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In this talk I will describe recent work with Olivier Wittenberg concerning
rational points and 0-cycles on fibered varieties. I will focus on the case of
rational points. The case of 0-cycles will be explained in the next lecture. Our
starting point is a conjecture of Colliot-Thélène and Sansuc, first formulated in
1979 for the case of surfaces:

Conjecture 1 ([CT03, p. 174]). For any smooth, proper, geometrically irre-
ducible, rationally connected variety X over a number field k, the set X(k) is
dense in X(Ak)Br(X).

By “rationally connected’, we mean that for any algebraically closed field k
containing k, the base change of X to k is rationally connected in the usual
sense. Let us adopt the abbreviation RC to denote “rationally connected”.

We shall now fix our base number field k. It is well-known that the class of
proper, smooth, RC varieties over k is “closed under fibrations”. In other words,
if X and B are smooth proper RC varieties and π : X −→ B is a surjective map
whose generic fiber is RC then X is RC. It is hence natural to ask the following
question:

Question 2. Let X be smooth proper RC varieties and π : X −→ B a surjective
map whose generic fiber is GRC. Assume that B satisfies conjecture 1 and that
all but finitely many fibers of π satisfies conjecture 1. Can we deduce directly
that X satisfies conjecture 1?

The theory developed around giving a positive answer to Question 2 is often
referred to as ”The fibration method”. In the typical application the base is
the projective line P1

k. Hasse was the first to use such a method in his the-
orem on quadratic hypersurfaces in order to reduce the general case to the
1-dimensional case. In 1982, Colliot-Thélène and Sansuc [CTS82] noticed that
a variant of Hasse’s proof yields Conjecture 1 for a large family of conic bundle
surfaces over P1

Q if one assumes Schinzel’s hypothesis, a far reaching con-
jecture regarding polynomials taking simultaneous prime values. Further work
of Serre [Ser92] and of Swinnerton-Dyer [SD94] led to the systematic study of
fibrations over P1

k into varieties which satisfy weak approximation (see [CT94],
[CTSSD98a], [HSW]). All the above-cited papers rely on the same reciprocity
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argument as Hasse’s original proof, and as a result they are all required to as-
sume that every singular fiber of π contains an irreducible component of multi-
plicity 1 split by an abelian extension of its base field. Other approaches were
able to dispense with the abelianness condition under strong assumptions on π.
By using the theory of descent, Colliot-Theélène and Skorobogatov were able to
remove this abelianness condition (but not the weak approximation condition)
when the subscheme S ⊆ P1

k of non-split fibers has degree ≤ 2 ([CTS00]). Harari
([Har97]) was able to further allow for a non-trivial Brauer manin obsrtuction
on the fibers when this degree is ≤ 1.

Our goal in this talk is to outline a proof of the following theorem

Theorem 3 ([HW14]). Let X be a smooth, proper, geometrically irreducible
variety X over Q and let π : X −→ Pn be a dominant morphism whose generic
fiber is RC and such that all non-split fibers are all defined over Q. If there
exists a Hilbert subset H ⊆ PnQ such that Conjecture 1 holds for Xc whenever
c ∈ H then conjecture 1 holds for X.

Even though we present this result for k = Q it will be useful to keep the
notation general. A first step in trying to give a positive answer to Question 2
is to be able to approximate a given adelic point (xv) ∈ X(Ak)Br by another
adelic point (x′v) such that π(x′v) is rational, i.e. comes from a rational point
t0 ∈ P1(k). This particular question turns out to fit more naturally in a setting
where X is not necessarily proper, but π : X −→ Y is smooth and surjective.
If one starts from a proper π, a smooth one can always be obtained by restricting
to the smooth locus X ′ ⊆ X with respect to π. For π to remain surjective one
needs that each fiber of π contains an irreducible component of multiplicity 1.
This indeed turns out to be an essential condition if one wants to approximate
an adelic point by one whose image under π is rational.

The notions of adelic points and adelic topology become a bit more subtle
when X is not assumed to be proper. Let us recall the definition.

