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ABSTRACT

In this paper we study the homotopy theory of parameterized spectrum objects in
the oco-category of (oo, 2)-categories, as well as the Quillen cohomology of an (oo,2)-
category with coefficients in such a parameterized spectrum. More precisely, we con-
struct an analogue of the twisted arrow category for an (oo, 2)-category C, which we
call its twisted 2-cell co-category. We then establish an equivalence between parame-
terized spectrum objects over C, and diagrams of spectra indexed by the twisted 2-cell
oo-category of C. Under this equivalence, the Quillen cohomology of C with values in
such a diagram of spectra is identified with the two-fold suspension of its inverse limit
spectrum. As an application, we provide an alternative, obstruction-theoretic proof of
the fact that adjunctions between (oo, 1)-categories are uniquely determined at the
level of the homotopy (3,2)-category of Cateo.
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1. Introduction

This paper is part of an ongoing project whose goal is to understand the cohomology theory
of higher categories. Our approach follows the framework developed by Quillen ([Qui67]), and
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refined by Lurie ([ 1), which gives a general recipe for defining cohomology in an abstract
setting. In the case of spaces, this approach recovers generalized cohomology with coefficients
in a local system of spectra. When spaces are replaced with oo-categories, previous work of the
authors [ ] identifies the corresponding Quillen cohomology as the functor cohomology
of diagrams of spectra, indexed by the associated twisted arrow category.

In this paper we take these ideas a step further by studying the Quillen cohomology of
(o0,2)-categories. Recall that in the abstract setting of Quillen and Lurie, if D is a presentable
oo-category and X € D is an object, then the coefficients for the Quillen cohomology of X are
given by {2-spectrum objects in the slice co-category D, x, which we call parameterized spectra
over X. The Quillen cohomology groups of X with coefficients in such a parameterized spectrum
M are given by the homotopy groups of the mapping spectrum

Mapg,(p, ) (Lx, M),

where Ly = ¥3°(Idx) is the suspension spectrum of Idy € D,x. The parameterized spectrum
Lx is also known in this general context as the cotangent complex of X. There is hence in
principle no obstacle to defining Quillen cohomology of an (oo,2)-category by considering the
presentable co-category D = Cat, 2) and following the above formalism. However, this will only
yield a tractable theory if one can describe parameterized spectra over an (oo, 2)-category in a
reasonably concrete way.

When D = Cato, the main result of the previous paper [ | identifies the oo-category
Sp((Cate ) e) of parameterized spectra over an co-category € with the oco-category of functors
Tw(C) — Sp from the twisted arrow category to spectra, and the cotangent complex Le with
the constant functor whose value is the 1-shifted sphere spectrum S[-1]. This allows one to
access and compute Quillen cohomology of co-categories in rather explicit terms.

Our goal in this paper is to give a similar description in the case of (o0, 2)-categories by
constructing a suitable analogue of the twisted arrow category, which we call the twisted 2-
cell oo-category of C. Informally speaking, the objects of the twisted 2-cell co-category can
be identified with the 2-cells of C, and the morphisms are given via suitable factorizations of
2-cells. To make this precise we use the scaled unstraightening construction of | ], which
allows one to present diagrams of oco-categories indexed by an (oo, 2)-category by a suitable
fibration of (oo, 2)-categories. More precisely, we first encode C as a category enriched in marked
simplicial sets and consider the (oo, 2)-category Cry, obtained from C by replacing each mapping
object by its (marked) twisted arrow category. We then construct the twisted 2-cell co-category
of C by applying the scaled unstraightening construction to the mapping category functor Map :
CH. x Cry — Set;. This procedure yields a scaled simplicial set Twy(C), which we refer
to as the twisted 2-cell co-bicategory of C. Finally, the twisted 2-cell co-category Tw,(C) is
defined to be the oo-category freely generated by Twa(C).

This approach requires us to work simultaneously with two models for (oo,2)-categories,
namely, categories enriched in marked simplicial sets on the one hand, and scaled simplicial
sets on the other. We recall the relevant preliminaries in §2.1 and §2.2, while the construction
itself is carried out in §3. Some concrete examples of interest are described in §3.1. In the case
where C is a strict 2-category we can describe the twisted 2-cell co-category more explicitly by
replacing the scaled unstraightening procedure with the 2-categorical Grothendieck construction.
The equivalence of these two operations, which may be of independent interest, is proven in §6.
Finally, we use the construction of the twisted 2-cell co-category in §4 to order to prove our main
theorem (see Theorem 4.1):
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THEOREM 1.1. Let C be an (o0, 2)-category. Then there is a natural equivalence of oco-categories

SP((Cat(ee,2))/c) — Fun(Tw,(C), Sp(8.))

from the oco-category of parameterized spectrum objects over C to the oco-category of functors
from Two(C) to spectra. Furthermore, this equivalence identifies the cotangent complex L¢ with
the constant functor whose value is the twice desuspended sphere spectrum S[-2].

Theorem 1.1 identifies the abstract notion of a parameterized spectrum object over an (oo, 2)-
category C with a concrete one: a diagram of spectra indexed by an oco-category Tw,(C). A
direct consequence of this is that the associated notion of Quillen cohomology becomes much
more accessible:

COROLLARY 1.2. Let F: Twy(C) — Sp be a diagram of spectra and let Mg € Sp((Cat (s 2))/c)
be the corresponding parameterized spectrum object under the equivalence of Theorem 1.1. Then
the Quillen cohomology group Hg((C; My) is naturally isomorphic to the (—n — 2)’th homotopy
group of the homotopy limit spectrum holim&2(c) F.

Quillen cohomology, and especially its relative version (see §2.4), is naturally suited to sup-
port an obstruction theory for the existence of lifts against a certain class of maps, known as
small extensions. In the realm of spaces, a natural source of small extensions is given by the
consecutive maps Pp;1(X) — P,(X) in the Postnikov tower of X, for n > 1. This leads
to the classical obstruction theory for spaces which is based on relative ordinary cohomology
with local coefficients (a particular case of relative Quillen cohomology for spaces). The case of
(o0, 1)-categories was studied by Dwyer, Kan and Smith in | ] (in the framework of simpli-
cial categories) who developed a similar obstruction theory based on the Postnikov filtration of
mapping spaces, using a version of relative Quillen cohomology with coefficients in abelian group
objects. A possible extension to (oo, n)-categories using the Postnikov filtration of the spaces of
n-morphisms was first suggested by Lurie in [ , §3.5]. We formally establish the existence
of such a tower of small extensions in a companion paper | |, see also | ]. This leads
to an obstruction theory for (oo, n)-categories which is based on relative Quillen cohomology.

