsor under J(X) to

J(X) itself) if and only if it has a rational point. In particular, if we let k denote the
algebraic closure of k then Xk is trivial as a torsor under J(X)k. The isomorphism
types over k of such torsors can then be classified by the Galois cohomology group
H1(k, J(X)), where we consider J(X) as a Galois module by taking the group

of k-points J(X)(k). We may then consider the class [X] ∈ H1(k, J(X)) which
classifies X as a torsor under J(X). The discussion so far then leads to the following
important conclusion concerning the question of rational points on X:

(∗) The curve X has a rational points if and only if [X] = 0 ∈H1(k, J(X)).

The conclusion (∗) is quite striking: it means that there is a purely algebraic
criteria for X to have a rational point. On the other hand, the group H1(k, J(X))

is generally infinite, and we usually cannot compute it entirely. We now recall
that in the setting of determining the existence of rational points, we may as well
assume that local points exists at every place v of k. In this case, the torsor X
becomes trivial when scalars are extended to any completion kv, which means that
[X] ∈ H1(k, J(X)) is a class whose image in H1(kv, J(X)) is zero for any place
v. The subgroup of such elements plays a very important role in the arithmetic of
elliptic curves:
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Definition 2.3. Let E be an elliptic curve. The Tate-Shafarevich group of E is
defined to be the kernel:

X(E) ∶= Ker[H1
(k,E)Ð→∏

v

H1
(kv,E)].

In particular, if X is a curve of genus 1 which has points everywhere locally then
the class [X] ∈ H1(k, J(X)) lies in X(J(X)). The following is one of the most
important conjectures in the arithmetic of elliptic curves:

Conjecture 2.4. The Tate-Shafarevich group X(E) is finite for any elliptic curve
E.

Assuming conjecture 2.42.4, we may envision the following finite procedure to de-
termine if a curve X of genus 1 has rational points. We first determine if it has
points everywhere locally. If not, it does not have a rational point. If X has points
everywhere locally, then we compute the finite group X(J(X)) and compute the
element [X] ∈X(J(X)) in this finite group. If [X] = 0 then X has rational points,
and otherwise X(k) = ∅.

Let us explain how the above approach is related to the Brauer–Manin obstruc-
tion. By a theorem of Grothendieck we have that Br(Xk) = 0, that is, the Brauer
group of X vanishes when passing to the algebraic closure of k. In addition, since we
assume that X has points everywhere locally the map Br(k)Ð→ Br(X) is injective.
The Hochschild–Serre spectral sequence then yields a natural isomorphism

Br(X)/Br(k)Ð→H1
(k,Pic(X)).

Let us set E ∶= J(X). The group H1(k,Pic(X)) sits in an exact sequence

Z =H0
(k,Z)Ð→H1

(k,E)Ð→H1
(k,Pic(X))Ð→H1

(k,Z) = 0,

where the first map sends the generator of Z to the class [X] ∈ H1(k,E). In
particular, we may identify H1(k,Pic(X)) with the quotient of H1(k,E) by the
subgroup generated by the class [X] ∈ H1(k,E). Let us write ρ ∶ X(E) Ð→

Br(X)/Br(k) for the composed map

X(E)Ð→H1
(k,E)Ð→H1

(k,Pic(X)) ≅ Br(X)/Br(k),

so that the kernel of ρ is spanned by [X] ∈X(E). We will denote by B(X) ⊆ Br(X)

the preimage in Br(X) of ρ(X(E)) ⊆ Br(X)/Br(k). We note that B(X) can
equivalently by described as the subgroup of Br(X) consisting of those elements
whose image in Br(Xkv) comes from Br(kv) for every place v. Such Brauer elements
are also called locally constant elements.

Now let (xv) ∈ X(Ak) be an adelic point and let α ∈ X(E) be a class. Let
β ∈ B(X) be a locally constant Brauer element whose image in Br(X)/Br(k) is
ρ(α). Then the pullback x∗vβ ∈ Br(kv) does not depend on xv: indeed, the image
of α in H1(kv,E) is zero, and hence the image of β in Br(Xkv) comes from some
βv ∈ Br(kv), which means that x∗vβ = βv regardless of xv. On the other hand,
the sum invv x

∗
vβ does not depend on which β we chose, as long as its image in

Br(X)/Br(k) is ρ(α). Indeed, any two such β’s differ by an element γ ∈ Br(k),
and ∑v invv γ = 0. We may thus conclude that ∑v invv x

∗
vβ depends only on X and

α. In fact, it depends only on the isomorphism type of X as a torsor under E, and
hence only on the class [X] ∈X(E).
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Proposition 2.5. The association ([X], α) ↦ ∑v invv x
∗
vβ determines a bilinear

alternating pairing
X(E) ×X(E)Ð→ Q/Z.

This pairing is known as the Cassels-Tate pairing.

Remark 2.6. The pairing of Proposition 2.52.5 was defined by Cassels in [33] (and later
extended to general abelian varieties by Tate) in a different way without using the
Brauer pairing. The identification of this pairing with the above formula was proven
by Milne [1919].

Theorem 2.7 (Cassels [33]). An element in X(E) is in the kernel of the Cassels-
Tate pairing if and only if it is infinitely divisible in X(E). In particular, if X(E)

is finite then the Cassels-Tate pairing is non-degenerate.

We may summarize the situation as follows:

Corollary 2.8. Let X be a curve of genus 1 which has points everywhere locally.
Then the following conditions are equivalent:

(1) X contains an adelic point (xv) ∈ X(Ak) which is orthogonal to B(X) with
respect to (1.21.2).

(2) The class [X] ∈X(E) is in the kernel of Cassels-Tate pairing.
(3) The class [X] ∈X(E) is infinitely divisible in X(E).

In addition, if X(E) is finite then the above conditions are also equivalent to the
condition [X] = 0, that is, to the condition that X has rational points.

The last part of Corollary 2.82.8 explains the importance of Conjecture 2.42.4 to the
question of rational points on X: indeed, under Conjecture 2.42.4 a curve X of genus
1 has a rational point if and only if it has points everywhere locally and no Brauer–
Manin obstruction. Furthermore, in this case only the subgroup B(X) ⊆ Br(X),
which is finitely generated over Br(k), needs to be taken into account. In particular,
under Conjecture 2.42.4 the question of whether a curve of genus 1 has a rational point
is finitely determinable.

Remark 2.9. The importance of Conjecture 2.42.4 goes beyond the question of ra-
tional points on genus 1 curves: it lies in the core of arithmetic duality theory for
elliptic curves over number fields, and more generally, arithmetic duality for abelian
varieties. It can be considered as a standard conjecture.

Let us finish this section by saying a few words about the case where X is a
smooth projective of genus g ≥ 2. In this case one can still define the Jacobien
J(X) = Pic0

(X) in the same manner, only that it will generally not be an elliptic
curve, but rather an abelian variety, i.e., a commutative connected projective group
of dimension g. Then X will certainly not be a torsor under A ∶= J(X), but Pic1

(X)

will still be, and so we may consider the class [Pic1
(X)] ∈ H1(k,A). If X has

points everywhere locally then [Pic1
(X)] will become trivial in H1(kv,A) and so

will belong to the group X(A) ⊆ H1(k,A) which we define in exactly the same
manner as

X(A) ∶= Ker[H1
(k,A)Ð→∏

v

H1
(kv,A)].

A generalization of Conjecture 2.42.4 states that X(A) is finite for any abelian variety

over k. However, unlike the case of genus 1 curves, even if [Pic1
(X)] vanishes in
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X(A), it does not follow in general that X has a rational point. As mentioned
above, it is still believed by many authors that the Brauer–Manin obstruction is
the only obstruction to the Hasse principle on X. Support for this conjecture is
given by the following theorem of Scharaschkin:

Theorem 2.10 ([2323]). Let X be a curve of genus g ≥ 2 such that X(J(X))

and J(X)(k) are finite. Then X has rational points if and only if its Brauer
set X(Ak)Br is non-empty.

Remark 2.11. Unlike the case of Corollary 2.82.8, in the situation of Theorem 2.102.10 one
does not expect to have a natural subgroup of Br(X) which is finitely generated
over Br(k) and which is sufficient for determining the existence of rational points.

3. Conic bundle surfaces

3.1. Preliminaries. Let us now turn out attention to the case of surfaces. Let
X be a smooth projective geometrically integral surface. What can we say about
question 1.11.1 for X? As in the case of curves we may first classify surfaces according
to their geometric invariants. In this case, instead of using the genus we will use
Kodaira dimension. Given a smooth, projective geometrically integral variety X
of dimension n, we denote by ωX = ⋀

nΩX the line bundle of differential n-forms
on X, and we set pm = dimH0(Xk, ω

⊗m
X ).

Definition 3.1. We define the Kodaira dimension κ(X) to be −∞ if pm = 0 for
m >> 0, and otherwise to be the smallest integer k ≥ 0 such that pm/mk is bounded
(as a function of m).

Remark 3.2. In the situation of Definition 3.13.1, if κ(X) = −∞ then pm must in fact
vanish as soon as m > 0 (since we can tensor m sections of ωX to obtain a section
of ω⊗mX .

Remark 3.3. The Kodaira dimension κ(X) is always smaller or equal to the dimen-
sion of X.

Remark 3.4. If X is a smooth projective curve of genus g then κ(X) = −∞ if g = 0,
κ(X) = 0 if g = 1 and κ(X) = 1 if g ≥ 2.

For simplicity let us focus our attention on simply connected surfaces, that
is geometrically integral surfaces which admit no finite unramified étale coverings.
Classifying simply connected surfaces by their Kodaira dimension yields the follow-
ing geometric classes of surfaces:

(1) Simply connected surfaces of Kodaira dimension −∞ are exactly the rational

surfaces, that is, the surfaces birationally equivalent over k to P2.
(2) Simply connected surfaces of Kodaira dimension 0 are known as K3 surfaces.

They can equivalently be characterized as those simply connected surfaces for
which ωX is a trivial line bundle.

(3) Surfaces of Kodaira dimension 1 are all elliptic: they admit a dominant map

(generally defined over k) to P1 whose fibers are curves of genus 1. These are
exactly the elliptic surfaces which are not rational and not K3 surfaces.

(4) Surfaces of Kodaira dimension 2 are knows as surfaces of general type. In
some sense this class contains “most surfaces”.
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Rational surfaces can be considered as the surface analogue of curves of genus
0. Unlike curves of genus 0, rational surfaces may violate the Hasse principle.
Nonetheless, as a particular case of Conjecture 1.31.3, we expect the Brauer–Manin
obstruction to be the only one for the Hasse principle on rational surfaces.

In addition to the examples given in 1.41.4, a class of surfaces for which the Hasse
principle and Brauer–Manin obstruction have been greatly studied is that of conic
bundles. Recall that a conic bundle surface is a smooth projective geometrically
integral surface X equipped with a surjective map π ∶ X Ð→ P1

k whose generic
fiber a conic over the function field k(P1

k). Such surfaces are always rational. If we
consider A1

k = P1
k∖{∞} ⊆ P1

k and we let t be a coordinate on A1
k (so that k[A1

k] = k[t]
and k(P1

k) = k(t)), then the generic fiber of π is given by a conic

(3.1) f(t)x2
+ g(t)y2

+ h(t)z2
= 0

over k(t). Here we used the fact that over a field any quadratic form can be
diagonalized. Clearing denominators we may assume that each of f, g, h lies in k[t]
(as apposed to k(t)) and that there is no polynomial q ∈ k[t] of positive degree
which simultaneously divides f, g and h. In addition, we can even assume that
f, g, h are coprime in pairs: if q ∈ k[t] of positive degree divides f, g (but not h)
then we can divide (3.13.1) by q and make a coordinate change z ↦ z

q
which multiplies

h by q. In particular, we may assume that the polynomial ∆(t) = f(t)g(t)h(t) is
separable. For every t ∈ k such that ∆(t) ≠ 0 the fiber Xt of π ∶ X Ð→ P1

k over t
is a smooth conic. Using a suitable coordinate change on t we can also make sure
that the degrees of f, g, h all have the same parity. In this case the fiber X∞ over
∞ ∈ P1

k is smooth as well. On the other hand, if K/k is a finite extension of k and
τ ∈ K is such that ∆(τ) = 0 then the fiber Xτ is singular: for example, if f(τ) = 0
then Xτ is given inside P2

K by the equation

g(τ)y2
+ h(τ)z2

= 0

which is a union of two smooth genus 0 curves defined over the quadratic extension

K(
√
−h(τ)/g(τ)) and intersecting at a unique point (x ∶ y ∶ z) = (1 ∶ 0 ∶ 0). Let

r = deg(∆) = deg(f) + deg(g) + deg(h) be the number of singular fibers (over k).
Conjecture 1.31.3 is known for X for small values of r:

(1) If r ≤ 3 then X satisfies the Hasse principle and is k-rational as soon as it has
a rational point.

(2) If r = 4 then X may violate the Hasse principle but the Brauer–Manin obstruc-
tion is the only obstruction to the Hasse principle. We can distinguish two
possible cases. When (deg(f),deg(g),deg(h)) = (0,0,4) the surface X is also
known as a Châtelet surface, and the result was proven by Colliot-Thélène,
Sansuc and Swinnerton-Dyer in [77]. When (deg(f),deg(g),deg(h)) = (0,2,2)
the surface X is a del Pezzo surface of degree 4 in which case the result was
proven by Colliot-Thélène in [55], using a lot of the machinery developed in [77].

(3) If r = 5 then X is k-isomorphic to a smooth cubic surface which contains a
rational line, and so X(k) ≠ ∅.