Definition 4. Let X be a variety over k, S a finite set of places and X an
S-integral model for X. A point (xv) ∈

∏
v∈Ωk

X(kv) is adelic with respect to
X if for all but finitely many v /∈ S the point xv comes from a point in X(Ov).
Let

X(Ak) ⊆
∏
v∈Ωk

X(kv)

denote the set of adelic points with respect to X. We endow X(Ak) with the
coarsest topology such that for every finite S′ ⊃ S the inclusion∏

v∈S′
X(kv)×

∏
v/∈S′

X(Ov) ↪→ X(Ak)

is open (where the left hand side is endowed with the product topology). Then
a typical neighbourhood of a point (xv) ∈ X(Ak) looks like

U =
∏
v∈S′

Wv ×
∏
v/∈S′

X(Ov)
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where S′ ⊇ S is a finite set of places containing all the places where xv is not
integral and xv ∈Wv is an open neighbourhood in X(kv).

Remark 5. Given a variety X, a pair (S,X) as above always exists. Further-
more, neither the set X(Ak) nor its topology as defined above depend on (S,X).
In particular, given an adelic point (xv), when we talk about approximating it
by an adelic point (x′v), we mean that for some S and some S-integral model X,
the point (x′v) is arbitrarily close to xv for every place in S and x′v is integral
for every v /∈ S.

At this point it will be useful to describe a particular type of fibration, whose
behaviour is in some sense universal with respect to “fibration problems”. Let
m ≥ 2, n ≥ 1 be integers. For each i = 1, ..., n, let ki/k and Li/ki be finite field
extensions. For each i = 1, ..., n, j = 1, ...,m let ai,j ∈ ki be an element. We
assume the following:

Assumption 6. The k-linear map km −→ ⊕ni=1ki given by (x1, ..., xm) 7→
(
∑
j a1,jxj , ...,

∑
j an,jxj) is of full rank.

To this data we associate an irreducible quasi-affine variety W over k en-
dowed with a smooth morphism p : W −→ Pm−1

k with a geometrically irre-
ducible generic fiber as follows.

For i = 1, ..., n, us denote by Ti = RLi/k(Gm,Li
) the extension of scalars

torus and by Di = RLi/k(A1
Li

) \ T its complement in the corresponding affine
space. We then observe that Di is a divisor with normal crossings (geometrically
isomorphic to the union of all coordinate hyperplanes). Let Fi ⊆ Di denote the
singular locus of Di (corresponding to the locus where two different hyperplanes
meet). Then Fi has codimension 2 insude RLi/k(A1

Li
). Let

W ⊆ (Amk \ {(0, 0)})×
n∏
i=1

(
RLi/k(A1

Li
) \ Fi

)
(0.1)

be the subvariety given by the equations

m∑
j=1

ai,jxj = NLi/ki(yi)

for i = 1, ..., n, where x1, ..., xm are the coordinates of Am and yi is a coordinate
on RLi/k(A1

Li
). Finally, denote by p : W −→ Pm−1

k the composition of the

projection to the first factor with the natural map Amk \ {(0, 0)} → Pm−1
k . We

note that since the Fi’s were removed the map p is always smooth.
Let S ⊆ Ωk be a finite set of places such that each ki and each Li are

unramified outside S, and such that for each v /∈ S and each place w ∈ Ωki
lying above v we have that all the ai,j are w-integral and at least one of the
ai,j is a w-unit. Let Si denote the set of places of ki which lie above S and
let Ti denote the set of places of Li which lie above S. Then there is a natural
S-integral model W for W . Define Ti = ROTi

/OS
(Gm,OTi

) and let Fi denote
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the singular locus of Di. Since the norm of a Ti-integral element is Si-integral
and since Li/ki is unramified over Si we get that the norm map NLi/ki can be
refined to a map of OS-schemes

NOTi
/OSi

: ROTi
/OS

A1
OTi
−→ ROSi

/OS
A1

OSi
.