When n = 2 this obstruction theory can be made explicit using our description of Quillen
cohomology via the twisted 2-cell co-category. In particular, the equivalence of Theorem 1.1 leads
to an explicit criterion for when all the relative Quillen cohomology groups of a map C — D of
(o0,2)-categories vanish, in terms of weak contractibility of certain comma categories. In §5 we
apply this idea to the problem of classification of adjunctions. In particular, we show that the
inclusion of 2-categories [1] — Adj from the walking arrow to the walking adjunction has trivial
relative Quillen cohomology groups. The obstruction theory for (oo, 2)-categories then implies
that a l-arrow f in an (oo, 2)-category C extends to an adjunction if and only if it extends to
an adjunction in the truncated (3,2)-category Ho<3(C). In fact, the space of lifts in the square

|

7
AdJ —_— H0§3(C)

is weakly contractible. This leads to a classification of adjunctions in terms of explicit low di-
mensional data. We note that the analogous contractibility statement for lifts of [1] — Adj
against C — Hogy(C) was established in | ], by using a somewhat elaborate combinatorial
argument, and an explicit cell decomposition of Adj. While we hope to convince the reader that
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the obstruction theoretic proof is simpler in comparison, it should be noted that it only applies
to the tower of small extensions C — Ho.3(C), yet leaves open the problem of classifying lifts
of [1] — Adj against Ho<3(C) — Ho<(C). This particular piece of the puzzle can be done
by hand, or by using the approach of | ], but in any case only requires understanding the
3-skeleton of Adj. It also seems plausible that a suitable non-abelian cohomology approach can
be applied in this case. This reflects the typical situation in Postnikov type obstruction theories:
the cohomological argument can be used to reduce a homotopical problem (potentially involving
an infinite web of coherence issues) to a finite dimensional problem, whose coherence constraints
are bounded in complexity.
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2. Recollections

In this section we recall various preliminaries which we require in later parts of the paper. We
begin in §2.1 by recalling various aspects of the theory of (oo, 2)-categories, mostly using the
models of scaled simplicial sets (as developed in | ]), and categories enriched in marked
simplicial sets. In §2.2 we recall the straightening and unstraightening operations which allow
one to encode a diagram of co-categories indexed by an (co,2)-category as a suitable fibration
of (o0,2)-categories. The particular case where the diagram takes its values in oo-groupoids
leads to the notion of a marked left fibration, which we spell out in §2.3. Finally, in §2.4 we
recall the notions of stabilization, abstract parameterized spectra and Quillen cohomology, whose
specialization to the case of (o0, 2)-categories is our main interest in this paper. As in the previous
papers, | ], | | and [ | we adopt the formalism of tangent categories
and tangent bundles, which follow Lurie’s abstract cotangent complex formalism developed
in [ , §7.3].

2.1 Scaled simplicial sets

The homotopy theory of (oo, 1)-categories admits various model-categorical presentations, e.g.
in terms of the Bergner-Dwyer-Kan model structure on simplicial categories, the Joyal model
structure on simplicial sets (with quasicategories as fibrant objects), or the categorical model
structure on marked simplicial sets (with fibrant objects the quasicategories, marked by their
equivalences). These model categories are related by Quillen equivalences

(2.1) ¢:Seta _L_ Cata:N (-)" : Set\™ _T~ Set} : Forget,

with right adjoints taking the coherent nerve, resp. forgetting the marked edges. Let us mention
that the categorical model structure on marked simplicial sets is related to the usual Kan-Quillen
model structure on simplicial sets by two Quillen adjunctions

(2.2) ()t Seth@ T~ Set « (—)mark | =] :Seth LT~ Seth®: (-)k
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Here X' = (X, X1) is the simplicial set X with all edges marked, |- | simply forgets marked edges
and (X, Ex )™ is the largest simplicial subset of X whose edges are all in Ex. Since |- | is a
left adjoint, the object X = |(X, Ex)| € SetiQ is a model for the free co-groupoid generated by
the oo-category (X, Ex), or equivalently, a model for its classifying space.

In this paper we will use two analogous models for the theory of (oo, 2)-categories: the model
category Cat; of categories enriched in marked simplicial sets, which we will refer to as marked-
simplicial categories, and the model category Set’y of scaled simplicial sets. Recall that
a scaled simplicial set is a pair (X,Tx) where X is a simplicial set and Tx is a collection of
2-simplices in X which contains all degenerate 2-simplices. The 2-simplices in T'x are referred to
as the thin triangles. In | |, Lurie constructs a model structure on the category Set’y of
scaled simplicial sets which is a model for the theory of (oo, 2)-categories. In particular, a scaled
version of the coherent nerve construction yields a Quillen equivalence

€ : Set¥ T Cat} : N*
between scaled simplicial sets and marked-simplicial categories (see | , Theorem 4.2.7]).

Following | ] we will refer to weak equivalences in Set’y as bicategorical equivalences,
and to fibrant objects in Set’y as co-bicategories.

Recall that a scaled simplicial set is called a weak co-bicategory if it satisfies the extension
property with respect to the class of scaled anodyne maps described in [ , Definition
3.1.3]. In particular, every co-bicategory is a weak oo-bicategory. These extension conditions can
be considered as analogous to the inner horn filling conditions of the Joyal model structure. For
instance, an inner horn A? — X admits a thin filler and an inner horn A? — X with n > 3
admits a filler as soon as the 2-simplex At=14+1} ig thin.

Just as (oo, 1)-categories are related to co-groupoids via (2.2), (oo, 2)-categories are related
to (oo, 1)-categories via the Quillen adjunctions

(2.3) (=) Set\ T Set : (—)thin | = |1+ SetsS T Set\™ : (-),,

where Xy = (X, X2) is X with all triangles being thin, (X,Tx )™ is the maximal simplicial
subset of X whose triangles all belong to Tx and | - |; forgets the thin triangles. Since | —|; is a
left adjoint, the object X = |(X,Tx)|1 € SetJAOy is a model for the co-category freely generated by
an oco-bicategory (X, Ty).

Remark 2.4. Let C be a marked-simplicial category and let Cpa and C_| be the simplicial

categories obtained by applying the product-preserving functors (=)™** and | - | from (2.2) to
all mapping objects. Unraveling the definition of the scaled nerve [ , Definition 3.1.10], one
sees that there are natural isomorphisms
thi
N(Cark) = (N*¢(C))™™ N(Cp)) 2 [N**(C)}s.

Informally speaking we may summarize the above isomorphisms as follows: the co-category freely
generated from C has as mapping spaces the co-groupoids freely generated from the mapping
categories of C, and the maximal sub co-category of C has as mapping co-groupoids the maximal
sub oco-groupoids of the mapping categories of C.

A particularly important class of (oo, 2)-categories is given by the (2,2)-categories, namely,
those (o0, 2)-categories whose spaces of 2-cells are all discrete. It is well-known that every (2,2)-
category can be represented by a (strict) 2-category, i.e., a category enriched in categories. Given
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such a (strict) 2-category C, we can apply the marked nerve construction N* : Cat — Set} to
every mapping category in C to obtain a marked-simplicial category Cn+. The scaled nerve of
this marked-simplicial category is an co-bicategory, which can be described as follows.

Let A" be the 2-category whose objects are 0,...,n and where Mapan (i,7) is the poset of
subsets of [n] whose minimal element is i and maximal element is j. Given a 2-category C we
define its 2-nerve N(C) € Set’y by the formula

Ny (C),, = Funy (A", C).

A triangle o € Ny(C) is thin if and only if the corresponding 2-functor A? — C sends the
non-identity arrow of Map2(0,2) to an isomorphism.