(4) If r = 6 and we are in the case (deg(f),deg(f),deg(h)) = (0,0,6) with h a
product of a degree 2 and a degree 4 polynomial then the Brauer–Manin is the
only obstruction to the Hasse principle. This was proven by Swinnerton-Dyer
in [2929], see also [2525, Theorem 7.4.1].
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3.2. The fibration method. We now discuss a general method for proving that
the Brauer–Manin obstruction is the only one for the Hasse principle on conic
bundle surfaces, which is however conditional on a certain number theoretical con-
jecture – Schinzel’s hypothesis (H) – which is a vast generalization of the twin
prime conjecture. In its classical version it takes the following form:

Conjecture 3.5 (Hypothesis (H)). Let q1, ..., qm ∈ Z[t] be pairwise coprime irre-
ducible polynomials with integer coefficients. Suppose that for every prime p there
exists a t ∈ Z such that ∏i qi(t) is coprime to p. Then there exists infinitely many
positive t ∈ Z such that qi(t) is prime for each i = 1, ...,m.

Remark 3.6. When m = 1 Hypothesis (H) is equivalent to Dirichlet’s theorem on
primes in arithmetic progressions. This is the only known case of Hypothesis (H).

It was later realized by Serre that Hypothesis (H) is equivalent to the following,
apparently much more general statement:

Conjecture 3.7 (Hypothesis (H1)). Let k be a number field and q1, ..., qm ∈ k[t] be
pairwise coprime irreducible polynomials. Let S a finite set of places of k containing
all the archimedian places and large enough so that for every v ∉ S there exists a
tv ∈ Ov such that ∏i qi(tv) is a v-unit. Suppose given tv ∈ kv for every finite v ∈ S.
Then there exist S-integral elements t ∈ k such that

(1) t is arbitrarily close to tv in the v-adic topology for each finite v ∈ S;
(2) for every real v ∈ S the element t is positive and arbitrarily large in kv;
(3) for every i = 1, ...,m the element qi(t) is a unit outside S except at a single

place ui ∉ S, in which valui(qi(t)) = 1.

Remark 3.8. Given irreducible polynomials q1, ..., qm, there is always a large enough
finite set of places S for which Hypothesis (H1) is applicable.

Remark 3.9. In the situation of Hypothesis (H1), if q1, ..., qm are irreducible pairwise
coprime polynomials and S is a finite set of places for which Hypothesis (H1)

applies, then the hypothesis also applies to any finite set of places S′ containing
S. Thus, by possibly enlarging S we may always assume that the q1, ..., qm have
S-integral coefficients and an S-unital leading coefficient and that the discriminant
of ∏i qi is an S-unit. This means that for every v ∉ S the reduction of ∏i qi mod
v is well-defined and is a separable polynomial of the same degree as ∏i qi. In
particular, we may always assume that the places u1, ..., ul are pairwise distinct.

Remark 3.10. When m = 1 Hypothesis (H1) can be proven using the m = 1 case of
Hypothesis (H), which is Dirichlet’s theorem on primes in arithmetic progressions
(see Remark 3.63.6). This is the only known case of Hypothesis (H1).

Theorem 3.11. Assume Schinzel’s hypothesis (H1). Then the Brauer–Manin ob-
struction is the only obstruction for the Hasse principle on any conic bundle surface.

Theorem 3.113.11 is proven using an approach which is known as the fibration
method. To describe the argument, we will need to introduce some terminology.
Let q1, ..., qm be the irreducible factors of ∆, so that ∆ = ∏l ql. For each l ∈
{1, ...,m}, let us denote by Ml ∈ A1

k the closed point corresponding to the ideal
(ql) ⊆ k[t], and by kl ∶= k[t]/qi its residue field. Then the fiber XMl

is singular and
breaks as a union of two rational curves defined over a quadratic extension Ll/kl
and meeting at a point. Let τl ∈ kl be a root of ql and let γl ∈ kl be such that
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Ll = kl(γl). We note that if, for example, ql∣f then γl = −h(τl)/g(τl) as above, and
similarly if ql divides g or h. For l ∈ {1, ...,m} we will denote by

Al ∶= coreskl(t)/k(t)(t − τl, γl) ∈ Br(k(t))

the corresponding Brauer element. Here (t − τl, γl) ∈ Br(kl(t)) is the Brauer class
of the quaternion algebra over kl(t) defined by i2 = t − τl, j

2 = γl, ji = −ij, and
coreskl(t)/k(t) is the corestriction operation Br(kl(t)) Ð→ Br(k(t)). We will de-
note by B ⊆ Br(k(X)) the subgroup generated by the inverse images π∗Al for
l ∈ {1, ...,m}. We note that B is a finite subgroup.

The idea of the fibration method is that X is fibered over P1
k into conics, and

so the smooth fibers of P1
k satisfy the Hasse principle by the Hasse–Minkowski

theorem. We may then attempt to prove the existence of rational points on X by
finding a t ∈ k such that the fiber Xt has points everywhere locally. In particular,
Theorem 3.113.11 will be a consequence of the following more precise statement:

Proposition 3.12. Suppose that X contains an adelic point which is orthogonal to
B ∩Br(X) ⊆ Br(k(X)). Then there exists a t ∈ k such that Xt has an adelic point,
and hence also a rational point.

Proof. Step 1. Let (xv) ∈ X(Ak) be an adelic point which is orthogonal to B ∩

Br(X). Since B ∩ Br(X) is finite, we can always find a finite set of places S such
that invv x

∗
vβ = 0 for every v ∉ S and every β ∈ B ∩Br(X). In light of Remark 3.83.8

we can also make sure that S is large enough so that Hypothesis (H1) is applicable
to S and the polynomials q1, ..., qm. We also make sure that S is large enough so
that the properties described in Remark 3.93.9 hold.

For each v ∈ S we now choose a small neighborhood Vv ⊆ P1(kv) in the v-topology
such that Xt(kv) ≠ ∅ for every t ∈ Vv. By possibly replacing xv with another point
in π−1(V) which is sufficiently close to xv we may assume that xv does not lie
on any of the singular fibers of π, nor on the fiber over ∞. Let tv = π(xv) be
the coordinate of π(xv). By possibly shrinking Vv we may then also assume that
Vv does not contain ∞, that the fiber Xt is smooth for every t ∈ Vv and that
invvAl(t) = invvAl(tv) for every t ∈ Vv. Finally, by using weak approximation on
P1
k (which is the number field generalization of the Chinese remainder theorem) we

can find a t0 ∈ k such that t0 ∈ Vv∞ for every real v∞ ∈ S and such that t0 ≠ tv
for every nonarchimedean v ∈ S. By performing a coordinate change on P1

k which
sends t0 to ∞ we may assume without loss of generality that the neighborhoods
Vv∞ contain a segment of the form [av∞ ,∞) for some av∞ < tv∞ .

Step 2. The second step in the argument is an application of Harari’s lemma,
which is known as the “formal lemma”. Let U ⊆ X be the complement of the
singular fibers and the fiber over ∞ ∈ P1

k. Then the subgroup B ⊆ Br(k(X)) is
contained in the subgroup Br(U) ⊆ Br(k(X)). Given the data we have of S and
xv ∈ U(kv) for v ∈ S such that

∑
v∈S

invv x
∗
vβ = 0

for every β ∈ B ∩ Br(X), the formal lemma provides us with a larger finite subset
S′ and new local points xv ∈ U(kv) for v ∈ S′ ∖ S such that

(3.2) ∑
v∈S′

invv x
∗
vβ = 0
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for every β ∈ B. Setting tv = π(xv) for v ∈ S′ we then get by the definition of B

that

(3.3) ∑
v∈S′

Al(tv) = 0

for every l ∈ {1, ...,m}. Like we did for v ∈ S, we now choose neighborhoods
tv ∈ Vv ⊆ P1(kv) for every v ∈ S′ ∖ S such that for every t ∈ Vv we have that Xt is
smooth, has kv-points, and invvAl(t) = invvAl(tv).

Step 3. Applying Hypothesis (H1) we can find a t0 ∈ k such that t0 ∈ Vv for
every non-archimedean v ∈ S, t0 > av∞ for every real v ∈ S′, and such that for every
l ∈ {1, ...,m}, the element ql(t0) is a unit outside S′ except at a single place ul
for which valul

(ql(t0)) = 1. By Remark 3.93.9 we may also assume that the ul’s are
pairwise distinct. We now claim that Xt0 has points everywhere locally.

Indeed, for v ∈ S′ we have that Xt0(kv) ≠ since t0 ∈ Vv. We also note that if v
is a place which does not belong to S′ and is not one of the ul’s then f(t0), g(t0)
and h(t0) are all units at v and hence the conic Xt0 has a kv-point. It is left to
consider the case v = ul for some l ∈ {1, ...,m}. To fix ideas let us suppose that ql∣f ,
so that valul

f(t0) = 1 and g(t0), h(t0) are units at ul. In this case the conic (3.13.1)

has a kul
-point if and only if −h(t0)

g(t0)
is a square mod ul. Recall that we fixed a root

τl ∈ kl of ql. By our choice of S (see Remark 3.93.9) the polynomial ql has S′-integral
coefficients and an S′-unital leading coefficient. It then follows that τl ∈ kl is S′(kl)-
integral and ql(t0) = cNormkl/k(t0 − τl) for some S′-unit c. Since valul

(ql(t0)) = 1
there must exist a place ũl of kl, of degree 1 over ul, such that valũl

(t0 − τl) = 1,
and so mod ũl we have t0 = τ l ∈ Fũl

≅ Ful
. It then follows that

−
h(t0)

g(t0)
= −

h(τ l)

g(τ l)
= γl,

and so Xt0 has a kul
-point if and only if γl is a square mod ũl. On the other hand,

since valũl
(t0 − τl) = 1 we get from the behavior of quaternion algebras over p-adic

fields that γl is a square mod ũl if and only if invũl
(t0 − τl, γl) = 0 ∈ Br(kũl

). Since
t0 − τl and γl are units at every place w ≠ ũl of kl which lies over ul it follows that

invul
Al(t0) = ∑

w∣ul

invw(t0 − τl, γl) = invũl
(t0 − τl, γl).

To finish the proof it will hence suffice to verify that invul
Al(t0) = 0. We now note

that by the exactness of (1.11.1) we have that

(3.4) ∑
v

invvAl(t0) = 0

and that invvAl(t0) = 0 for any v ∉ S′ ∪ {ul} since both t0 − τl and γl are units
outside the places of kl lying over S′ ∪ {ul}. In addition, for every place v ∈ S′ we
have that invvAl(t0) = invvAl(tv) since t0 ∈ Vv. It then follows from 3.33.3 that

(3.5) ∑
v∈S′

invvAl(t0) = ∑
v∈S′

invvAl(tv) = 0.

Combining (3.43.4) and (3.53.5) we may conclude that invul
Al(t0) = 0 and henceXt0(ul) ≠

∅, as desired. �

Theorem 3.113.11 gives a very attractive result but at the price of assuming a very
difficult open conjecture. In their landmark paper [22], Browning, Matthiesen and
Skorobogtov used recent substantial advancements in additive combinatorics to
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unconditionally prove Theorem 3.113.11 in the the case where k = Q and the singular
fibers of π all lie over rational points:

Theorem 3.13 (Browning–Matthiesen–Skorobogtov). Let π ∶X Ð→ P1
k be a conic

bundle surface over Q whose singular fibers are all defined over Q. Then the Brauer–
Manin obstruction is the only one for the Hasse principle on X.

A slightly different approach to Theorem 3.133.13 was later suggested in [1515], apply-
ing a similar type of additive combinatorics results. To explain the latter approach,
we recall the following homogeneous variant of Hypothesis (H1):

Conjecture 3.14 (Hypothesis (HH1)). Let k be a number field and q1, ..., qm ∈

k[λ,µ] be irreducible homogeneous polynomials. Let S be a finite set of places of
k containing all the archimedian places and large enough so that for every v ∉ S
there exist λv, µv ∈ Ov such that ∏i qi(λv, µv) is a v-unit. Suppose given λv, µv ∈ kv
for every v ∈ S such that (λv, µv) ≠ (0,0) when v is archimedean. Then there exist
S-integral elements λ0, µ0 ∈ k such that

(1) (λ0, µ0) is arbitrarily close to (λv, µv) ∈ kv × kv in the v-adic topology for each
finite v ∈ S;

(2) (λ0 ∶ µ0) is arbitrarily close to (λv ∶ µv) ∈ P1(kv) in the v-adic topology for each
archimedean v ∈ S;

(3) for every real v ∈ S the element λvλ0 + µvµ0 is positive in kv;
(4) for every i = 1, ...,m the element qi(λ0, µ0) is a unit outside S except at a single

place ui ∉ S, in which valui(qi(λ0, µ0)) = 1.

Remarks 3.15.

(1) Remarks 3.83.8 and 3.93.9 apply just as well for Hypothesis (HH1).
(2) Given a polynomial q(t) in one variable we can always consider it as a homoge-

neous polynomial in two variables λ,µ by setting q(λ,µ) = µdeg(q)q(λ/µ). One
can the show that Hypothesis (H1) for a given set of irreducible polynomials
q1, ..., ql implies Hypothesis (HH1) for their respective homogenizations.

Given irreducible coprime homogeneous polynomials q1, ...qm let us denote by
r = ∑l deg(ql). When r = 1 Hypothesis (H1) can be proven by elementary methods
and when r = 2 Hypothesis (H1) can be proven using Dirichlet’s theorem on primes
in arithmetic progressions. When r = 3, m = 1 and k = Q Hypothesis (H1) can
be deduced from the work of Heath-Brown and Moroz on primes represented by
binary cubic form, see [1616]. However, the main breakthrough towards Hypothesis
(HH1) was obtained by the seminal work of Green, Tao and Ziegler (see [1515] for a
more detailed discussion), which gives Hypothesis (HH1) over Q for a collection of
linear forms:

Theorem 3.16 (Green–Tao–Ziegler). Hypothesis (HH1) holds if k = Q and deg(qi) =
1 for every i ∈ {1, ...,m}.