We then define the OS-subscheme

W ⊆
(
AmOS

\ {(0, 0)}
)
×

n∏
i=1

(
ROTi

/OS
(A1

OTi
) \ Fi

)
(0.2)

by the equations
m∑
j=1

ai,jxj = NOTi
/OSi

(yi)

where we interpret x1, .., xj as coordinates of AmOS
and y1, ..., yn as coordinates

on ROTi
/OS

A1
OTi

. The corresponding map of OS-schemes p : W −→ Pm−1
OS

is

smooth.
It is worthwhile to have an explicit description of local integral points of W

for v /∈ S.

Lemma 7. Let S ⊆ Ωk and W be as above. If v /∈ S is a place and xj ∈ kv, yi ∈
Li are elements considered as coordinates for a local point P = (x1, ..., xm, y1, ..., yn) ∈
W (kv), then P comes from W(Ov) if and only the following holds:

1. Each xi belongs to Ov and at least one of the xi’s belongs to O∗v.

2. Each yi belongs to OLi,v = OTi
⊗OS

Ov.

3. For each i = 1, ..., n there is at most one place u ∈ ΩLi
lying over v such

that valu(yi) > 0. Furthermore, if such a place u exists then it has degree
1 over v.

Proof. We first observe that each xi must be v-integral in order for (x1, ..., xm)
to come from a v-integral point of AmOv

. If we further want it to come from
AmOv
\{(0, ..., 0)} one needs to assume that the reduction of the vector (x1, ..., xm)

mod v is not the 0-vector. This is equivalent to saying that at least one of the
xi’s is in O∗v. We hence see that condition (1) is necessary. Similarly, we see
that condition 2 is necessary. Now let yi ∈ OLi,v be an element. By definition
we have that yi comes from a v-integral point of[

ROLi,v
/Ov

A1
OLi,v

]
\ Fi

if and only if the reduction yi of yi mod v does not belong to Fi ⊗Ov Fv. In
particular, yi either belongs to Ti ⊗Ov Fv or is a smooth point of Di ⊗Ov Fv.
The first case is equivalent to yi ∈ O∗Li,c

, i.e., no place of L above v divides
yi. Since the geometric irreducible components of Di ⊗Ov

Fv are smooth, the
second case is equivalent to yi lying on exactly one irreducible component of
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Di ⊗Ov Fv, and that this component is geometrically irreducible. Let Ei,v =
OLi,v ⊗Ov Fv. Then the irreducible components of Di⊗Ov Fv correspond to the
coordinate hyperplanes of REi,v/Fv

A1
Ei,v

and are hence classified by spec(Ei,v).
In particular, geometrically irreducible components of Di ⊗Ov

Fv (defined over
Fv) correspond to Fv-points of spec(Ei,v), i.e., to places u ∈ ΩLi

of degree 1
over v. Now yi sits on the component corresponding to u if and only if the
u-coordinate of yi vanishes, i.e, if and only if valu(yi) > 0. We hence see that
yi sits on exactly one irreducible component Di ⊗Ov Fv if and only if there is
exactly one place u ∈ ΩLi over v such that valu(yi) > 0, and that the component
corresponding to u is geometrically irreducible if and only if u is of degree 1.
The desired result now follows.

Conjecture 8 (Conjecture (W)). Assume the data defining the variety W sat-
isfies assumption 6. Then the inclusion

∪
t0∈Pm−1(k)

Wt0(Ak) ⊆W (Ak)

is dense in the adelic topology.

Theorem 9 ([Mat14], building on earlier work with Tim Browning, building
on a deep results of Green, Tao and Ziegler). Conjecture (W) holds whenever
k1 = k2, ..., kn = Q.

Remark 10. The result of [Mat14] is in fact stronger. Given an adelic point
(xv) ∈ W (AQ) and a large enough finite set of places S, one may find an S-
integral point x0 ∈ W(ZS) such that x0 is arbitrarily close to (xv) for every
non-archimedean place v ∈ S and such that the Am coordinates of x0 belongs
to any convex cone containing the Am-coordinates of x∞.