Remark 2.5. There is a natural isomorphism between the marked-simplicial categories Ay, and
C(A}), where A} is A™ with thin triangles only the degenerate ones. It follows that there is
a natural isomorphism No(C) 2 N3¢(Cy+). We also note that for completely general reasons No
admits a left adjoint €3 : Set’y —> Cats whose value on the n-simplices is given by €o(A™) = A",

2.2 Scaled straightening and unstraightening
A key property of the model of scaled simplicial sets is that it admits a notion of unstraighten-

ing: diagrams of co-categories indexed by an co-bicategory C can be modeled by certain fibrations
D— C.

DEFINITION 2.6. Let (S,Ts) be a scaled simplicial set and let f: X — S be a map of simplicial
sets. We will say that f is a Tg-locally coCartesian fibration if it is an inner fibration and for
every thin triangle o : A2 — S, the base change 0" f : X xg A? — A2 is a coCartesian fibration.

DEFINITION 2.7. For f:(X,Tx) — (5,Ts) a map of scaled simplicial sets, we will say that f
is a scaled coCartesian fibration if the underlying map X — S is a Tg-locally coCartesian
fibration in the sense of Definition 2.6 and Tx = f~1(Ts).

Remark 2.8. By definition, the set of thin triangles in any scaled simplicial set contains the
degenerate triangles. This means that if f : (X,Tx) — (5,Ts) is a Ts-locally coCartesian
fibration then for every edge e : A! — S the restriction X xg A — Al is a coCartesian
fibration, i.e., f is a locally coCartesian fibration in the sense of | , Definition 2.4.2.6].

LEMMA 2.9. If f: (X,Tx) — (S,Ts) is a scaled coCartesian fibration and (S,Ts) is a weak
oo-bicategory, then (X, T ) is a weak co-bicategory.

Proof. 1t will suffice to show that if f is a scaled coCartesian fibration then it satisfies the
right lifting property with respect to scaled anodyne maps. To see this, observe that since f
is an inner fibration and T = f~1(Ts) the right lifting property with respect to maps of type

(A) and (B) of | , Definition 3.1.3] is immediate, and the lifting property with respect to
maps of type (C) follows from [ , Lemma 3.2.28] since any degenerate edge of X is locally
f-coCartesian. O

To study scaled coCartesian fibrations efficiently it is useful to employ the language of cat-
egorical patterns (see | , Appendix BJ). Let S be a simplicial set, Eg a collection of
edges in S containing all degenerate edges, and Ts a collection of triangles in S containing all
degenerate triangles. The tuple P := (S, Eg,Ts) then determines a categorical pattern on S, to
which one may associate a model structure on the category (Set} ) /(5,Eg) of marked simplicial
sets over (S, Eg) (see | , Theorem B.0.20]). The cofibrations of this model structure are the
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monomorphisms and its fibrant objects are the so called B-fibered objects (see | , Defi-
nition B.0.19]). Explicitly, an object p: (X, Ex) — (S5, Es) of (Setx)/(s,rg) is P-fibered if it
satisfies the following conditions:

(i) The map p: X — S is an inner fibration of simplicial sets.

(ii) For every edge e : Al —s S which belongs to Eg the map e*p : X xg Al — Al is a
coCartesian fibration, and the marked edges of X which lie above e are exactly the e*p-
coCartesian edges.

(iii) Given a commutative diagram

A{Ovl} ;. X

L

AN2_%2 . g
if ee Ex and o € Ts then e determines a o*p-coCartesian edge of X xg A2,

Asin [ , Appendix B], we will denote the resulting model category by (SetA ) q-

LEMMA 2.10. Let (S,Ts) € Set’y, let f: X — S be an inner fibration and let Pry = (S, 51,Ts).
Let Ex denote the collection of locally f-coCartesian edges and let Tx = f~*(Ts) denote the
collection of triangles whose image in S is thin. Then the following are equivalent:

(1) f is a Ts-locally coCartesian fibration.
(2) (X,Ex) is Pry-fibered.
(3) f:(X,Tx) — (S,Ts) is a scaled coCartesian fibration.

Proof. The equivalence of (1) and (3) is direct from the respective definitions. The implication
(1) = (2) follows from Remark 2.8 and | , Remark 2.4.2.13]. To finish the proof it will
hence suffice to show that (2) implies (1). Let us hence assume that (X, Ex) is Pry-fibered and
let o : A2 — S be a thin triangle. We need to show that o* f : X xg A2 — AZ is a coCartesian
fibration. By the assumption on (X, Fx) we have in particular that f is a locally coCartesian
fibration, and so ¢ f is a locally coCartesian fibration. We hence just need to check that every
locally o* f-coCartesian arrow of X xg A? is also o* f-coCartesian. This is automatically true
for any locally ¢* f-coCartesian edges lying above identities in A? since these are equivalences
in X xg A2 In addition, since there are no non-identity maps out of {2} € A? we see that any
locally o* f-coCartesian edge © —> y of X xg A% such that f(y) = 2 is also ¢* f-coCartesian. Let
us hence consider a locally o* f-coCartesian edge e : A’ — X xg A? lying above the edge 0 — 1
in A%, Then e € Ex by the definition of Ex and is consequently an o* f-coCartesian edge by
Property (iii) above. O

In light of Lemma 2.10 we will denote

(SetA)jsire) = (SetA) g -

The following lemma makes sure that the passage from a Tg-locally coCartesian fibration to the
associated scaled coCartesian fibration is homotopically sound.

LEMMA 2.11. Let f: X — Y be a weak equivalence between fibrant objects in (SetZ)l/C(CS Ts)
and let T'x € Xy and Ty € Yy be the subsets of triangles whose images in S belong to Ts. Then
the map of scaled simplicial sets (X,Tx) — (Y, Ty) is a bicategorical equivalence.
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Proof. We first note that the model category (SetZ)l/C(CS 7) 18 tensored over Set} (see | ,
Remark B.2.5]), where the action of K € Set} is given by K ® (X — S) = K x X — S. Since

the functor K — K" of (2.1) is a product preserving left Quillen functor from Set‘ky to Set} we

obtain an induced tensoring of (SetZ)}c(‘fg ) over SetJAoy. In particular, if f: X — Y is a weak

equivalence between fibrant (and automatically cofibrant) objects, then there exists an inverse
map g : Y —> X such that fog and go f are homotopic to the respective identities via homotopies
of the form J" x X — X and J* xY — Y, where J is a cylinder object for A® in SetJAoy. On
the other hand, the model category Set’s is also tensored over SetJAOy ; the action of K ¢ Set‘]AOy is
given by K ® (X,Tx) = (K x X, K3 xTx ). We conclude that if f: X — Y is a weak equivalence
between fibrant objects in (Set} )< then the induced map (X,Tx) — (Y,Ty) of scaled

[(S,T)
simplicial set has an inverse up to homotopy and is therefore a bicategorical equivalence. O

Given a map ¢ : €(S,Ts) — C of marked-simplicial categories, Lurie constructs in | ,
§3.5] a straightening-unstraightening Quillen adjunction

St : (SetA) |5 1oy < Fun™(C,Set}) : Unis

which is a Quillen equivalence when ¢ is a weak equivalence ([ , Theorem 3.8.1]). Here the
right hand side is the category of Seti-enriched functors with the projective model structure. In
light of Lemma 2.10 one can therefore consider scaled coCartesian fibrations over (S,7s) as an
unstraightened model for an (o0, 2)-functor (S,7Ts) — Cateo.