In order to deduce Theorem 3.133.13 from Theorem 3.163.16 one needs to perform the
fibration argument described in the proof of Proposition 3.123.12 using Hypothesis
(HH1) instead of Hypothesis (H1). The precise details are described in [1515].
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4. Elliptic surfaces

The results described in the previous section on conic bundle surfaces give impor-
tant support to Conjecture 1.31.3. They provide, however, no information regarding
Question 1.11.1 for surfaces which are not rational: indeed, all conic bundle surfaces
are rational. Remaining in the realm of simply-connected surfaces, it is natural to
wonder what one should expect with respect to Question 1.11.1 for the next type of
surfaces in the classification described in §3.13.1: namely, the class of K3 surfaces.
Very little is known about this question: we do not know of any example of a
K3 surface which is a counter-example to the Hasse principle not explained by the
Brauer–Manin obstruction, and the only cases where we can prove that the Brauer–
Manin obstruction is the only one are conditional on open conjectures. These latter
results are however precious: they yield the only clues concerning Question 1.11.1 for
K3 surfaces, indicating that the answer might be yes. For this reason some authors
have actually conjectured this to be the case.

These positive conditional results are all based on a method, originally in-
vented by Swinnerton-Dyer [2828] and later generalized and extended by Swinnerton-
Dyer–Skorobogatov–Colliot-Thélène [88], Wittenberg [3232], and Swinnerton-Dyer–
Bender [11]. A variant of this method applicable to Kummer surfaces was con-
structed by Swinnerton-Dyer and Skorobogatov in [2626], and later extended by
Harpaz–Skorobogatov [1414] and Harpaz [1212]. We will discuss this variant in §55.

We will refer to this method as the descent–fibration method. Roughly speak-
ing, we would like to generalize the argument of Proposition 3.123.12 from conic bun-
dles, which are fibrations into curves of genus 0, to elliptic bundles, or fibrations
π ∶ X Ð→ P1

k into curves of genus 1. We will refer to such bundles as elliptic
surfaces (though we emphasize that we are not assuming that π admits a section
defined over the base field). In trying to generalize the proof of Proposition 3.123.12
we immediately encounter a difficulty: the fibration method described in the proof
of Proposition 3.123.12 gave us the possibility to find a rational point t ∈ P1

k(k) such
that the fiber Xt is smooth and has points everywhere locally. When the fibers
were conics this was enough: a conic with points everywhere locally has a rational
points. For genus 1 curves this is no longer the case. In order to continue further we
will need use the theory of genus 1 curves described §22. In particular, the generic
fiber Xη is a genus 1 curve over the function field k(η) = k(t), and we may consider
its Jacobien Eη ∶= J(Xη), which is an elliptic curve over k(t). The curve Eη can
then be extended to a smooth projective surface E Ð→ P1

k, which is fibered over
P1
k with generic fiber Eη. In this case it will also be true that for every t ∈ P1

k(k)
such that Xt is smooth the elliptic curve Et will be canonically isomorphic to the
Jacobian of Xt. In particular, if t ∈ P1

k(k) is such that Xt has points everywhere
locally then the class [Xt] ∈ H

1(k,Et) belongs to X(Et). We might then hope to
find a t such that Xt is everywhere locally solvable and the Tate-Shafarevich group
X(Et), or at least some subgroup of it which contains αt, is trivial. In this case we
could deduce that [Xt] = 0 and hence that the fiber Xt has a rational point. The
descent–fibration method allows us to do exactly that, at the price of assuming two
major conjectures:

(1) Schinzel’s hypothesis (H1), as in §3.23.2.
(2) The Tate-Shafarevich conjecture stating that X(E) is finite for any elliptic

curve E (or at least, for the elliptic curves which appear in the pencil E Ð→ P1
k).
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Remark 4.1. In the Kummer surface variant of the method described in §55 Schinzel’s
hypothesis is not needed (in fact, it is needed in the only known case of Dirichlet’s
theorem).

Remark 4.2. In light of the discussion in §3.23.2 it is natural to wonder if one can
replace Hypothesis (H1) in the descent–fibration method by Hypothesis (HH1),
and thus remove the conditional dependence when k = Q and all singular fibers of
π are defined over Q. The answer is in fact positive: this is topic of current work
in progress, which we may discuss if time permits.

In addition to providing a window to the arithmetic of K3 surfaces (as well
as some types of elliptic surfaces of Kodaira dimension 1), the descent–fibration
method can also be used to obtain (conditional) results on certain rational surfaces
which are not covered by the results described in §3.23.2. Consider for example the
simplest types of rational surfaces, the del Pezzo surfaces. These are by definition
the surfaces X whose anti-canonical class −KX ∈ Pic(X) is ample. The degree of
del Pezzo surface is defined to be the self intersection number d = (−KX) ⋅ (−KX),

and can take any value between 1 and 9. Over k a del Pezzo surface is either
isomorphic to P1 × P1 (in which case its degree is 8) or is obtained by blowing up
P2
k at 9 − d sufficiently general points. When d ≥ 7 every such surface is birational

over k to either a quadric or P2. Del Pezzo surfaces of degree 6 all satisfy the
Hasse principle [44]. Del Pezzo surfaces of degree 5 always contain a rational point
(Enrique, Swinnerton-Dyer). Unlike these cases, when d ≤ 4 the Hasse principle
can fail, and in some sense, these are the simplest types of counter-examples to the
Hasse principle in the realm of surfaces. It is hence quite desirable from the point
of view of Conjecture 1.31.3 to prove that the Brauer–Manin obstruction is the only
obstruction to the Hasse principle on such del Pezzo surfaces. Despite a lot of effort
that has gone to this question it remains open in general. The only cases one can
successfully attack are those del Pezzo surfaces which admit a suitable type of a
conic bundle structure, either when d = 4 by the work of Colliot-Thélène [55] or when
the conic bundles are of the form of Theorem 3.133.13 (see [22] for some examples).

Generically, a del Pezzo surface of degree ≤ 6 is not k-birational to a conic
bundle. By contrast, every del Pezzo surface is always k-birational to an elliptic
surface. This is because a general member of the linear system associated to the
anti-canonical class −KX is a curve of genus 1 by the adjunction formula. Since
−KX is always defined over the base field one obtains that a del Pezzo surface of
degree d is equipped with a canonical Pdk-family of curves of genus 1, such that
a generic penceil in this family has exactly d base points. Choosing a generic
pencil and blowing up the base points yields a k-birational equivalence to an elliptic
surfaces. The case of del Pezzo surfaces of degree 4 was the original case handled by
Swinnerton-Dyer in [2828], where the method was first invented. The case considered
in loc. cit. was that of del Pezzo surfaces of degree 4 defined inside P4

k by the
intersection of two diagonal quadrics. This leads to the type of elliptic fibrations
for which the method was first developed in [2828], and which we will describe in detail
in §4.24.2. The method was later extended to cover more general del Pezzo surfaces in
[11] (see also [66]), and eventually to cover all sufficiently general del Pezzo surfaces
in the work of Wittenberg [3232] (still conditional on the two conjectures above). To
give an idea of the type of results one can obtain we give the following sample
result from [3232]. In what follows, for a del Pezzo surface of degree 4 given by the
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intersection of two (not necessarily diagonal) quadrics q1(x1, ..., x5) = q2(x1, ..., x5) =

0 we denote by f(t, s) = det(tq1 + sq2) the associated characteristic polynomial.

Theorem 4.3 (Wittenberg). Assume Schinzel’s hypothesis (H1) and that the Tate–
Shafarevich group of elliptic curves is finite. Let X be a del Pezzo surface of degree
4 with characteristic polynomial f . If the Galois group of f acts 3-transitively on
its roots then the Hasse principle holds for X.

Using an instance of the fibration method one can bootstrap Theorem 4.44.4 to
obtain the following higher dimensional analogue:

Theorem 4.4 (Wittenberg). Assume Schinzel’s hypothesis (H1) and that the Tate–
Shafarevich group of elliptic curves is finite. Then any smooth intersection of two
quadrtics in Pnk for n ≥ 5 satisfies the Hasse principle.

4.1. Selmer groups and 2-coverings. The method as we shall describe in §4.24.2
is designed to handle elliptic surfaces of a certain type. In order to explain this we
will need to recall some notions regarding the notion of a 2-covering of an elliptic
curve. Until otherwise stated we may take the base field k to be arbitrary.

Definition 4.5. Let E be an elliptic curve. A 2-covering of E is a smooth
projective genus 1 curve X equipped with a finite étale map X Ð→ E such that the
induced map J(X)Ð→ J(E) = E is surjective with kernel J(X)[2].

Remark 4.6. In the situation of Definition 4.54.5 the map J(X) Ð→ E induces an
isomorphism J(X)/J(X)[2] ≅ E. On the other hand, the multiplication by 2 map
J(X)Ð→ J(X) determines an isomorphism J(X)/J(X)[2] ≅ J(X). We hence see
that any 2-covering of E is equipped with a canonical isomorphism of its Jacobian
with E. Under this isomorphism the map J(X)Ð→ E induced by p identifies with

the multiplication by 2 map E
2
Ð→ E.

Warning 4.7. The terminology 2-covering might cause confusion: if p ∶ X Ð→ E is
a 2-covering in the sense of Definition 4.54.5 then p is a finite étale map of degree 4,
and not 2.

Consider the exact sequence of algebraic groups

(4.1) 0Ð→ E[2]Ð→ E
2
Ð→ E Ð→ 0

where 2 ∶ E Ð→ E is the multiplication by 2 map and E[2] ⊆ E is the subgroup
of 2-torsion elements (which is a commutative algebraic group of dimension 0, so
essentially a finite Galois module). The short exact sequence (4.14.1) induces a long
exact sequence in Galois cohomology

(4.2) ⋯Ð→H0
(k,E)Ð→H1

(k,E[2])Ð→H1
(k,E)

2
Ð→H1

(k,E)Ð→ ⋯,

and so every 2-torsion element in H1(k,E) comes from an element of H1(k,E[2]).
Now suppose that p ∶ X Ð→ E is a 2-covering. Then J(X) ≅ E by remark 4.64.6 and
hence X is a torsor under E classified by an element [X] ∈H2(k,E). The induced
map p∗ ∶H

1(k,E)Ð→H1(k,E) must then send [X] to [E] = 0, and by Remark 4.64.6
this map is simply given by multiplication by 2. It then follows that [X] is a 2-
torsion element of H1(k,E), and hence comes from an element in H1(k,E[2]) by
the long exact sequence 4.24.2. Furthermore, the inverse image Zp ∶= p

−1(e) ⊆X is a 0-
dimensional scheme which is becomes a torsor under E[2] with respect to the action
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restricted from the action of E. The class [Zp] ∈ H
1(k,E[2]) which classifies this

torsor is then sent to the class [X] under the map H1(k,E[2]) Ð→ H1(k,E). In
other words, it’s not just that [X] ∈H1(k,E) is in principal liftable to H1(k,E[2]),
the 2-covering map p ∶ X Ð→ E determines a distinguished such lift. Furthermore,
it can be shown that the association p ↦ [Zp] determines a bijection between
isomorphism types of 2-coverings of E (where an isomorphism of 2-coverings is an
isomorphism of the underlying curves which commutes with the map to E) and
cohomology classes α ∈H1(k,E[2]).

Let us now focus on the case where the 2-torsion points of E are all defined over
the base field k. An elliptic curve E of this form can always be given an affine
equation of the form

(4.3) y2
= (x − e1)(x − e2)(x − e3),

where e1, e2, e3 ∈ k are such that (e2−e1)(e3−e2)(e1−e3) ≠ 0. More precisely, E is a
smooth projective model for the affine curve (4.34.3), and contains, in addition to the
solutions (x, y) of (4.34.3), one addition point “at infinity” e ∈ E, which we take to be
the base point. The 2-torsion points are then given by 2 together with the rational
points P1 ∶= (0, e1), P2 ∶= (0, e2), P3 ∶= (0, e3) for which the y-coordinate vanishes.
The group E[2] can then be generated by any distinct two out of P1, P2, P3, but in
order to avoid breaking the symmetry we may think of E[2] as generated by the
three points P1, P2, P3 under the relations 2P1 = 2P2 = 2P3 = 0 and P1 +P2 +P3 = 0.
Identifying H1(k,Z/2) ≅ H1(k,µ2) with the group k∗/(k∗)2 of non-zero elements
mod squares we may use the above presentation of E[2] to identifyH1(k,E[2]) with
the group of triples of classes ([a1], [a2], [a3]) with ai ∈ k

∗ such that a1a2a3 ∈ (k∗)2

(here we use [●] to denote the class mod squares of an element in k∗). Given an
α = ([a1], [a2], [a3]) ∈ H

1(k,E[2]), its image in H1(k,E) determines a curve Xα

of genus 1 whose Jacobian is E. The curve Xα can be described via the explicit
affine equations

(4.4) a1u
2
1 = x − e1 a2u

2
2 = x − e2 a3u

2
3 = x − e3.

in the variables u1, u2, u3, x. More precisely, Xα is a smooth projective model for the
affine curve (4.44.4). An explicit such projective model can be written by introducing a
new variable u4 and eliminating x to obtain three homogeneous quadratic equations

a2u
2
2 − a3u

2
3 = (e3 − e2)u

2
4(4.5)

−a1u
2
1 + a3u

2
3 = (e1 − e3)u

2
4

a1u
2
1 − a2u

2
2 = (e2 − e1)u

2
4

any two of which are linearly independent (but not all three). Considering u1, u2, u3, u4

as homogeneous coordinates on P3
k we now obtain an embedding of Xα in P3

k as the
intersection of two diagonal quadrics. Conversely, suppose that X ⊆ P3

k is a curve
given by the smooth intersection of two diagonal quadrics

(4.6)
4

∑
i=1

biu
2
i =

4

∑
i=1

ciu
2
i = 0.
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Define ∆i,j = cibj − bicj . Our assumption that X is smooth implies that ∆i,j ≠ 0.
We also note that the ∆i,j ’s always satisfy the identity

(4.7) ∆1,2∆4,3 +∆2,3∆4,1 +∆3,1∆4,2 = 0.