Theorem 11 ([HW14]). If m ≥
∑n
i=1[ki : k] then conjecture (W) holds.

Proof. Will be given in Olivier’s talk.

The following can be proven using the standard fibration method techniques.

Theorem 12. Assume Schinzel’s hypothesis holds. Then Conjecture (W) holds
whenever the extensions Li/ki are abelian (or semi-abeian, see [HW14]).

In order to state our main result we will need to recall the following standard
notion.

Definition 13. Let π : X −→ Y be a map. We will denote by

Brvert(X) = Br(X) ∩ Br(k(Y )) ⊆ Br(X)

the subgroup of Br(X) consisting of classes which come from the Brauer group
of the generic point of Y . The subgroup Brvert(X) is known as the vertical
Brauer group of X with respect to π.
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Remark 14. If X,Y are smooth and geometrically irreducible and π is smooth
and surjective with a geometrically irreducible fiber then the quotient Br(X)vert/Br(k)
is finite (see [CTS00, Lemma 3.1]).

Remark 15. It is not hard to show that Brvert(W ) = Br(k). See [HSW] for a
proof in a particular case.

Theorem 16 ([HW14]). Assume conjecture (W) holds for m = 2. Let X be a
smooth geometrically integral variety over k endowed with a smooth morphism
π : X −→ P1 with a geometrically integral generic fiber. Let V ⊆ P1

k be an
open set such that the fiber of π above every point of U is geometrically integral.
Let U = π−1(V ) ⊆ X and let B ⊆ Br(U)/Br(k) a finite subgroup containing
Br(U)vert/Br(k). Let B′ = B ∩ [Br(X)/Br(k)]. Then the inclusion

∪
c∈V (k)

Uc(Ak)B ⊆ X(Ak)B
′

is dense in the adelic topology.

Remark 17. In light of Remark 15 we see that the conclusion of Theorem 16
includes Conjecture (W) is a particular case. This can be interpreted as saying
that the fibrations π : W −→ P1 are, in some sense, “complete fibration prob-
lems”. According to Theorem 16, if one can solve all the fibration problems of
type (W) (with m = 2) then one can solve any fibration problem.

Before we give the proof let us recall Harari’s “formal lemma”:

Lemma 18 ([Har94]). Let X be a smooth geometrically integral variety and
U ⊆ X an open subset. Let B ⊆ Br(U) be a finite subgroup. Let (xv) ∈ X(Ak)
be an adelic point which is orthogonal to B∩Br(X). Then there exists an adelic
point (x′v) ∈ U(Ak), arbitrarily close to xv in the adelic topology on X(Ak),
and such that (x′v) is orthogonal to B.

We are now ready to prove Theorem 16.

Proof of Theorem 16. For simplicity we will prove the claim forB = Brvert(U)/Br(k).
We note that in this case B ∩X = Brvert(X)/Br(k). The proof in the general
case is similar.

Let m1, ...,mn ∈ P1 denote the closed points in the complement of V . For
each i = 1, . . . , n we will denote byXi the fiber of π overmi and fix an irreducible
component Yi ⊆ Xi. Let ki = k[mi] be the function field of mi and Li/ki the
algebraic closure of k in the field of functions of Yi. Without loss of generality
we can assume that each mi lies in A1. Let t be a coordinate on A1 and let
ei ∈ ki denote the value t takes on mi.

For each i, let χi,1, ..., χi,ni
: Γki → Q/Z be a finite set of generators for the

group
Ker[Hom(Γki ,Q/Z) −→ Hom(ΓLi ,Q/Z)].

We will denote by Ki,j the fixed field of χi,j . Consider the Brauer element

Ai,j = coreski(t)/k(t)(t− ei,Kij/ki) ∈ Br(k(t))
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ThenAi,j is ramified on P1 only atmi and∞ with residues χi,j and− coreski/k(χi,j),
respectively. In particular, Ai,j is unramified on V and π∗Ai,j is unramified on
U . Furthermore, π∗Ai,j ∈ Br(U)vert.