NOTATION 2.12. Let F € Fun* (€%°(S,Ts),Set} ) be a functor. We will use the following variants
of Ung (9):
— We will denote by Un7 () the simplicial set underlying the marked simplicial set Ung; ().

— We will denote by ﬁ?lif(ff ) the scaled simplicial set whose underlying simplicial set is Un; ()
and whose thin triangles are exactly those whose image in S is thin.

Remark 2.13. When J: C — Set}; is a fibrant diagram, the object Unf;(fr") is Pry-fibered over
S. It then follows from Lemma 2.10 that

UnZ(F) — S and Un, () — S

are a Tg-locally coCartesian fibration and a scaled coCartesian fibration, respectively. In partic-
ular, if (5,Ts) is a weak co-bicategory then Unf;(ff ) is a weak oco-bicategory (see Lemma 2.9).

NOTATION 2.14. When C is fibrant and ¢ : ¢5¢(N*°(C)) — C is the counit map we will omit ¢
from the notation and denote St and Uny simply by St and Un*. We will employ the same
convention for the variants of Notation 2.12.

The scaled unstraightening of a diagram of (ordinary) categories indexed by a (strict) 2-
category can be understood in more concrete terms, using the 2-categorical Grothendieck con-
struction (see, e.g., | ]). Explicitly, given a strict 2-functor F : C — Cat;, its Grothendieck
construction f(c F is the 2-category whose

— objects are pairs (A, X) with AeC and X € F(A).

— l-morphisms (A4,X) — (B,Y) are pairs (f,¢), with f : A — B a morphism in C and
¢: iX — Y a morphism in F(B). Here f,: F(A) — F(B) is the functor associated to f.

— given two 1-morphisms (f, ) and (g,%) from (A, X) to (B,Y"), a 2-morphism (f,p) = (g,%)
is a 2-morphism o : f = ¢ in C such that ¢ = o0 (X): iX — Y, where oy : fy = ¢ is the
natural transformation associated to o.
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We then have the following result, whose proof will be deferred to §6:

PROPOSITION 2.15. Let C be a 2-category and let ¥ : C — Caty be a 2-functor. Let N*F :
Cn+ —> SetA be the Setx-enriched functor given by A — N*(F(A)). Then there is a natural
map of scaled coCartesian fibrations over Na(C)

@C(g):NQ(fC?) — Tn™(N*9)

which is a bicategorical equivalence of scaled simplicial sets.

2.3 Marked left fibrations

Any (oo, 2)-functor (S5,Ts) —> 8 with values in spaces can be considered as a functor with values
in co-categories. Under unstraightening, such functors correspond to left fibrations over S. For
technical reasons (see §4), it will be convenient to use the following marked variant of a left
fibration:

DEFINITION 2.16. Let p: (X, Ex) — (5,7Ts) be a map of marked simplicial sets. We will say
that p is a marked left fibration if it satisfies the following properties:

(i) The map p: X — S is a left fibration of simplicial sets.
(ii) An edge of X is marked if and only if its image in S is marked.

Warning 2.17. A marked simplicial set (S, Fs) can be considered as representing an co-category
via the categorical model structure on Set}. However, marked left fibrations in the above sense
do not correspond to functors of the form (S, Eg) — 8. Instead, they corresponds to functors
of the form § — §, see Lemma 2.19 below.

Remark 2.18. Let S be a simplicial set equipped with a marking Fg and a scaling T, and set
B = (5, Es,Ts) as above. Then any marked left fibration p: (X, Ex) — (S, Eg) constitutes a
B-fibered object of (Setj)/(s,ry) (see §2.1): indeed, any left fibration is a coCartesian fibration
and any edge in X is p-coCartesian.

Now let (S, Eg) be a marked simplicial set. We will say that a map f: (Y, Ey) — (X, Ex)
in (SetA)/(s,mg) is a marked covariant weak equivalence if Y — X is a covariant weak
equivalence in (Seta),s. We will say that f is a marked covariant fibration if f:Y — X is
a covariant fibration in (Seta);s and By = Y Ex).

LEMMA 2.19. There exists a model structure on (SetZ)/(S7ES) whose weak equivalences are the
marked covariant weak equivalence, whose fibrations are the marked covariant fibrations and
whose cofibrations are the monomorphisms. Furthermore, the adjoint pair

(2.20) (=)' (Seta)s & (Setr) /(s mq) : Forget

whose right adjoint forgets the marking and left adjoint introduces trivial marking, yields a
Quillen equivalence between this model structure and the covariant model structure on (Seta);g-

Proof. 1t is straightforward to verify that these classes of maps form a model structure: indeed,
the lifting and factorization axioms all follow from the corresponding axioms for the covariant
model structure on (Seta ), 5. Furthermore, the adjunction (2.20) is a Quillen pair by construction
in which the right adjoint preserves and detects weak equivalences. To see that it is a Quillen
equivalence, it therefore suffices to verify that the (underived) unit map is a weak equivalence.
But this unit map is an isomorphism since the underlying simplicial set of X" is simply X. O
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DEFINITION 2.21. We will refer to the model category of Lemma 2.19 as the marked covariant

model structure and denote it by (SetZ)?‘& Bg)

Remark 2.22. Let p : (X,Ex) — (S,Es) and ¢ : (Y,Ey) — (S,Es) be two marked left
fibrations. By | , Corollary 2.2.3.14] a map f: (X,Ex) — (Y, Ey) is a fibration in the
marked covariant model structure if and only if it is a marked left fibration. In particular, the
fibrant objects of (SetZ)?E’:’% Eg) are precisely the marked left fibrations.

Remark 2.23. Let B := (S, Eg,Ts) be a simplicial set S equipped with a marking Fg and a
scaling Ts. By Remark 2.18 and Remark 2.22 every fibrant object of (SetZ)‘/:?z’q’ £ 18 also fibrant
when considered as an object of (Setj) /p- Since these model structures have the same class
of cofibrations we may deduce that the marked covariant model structure is a simplicial left
Bousfield localization of the B-fibered model structure. In this case, it is not hard to exhibit
an explicit set S of maps which induce the desired left Bousfield localization. Indeed, take S to
be the set of left horn inclusions A} ¢ A" for every 0 < ¢ < n and every A" — S, together
with the maps (A')" — (AN! for every marked edge of S. Then all the maps in S are marked
covariant weak equivalences and hence every marked left fibration is S-local. On the other hand,
if a P-fibered object is S-local, then certainly it has the right lifting property with respect to S,
which consists of cofibrations. This means that it is a marked left fibration.