Eliminating each of the variables u1, u2, u3 in turn we obtain three linearly depend
quadratic equations

∆1,2u
2
2 − ∆3,1u

2
3 = ∆4,1u

2
4(4.8)

−∆1,2u
2
1 + ∆2,3u

2
3 = ∆4,2u

2
4

∆3,1u
2
1 − ∆2,3u

2
2 = ∆4,3u

2
4

each two of which are linearly independent. We now observe that the system (4.84.8)
identifies with (4.54.5) if we set ai = −∆i,j∆i,k for every cyclic permutation (i, j, k) of
(1,2,3) and let e1, e2, e3 be such that

e2 − e1 = ∆1,2∆4,3 e3 − e2 = ∆2,3∆4,1 e1 − e3 = ∆3,1∆4,2,

which is always possible in light of the identity (4.74.7). It follows that the Jacobian
of X is given by the curve E of (4.34.3). We can summarize the discussion as follows:
genus 1 curves of exponent 2 whose Jacobians have rational 2-torsion points are
exactly the curves which can be written as smooth intersections of two diagonal
quadrics in P3.

Let us now reinstate the assumption that k is a number field.

Definition 4.8. We define the Selmer group Sel(E) to be the subgroup of
H1(k,E[2]) consisting of those elements whose image in H1(k,E) belongs to
X(E).

The long exact sequence in Galois cohomology associated to (4.14.1) then induces
a short exact sequence of the form

0Ð→ E(k)/2E(k)Ð→ Sel(E)Ð→X(E)[2]Ð→ 0.

By the discussion above we see that Sel(E) classifies the isomorphism types of
2-coverings p ∶ X Ð→ E of E whose underlying curve X has points everywhere
locally. The map Sel(E) Ð→X(E)[2] then sends the isomorphism type of such a
2-covering to the underlying isomorphism type of X as a torsor under E.

The explicit construction above can be used to compute the Selmer group Sel(E)

when E has all its 2-torsion points defined over k. In particular, given a triple
α = ([a1], [a2], [a3]) and a place v of k, it is usually straightforward using valuation
considerations and Hensel’s lemma to check if the curve Xα given by the system
of equations 4.54.5 has a kv-point. Multiplying a1, a2, a3 by squares we may assume,
for example, that 0 ≤ valv(ai) ≤ 1, so that either all three ai’s are v-units or one of
them is a v-unit and two of them have valuation 1. We note two cases which are
particularly simple:

(1) If v is a place such that ej−ei is a v-unit for every i ≠ j then E as good reduction
at v. In this case the system of (4.54.5) has a kv-point if and only if a1, a2, a3 are all
v-units. Indeed, we can assume that all the ui’s are v-integral and that at least
one of them is a v-unit. Now if for example valv(a1) = valv(a2) = 1 then the first
equation implies that u4 must vanish mod v, and hence the last two equations
imply that u3 must vanish mod v. Then valv(u

2
4) ≥ 2 and valv(u

2
3) ≥ 2, so that
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the last two equations imply that u1 and u2 must also vanish mod v. a3u
2
3

must be equal to both (e2 − e3)u
2
4 and (e1 − e3)u

2
4 mod v and (e2 − e1)u

2
4 must

be vanish mod v - a contradiction.
(2) If v is a place such that valv(e1−e2) = 1 and e3−e2, e1−e3 are v-units then (4.54.5)

has a kv-point if and only if either a1, a2, a3 are all v-units and a3 is a square
mod v, or valv(a1) = valv(a2) = 1 and a3(e3 − e2) is a square mod v.

Let S be a finite set of places such that ei − ej is a unit outside S for ev-
ery i ≠ j. We then see by (1)(1) above the Selmer group Sel(E) ⊆ H1(k,E[2]) is
contained in the subgroup H1(OS ,E[2]), where OS is the ring of S-integers. If
furthermore Pic(OS) = 0 (equivalently, S contains a set of generators for the class
group) then every element in H1(OS ,E[2]) can be represented by a triple of classes
([a1], [a2], [a3]) such that each ai is an S-unit.

Remark 4.9. Since we assumed that the 2-torsion points of E are defined over
k we map consider the images ∂P1, ∂P2, ∂P3 ∈ Sel(E) of P1, P2, P3 via the map
∂ ∶ E(k)Ð→ Sel(E). These correspond to the triples
(4.9)
((e1−e2)(e1−e3), e1−e2, e1−e3) (e2−e1, (e2−e1)(e2−e3), e2−e3) (e3−e1, e3−e2, (e3−e1)(e3−e2)),

respectively.

In the course of the descent-fibration method described in the next section we
will need to make use of another piece of structure. Recall that the 2-torsion of an
elliptic curve are endowed with a canonical pairing

⟨●, ●⟩ ∶ E[2] ×E[2]Ð→ µ2,

known as the Weil pairing. This pairing is alternating and non-degenerate. In
fact, since E[2] ≅ Z/2×Z/2 there is exactly one such pairing, which is the one such
that

⟨P1, P2⟩ = {
1 P1 = P2

−1 P1 ≠ P2
.

The Weil pairing induces a cup product pairing

(4.10) ∪ ∶H1
(k,E[2]) ×H1

(k,E[2])Ð→H2
(k,µ2),

which is known as the Tate pairing. The Tate pairing is also alternating, and
has the following important property, which is part of local Tate duality for elliptic
curves:

Proposition 4.10. For every place v of k, the image ∂(E(kv)) ⊆ H1(kv,E[2])
is a maximal isotropic subspace of H1(kv,E[2]) with respect to the Tate pairing
(of the base change to kv). In particular, the Tate pairing of every two classes in
Sel(E) vanishes.

Remark 4.11. In the case where the 2-torsion of E is defined over k and we represent
classes in H1(k,E[2]) by triples ([a1], [a2], [a3]) such that a1a2a3 ∈ (k∗)2 then the
Tate pairing of α = ([a1], [a2], [a3]) and β = ([b1], [b2], [b3]) is given by either of
the equivalent formulas

α ∪ β = [a1] ∪ [b1] + [a2] ∪ [b2] + [a3] ∪ [b3] =

[a1] ∪ [b2] + [a2] ∪ [b1] = [a1] ∪ [b3] + [a3] ∪ [b1] = [a2] ∪ [b3] + [a3] ∪ [b2].
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We finish this section by discussing another way in which genus 1 curves of
exponent 2 can appear. Suppose that X is a curve of genus 1 and exponent 2.
Recall that the index of X is the smallest degree of a Galois invariant divisor. The
index is always divisible by the exponent, which is the smallest degree of a Galois
invariant divisor class. In addition, by the explicit equations (4.64.6) it follows that
any genus 1 curve of exponent 2 has index at most 4, and is hence either 2 or 4.
When the index is 2 there is another type of explicit presentation one can use, and
that we will employ in §55. This is obtained as follows. Suppose that D is a divisor
on X of degree 2. Then D determines a linear system on X of dimension 2, which
in turn determines a map p ∶ X Ð→ P1

k of degree 2. Such a map must be ramified
at 4 points by the Euler formula. We may assume without loss of generality that
∞ ∈ P1

k is not one of the ramification points. Let g(t) be a polynomial of degree
4 whose vanishing locus is the ramification locus of p. Then X admits an affine
equation of the form

(4.11) y2
= g(t).

We can also obtain an explicit compactification by considering that homogenization
g(t, s) of g, and considering the curve in weighted projective space P2(2,1,1) given
by an equation of the form

y2
= g(t, s),

where y has weight 2 and t, s have weight 1. We note that the Jacobian of the
curve (4.114.11) is the elliptic curve

y2
= f(t)

where f is the resolvent cubic of g. s

Remark 4.12. Using the Hasse principal on conics one can show that any curve
of genus 1 and exponent 2 which has points everywhere locally is automatically of
index 2. In particular, if we are only interested in curves of this type then we lose
no generality in considering only curves of type (4.114.11). In the sections below we
will be interested however not in individual genus 1 curves, but rather in pencils of
such curves, i.e., in elliptic surfaces. The generic fiber of such a pencil is a genus 1
curve over the function field k(t). In this case it is not true that every exponent 2
curve has index 2, even if the corresponding surface has points everywhere locally.

4.2. The descent–fibration method. In this section we will review the descent–
fibration method as developed by Colliot-Thélène, Skorobogatov and Swinnerton-
Dyer in [88]. The proof that we will give below is however different from the one
given in [88], and is based on the approach of Wittenberg [3232] (see also [3333]). We
will apply the method in order to study rational points on the following type of
fibred surfaces:

Definition 4.13. A diagonal biquadric surface is a smooth, porjective, geomet-
rically integral surface X, equipped with a surjective map X Ð→ P1

k whose generic
fiber Xη is a genus 1 curve given by a smooth intersection of two diagonal quadrics
in P3

k(η).

Examples 4.14.

(1) Let X ⊆ P4 be the smooth intersection of two diagonal quadrics

5

∑
i=1

aiu
2
i =

5

∑
i=1

biu
2
i = 0
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with ai, bi ∈ k. Then X is a del Pezzo surface of degree 4. If we now cut X by
the hyperplane u5 = tu4 then we get the curve in P3 given by

3

∑
i=1

aiu
2
i + (a4 + t

2a5)u
2
4 =

3

∑
i=1

biu
2
i + (b4 + t

2b5)u
2
4 = 0.

The family of hyperplace sections of the form u5 = tu4 has four base points
which are the intersection of X with u4 = u5 = 0. Blowing up these four base
point we now get a diagonal biquadric surface X̃ Ð→ P1

k. This was the original
example to which Swinnerton-Dyer applied his method in [2828].

(2) Let X ⊆ P1 × P3 be the projective surface given by the smooth intersection of
two equations of the form

(4.12)
4

∑
i=1

ai(t, s)u
2
i =

4

∑
i=1

bi(t, s)u
2
i = 0

where ai(t, s), bi(t, s) are linear forms in t, s and u1, ..., u4 are projective coor-
dinates on P3. Then X is a diagonal biquadric surface which is a particular
case of a K3 surface.

(3) Let X ⊆ P4 be a surface given by a single diagonal quartic equation

4

∑
i=1

aix
4
i = 0.

If ∏i ai is a square in k then X admits a pencil of curves of genus 1 of the
form (4.124.12). However, it is a rather special case of such a diagonal biquadric
surface: the singular fibers of its Jacobian are not of type I2, as happens in the
generic case of (4.124.12), but of type I4. The method as we elaborate below will
not, strictly speaking, apply to this case, though a suitable variant of it will,
see Swinnerton–Dyer [3030].

Let us now fix a diagonal biquadric surface X Ð→ P1
k. As explained in §4.14.1, the

generic fiber Xη is a 2-covering of its Jacobian Eη, and all the 2-torsion points of
Eη are defined over k(t). We may then write Eη by an equation of the form

(4.13) y2
= (x − f1(t))(x − f2(t))(x − f3(t)),

with f1, f2, f3 ∈ k(t), and the isomorphism type of Xη as a 2-covering is classified
by an element α ∈ H1(k(t),Eη[2]), which we shall henceforth consider as fixed.
Applying a suitable variable change to (4.134.13) we may assume that f1, f2, f3 belong
to k[t], and we denote

∆ ∶= (f2 − f1)(f3 − f2)(f1 − f3) ∈ k[t].

Let π ∶ E Ð→ P1
k be a smooth projective model for Eη. We will make the following

assumption on f1, f2, f3,∆ in order to have control on the bad fibers of π:

Assumption 4.15.

(1) There is no polynomial of positive degree which simultaneously divides f1, f2, f3.
(2) The polynomials f2−f1, f3−f2 and f1−f3 all have the same even degree d, and

the polynomial ∆ is separable.

Assumption 4.154.15 assures that E Ð→ P1
k has a smooth fiber over ∞ ∈ P1

k and that
the bad fibers of E are all of type I2, that is, they are unions of two smooth curves
of genus 0 which meet at two distinct points.
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Let U ⊆ A1 be the complement of the singular locus ∆ = 0. As explained in
§4.14.1, every β ∈ H1(k(t),Eη[2]) determines a 2-covering of Eη, which can then be

extended to diagonal biquadric surface Xβ Ð→ P1
k (uniquely up to k-birational

equivalence).

Claim 4.16. If β ∈H1(k(t),Eη[2]) is contained in H1(U,E[2]) ⊆H1(k(t),Eη[2])

then Xβ can be chosen so that its fibers over U are smooth genus 1 curves. On
the other hand, if this is not the case then Xβ must have at least one double fiber
outside U .

In light of Claim 4.164.16 we will allow ourselves to assume that our fixed element
α ∈ H1(k(t),Eη[2]), which classifies the diagonal biquadric surface X we started
from, lies in H1(U,E[2]). We note that we may encode elements of H1(U,E[2]) by
triples ([p1], [p2], [p3]) where pi ∈ k[t] are non-zero square-free polynomials which
do not vanish over U , p1p2p3 is a square in k[U]∗ and [●] denotes the class in
k[U]∗/(k[U]∗)2. Let

G ⊆H1
(U,E[2]) ⊆ k[U]

∗
/(k[U]

∗
)
2
× k[U]

∗
/(k[U]

∗
)
2
× k[U]

∗
/(k[U)]

∗
)
2

be the subgroup consisting of the classes of those triples ([p1], [p2], [p3]) with p1p2p3

a square for which pi divides (fi − fj)(fi − fk) for every cyclic permutation (i, j, k)
of (1,2,3). We will denote by Geven ⊆ G the subgroup of elements which can be
represented by triples ([p1], [p2], [p3]) for which furthermore deg(pi) is even for
i = 1,2,3.

Claim 4.17. Let β ∈ H1(U,E[2]) be an element. If β ∈ G then Xβ can be chosen
so that its fibers over each point in A1

k ∖U have two geometric components, each a

smooth conic, which intersect at two points. Otherwise Xβ must have at least one
double fiber over A1

k ∖U . In addition, if deg(pi) is even for i = 1,2,3 then Xβ can

be chosen to have a smooth fiber at ∞. Otherwise, Xβ has a double fiber at ∞.

In light of Claim 4.174.17 we will allow ourselves to assume that α ∈ Geven.