Now let (xv) ∈ X(Ak)Brvert be a point that we wish to approximate. Let S
be a finite set of places which is big enough so that the following holds:

1. S contains all the archimedean places.

2. All the the ki’s and all the Li’s are unramified outside S.

3. Each ei is S-integral and the norm of each ei − ej ∈ kikj is an S-unit.

4. X admits a smooth S-integral model X such that the induced map π :
X −→ P1

OS
is smooth.

Our goal is to construct to show that for every large enough S′ ⊃ S there
exists an adelic point (xv)

′ ∈ U(Ak) such that (x′v) is arbitrarily close to (xv)
for every v ∈ S′ and xv is v-integral with respect to X for every v /∈ S′.

In light of our conditions on S one may consider the natural S-integral
model V for the open subset V . If v /∈ S and tv ∈ kv is a coordinate of a
point in pv ∈ V (kv) then pv belongs to V(Ov) if and only if valv(tv) ≥ 0 and
valv(tv−ei) = 0 for every i. Furthermore, by condition (3) above, if we denote by
mi ⊆ P1

OS
the Zariski closure of mi then mi and mj do not intersect in V. We

will denote by Xi ⊆ X the fiber of π over mi and by Yi ⊆ Xi the Zariski closure
of the component Yi. We then observe that the smooth OS-scheme spec(OLi,S)
classifies the irreducible components of Yi. In particular, if w ∈ Ωk is a place
of ki corresponding to a closed point x ∈mi, then the irreducible components
of Yi ×M {x} are in bijection with places u ∈ ΩL lying above w. Finally, let us
add three more assumptions which can be met by enlarging S if necessary:

5 Each Ai,j extends to an element Ai,j ∈ Br(V ).

6 For every v /∈ S and every x ∈ V(Fv) there exists a y ∈ X(Fv) lying above
t.

7 For every v /∈ S, every place w ∈ Ωki lying above v (corresponding to a
closed point x ∈ mi) and every place u ∈ ΩLi

of degree 1 over w, the
component of Yi ×M {x} classified by u has an Fw-point.

By Harari’s formal lemma [Har94] there exists an adelic point (x′v) ∈ U(Ak)
such that

1. (x′v) is arbitrarily close to (xv) for every v ∈ S.

2. For every Ai,j as above we have∑
v∈Ωk

Ai,j(π(x′v)) = 0. (0.3)
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Let U = V×P1 V and let S′ be a finite set of places containing S, such that
(xv) belongs to U(Ov) for every v /∈ S′. Let t′v be the coordinate of π(x′v) on
A1, and let S′i be the set of places of ki lying above S′. Given a place w ∈ Ωki
we will denote by w the place of k lying below it. We then have for each i, j as
above ∑

w∈Ωki

invw(t′w − ei, χi,j) = 0. (0.4)

Let us now fix an i = 1, ..., n and let Ti = RLi/ki Gm be the restriction-of-
scalars torus of Li/ki and T 1

i ⊆ Ti the associated norm one torus. Since (xv) lies
in U(Ov) for all but finitely many v’s we see that tw − ei lies in Gm(Ow) = O∗w
for all but finitely many places w ∈ Ωki . Let us denote by

(σiw)
def
= (t′w − ei) ∈

∏
w∈Ωki

Gm(Aki)

the resulting adelic point. Consider the following short exact sequence ki-groups
schemes

1 −→ T 1
i −→ Ti

N−→ Gm −→ 1

and the associated boundary map

∂ : Gm(Aki) −→ H1
(
Ak, T

1
i

)
.