Remark 2.24. If (S, Eg) is a fibrant marked simplicial set, then Lemma 4.40 below asserts that the
slice model structure on (Set} ) /(S,Eg) arises from a certain categorical pattern B. Remark 2.23
now shows that the marked covariant model structure is a simplicial left Bousfield localization
of the slice model structure with respect to the set of maps S. In particular, any marked left
fibration over a fibrant marked simplicial set is a categorical fibration of marked simplicial sets.

2.4 Stabilization and tangent bundles

In this section we will recall the notion of stabilization and the closely related construction
of tangent bundles. Recall that a model category is called stable if its homotopy category
is pointed and the loop-suspension adjunction ¥ : Ho(M) T Ho(M) : Q is an equivalence
(equivalently, the underlying oco-category of M is stable in the sense of [ , §1]). Given a
model category M one may look for a universal stable model category M’ related to M via
a Quillen adjunction M =~ M’. When M is combinatorial the underlying oco-category Me, is
presentable, in which case a universal stable presentable co-category Sp(Mo,) admitting a left
functor from My, indeed exists. When M is furthermore pointed and left proper there are various
ways to realize Sp(Ms ) as a certain model category of spectrum objects in M (see | ]). One
such construction, which is particularly convenient for the applications in the current paper, was
developed in [ |, based on ideas of Heller (] ]) and Lurie (] ]): for a pointed, left
proper combinatorial model category M we consider the left Bousfield localization Sp(M) of the
category of (N x N)-diagrams in M whose fibrant objects are those diagrams X : Nx N — M for
which X, ,, is weakly contractible when m # n and for which each diagonal square

Xn,n — Xn,n+1

(2.25) | |

Xn+1,n — Anp+ln+l

is homotopy Cartesian. The diagonal squares then determine equivalences X, ,, = QX1 041,
and so we may view fibrant objects of Sp(M) as Q-spectrum objects. There is a canonical Quillen

10
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adjunction
Y2 M I Sp(M) : Q%
where 2% sends an (N x N)-diagram X., to X and ¥* sends an object X to the constant
(N x N)-diagram with value X.
When M is not pointed, its stabilization is the model category Sp(M.) of spectrum objects
in its pointification M. = M, ;. We then denote by X%° : M — Sp(M.) the composite left Quillen

functor

w 2H 0, 22 sp(a).

Given an object A € M, we will denote by My//4 = (M/A)* the category of pointed objects in

the over-category M4, endowed with its induced model structure. The stabilization of M4 is
the model category of spectrum objects in M4//4, which we will denote (as in | ]) by

TaM < Sp(May/a)

and refer to as the tangent model category to M at A. We will refer to fibrant objects in TyM
as parameterized spectrum objects over A. By [ , Lemma 3.20 and Proposition 3.21],
the oo-category associated to the model category T 4M is equivalent to the tangent co-category
TA(Ms) defined in | , §7.3], at least if A is fibrant or if M is right proper (so that M,
models the slice co-category (Moo ) 4)-

DEFINITION 2.26 (cf. | , §7.3]). Let M be a left proper combinatorial model category. We
will denote by

LA = LET(A) € “TAM
the derived suspension spectrum of A and will refer to L4 as the cotangent complex of A.
The relative cotangent complex Lp/4 of a map f: A — B is the homotopy cofiber in TpM

LXZ(f) — L — Lpya-

As in | , §2.2], we will consider the following form of Quillen cohomology, which is
based on the cotangent complex above:

DEFINITION 2.27. Let M be a left proper combinatorial model category and let f: A — X be a
map in M with fibrant codomain. For n € Z we define the relative n’th Quillen cohomology
group of X with coefficients in a parameterized spectrum object M € TxM by the formula

HY (X, A; M) = moMap™(Lx/a, 2" M).

where Ly 4 is the relative cotangent complex of the map f (see Definition 2.26). When f: @ —
X is the initial map we also denote H%(X;M) = Hg(X,g;M) and refer to it simply as the
Quillen cohomology of X.

If € is a presentable co-category, then the functor € — Cat sending A € € to T4C€ classifies
a (co)Cartesian (that is, a Cartesian and coCartesian) fibration 7€ — € known as the tangent
bundle of €. A simple variation of the above model-categorical constructions can be used to
give a model for the tangent bundle of a model category M as well, which furthermore enjoys the
type of favorable formal properties one might expect (see | ]). More precisely, if (NxN),
denotes the category obtained from N x N by freely adding a zero object and M is a left
proper combinatorial model category, then one can define TM as a left Bousfield localization

(NxIN). where a Reedy fibrant object X : (N x N), — M is

of the Reedy model category MReedy ;

11



YONATAN HARPAZ, JOOST NUITEN AND MATAN PRASMA

fibrant in TM if and only if the map X, ,, — X is a weak equivalence for every n # m and the
square (2.25) is homotopy Cartesian for every n > 0.

The projection ev, : TM — M is then a (co)Cartesian fibration which exhibits TM as a
relative model category over M in the sense of | |: TM has relative limits and colimits
over M and factorization (resp. lifting) problems in TM with a solution in M admit a compatible
solution in TM. In particular, it follows that the projection is a left and right Quillen functor
and that each fiber is a model category. When A € M is a fibrant object, the fiber (TM)4 can
be identified with the tangent model category T M. Furthermore, the underlying map of oo-
categories TMq —> Mo, exhibits TM as the tangent bundle of Mo, (see | , Proposition
3.25]). We refer the reader to | | for further details.

3. The twisted 2-cell co-category

In this section we will introduce the notion of the twisted 2-cell co-category, which plays a
central role in this paper. This co-category will actually be derived from a suitable co-bicategory,
which we will refer to as the twisted 2-cell co-bicategory. To begin, let us recall the (oo, 1)-
categorical counterpart of our construction, namely the twisted arrow category.

Let F': A — A be the functor given by [n] — [n]°P * [n], where * denotes concatenation of
finite ordered sets. When € € Seta is an co-category, the simplicial set Tw(C) := F*€ is also an
oo-category, which is known as the twisted arrow category of C. By definition the objects of
Tw(C) are the arrows of € and a morphism in Tw(€) from f: X — Y to g: Z — W is given
by a diagram in € of the form

x Loy
(3.1) T l
z 2w

Note that the above convention regarding the direction of arrows is opposite to that of | ,
§5.2.1]). When € is an ordinary category Tw(C) is an ordinary category as well, and was studied
in a variety of contexts. In fact, in this case one can write Tw(C) using the classical Grothendieck
construction as

Tw(C) := ](x,y)eeopxe Mape(z,y).

This property has an analogue in the co-categorical setting: by [ , §5.2.1], restriction along
the inclusions [n] = [n]°P * [n] and [n]°P? < [n]°P * [n] induces a left fibration of co-categories
Tw(€C) — C°P x €, which classifies the mapping space functor Mape : C°? x € — 8 (where 8§
denotes the oco-category of spaces). In particular, it follows that Tw(-) preserves equivalences
between co-categories.

Remark 3.2. If € is a Kan complex then Tw(C) is a Kan complex as well and the codomain
projection Tw(€) — C is a trivial Kan fibration.