Remark 4.18. The group Geven always contains the elements represented by the
following three triples
(4.14)
((f1−f2)(f1−f3), f1−f2, f1−f3) (f2−f1, (f2−f1)(f2−f3), f2−f3) (f3−f1, f3−f2, (f3−f1)(f3−f2)).

These are the images of the non-trivial 2-torsion sections in H0(U,E) under the
boundary map H0(U,E) Ð→ H1(U,E[2]). If β ∈ Geven is in this image then the
associated 2-covering surface Xβ Ð→ P1 is k-birational over P1 to E itself. We will
hence generally assume that our fixed class α is not of the form (4.144.14).

We will denote by q1, ..., qm the irreducible divisors of ∆ in k[t]. For every
l ∈ {1, ...,m} we will denote by Ml the closed point of A1

k corresponding to the
prime ideal (ql) of k[t], by kl ∶= k(Ml) = k[t]/ql its residue field, and by τl ∈ kl the
coordinate of Ml (i.e., the image of t in k[t]/ql).

Construction 4.19. Let β ∈ G be an element. Given l ∈ {1, ....m} we will denote by

Lβl /kl the (at most) quadratic extension over which the components of the singular

fiber XMl
are defined, and we let χβl ∈ H1(kl,Z/2) = k∗l /(k

∗
l )

2 be the quadratic

character corresponding to the extension Lβl /kl.
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If β ∈ Geven is represented by a triple ([p1], [p2], [p3]), then, over U , we may
write Xβ ×P1 U as the intersection of either two of the three linearly dependent
quadrics:

p2(t)u
2
2 − p3(t)u

2
3 = (f3(t) − f2(t))u

2
4(4.15)

−p1(t)u
2
1 + p3(t)u

2
3 = (f1(t) − f3(t))u

2
4

p1(t)u
2
1 − p2(t)u

2
2 = (f2(t) − f1(t))u

2
4

Now if ql is such that ql∣f1 − f2 then ql either divides non of p1, p2, p3, or it divides
p1 and p2 but not p3. In the first case we can use the last two equations in order
to see that the fiber at ql consists of two conics defined over the field kl(

√
γl)

where γl =
p1(τl)
p2(τl)

, which is equal to p3(τl) mod squares. In the second case ql
divides exactly once all the coefficients of the last quadric, and so we can divide
it by ql. We can then use the second and (divided) third equations in order to
see that the fiber aver ql consists of two conics defined over the field kl(

√
γl) with

γl =
p3(τl)

f3(τl)−f1(τl)
. We may hence conclude that for every l ∈ {1, ...,m} and and cyclic

permutation σ = (i, j, k) of (1,2,3) such that ql∣fj − fk we have the formula

(4.16) χβl = {
[pi(τl)] ql∣pj , pk

[pi(τl)(fi(τl) − fj(τl))] otherwise

Remark 4.20. If β,β′ ∈ Geven are such that β−β′ is one of the triples (4.144.14) then χβl =

χβ
′

l for every l ∈ {1, ...,m}. This can either be seen by inspecting the formula (4.164.16),

or by arguing that the association β ↦ χβl is linear in β, and for a triple of the
form (4.144.14) the associated fibred surface admits a section and hence its bad fibers
all have a component defined over the base field.

Definition 4.21. Let β ∈ G be an element and let Xβ Ð→ P1
k be the corresponding

diagonal biquadric surface with reduced fibers over A1
k. We will then denote by

Aβl ∶= coreskl/k(t − τl, χ
β
l ) ∈ Br(k(t)).

We will denote by Bβ ⊆ Br(Xβ) the intersection of Br(Xβ) with the subgroup of

Br(k(Xβ)) generated by π∗αA
β
l for l = 1, ...,m.

Recall that we have fixed a class α ∈ Geven which corresponds to the diagonal
biquadric surface X =Xα we are interested in.

Definition 4.22. Let Gα ⊆ G denote the subgroup consisting of those β ∈ G which

have the following property: for every l ∈ {1, ...,m} the element χβl ∈ H1(kl,Z/2)
belongs to the subgroup generated by χαl . We then let Geven

α be the intersection
Geven
α ∶= Gα ∩ Geven.

Assumption 4.23 (Condition (D)). The subgroup Geven
α ⊆ Geven is generated by α

and the triples (4.144.14).

Given a t ∈ P1
k(k) such that the fiber Et is smooth we will denote by αt ∈

H1(k,Et[2]) the specialization of α. We may now formulate the main result of [88]:

Theorem 4.24 (Colliot-Thélène–Skorobogatov–Swinnerton-Dyer). Assume Hy-
pothesis (H1) and that the Tate-Shafarevich group of the smooth fibers of π ∶ E Ð→
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P1 is finite. Let α ∈ Geven be a class which satisfies Condition (D) (Assump-
tion 4.234.23). If the surface Xα contains an adelic point which is orthogonal to Bα
then there exists a t ∈ U(k) such that αt ∈ Sel(Et) and X(Et)[2] = 0. In particular,
the class [Xα

t ] ∈X(Et)[2] vanishes and the fiber Xα
t contains a rational point.

Example 4.25. Consider a degree 4 del Pezzo surface X ⊆ P3
k given by the smooth

intersection of two diagonal quadrics

5

∑
i=1

aiu
2
i =

5

∑
i=1

biu
2
i = 0

with ai, bi ∈ k. Let di,j = aibj − ajbj . If none of −di,1di,5 is a square then the group
Bα∩Br(X) is just the image of Br(k). If in addition the classes of −d2,3d2,4,−d3,2d3,4

and ∏i≠5 di,5 are linearly independent in k∗/(k∗)2 then Condition (D) holds. In
particular, Theorem 4.244.24 applies in this case to show that under Hypothesis (H1)

and the Tate-Shafarevich conjecture for elliptic curves, the Hasse principle holds
for X.

The strategy is based on the following fundamental idea:

Proposition 4.26. Under the assumptions of Theorem 4.244.24, suppose that there
exists a t ∈ U(k) such that Sel(Et) is generated by αt and the image ∂(Et[2]) ⊆

Sel(Et) of the 2-torsion subgroup. Then X(Et)[2] = 0.

Proof. If Sel(Et) is generated by αt and ∂(Et[2]) ⊆ Sel(Et) then X(Et)[2] is
generated by the image [Xα

t ] of αt, and is hence either trivial or cyclic of order 2.
By assumption X(E) is finite and is hence a direct sum of cyclic subgroups. Since
its 2-torsion part is cyclic it follows that the 2-primary part of X(Et) is cyclic.
Now since X(Et) is finite Theorem 2.72.7 tells us that the Cassels-Tate pairing is
non-degenerate, and is hence also non-degenerate when restricted to the 2-primary
part. On the other hand, it is also alternating. But a non-trivial cyclic subgroup
cannot carry a non-degenerate alternating pairing. We conclude that the 2-primary
part of X(Et) vanishes and in particular X(Et)[2] = 0. �

In light of Proposition 4.264.26, to achieve Theorem 4.244.24 it will suffice to prove the
following:

Proposition 4.27. Under the assumptions of Theorem 4.244.24, there exists a t ∈ U(k)
such that Sel(Et) is generated by αt and the image ∂(Et[2]) ⊆ Sel(Et) of the 2-
torsion subgroup.

The remainder of this section is devoted to the proof of Proposition 4.274.27. Let S0

be a finite set of places containing all the archimedean places, all the places above 2
and all the places of bad reduction for E or Xα. In addition, we will assume that S0

is large enough so that all the polynomials q1, ..., qm have S0-integral coefficients and
an S0-unital leading coefficient, that the resultant of each pair qi, qj is an S0-unit
and that S0 contains a set of generators for the class group of k. We will also assume
that S0 contains all the places of bad reduction of all the bad fibers of Xα (and so,
in particular, all the places where at least one of the Lαl ’s is ramified). Finally, we
will assume as well that S0 is large enough so that U admits an S0-integral model
U and π ∶ E Ð→ A1

k admits an S-integral model EÐ→ A1
OS

.

Definition 4.28. Let S be a finite set of places containing S0. We will say that
t0 ∈ U(k) is S-admissible if t0 is S-integral and for every l ∈ {1, ...,m} the element
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ql(t0) is a unit outside S except in a unique place u0
l ∉ S in which valu0

l
(t0) = 1.

We will then denote by S(t0) ∶= S ∪ {u0
1, ..., u

0
m}.

Remark 4.29. In the situation of Definition 4.284.28, our assumption on S0 insures that
for v ∉ S0 the polynomials ql, ql′ for l ≠ l′ cannot have a common root mod v. In
particular, the ul’s are necessarily pairwise distinct.

Definition 4.30. Let S be a finite set of places containing S0. By a suitable
S-collection of local points of Xα we will mean a point

(xv)v∈S ∈∏
v∈S

Xα
(kv)

in the product of the Xα(kv), such that:

(1) for every v ∈ S we have π(kv) ∈ U(kv);
(2) for every l ∈ {1, ...,m} we have ∑

v∈S

invvA
α
l (π(xv)) = 0.

Definition 4.31. Given a place v of k, we will denote by Gv ⊆ H1(Ukv ,E[2])

the subgroup consisting of the those triples ([p1], [p2], [p3]) ∈ [kv[U]∗/(kv[U]∗)2]
3

with p1p2p3 ∈ (kv[U]∗)2 for which pi divides (fi − fj)(fi − fk) in kv[t] for every
cyclic permutation (i, j, k) of (1,2,3). We note that the group Gv is contained in
the finite group H1(Ukv ,E[2]) and is hence finite.

Construction 4.32. Let S be a finite set of places containing S0 and xS = (xv)v∈S
a suitable S-collection of local points. Set tv = π(xv) for v ∈ S. Then we may
always find v-adic neighborhoods tv ∈ Vv ⊆ kv such that for every t ∈ Vv and every
β in the finite group Gv the following holds:

(1) the fiber Xβ
t is smooth and Xβ

t (kv) ≠ ∅ if and only if Xβ
tv
(kv) ≠ ∅.

(2) for every l ∈ {1, ...,m} we have invvA
β
l (t) = invvA

β
l (tv).

In addition, as in the proof of Proposition 3.123.12, we can perform a variable change
on P1

k which insures that for every real v∞ ∈ S the neighborhood Vv∞ contains a
semi-infinite segment of the form (av∞ ,∞).

Definition 4.33. Let S be a finite set of places containing S0, xS ∶= (xv)v∈S a
suitable S-collection of local points with tv = π(xv) ∈ U(kv) and t ∈ U(k) a point.
We will say that t approximates xS if there exists neighborhoods Vv ⊆ kv of the
form described in Construction 4.324.32 such that t ∈ Vv for every v ∈ S.

Lemma 4.34. Let S be a finite set of places containing S0 and let t0 ∈ U(k) is
an S-admissible point with associated places {u0

1, ..., u
0
l }. Then for every β ∈ G and

every l ∈ {1, ...,m} we have that Xβ
t has a ku0

l
-point if and only if invu0

l
Aβl (t0) = 0.

Proof. We argue as in the proof of Proposition 3.123.12. We first note that Xβ
t has

a reduced special fiber at u0
l and the reduction of Xβ

t mod u0
l is the same as

the reduction of Xβ
Ml

mod ũ0
l , where ũ0

l is the unique place of kl such that the

reduction of tl mod ũ0
l coincides with the reduction of t0 mod u0

l (such a place
exists since ql(t0) vanishes mod u0

l and ql(t0) has no multiple roots mod u0
l ). In

addition, the extension Lβl /kl is the minimal one which splits the fiber Xβ
Mi

and

each geometrically irreducible component of Xβ
Ml

is a smooth conic with good

reduction at u0
l (since u0

l ∉ S0) which hence a smooth Fũ0
l
-point. It then follows
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by Hensel’s lemma that Xβ
t0

has a ku0
i
-point if and only if the place ũ0

l splits in

Lβl , which is equivalent invũ0
l
(t − τl, χ

β
l ) = 0. Since t0 − τl and γl are units at every

place w ≠ ũ0
l of kl which lies over u0

l this in turn equivalent to the statement that

invu0
l
Aβl (t0) = 0. �

Lemma 4.35. Let S be a finite set of places containing S0, xS = (xv)v∈S a suitable
S-collection of local points on Xα and t0 an S-admissible point which approximates
xS. Then the fiber Xα

t0 has points everywhere locally.

Proof. For v ∈ S the fiber Xα
t0 has a kv-point since t approximates xS and Xα

tv has

a kv point xv. For v ∉ S∪{u0
1, ..., u

0
m} we have that Xα

t is a smooth projective curve
of genus 1 with good reduction at v and hence has a kv-point by the Hasse-Weil
estimates. Finally, for v = u0

l with l ∈ {1, ...,m} Lemma 4.344.34 tells us that we just
need to check that invu0

l
Aαl (t0) = 0. But this follows from quadratic reciprocity

which gives
invu0

l
Aαl (t0) = ∑

v∈S

Aαl (t0) = ∑
v∈S

Aαl (tv) = 0,

since t0 approximates xS . �

Proposition 4.36. Let S be a finite set of places which contains S0 and t ∈ U(k)
an S-admissible point. Then the specialization map

(4.17) evt0 ∶H
1
(US ,E[2])Ð→H1

(OS(t0),Et0[2])

is an isomorphism.

Definition 4.37. Let S be a finite set of places which contains S0 and t ∈ U(k) an
S-admissible point. We will denote by Selt0(E) ⊆ H

1(US ,E[2]) the inverse image
of Sel(Et0) ⊆H

1(OS(t0),Et0[2]) via the isomorphism (4.174.17).

Definition 4.38. Let S be a finite set of places containing S0. We will denote
by GS ⊆ H1(US ,E[2]) the intersection of H1(US ,E) and G, that is, the subgroup
consisting of those triples ([p1], [p2], [p3]) ∈ [OS[U]∗/(OS[U]∗)2]3 such that pi∣fj −
fk (in k[t]) for every cyclic permutation (i, j, k) of (1,2,3). We will denote by
Geven
S ∶= GS ∩G

even ⊆ GS . We note that the groups GS and Geven
S are contained in the

finite group H1(US ,E[2]), and are hence finite (as opposed to the groups G and
Geven above, which are infinite).