We claim that this element is in fact ki-rational, i.e., comes from an element
ρi ∈ H1

(
ki, T

1
i

)
. In light of Tate-Poitou’s sequence for tori what we need to

prove is that (∂σiw) is orthogonal to all the elements in H1
(
ki, T̂

1
i

)
. To compute

the latter consider the short exact sequence

1 −→ Z −→ T̂i −→ T̂ 1
i −→ 1

The boundary map

∂ : H1
(
ki, T̂

1
i

)
−→ H2(ki,Z) ∼= H1(ki,Q/Z) = Hom(Γki ,Q/Z)

maps H1
(
ki, T̂

1
i

)
into the kernel of the map

Hom(Γki ,Q/Z) −→ Hom(ΓLi
,Q/Z).

In particular, for each α ∈ H1
(
ki, T̂

1
i

)
we have that ∂α is some linear combina-

tion of the χi,j ’s. From the naturality of the pairing and equation 0.4 we then
get 〈

∂σi, α
〉

=
〈
σi, ∂α

〉
=
∑
w∈Ωki

invw(t′w − ei, ∂α) = 0.

This proves that ∂σi comes from some element ρi ∈ H1
(
ki, T

1
i

)
. Now since

H1(ki, T ) = 0 it follows that ρi = ∂bi for some bi ∈ Gm(ki). We may hence
conclude that for every w ∈ Ωki there exists a yw,i ∈ (Li)w such that

bi(t
′
w − ei) = N(Li)w/(ki)w(yw,i)
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Let S′′ be a finite set of places containing S′ such that bi (and hence bi(t
′
w−ei))

is in O∗w whenever w ∈ Ωki is such that w /∈ S′′. We may then assume that if
w ∈ Ωki is such that w /∈ S′′ then yw,i ∈ O∗Li,w

.
Let W be the quasi-affine variety associated as above to the fields k1, ..., kn,

L1, ..., Ln and to the values ai,0 = bi, ai,1 = biei (note that here m = 2). Let
W be the smooth S′′-integral model established in Lemma 7. According to
Lemma 7, the values (t′w, 1, yw,1, ..., yw,n) determine an adelic point (pv) on W
such that pv belongs to W(Ov) for every v /∈ S′′. By Conjecture (W) there
exists an adelic point (qv) = (λv, µv, y

′
w,1, ..., y

′
w,n) such that

1. qv is arbitrarily close to pv for every v ∈ S′′.

2. qv belongs to W(Ov) for every v /∈ S′′.

3. qv lies above a rational point t0 ∈ P1(k).

We shall now construct an adelic point (x′′v) on the fiber Xt which is arbi-
trarily close to (x′v) for v ∈ S′′ and is X-integral outside S′′. For v ∈ S′′, we
have that t0 is arbitrarily close to tv and so we may construct x′′v by means of
the inverse function theorem. Let us hence consider the case v /∈ S′′. Then at
least one of λv, µv is in O∗v and (λv : µv) = (t0 : 1). Furthermore, if there exists
a place w ∈ Ωki lying over v such that valw(bi(λv− eiµv)) > 0 then by 0.2 there
exists a place u ∈ ΩLi

lying over w such that valu(yv,i) > 0. By Lemma ?? u
would have to be of degree 1 over v. In particular, in this case w has of degree
1 over v and u has of degree 1 over w.

Let us now construct an Ov-point on X. First suppose that valw(t0−ei) ≤ 0
for every i = 1, ...n and every w ∈ Ωki lying above v. In this case the reduction
of t0 modulu v lies in V and hence by our choice of S there is a smooth Fv-point
on Xt0(Fv) and so an Ov-point on Xt0 by Hensel’s lemma.

Now suppose that valw(t0 − ei) > 0 for some ei and some w ∈ Ωki lying
above v (in which case the pair (i, w) is unique by our choice of S). By the
above considerations we know that w must have degree 1 over v and that there
must exist a place u ∈ ΩLi

of degree 1 over w. Let x ∈mi be the closed point
corresponding to w. By our choice of S the irreducible component of Yi×M {x}
classified by u has a smooth Fw-point and hence a smooth Fv-point. This point
can then be lifted to an Ov-point of Xt0 by Hensel’s lemma.