It will be useful to have a marked variant Tw" : Set —> Sety of the twisted arrow category.
Let € be a marked simplicial set. We define Tw*(C) to be the marked simplicial set whose
underlying simplicial set is Tw(C) and where a 1-simplex (3.1) is marked if both Z — X and
Y — W are marked in €. When C is a fibrant marked simplicial set the map Tw*(€) — CPx @
is a marked left fibration and in particular Tw*(C€) is fibrant in Set}.

Let us now introduce an analogue of the above construction for (oo, 2)-categories. Let C €

12
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CatSetZ be a fibrant marked-simplicial category. We denote by Ct, the marked-simplicial cate-
gory with the same objects and mapping objects defined by Cry(x,y) = Tw*(C(z,y)).

DEFINITION 3.3. Let C be a fibrant marked-simplicial category and let Maprp,, : C{ x Cpy —
SetA be the mapping space functor. We define the twisted 2-cell co-bicategory as

Tws(C) := Un" (Mapr,,),

where Un"(-) is as in Notation 2.12. We will also denote by Tw,(C) € (Seta)?® the underlying
unscaled simplicial set of Twa(C). We will refer to any Joyal fibrant model of Tw,(C) as the
twisted 2-cell co-category.

Remark 3.4. By Lemma 2.9 the scaled simplicial set Two(C) is a weak oo-bicategory. In fact, by
a recent result of | | any weak oo-bicategory is fibrant, i.e., an oo-bicategory. In particular,
Tws(C) is an co-bicategory.

Warning 3.5. The simplicial set Tw,(C) is not Joyal fibrant in general.

Remark 3.6. As explained in §2.1 we may consider Tw,(C) ~ |Twz(C)|; as a model for the
oco-category freely generated from the co-bicategory Twy(C). This can be used to give a more
explicit description of Tw,(C) in terms of Twy(C): indeed, the objects of Tw,(C) can be taken
to be the same as the objects of Twy(C), and for each pair of objects z,y the mapping space
from x to y in any Joyal fibrant model for Tw,(C) is the classifying space of the co-category
Mapry,(c)(@,y) (see Remark 2.4).

ExaMPLE 3.7. Let C be a simplicial category in which every mapping object is a Kan complex
and let Cty be the simplicial category obtained by applying the functor Tw to every mapping
object. Let C" be the marked-simplicial category obtained from C by applying the functor (-)!
to all mapping objects and let C,, be as above. Then all the triangles in N*¢(C/.,) and Twz(C")
are thin and the underlying map of simplicial sets Tw,(C’) — N(C°P) x N(C) reduces to
the left fibration classifying the Kan complex valued functor (z,y) — Tw(Mape(z,y)) (see
Remark 3.2). On the other hand, the map Cty — C induced by the codomain projection is
a trivial fibration of simplicial categories by Remark 3.2, so we obtain a pair of equivalences
Tw,(C') ~ Tw(C,,) =~ Tw(C). We may summarize the above discussion as follows: for an
(o0, 1)-category the twisted 2-cell co-bicategory Two(C) is actually an (oo, 1)-category which is
equivalent to the corresponding twisted arrow category. Similarly, if N(C) is an oo-groupoid
then the twisted 2-cell co-category of C is equivalent to N(C) itself.

Remark 3.8. If F:D — Setx and §:E — Set; are two Set-enriched functors, then
Un*(ppF x p§) = (prsep Un™(F)) xnse(p)xnse(m) (Prscr Un™(9)) = Un*™(F) x Un*(9)

where pp : DxE — D and pg : D xE — E are the two projections and similarly for pysep and
pnseg. This is because Un® is right Quillen and is compatible with base change. Consequently, if
C,C’ are two marked simplicial categories then

Twa(C x C") ~ Twa(C) x Twa(C") and  Tw,(CxC") ~ Twy(C) x Tw,(C").

When C is a (strict) 2-category, Proposition 2.15 shows that its twisted 2-cell bicategory is a
strict 2-category as well:

PRrOPOSITION 3.9. For a 2-category C, there is a natural equivalence of oo-bicategories

TW?(C) ~ Np (_[Cop Ma‘p(CTw(_7 _)) .

Tw X~ Tw

13
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When C is a strict 2-category we can the Grothendieck construction model for Two(C) of
Proposition 3.9 to give a more explicit description of the latter. In particular, in this case Two(C)
is the 2-categorty whose

— objects are 2-cells [0 : f = g] between two parallel parallel 1-morphisms f, ¢ in C:

— l-morphisms [o: f = g] — [0’ : f' = ¢'] are tuples (70 : po = qo, 71 : P1 = q1,, ) where @ :
f"=pifpo and ¢ : q19q0 = ¢’ are 2-cells such that the composite f’ 5 p1.fPo g 41990 ;/; g

is o’

— 2-morphisms (70 : po = qo,71 : P1 = qu, %) = (70 : Py = qo, 71 Py = qp, W) are
tuples (o : pi = pi, Bi * ¢ = q)i=0,1 such that 7/ = B; o 7; 0 ; and such that the composite

Id Id !
f! 4 1P} e p1fpo is equal to ¢ and the composite g1 gqo ﬁl:>ﬁ0 41949 i g’ is equal to ¥:

3.1 Examples

Let (A,-) be an abelian monoid (in sets) and let B2A be the strict 2-category with a single
object, a single 1-morphism and A as 2-morphisms. Then the strict 2-category (B?A)t has a
single object whose endomorphism category is the category Tw(BA) = A\A/A whose objects
are elements a € A and whose morphisms are given by b, = (b_,b,) : a —> b_ab, for b_,b, € A.
The composition is given by by o b, = (bb) = (b-b",b,b’) and the multiplication in A makes
this a monoidal category. Using Proposition 3.9 we may identify the twisted 2-cell co-bicategory
Two(B2A) as the strict 2-category with

(0) objects a € A.

14
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(1) morphisms (b,¢,d.) : a — d_(bac)d,, where b,c € A\AJ/A and d. : bac — d_(bac)d, is a
morphism in A\A/A.

(2) 2-morphisms (ey, f1) : (b,c,dy) — (e_bey, f-cfy,d.), where ey : b —> e_be, and f, :c —>
f-cf+ are morphisms in A\A/A such that

ds =e.d, fi.

We may suggestively depict a 2-morphism (e, f+) : (b,¢,ds) — (e-bey, f-cfy,dL) = (V',c,d.)
as a commuting diagram

The twisted 2-cell co-category Tw,(B?A) of B?A is then the co-category freely generated by the
above 2-category Two(B2A), i.e., its objects are the elements a € A and

Mapry,, (52.4)(a,a") = [Mapry, @24 (a,a’)|

is the classifying space of the mapping category from a to a’ described above (see Remark 2.4). To
obtain a somewhat simpler description of Twy(B2A), let us consider the following construction:

CONSTRUCTION 3.10. Let € be the category whose objects are pairs (b, z) € A% and morphisms
(b,z) —> (b, ") are tuples e, € A2 such that b’ = e_be, and = = e_z’e,. The product in A endows
& with the structure of a monoidal category. Let BE be the 2-category with one object whose
endomorphism category is € and consider the projection

w:DA::fEE?AHIB%E

where F4 : BE — Set ¢ Cat is the 2-functor which sends the unique object of BE to the
underlying set of A and the morphism (b,z) to the map my, : A — A sending a — bazx.
Unwinding the definition of the Grothendieck construction (see §2.2) we see that the 2-category
D 4 admits the following description: the objects of D 4 are the elements a € A and the mapping
category Mapp, , (a,a’) has

(0) objects given by tuples (b, z) € A% such that baz = a’.
(1) morphisms (b, x) —> (b',z") given by tuples e, € A? such that b’ = e_be, and = = e_2e,.