Lemma 4.39. Let S be a finite set of places which contains S0 and t ∈ U(k) an
S-admissible point. Then the subgroup Selt0 ⊆ H1(US ,E[2]) is contained in the
subgroup GS ⊆H1(US ,E[2]).

Proposition 4.40. Assume Schinzel’s Hypothesis (H1). Suppose that Xα contains
an adelic point which is orthogonal to Bα ⊆ Br(Xα) (see Definition 4.214.21). Then
there exists a finite set of places S containing S0, a suitable S-collection of local
points xS and an S-admissible point t0 ∈ U(k) such that t0 approximates xS (and so
the fiber Xα

t0 contains local points at every place of k by Lemma 4.354.35). In addition,
we may choose t0 in such a way that Selt0(E) ∩ Gα ⊆ Geven

S .

Proof. By Harari’s formal lemma there exists a finite set of places S1 containing S0

and a suitable S1-collection of local points xS1 ∶= (xv)v∈S′0 with tv = π(xv) ∈ U(kv)
such that

(4.18) ∑
v∈S1

invvA
α
l (tv) = 0
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for every l ∈ {1, ...,m}. Let w be a place not in S1 which splits completely in Lαl
for every l = 1, ...,m. Let tw ∈ kw be an element such that valw(tw) = −1. In this
case we have in particular that ∆(tw) ≠ ∅, i.e., the fibers Etw and Xα

tw are smooth
and so Xα

tw(kw) ≠ ∅. In addition, since w splits completely in Lαl we have that
Aαl (tw) = 0 for every l ∈ {1, ...,m}. Setting S = S1 ∪ {w} and choosing a point
xw ∈ Xα

tw(kw) we may now extend our collection of local points to range over S.
The resulting S-collection xS = (xv)v∈S is again suitable by construction. Applying
Hypothesis (H1) we may deduce the existence of an S-admissible point t0 ∈ U(k)
which approximates xS in the sense of Definition 4.334.33. The fiber Xα

t0 then has
points everywhere locally by Lemma 4.354.35. In particular, αt0 belongs to Selt0(E).
By requiring sufficient approximation at w we may also assume that the fiber Et0
has good reduction at w.

Let us now show that Sett0(E)∩Gα belongs to Geven
α . Suppose that γ = ([pγ1], [p

γ
2], [p

γ
3]) ∈

GS belongs both to Selt0(E) and Gα. Since the Et0 has good reduction at w we
must have that valw p

γ
i (t0) is even for i = 1,2,3. Since S1 contains a set of gen-

erators for the class group we may find an element a ∈ k such that valw(a) = 1
and a is a unit outside S = S1 ∪ {w}. We may then write pγi up to squares as a

product caε
i

∏l q
εil
l with εi, εil ∈ {0,1} and c ∈ O∗

S1
. By our choice of tw we have

that valw ql(tw) = −deg(ql) and so the condition that valw p
γ
i (t0) is even then im-

plies that εi +∑l ε
i
l is even. On the other hand, the condition that γ belongs to

Gα says that for every l ∈ {1, ...,m} the class χγl ∈ H1(kl,Z/2) is in the subgroup
generated by the class χαl . In particular, this means that the quadratic character
χγl is unramified outside S0, and in particular over w. Since fi(τl) − fj(τl) is a
unit outside S0 we may deduce from the explicit formula (4.164.16) that valw p

γ
i (τl) is

even. Since ql′(τl) is an S0-unit this implies that εi must be even, and hence that
deg(pγi ) = ∑l ε

i
l is even, as desired. �

Let now S, xS and t0 be as in the conclusion of Proposition 4.404.40, and set S(t0) =
S∪{u0

1, ..., u
0
l } for the places associated to t0 as an S-admissible point. In particular,

we have α ∈ Selt0(E). Let β ∈ Selt0(E) be another element. Let w ∉ S be a place of
k and suppose there exists a lw ∈ {1, ...,m} such that qlw ∣fj −fk for some σ = (i, j, k)

and such that w splits completely in Lαlw but does not split completely in Lβlw . In

particular, since w splits in klw there exists a tw ∈ U(kv) such that valw qlw(tw) = 1
and we have

invwA
α
lw(tw) = 0 invwA

β
iw

(tw) ≠ 0.

By Lemma 4.344.34 we have that Xα
tw has a kw-point xkw ∈Xα

tw(kw), while Xβ
tw

(kw) =
∅. Let Sw ∶= S ∪ {w} and let xSw = (xv)v∈Sw be the suitable Sw-collection of
local points obtained by adding xw to xS . Let t1 be an Sw-admissible point
which approximates xSw (such a point exists under Schinzel’s hypothesis) and set
S(t1) = S ∪ {u1

1, ..., u
1
l }. Our goal is to understand the relation between Selt0(E)

and Selt1(E). More precisely, our goal is to prove the following:

Proposition 4.41. We have an inclusion Selt1(E) ⊆ Selt0(E) of subgroups of
H1(US ,E). In addition, Selt1(E) contains α but not β.

The proof of Proposition 4.414.41 will require the following lemma:

Lemma 4.42. Let γ ∈ GS be an element. Then the following holds:
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(1) for every place v ∉ {u0
1, ..., u

0
m, u

1
1, ..., u

1
m,w} we have that Xγ

t0
(kv) ≠ ∅ if and

only if Xγ
t1
(kv) ≠ ∅;

(2) for every l ∈ {1, ...,m}∖{lw} we have that Xγ
t0
(ku0

l
) ≠ ∅ if and only if Xγ

t1
(ku1

l
) ≠

∅;
(3) the equality invu0

lw
Aγlw,σ(t0) = invu1

lw
Aγlw,σ(t1) + invwA

γ
lw,σ

(t1) holds.

In particular, if γ ∈ GS ∩ Selt1(E) ⊆ GSw then γ ∈ Selt0(E).

Proof. If v is a place of S then

Xγ
t0
(kv) ≠ ∅ ⇔ Xγ

tv
(kv) ≠ ∅ ⇔ Xγ

t1
(kv) ≠ ∅

since both t0 and t1 approximate xS . If v does not belong to S(t0) ∪ S(t1) then
Xγ
t0

and Xγ
t1

are both smooth projective curve of genus 1 with good reduction at
v, and so admit kv-points. This proves (1).

To prove (2), suppose that l ∈ {1, ...,m} ∖ {lw}. We then have by Lemma 4.344.34
and quadratic reciprocity that

Xγ
t0
(ku0

l
) ≠ ∅ ⇔ invu0

l
Aγl (t0) = 0 ⇔ ∑

v∈S

invvA
γ
l (t0) = 0 ⇔

∑
v∈S

invvA
γ
l (t1) = 0 ⇔ invu1

l
Aγl (t1) = 0 ⇔ Xγ

t1
(ku1

l
) ≠ ∅,

as desired. Finally, to prove (3) we note that the same quadratic reciprocity argu-
ment gives

invu0
lw
Aγlw(t0) =

∑
v∈S

invvA
γ
lw

(t0) = ∑
v∈S

invvA
γ
lw

(t1) =

invu1
lw
Aγlw(t1) + invwA

γ
lw

(t1) = 0,

and so the proof is complete. �

Proof of Proposition 4.414.41. Let γ ∈ Selt1(E) ⊆ GSw be an element. We wish to show
that γ belongs to Selt0(E). We first claim that γ lies in GS ⊆ GSw . Consider the
Tate pairing (4.104.10)

bβ,γ ∶= evt1(β) ∪ evt1(γ) ∈H
2
(k,µ2) ⊆ Br(k).

By Lemma 4.424.42 and Proposition 4.104.10 we have that invv bβ,γ = 0 for every v ≠ u1
lw
,w

and hence by quadratic reciprocity we have that

invu1
lw
bβ,γ + invw bβ,γ = 0.

Let us make the above expression more explicit. Suppose that β is represented

by a triple (pβ1 , p
β
2 , p

β
3 ) and γ is represented by a triple (pγ1 , p

γ
2 , p

γ
3). Let (i, j, k)

be the unique cyclic permutation of (1,2,3) such that qlw ∣fk − fj . We note that

since β ∈ GS we have that pβi (t1) is a unit at u1
lw

and w and since γ ∈ Selt1(E) we

have that pγi (t1) is also a unit at u1
lw

and w. By possibly adding to β one of the

triples (4.144.14) (see Remark 4.204.20) we may also assume that pβj (t1), p
β
k(t1) are units

at u1
lw

and w. Then for v ∈ {u1
lw
,w} we have

invv bβ,γ = ⟨pβi (t1), p
γ
j (t1)⟩v

+ ⟨pβj (t1), p
γ
i (t1)⟩v

= valv(p
γ
j (t1)) invvA

β
lw

(t1) ∈ Z/2
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On the other hand, we have invwA
β
lw

(t1) = 1 by our choice of β and by Lemma 4.424.42(3)
we have that

invu1
lw
Aβlw(t1) + invwA

β
lw

(t1) = invu0
lw
Aβlw(t0) = 0,

and so invu1
lw
Aβlw(t1) = 1. Combining all the above we may now conclude that

(4.19) 0 = invu1
lw
bβ,γ + invw bβ,γ = valu1

lw
(pγj (t1)) + valw(p

γ
j (t1)) ∈ Z/2.

We now observe that if we write pγj = c∏l q
εl
l with εl ∈ {0,1} for c ∈ O∗

Sw
then (4.194.19)

implies that valw(c) must be even. Since S0 contains a set of generators for the
class group we get that c is equivalent up to squares to an element in OS . It then
follows that γ lies in GS ⊆ GSw , as desired. By Lemma 4.424.42 we may conclude that
γ ∈ Selt0(E).

We have thus shown that Selt1(E) ⊆ Selt0(E). To show that Selt1(E) contains
α we note that by Lemma 4.424.42 we have that Xα

t1(kv) ≠ ∅ for every v ≠ u1
lw
,w,

and that invwA
α
lw

(t1) = 0 by the choice of w. The equality invu1
lw
Aαlw(t1) = 0 then

follows from Lemma 4.424.42(3), and so α ∈ Selt1(E). On the other hand, by our choice

of w we have that invwA
β
lw

(t1) ≠ 0 and so β ∉ Selt1(E). �

Corollary 4.43. Suppose that α ∈ Geven satisfies Condition (D). Then there exists
a finite set of places S, a suitable collection of local points xS and an S-admissible
point t ∈ U(k) such that Sel(Et) is generated by αt and the images ∂Et[2] ⊆ Sel(Et)
of the 2-torsion points. In particular, αt is in the kernel of the map Sel(Et) Ð→
X1

(k,Et) and Xα
t (k) ≠ ∅.

Proof. By Proposition 4.404.40 and Lemma 4.354.35 we may find a finite set of places S, a
suitable S-collection of local points xS and an S-admissible point t ∈ U(k) such that
α ∈ Selt0(E) and Selt0(E) ∩ Gα ⊆ Geven

S . If Sel(Et0) is generated by evt0(α) and the
image ∂Et0[2] ⊆ Sel(Et0) then we can take t = t0 and finish the proof. Otherwise,

there must exist a β = ([pβ]1, [p
β
2 ], [p

β
3 ]) ∈ Selt0(E) which does not belong to the

subgroup of Selt0(E) generated by α and the classes of the triples (4.144.14). Since α
satisfies Condition (D) and Selt0(E) ∩ Gα ⊆ Geven

S we must conclude that β ∉ Gα.

There must then exists an l0 ∈ {1, ...,m} such that χβl0 ∈ H1(kl,Z/2) does not
belong to the subgroup generated by χαl0 . By Chebotarev’s density theorem there
must exist a place w ∉ S such that w splits completely in Lαl0 but does not split

completely in Lβl0 . In particular, there exists a tw ∈ Ow such that valw ql0(tw) = 1 and

invwA
α
l0
(tw) = 0 but invwA

β
l0
(tw) ≠ 0. By Lemma 4.344.34 we have that Xα

tw has a kw-

point xkw ∈Xα
tw(kw). Let Sw ∶= S∪{w} and let xSw = (xv)v∈Sw be the Sw-collection

of local points obtained by adding xw to xS . Applying Hypothesis (H1) there exists
an Sw-admissible point t1 which approximates xSw

. Proposition 4.414.41 then tells us
that Selt1(E) ⊆ Selt0(E) and that α ∈ Selt1(E) but β ∉ Selt1(E). In particular, the
Selmer group of Selt1(E) is strictly smaller. Iterating this procedure we may find a
finite set S′, a suitable S′-collection of local points xS′ and an S′-admissible point
t such that Sel(Et0) is generated by evt0(α) and the image ∂Et0[2] ⊆ Sel(Et0), as
desired. It then follows from Proposition 4.264.26 that X(Et)[2] = 0 and so [Xα

t ] = 0 ∈
X(Et), so that Xα

t has a rational point. �
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5. Kummer surfaces

5.1. Preliminaries. Recall that an abelian surface A over a field k is a commu-
tative projective algebraic group of dimension 2 over k. If k is embedded in C then
the space of complex points A(C) is homeomorphic to torus (S1)4. Examples of
abelian surfaces include products of two elliptic curves and the Jacobians of curves
of genus 1.

Given a an abelian surface A, a 2-covering of A is a torsor Y under A equipped
with a finite étale map p ∶ Y Ð→ A which covers the multiplication by 2 map

A
2
Ð→ A. More precisely, we ask that the diagram

A × Y
(2,p) //

��

A ×A

m

��
Y

p // A

commutes, where m ∶ A ×A Ð→ A is the group structure of A. Given Y , the data
of such a map p ∶ Y Ð→ A is equivalent to the data of a lift of the class [Y ] ∈

H1(k,A) to a class α ∈ H1(k,A[2]). The antipodal involution ιA = [−1] ∶ A Ð→ A
then induces an involution ιY ∶ Y Ð→ Y , and one defines the Kummer surface
X = Kum(Y ) associated to Y as the minimal desingularisation of Y /ιY . We note
that this desingularisation simply consists of blowing up the fixed locus of ιY . The
resulting exceptional divisor D ⊆ X then forms, geometrically, a disjoint union of
16 rational curves, each of self intersection −2. The surface Kum(Y ) is an example
of a K3 surface.