Corollary 19 (Main theorem). Assume that conjecture (W) holds for m = 2.
Let X be a smooth, proper, geometrically integral variety X over k and let
π : X −→ Pn be a dominant morphism whose generic fiber is RC. If there exists
a Hilbert subset H ⊆ Pn such that Conjecture 1 holds for Xc whenever c ∈ H
then conjecture 1 holds for X.

Proof. Let X ′ ⊆ X be the smooth locus of X. Since the generic fiber of π is
RC it follows that every fiber of π has an irreducible component of multiplicity
one. This implies that the restricted map π : X ′ −→ P1

k is surjective and that
the complement of X ′ in X has codimension 2, and so Br(X ′) = Br(X).
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Let η ∈ P1
k be the generic point. Since the generic fiber Xη is RC, it fol-

lows from [CTS13, Lemma 1.3] that Br(Xη)/Br(η) is finite. Hence there ex-
ists an open subset V ⊆ P1 and a finite subgroup B ⊆ Br(π−1(V ))/Br(k),
containing the vertical Brauer group of U = π−1(V ), and such that the map
B −→ Br(Xη)/Br(η) is surjective. By [Har97, Théorème 2.3.1] there exists a
Hilbert subset H ′ ⊆ H such that the restriction B −→ Br(Xc)/Br(k) is surjec-
tive for every c ∈ P1. Let h ∈ H ′(k) be a point. Let (xv) ∈ X(Ak) be an adelic
point which is orthogonal to Br(X) and S a finite set of places. By a small
deformation we may assume that (xv) lies on X ′ and since Br(X ′) = Br(X) we
know that (xv) is orthogonal to Br(X ′).

Let h ∈ H ′(k) be a point. By enlarging S we may assume that X′h(Ov) 6= ∅
for every v /∈ S and that all the elements of B ∩ [Br(X)/Br(k)] extend to S-
integral elements on X′. We may hence replace xv with some x′v ∈ Xh(Ov)
for every v /∈ S, and set x′v = xv for v ∈ S. Then (x′v) is orthogonal to
B∩ [Br(X ′)/Br(k)], and we may then apply Theorem 16 to it. This results in an
adelic point (x′′v) approximating (xv) arbitrarily well (and hence approximating
(xv) over S and integral outside S), orthogonal to B, and such that π(x′′v) is
rational. By [Sme13, Proposition 6.1] it follows that the t0 = π(x′′v) is in H ′. By
the above we get that (x′′v) is orthogonal to Br(Xt0)/Br(k) and since X ′t0 = Xt0

satisfies Conjecture 1 it follows that (x′′v) can be approximated by a rational
point of Xt0 .

Theorem 20 (Main theorem - optimized version). Let X be a smooth, proper,
geometrically integral variety X over k and let π : X −→ Pn be a dominant
morphism whose generic fiber is RC. Assume that there exists a Hilbert subset
H ⊆ Pn such that Conjecture 1 holds for Xc whenever c ∈ H. Let M ⊆ P1 be
the scheme classifying the non-split fibers of π. Assume that the following two
conditions hold:

1. Either k is totally imaginary or M contains a rational point.

2. Conjecture (W) holds for m = 2 in those cases where the singular locus of
W −→ P1 coincides with M .

Then conjecture 1 holds for X.

Corollary 21. Let X be a smooth, proper, geometrically integral variety X
over Q and let π : X −→ Pn be a dominant morphism whose generic fiber is
RC and such that all non-split fibers are all defined over Q. If there exists a
Hilbert subset H ⊆ Pn such that Conjecture 1 holds for Xc whenever c ∈ H then
conjecture 1 holds for X.

Corollary 22. Let X be a smooth, proper, geometrically integral variety X
over a totally imaginary number field k and let π : X −→ Pn be a dominant
morphism whose generic fiber is RC. Assume that the scheme M classifying the
non-split fibers of π is of degree ≤ 2. If there exists a Hilbert subset H ⊆ Pn
such that Conjecture 1 holds for Xc wheneverc ∈ H then conjecture 1 holds for
X.
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