All compositions are given by multiplication in A. We will use a commuting diagram

z’ 4

to depict a morphism ey : (b,z) — (b',2") in Mapy , (a,a’).

Let 7 : Twy(B2A) — D4 be the 2-functor which is the identity on objects and is given on
mapping categories by the functors

Ta,a’ * Mapry, 2.4y (a,a’) —=Mapy, (a,a’); (b,¢,ds) —— (b,d-cdy)

whose value on an arrow (ey, fi) : (b,c,dy) — (b, ', d}) is ey : (b,d_cdy) — (b',d.c'd,). We
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can depict the behavior on morphisms diagrammatically as

d’, ¢ . v ddd, v

We claim that each 7, 4 is cofinal. Indeed, observe that the functor 7, o is a Cartesian fibration:
given a tuple (V/,c',d}) and a map e, : (b,x) — (V',d_.c'd), a Cartesian lift is given by the
following picture:

dies c e-d. b z b

d, ¢ d b add, v

It therefore suffices to show that the fiber of 744 over each (b,z) € Mapyp , (a,a’) has a weakly
contractible classifying space. Unraveling the definitions, the fiber over (b, z) is the category with

(0) objects given by tuples (c,d.) € A* such that d_cd, = =
(1) morphisms given by f; : (¢,d.) — (¢, d}) such that d, = f.d’,,¢' = f_cf, and d_=d" f_.

This category has a terminal object, given by (¢,d-,d,) = (x,1,1). We conclude that the fibers
of m, 4 are weakly contractible, so that m, . in indeed cofinal.

We may now conclude that the twisted arrow category T_WQ(BZA) is equivalent to the oo-
category freely generated from the 2-category D4, i.e., the oo-category whose objects are the
elements a € A and whose mapping spaces are the classifying spaces | Mapp,, (a,a’)| of the map-
ping categories of D 4. We note that the functor F4 : BE — Set used to construct D4 clearly
factors through the oco-category |BE|; = B|E| freely generated from BE, so that the twisted 2-cell
category admits a left fibration

(3.11) Tw, (B24) = [Daly 25 B¢
which is classified by the induced functor F 4 : B|€| — Set.

Remark 3.12. The monoid in spaces |€| and the functor F 4 both admit conceptual descriptions.
Indeed, the nerve of the category € is naturally isomorphic to the two-sided bar construction
Bar gopx 4 (A, A) which computes the Hochschild homology space [¢1 A = A ® gorxa A of A (see
also [ , §5.5.3]). Since A is commutative, we can consider it as an Es-monoid in spaces.
In this case, [ g1 A inherits a monoid structure and by | , Theorem 3.16] we may identify
|€] = [q1 A with the enveloping monoid Envg,(A4) of A. From this point of view the functor
T4 :B|€| = BEnvg,(A) — Set admits a very simple description: it is the functor which encodes
the canonical action of Envg,(A) on A.

Remark 3.13. The description of Tw,(B2A) as the left fibration associated to the action func-
tor BEnvg,(A) — Set should hold more generally for A an Es-monoid in spaces (where Set
is replaced by the oco-category of spaces). This can in principle be proved following the same
argument as outlined above in the discrete case, using a description of the mapping categories
in Twy(B?A) analogous to that given in Remark 6.3.

EXAMPLE 3.14. Suppose that A is an abelian group. Then for every a,a’ € A, an element in
Mapy , (a,a’) is determined uniquely by an (arbitrary) element b € A. It follows that Mapy, (a,a’) =
A\A/A ~BA for every a,a’ € A and hence Two(B*A) ~ Tw,(B?A) ~ B2A (see also Example 3.7).
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ExAMPLE 3.15. Consider the case where (A,-) = (N, +). We claim that the twisted 2-cell category
of B2N can be identified with the oo-category whose objects are elements n € N and whose
mapping spaces are
& m>n
MapTJQ(EzN)(m, n) = * m=n
S'=BZ m<n
where all compositions arise from the multiplication of S!. To see this, let Dy be the 2-category
constructed above for the monoid A = N, so that we can identify Tw., (B2N) with the co-category
obtained by replacing the mapping categories of Dy by their classifying spaces. Now the mapping
category Mapp, (m,n) has
(0) objects b e N with 0 <b <n-m (encoding the pair (b,n —m —b) in Construction 3.10).
(1) morphisms b — b’ given by e € N with 0 < e <b' - b (encoding the pair e, = (e,b’ —b—e) in
Construction 3.10), with composition given by addition.

It is then clear that Mapp, (m,n) is empty when m >n and a point when m = n. Now consider
the functor

JF : Mapp(m,n) —— Z — Torsors; (b = b’) — (Z =5 Z).

Then F induces a map on classifying spaces |F| : | Mapp(m,n)| — |Z — Torsors| ~ S*. We claim
that |F] is a weak equivalence as soon as m < n. To see this, consider the corresponding principal
Z-bundle

C:= fMapD(m,n) F Mapﬂ)(m’ TL)
To show that |F| is a weak equivalence it will suffice to show that |C| is weakly contractible.
Unraveling the definitions, one finds that C is the poset with
(0) objects (b,z) with 0<b<n-m and z € Z.
(1) (b,2) < (V',2") if and only if 0 < (2' - 2) < (b’ - b).
The projection € — Mapp (m,n) sends (b, z) < (b',2') to the arrow 2z’ — 2z : b — b". The functor
Ce—s (Z,<)%; (b, 2) —> (b-2,2)

identifies € with the subposet of Z x Z of tuples (p,q) with 0 <p+qg<n-m.

Let €’ be the subposet of tuples (p,q) with 0 < p+ ¢ < 1, which is just an infinite zig-zag of
spans

T T T oy

In particular, €’ is weakly contractible. On the other hand, the inclusion €" ¢ € is coinitial: indeed,
for every (p,q), the comma category C'/(p,q) is a subposet of €', given by a finite composition
of zig-zags
_(-40) e
(-4,9) (1-4¢,9-1) (p,-p)
which are weakly contractible posets. We may then conclude that € is weakly contractible and
hence that || : |[Mapp(m,n)| — S is a weak equivalence, as desired.

ExaAMPLE 3.16. Combining Example 3.15 with Remark 3.8 we get that the twisted 2-cell category
of B2N* can be identified with the co-category whose objects are elements (ny, ...,n;) € N¥ and
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whose mapping spaces are

@ Jilm; > n;
MapTJz(BQN)((mlv s M), (N1, e )) = { (Sl){izl,---,klmi<m} Vi W; < nzl

4. Quillen cohomology of (o, 2)-categories

In this section we will prove the main theorem of this paper: given an (oo, 2)-category C (see §2.4),
we identify the oo-category T Cat( 9) of parameterized spectrum objects over C with the oo-
category of functors Tw,(C) — Sp from the twisted 2-cell co-category of C to spectra.