It is well-known that the Kummer surface X does not determine A and Y up
to isomorphism (see, e.g., [2222]). Over the algebraic closure k, a theorem of Nikulin
states that one can reconstruct A from X together with the additional data of
the exceptional divisor D ⊆ X. Over k, the data of D only determines A and Y
up to a quadratic twist. More precisely, for a quadratic extension F /k we may
consider the quadratic twists AF and Y F with respect to the Z/2-actions given by
ιA and ιY . We may then consider Y F as a torsor under AF determined by the same
class α ∈ H1(k,AF [2]) = H1(k,A[2]), and for every such F /k we have a canonical
isomorphism Kum(Y F ) ≅ Kum(Y ). We note that the collection of quadratic twists
AF can be organized into a fibration A ∶= (A×Gm)/µ2 Ð→ Gm/µ2 ≅ Gm, where the
generator of µ2 acts diagonally by (ιA,−1). In particular, for a point t ∈ k∗ = Gm(k),

the fiber At is naturally isomorphic to the quadratic twist Ak(
√
t). Similarly, we may

organize the quadratic twists of Y into a pencil Y Ð→ Gm with Yt ≅ Y
F (
√
t). We

may then consider the entire family At as the family of abelian surfaces associated
to (X,D), and similarly the family Yt as the family of 2-coverings associated to
(X,D).

Conjecture 5.1. Let X be a Kummer surface over k with associated exceptional
divisor D ⊆ X. If the Brauer-Manin obstruction to the Hasse principle is the only
one for all 2-coverings Yt associated to (X,D), then the same holds for X.

Remark 5.2. In Conjecture 5.15.1 one may freely replace the Brauer-Manin obstruction
by the analogous obstruction formed only by the 2-primary part of the Brauer
group. This is because for 2-coverings of abelian varieties as well as for Kummer
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surfaces the latter obstruction is equivalent to the full Brauer-Manin obstruction,
see [1111, Theorem 1.2 and Theorem 1.7].

The statement that the Brauer–Manin obstruction is the only one for all 2-
coverings of A is equivalent to the statement that the 2-primary part of X(A) is
finite. In particular, Conjecture 5.15.1 combined with the Tate-Shafarevich conjecture
for abelian surfaces together imply that the Brauer-Manin obstruction controls the
existence of rational points on Kummer surfaces. We may therefore consider any
instance of Conjecture 5.15.1 as giving support for this latter statement, or more
generally, support for the conjecture that the Brauer-Manin obstruction controls
the existence of rational points on K3 surfaces.

In their paper [2626], Swinnerton-Dyer and Skorobogatov suggested a variant of the
argument described in §4.24.2 which is capable of proving instances of Conjecture 5.15.1.
The strategy they suggested is as follows. Let Y be a 2-covering of A with associated
class α ∈H1(k,A[2]). To find a rational point on X = Kum(Y ), it is enough to find
a rational point on a quadratic twist Y F for some F /k. At the first step of the proof,
using a fibration argument, one produces a quadratic extension F such that Y F

is everywhere locally soluble. Equivalently, α ∈ H1(k,AF [2]) is in the 2-Selmer
group of AF . At the second step one modifies F so that the 2-Selmer group of AF

is spanned by α and the image of AF [2](k) under the Kummer map. This implies
that X(AF )[2] is spanned by the class [Y F ], and hence dimF2 X(AF )[2] ≤ 1. Let
us remark that in all existing applications of the method, as well as in the current
paper, one assumed that A (and hence all its quadratic twists) is equipped with a
principal polarization which is induced by a symmetric line bundle. In that case
it is known (see [2121]) that the Cassels–Tate pairing on X(AF ) is alternating.
If one assumes in addition that the 2-primary part of X(AF ) is finite then the
2-part of the Cassels-Tate pairing is non-degenerate and hence the dimension of
X(AF )[2] over F2 is even. The above bound on dimF2 X(AF )[2] now implies
that X(AF )[2] is trivial and [Y F ] = 0, i.e., Y F has a rational point. Alternatively,
instead of assuming that the 2-primary part of X(AF ) is finite, it is enough to
assume that [Y F ] itself is not a non-trivial divisible element of X(AF ) (as is
effectively assumed in Conjecture 5.15.1). Indeed, the latter is generally weaker but
implies the former when X(AF )[2] is generated by [Y F ].

The above strategy was implemented in [2626] for the case where A is a product of
two elliptic curves whose 2-torsion points are defined over k, under certain technical
conditions. We will describe their results, together with a full proof, in the next
section. Since then the method was implemented in several additional cases (each
time under suitable conditions on the Kummer surface in question). Let us give a
sample of two results. The first result also concerns Kummer surfaces attached to
products of elliptic curves. In particular, given two irreducible polynomials g1, g2

of degree 4, the equation
y2

= gi(x)

determines a curve Di of genus 1 which is a 2-covering of its Jacobien Ei (see §4.14.1).
The kummer surface associated to the 2-covering D1 ×D2 of E1 ×E2 is then given
by the affine equation

y2
= g1(x)g2(z).

Theorem 5.3 ([1313]). Let g1(x) and g2(x) be irreducible polynomials of degree 4
over a number field k, each with the Galois group S4. Let w1 and w2 be distinct
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primes of k not dividing 6 such that for all i, j ∈ {1,2} the coefficients of gi(x) are
integral at wj and valwj(∆(gi)) = δij. Let Ei be the Jacobian of the curve Di given

by y2 = gi(x), where i = 1,2. For i = 1,2 assume the finiteness of the 2-primary
torsion subgroup of the Shafarevich–Tate group for each quadratic twist of Ei whose
2-Selmer group has rank 1. If the Kummer surface with the affine equation

(5.1) z2
= g1(x)g2(y)

is everywhere locally soluble, then it has a Zariski dense set of k-points.

To describe the next sample result, let f(x) =∏
5
i=0(x−ai) ∈ k[x] be a polynomial

of degree 6 which splits completely over k and such that d ∶= ∏i<j(aj − ai) =
√

disc(f) ≠ 0, and let C be the hyperelliptic curve given by y2 = f(x). Let b0, ..., b5 ∈
k∗ be elements such that ∏i bi is a square and consider the surface X ⊆ P5 given
by the smooth complete intersection

(5.2) ∑
i

bix
2
i

f ′(ai)
=∑

i

aibix
2
i

f ′(ai)
=∑

i

a2
i bix

2
i

f ′(ai)
= 0.

The surface X is a Kummer surface whose associated family of abelian surfaces At is
the family of quadratic twists of the Jacobian A = Jac(C). Here, it is useful to think
of the coordinates x0, ..., x5 in (5.35.3) as indexed by the roots a0, ...a5 of f . Indeed, if
we denote by W ∶= {a0, ..., a5} the set of roots of f then we may identify A[2] with
the submodule of µW2 /(−1,−1, ...,−1) spanned by those vectors (ε0, ..., ε5) ∈ µ

W
2 such

that ∏i εi = 1. In this formulation the action of (ε0, ..., ε5) ∈ A[2] on X (induced by
the action on the corresponding 2-covering of A) is given by xi ↦ εixi. As ∏i bi is
a square the classes [bi] ∈H

1(k,µ2) determine a class ([b0], ..., [b5]) ∈H
1(k,A[2]),

and the family of 2-coverings of At associated to X is exactly the family of 2-
coverings determined by this class.

Theorem 5.4 ([1212]). Assume that the classes of b1
b0
, ..., b4

b0
are linearly independent

in k∗/(k∗)2 and that there exist finite odd places w1, ...,w5 such that for every
i = 1, ...,5 we have:

(1) The elements {a0, ..., a5} are wi-integral and valwi(ai − a0) = valwi d = 1.

(2) The elements b1
b0
, ..., b4

b0
are all units at wi but are not all squares at wi.

Then Conjecture 5.15.1 holds for the Kummer surface X given by (5.35.3). In particular,
if the 2-primary Tate-Shafarevich conjecture holds for every quadratic twist of A
then the (2-primary part of the) Brauer-Manin obstruction is the only obstruction
to the Hasse principle on X (see Remark 5.25.2).

5.2. Products of elliptic curves with rational 2-torsion. In this section we
will describe the results of [2626] in more detail. The technical details of the argument
are slightly different from those of [2626], but the strategy is the same.

Let k be a number field. For i = 1,2 let E(i) be an elliptic curve given by

E(i) ∶ y2
= x(x − ai)(x − bi)

with ai ≠ bi ∈ k
∗. Using the 2-torsion points (ai,0) and (bi,0) as basis we iden-

tify H1(k,E(i)[2]) ≅ k∗/(k∗)2 × k∗/(k∗)2 in such a way that for a point (x, y) ≠

(ai,0), (bi,0) on Ei, the element of k∗/(k∗)2 × k∗/(k∗)2 corresponding to (x, y) by
the Kummer sequence is the pair ([x − ai], [x − bi]), and for the points (ai,0) and
(bi,0) the corresponding pairs are ([ai(ai−bi)], [ai−bi]) and ([bi−ai], [bi(bi−ai)])
respectively.
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Remark 5.5. Unlike the situation in §4.24.2 where we worked with triples to avoid
choosing a basis for the 2-torsion group, here it will be convenient to break the
symmetry and use a particular basis. This break of symmetry is due to Condition
(Z) that we will introduce below.

Given a c ∈ k∗ we will denote by

E(i)c ∶ y2
= x(x − cai)(x − cbi)

the quadratic twist of E(i) by the class [c] ∈ k∗/(k∗)2. Using the 2-torsion points

(cai,0) and (cbi,0) to identify H1(k,E
(i)
c [2]) ≅ k∗/(k∗)2 × k∗/(k∗)2 as above.

For i = 1,2 let us fix an element α(i) = (α
(i)
1 , α

(i)
2 ) ∈ k∗/(k∗)2 × k∗/(k∗)2. Then

α(i) determines a 2-covering D(i) of E(i), which can be written as a curve of the
form

y2
= gi(x)

for a suitable quartic polynomial gi (whose resolvant cubic is x(x − ai)(x − bi)). In

this case the surface D(1)×D(2) is a 2-covering of the abelian surface A ∶= E(1)×E(1).
The associated Kummer surface Kum(D(1) ×D(2)) is then a smooth and proper
model for the affine surface

y2
= g1(x)g2(z).

Given c ∈ k∗ we will denote by

D(i)c ∶ y2
= cgi(x)

the corresponding quadratic twist. Then we may consider D
(i)
c as the 2-covering of

E
(i)
c associated to the same element α(i) ∈ k∗/(k∗)2 × k∗/(k∗)2.

We will denote by M ⊆ k∗/(k∗)2 the subgroup generated by α
(1)
1 , α

(1)
2 , α

(2)
1 , α

(2)
2 .

Let S be a finite set of places containing the archimedean places, the places above
2, all the places of bad reduction for either D(1) or D(2) and a set of generators for
the class group of k. As in [2626], consider the following conditions:

Condition 5.6 (Condition (E)). There exist cv ∈ k
∗
v for v ∈ S such that the follow-

ing holds:

(1) D
(1)
cv and D

(2)
cv are soluble in kv for all v ∈ S;

(2) for each i = 1,2 and for each β ∈ (M ×M) ∖ {(1,1), α(i)} there exists a v ∈ S

such that the 2-covering of E
(i)
cw determined by β is not soluble in kv.

Condition 5.7 (Condition (Z)). There exist places w
(1)
1 ,w

(1)
2 ,w

(2)
1 ,w

(2)
2 ∉ S such

that

(1) a1, b1, a1 − b1 are units at w
(2)
1 ,w

(2)
2 and a2, b2, a2 − b2 are units at w

(1)
1 ,w

(1)
2 .

(2) The elements b1 − a1 and b2 − a2, as well as the components of α(1), α(2), are

all units at w
(i)
j for i, j = 1,2.

(3) val
w
(i)
1

(ai) = val
w
(i)
2

(bi) = 1 and val
w
(i)
1

(bi) = val
w
(i)
2

(ai) = 0 for i = 1,2.

Remark 5.8. The places w
(i)
j ,w

(i)
j are in particular places of bad (multiplicative)

reduction for Ei and hence belong to S by definition.

We can now formulate the main result of [2626]:

Theorem 5.9 ([2626, Theorem 1]). Assume Condition (E) and Condition (Z) hold,

and that the Tate-Shafarevich group of every quadratic twist of E(1) and E(2) is
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finite. If the Kummer surface

y2
= g1(x)g2(z)(5.3)

is everywhere locally soluble, then it is soluble in k.

The first step, which can be considered as an instance of the fibration method,
is the following:

Proposition 5.10 ([2626, Lemma 8]). Assume Condition (E) and that (5.35.3) is ev-
erywhere locally soluble. Then there exists a c ∈ k∗ which is a unit at the places

w
(i)
j for i, j = 1,2 and such that for i = 1,2 the 2-covering of E

(i)
c determined by an

element β ∈M×M is everywhere locally soluble if and only if β is trivial or β = α(i).
Furthermore, we may choose c such that there exists a place u ∉ S at which c is a
uniformizer.

Recall (see §4.14.1) that the Selmer group Sel2(E
(i)) ⊆ k∗/(k∗)2 × k∗/(k∗)2 is the

subgroup consisting of those pairs such that the corresponding 2-covering of E(i) is
everywhere locally soluble. We then understand the conclusion of Proposition 5.105.10
as saying that the element α(i) belongs to Sel2(E

(i)), and is in fact the only element

which belongs to the intersection of Sel2(E
(i)) and M ×M.

Now suppose that c is as in Proposition 5.105.10. If β = (β1, β2) is now a pair which
does not belong to M ×M then there exists a j ∈ {1,2} such that βj does not
belong to M. By Chebotarev’s theorem one may then find a place v such that

α
(1)
1 , α

(1)
2 , α

(2)
1 , α

(2)
2 are all squares at v and such that βj is not a square at v. If

c′ ∈ k∗ is now any element which is sufficiently close to 1 over S and a uniformizer at

v then E
(1)
cc′ ,E

(2)
cc′ will still satisfy the conclusion of Proposition 5.105.10, and in addition

the element β will not belong to either Sel2(E
(1)
cc′ ) or Sel2(E

(2)
cc′ ). Elaborating on

this argument one quickly proves the following strengthening of Proposition 5.105.10,
which is a variant of Lemma 9 of [2626], where we replace the notion of being in the
restricted Selmer group by that of not belonging to some finite subgroup of the
form M′ ×M′

Proposition 5.11 (cf. [2626, Lemma 9(i)]). Let M′ ⊆ k∗/(k∗)2 be any finite subgroup
containing M. Assume Condition (E) and that (5.35.3) is everywhere locally soluble.

Then there exists a c ∈ k∗ which is a unit at the places w
(i)
j for i, j ∈ {1,2} and such

that for i = 1,2 the 2-covering of E
(i)
c determined by a β ∈ M′ ×M′ is everywhere

locally soluble if and only if β is trivial or β = α(i). Furthermore, we may choose c
such that there exists a place u ∉ S at which c is a uniformizer.

In particular, let us consider the finite subgroup M′ ⊆ k∗/(k∗)2 spanned by

the elements α
(i)
1 , α

(i)
2 , [ai(ai − bi)], [bi(bi − ai)] for i = 1,2 as well as the elements

[−1], [(a1 − b1)(a2 − b2)]. Applying Proposition 5.115.11 and replacing E(i) by E
(i)
c we

may assume that the conclusion of Proposition 5.115.11 actually held to begin with,
namely, that:

(*) for i = 1,2 the 2-covering of E(i) determined by an element β ∈M′ ×M′ is

everywhere locally soluble if and only if β is trivial or β = α(i). In addition, there

exists a place u ∈ S ∖ {w
(i)
j } such that each of ai, bi, ai − bi is a uniformizer at u for

i = 1,2.

The core step in the proof of Theorem 5.95.9 is the following:
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Proposition 5.12. Assume that (*) and Condition (Z) hold. Then there exists a

c ∈ k∗ such that for i = 1,2 the Selmer group Sel2(E
(i)
c ) is generated by α(i) and the

image of the 2-torsion.

The conclusion of Proposition 5.125.12 implies, in particular, that the 2-torsion part

X(E
(i)
c )[2] of the Tate-Shafarevich group is generated by the image of α(i). Un-

der the assumptions of Theorem 5.95.9 the group X(E
(i)
c ) is finite. In this case the

alternating Cassels-Tate pairing is non-degenerate (Theorem 2.72.7), implying, in par-

ticular, that the 2-rank of X(E
(i)
c )[2] is even. This means that the image of α(i) in

X(E
(i)
c ) must vanish, i.e., E

(i)
c has a rational point for i = 1,2, yielding a rational

point on 5.35.3.
We now start working towards a proof of Proposition 4.274.27. To explain the

argument let us fix an elliptic curve

E ∶ y2
= x(x − a)(x − b)

and an element c ∈ k∗. As above we will identify H1(k,E[2]) ≅ H1(k,Ec[2]) ≅

k∗/(k∗)2 × k∗/(k∗)2. Similarly, for a place v of k we identify H1(kv,E[2]) ≅

H1(kv,Ec[2]) ≅ k
∗
v/(k

∗
v)

2 × k∗v/(k
∗
v)

2

Given a place v of k let us denote by Wv,Wv,c ⊆ k
∗
v/(k

∗
v)

2 × k∗v/(k
∗
v)

2 the images
of E(kv)/2E(kv) and Ec(kv)/2Ec(kv) respectively under the relevant boundary
maps.In particular, we may identify the Selmer group Sel2(E) ⊆ k∗/(k∗)2×k∗/(k∗)2

(resp. Sel2(Ec)) with the subgroup consisting of those pairs whose local image in
k∗v/(k

∗
v)

2 ×k∗v/(k
∗
v)

2 belongs to Wv (resp. Wv,c). We will denote by Uv =Wv ∩Wv,c

the intersection of the Selmer conditions and by Qv = Wv/Uv and Qv,c = Wv,c/Uv
the corresponding quotients. Given a finite subset T of places of k, we will denote
by VT ⊆ ⊕v∈TQv the image of Sel2(E) and by VT,c ⊆ ⊕v∈TQv,c the image of Sel2(Ec).

Example 5.13.

(1) If v is a place of good reduction for E and c is such that valv(c) = 1 then
Uv = {0}.

(2) If v is such that valv(a) = 1 and valv(b) = valv(b− a) = 0 and c ∈ k∗ is such that
c is a non-square unit at v then dim2Uv = 1.

We now give a general lemma for predicting the change of the 2-Selmer group
after quadratic twist, which is based on and is a mild refinement of the results
of [1818, §3].

Lemma 5.14 (Mazur-Rubin). Let E be as above and let c ∈ k∗ be an element. Let
T be a finite set of finite odd places of k such that Wv =Wv,c for every v ∉ T . Then

dim2(Sel(Ec)) − dim2(Sel(E)) = dim2(VT,c) − dim2(VT )

and
dim2(VT,c) + dim2(VT ) ≤ 2∣T ∣ −∑

v

dim2(Uv).

Proof. Let ST ⊆ k∗/(k∗)2 × k∗/(k∗)2 denote the subgroup of those elements whose
local image at v lies in Uv for every v. Since Uv =Wv =Wv,c for every v ∉ T we see
that ST appears in two short exact sequences

0Ð→ ST Ð→ Sel2(A)Ð→ VT Ð→ 0

and
0Ð→ ST Ð→ Sel2 (Ec)Ð→ VT,c Ð→ 0
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We may hence conclude that

dim2(Sel(Ec)) − dim2(Sel(E)) = dim2(VT,c) − dim2(VT ).

Now for each place v of k, the Weil pairing induces the alternating Tate pairing on
H1(k,E[2]) ≅H1(k,Ec[2]) ≅ k

∗
v/(k

∗
v)

2 × k∗v/(k
∗
v)

2 which admits both Wv and Wv,c

as maximal isotropic subspaces. Let

U⊥v ⊆ k∗v/(k
∗
v)

2
× k∗v/(k

∗
v)

2

be the orthogonal subspace of Uv with respect to the Tate pairing. Since Uv is
contained in Wv it is isotropic, and so Uv ⊆ U⊥v . Furthermore, since the Tate
pairing is non-degenerate we see that Uv is also the orthogonal subspace of U⊥v and
so the induced pairing

[U⊥v /Uv] × [U⊥v /Uv]Ð→ Z/2(5.4)

is non-degenerate. Since both Wv and W c
v are isotropic we get that Qv,Qv,c ⊆

U⊥v /Uv and so we have an induced pairing

Qv ×Qv,c Ð→ Z/2(5.5)

The fact that both Wv and W c
v are maximal isotropic implies that 5.55.5 is non-

degenerate. By summing over the places of T we obtain a non-degenerate alternat-
ing form

∑
v∈T

Qv × ∑
v∈T

Qv,c Ð→ Z/2(5.6)

Finally, by quadratic reciprocity and the fact that Wv =Wv,c for v ∉ T we get that
the subspaces VT ⊆ ∑vQv and VT,c ⊆ ∑vQv,c are orthogonal to each other with
respect to 5.65.6 (although not necessarily maximally orthogonal). Since every v ∈ T
is odd we know that for such v

dim2Qv = dim2Qv,c = 2 − dim2Uv

and so we obtain the bound

dim2(VT ) + dim2(VT,c) ≤ 2∣T ∣ − ∑
v∈T

dim2(Uv).

�

Using the Mazur-Rubin lemma we may now give a relatively short proof of
Proposition 5.125.12. More precisely, we will prove the following statement, from which
Proposition 5.125.12 can easily be deduced by induction and switching the roles of E(1)

and E(2):

Proposition 5.15. Assume that (*) and Condition (Z) hold. If dim2 Sel2(E
(1)) > 3

then there exists a c ∈ k∗ such that dim2 Sel2(E
(1)
c ) < dim2 Sel2(E

(1)) and dim2 Sel2(E
(2)
c ) =

dim2 Sel2(E
(2)). Furthermore, c can be chosen so that Condition (*) and Condition

(Z) hold for E
(1)
c and E

(2)
c .

Proof. By assumption there exists an element β ∈ Sel2(E
(1)) which does not belong

to the subgroup generated by α(1) and the image of the 2-torsion. By possibly
adding to β an element in the image of the 2-torsion we may assume that β is

unramified at w
(1)
1 ,w

(1)
2 . Since β is in the Selmer group but is not (1,1) or α(1)

it cannot belong to M′ ×M′ by (*). There must therefore exists a j ∈ {1,2} such
that the component βj does not belong to M′. To fix ideas, let us assume that
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β1 does not belong to M′. By Condition (*) there exists a place u ∈ S at which
ai, bi, ai − bi are all uniformizers for both i = 1 and i = 2. This implies, in particular,
that [ai−bi] ∉M

′ for i = 1,2. We note that since [a1−b1][a2−b2] ∈M
′ by definition

it follows that β1[a1 − b1][a2 − b2] ∉M
′. By Chebotarev’s theorem there now exists

a place v0 ∉ S such that all the elements of M′ are squares at v0 and such that
β1, a1 − bi and a2 − b2 are not squares at v0. Note that since [−1] ∈M′ we have that
−1 is a square at v0 and hence b1 − a1 and b2 − a2 are also non-squares at v0.

Since S contains a set of generators for the class group we may find a quadratic

extension K/k which is purely ramified at w
(1)
2 and unramified outside S. Let m

be the modulus which is a product of 8 and all the places in S except w
(2)
j and let

km be the ray class field of m. Since K is purely ramified at w
(2)
j but unramified

outside S it is linearly disjoint from km. We may hence deduce the existence of a
place v1 ∉ S ∪ {v0} such that

(1) The Frobenius element Frobv1(km) of v1 in Gal(km/k) is equal to the inverse
of the Frobenius element Frobv0(km).

(2) The product Frobv0(K) ⋅ Frobv1(K) ∈ Gal(K/k) is non-trivial.

By property (1) above we see that the divisor v0 + v1 pairs trivially with the kernel
of H1(k,Q/Z) Ð→ H1(km,Q/Z) and so there exists a c ∈ k∗ which is equal to 1
mod m and such that div(c) = v0 + v1. In particular, we see that c is a square at

each v ∈ S / {w
(1)
2 }. By quadratic reciprocity and (2) above it follows that c is not

a square in w
(1)
2 . We now claim that the element c satisfies the required conditions.

First since c is a unit at w
(i)
j for i, j = 1,2 it is clear that Condition (Z) still holds.

For Condition (*), since c is a unit over S and all the element of M′ are unramified

outside S it is clear that any β ∈ M′ ×M′ which did not belong to Sel2(E
(i)) will

not belong to Sel2(E
(i)
c ) either. On the other hand, since α(1) and α(2) belong to

M′ they are squares at v0 by construction. Furthermore, since α(1), α(2) are units

outside S and are units at w
(1)
2 it follows that the splitting field of α(1), α(2) is

contained in km, and so (1) above implies that α(1), α(2) are squares at v1 as well.

We may now conclude that (*) holds for E(1) and E(2).

Let us now prove that dim2 Sel2(E
(2)
c ) = dim2 Sel2(E

(2)). Since c is 1 mod m
and m is divisible by all places of bad reduction for E(2) we see that the only

places where the Selmer conditions of E(2) and E
(2)
c differ are v0 and v1. By

Example 5.135.13(1) we have Uv0 = Uv1 = {0}. Applying Lemma 5.145.14 with T = {v0, v1}

we get that

dim2(Sel(E(2)c )) − dim2(Sel(E(2))) = dim2(VT,c) − dim2(VT )

with
dim2(VT,c) + dim2(VT ) ≤ 4.

To show that dim2(Sel(E
(2)
c )) = dim2(Sel(E(2))) it will hence suffice to show that

dim2(VT,c),dim2(VT ) ≥ 2, which we can verify by checking that the image of the
2-torsion has dimension 2 in both VT and VT,c. For VT,c this is clear by simply
looking at the valuation at v0 (or v1). In the case of VT this follows from the fact
that the pairs ([bi − ai], [bi(bi − ai)]), ([ai(ai − bi)], [ai − bi]) reduce mod v to the
standard basis of (F∗v0/(F

∗
v0)

2) × (F∗v0/(F
∗
v0)

2) by our choice of v0.
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Finally, let us prove that dim2 Sel2(E
(1)
c ) < dim2 Sel2(E

(1)). This time the places

where the Selmer conditions of E(1) and E
(1)
c differ are v0, v1 and w

(1)
2 . By Exam-

ple 5.135.13 we have Uv0 = Uv1 = {0} and dim2Uw(1)2

= 1. Applying Lemma 5.145.14 with

T = {v0, v1,w
(1)
2 } we have

dim2(Sel(E(1)c )) − dim2(Sel(E(1))) = dim2(VT,c) − dim2(VT )

with
dim2(VT,c) + dim2(VT ) ≤ 5

and by the same argument as above we see that the image of the 2-torsion is of
dimension 2 in both VT,c, VT . To finish the proof it will suffice to show that the
image of β in VT is not spanned by the image of the 2-torsion. By our choice of v0

the component β1 of β reduces to a non-square mod v0, and in addition we know

that β is unramified at w
(1)
2 . A direct examination now verifies that out of the pairs

([bi − ai], [bi(bi − ai)]), ([ai(ai − bi)], [ai − bi]) and ([−ai], [−bi]) corresponding to

the 2-torsion points, there is no pair which is both unramified at w
(1)
2 and whose

first component is a non-square at v0. �
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