THEOREM 4.1. Let C be an (o0, 2)-category. Then there is a natural equivalence of oco-categories
Te(Cat(a,2)) — Fun(Tw,(C), Sp)

from the tangent oco-category to Cat(. 2y at C to the oco-category of functors from Tw,(C) to
spectra.

ExXAMPLE 4.2. Let A be a discrete commutative monoid considered as an Eo-monoid in spaces
and let Envy,(A) be its associated enveloping monoid (which is usually no longer discrete). As
explained in Remark 3.12, the twisted 2-cell category Tw, (B2A) is equivalent to the unstraight-
ening of the functor BEnvg,(A) — Set which encodes the canonical action of Envg,(A) on
itself, or, alternatively, the canonical Es-action of A on itself. We may hence identify functors
Tw,(B?A) — Sp with A-indexed families {X,}4ca of spectra which are Envg, (A)-equivariant
with respect to the action of Envg,(A) on A (or equivalently, which are A-equivariant with
respect to the Eg-action of A on itself).

Remark 4.3. The description of Tpe4 Cat( 2) appearing in Example 4.2 shows that it coin-
cides with the tangent to the co-category of Es-monoids at A: indeed, the latter can also be
identified with Envg, (A)-equivariant parameterized spectra over A by | , Theorem 4.3.3]
(see also | , Corollary 1.0.3]). Alternatively, one can probably also prove directly that
Tp24 Cat(e 2y = Tp24 Mong, without computing both sides by using an argument similar to the
one used in | , Proposition 3.1.9], as well as a suitable identification of Ep-monoids as a
full subcategory of pointed (oo, 2)-categories.

Theorem 4.1 will be deduced from a more concrete statement, involving the model cate-
gorical presentations of abstract parameterized spectra discussed in §2.4. We will present the
oo-category Cat(. 2y by the model category Cat} of marked-simplicial categories and the oco-
category Fun(Tw,(C),8) in terms of the covariant model structure (see | , §2]). To simplify
the expressions appearing throughout this section, let us introduce the following notation:

NOTATION 4.4. Let X be a marked simplicial set. We will denote by

Setx := (Set} );;); and Sp™ :=Sp ((SetX )«) = Sp ((SetZ)E?}’/X)
the marked covariant model structure on marked simplicial sets (Definition 2.21) and the model
category of spectrum objects therein, respectively. When X is an unmarked simplicial set, we

will use Setf and Sp~ to denote (SetA)%’}’ and the model category of spectrum objects therein.

The above notation is meant to be suggestive of the fact that Sp”* is a model categorical
presentation of the oo-category of functors X — Sp, when X is a simplicial set or a fibrant
marked simplicial set (see also Warning 2.17).
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Remark 4.5. Let X be a marked simplicial set and let X be the underlying simplicial set. Lemma
2.19 provides Quillen equivalences Set)A( ~ Set% and Sp~ ~ Sp&

We will prove the following model-categorical reformulation of Theorem 4.1:
THEOREM 4.6. For every fibrant marked-simplicial category C there is a Quillen equivalence

Fe: Sp¥e(®) T J¢ Cath : Uc

which is natural in C in the following sense: for every map f : C — D of fibrant marked-simplicial
categories with induced map ¢ : Tw,(C) — Tw,(D) on twisted 2-cell co-categories there is a
commuting square of right Quillen functors
TD CatA —> SpTWQ(D)
(4.7) f*t ls@*
Tc Caty - SpTW2(C)
Here the functor f* takes the pullback of a parameterized spectrum object over D along f and
©* takes the pullback of a spectrum of left fibrations See —> Tw, (D) along .

Theorem 4.1 arises from a two-stage reduction: we first identify the tangent oo-category
Jc Cat(o 2y in terms of the tangent oo-categories to Cat(s, 1), and then identify these further
in terms of the tangent oco-categories to Cat(s ) ~ 8. More precisely, given a fibrant marked-
simplicial category C, we will produce the Quillen equivalence of Theorem 4.6 in several steps,
as follows:

(0) By | , Corollary 3.1.16], the tangent category J¢ Cat} is Quillen equivalent to the
model category of Setx-enriched lifts of the form
T Set i
_ 7
(4.8) T l
op g +
(C X (C Mapc _7_) SetA

where T Setj —> Setj is the tangent bundle fibration of Set;.

(1) For each fibrant simplicial set X, the tangent category Tx Seti is Quillen equivalent to
Sp™ (X) by the results of [ , §3.3] and Lemma 2.19. In §4.1, we will describe a
direct right Quillen functor fRip : Tx Seth — Sptw () exhibiting this equivalence and
we will show that these Quillen functors assemble into a global right Quillen functor RSP :
T Seth — [y Sp~

(2) In §4.2 we show that postcomposition with the functor RP induces a Quillen equivalence
between the model category of lifts as in (4.8) and the model category of enriched lifts of
the form

X
/XeSet*A Sp
_ 7
(4.9) -7 l

CH, x Cry Set}; .

Mapc,. (~-)
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(3) Finally, in §4.4 we identify the model category of enriched lifts as in (4.9) with the stabiliza-
tion of a certain model structure on marked-simplicially enriched functors C%“’N X Cpy —
Set; over the mapping space functor Mapg,, - In turn, this model category is equivalent (al-
ready before stabilization) to the model category Setzf%((c) (

the result follows.

Proposition 4.42), from which

4.1 The tangent bundle of marked simplicial sets

Our goal in this section is to prove Proposition 4.11, identifying the tangent bundle of the
category Sety of marked simplicial sets endowed with the categorical model structure.

CONSTRUCTION 4.10. Consider the (co)Cartesian fibrations
evy : (Setg)m —> Set A and evy : (SetZ)(NXN)* —> Set A

which classify the functors X ~ (Setx)/x and X ~ ((SetZ)X//X)NXN. By | , Lemma
3.11], these functors have the structure of relative model categories, where the domain carries
the Reedy model structure induced by the categorical model structure on Set} (here [1] has
the Reedy structure with only decreasing maps). Let us consider the following two left Bousfield
localizations of these Reedy model structures:

— Let LFib be the localization of (Setg)m whose local objects are the marked left fibrations
Y — X, where X is a fibrant marked simplicial set. By Remark 2.24, this can be obtained
by localizing with respect to the set of maps

h1><L H ho><K—>h()><L
h1><K

where h; = Map(i,~) is the corepresentable functor and K — L is either (AD)" — (A™)" or
(A1) — (AhE
— Let LFibg, be the localization of (SetZ)(NXN)* whose local objects are the parameterized €2-

spectrum objects X, —> X, over a fibrant object X, where each X,,, — X, is a marked
left fibration. Explicitly, this can be obtained by first localizing to get the model category

T Setx (see §2.4 and | , Theorem 3.10]), and then localizing further at the maps
he x K [ hmpn x K — B x L
hexK

where K — L is as above.
It follows from | , Proposition 3.12] that the (co)Cartesian fibrations
LFib — Set} and LFibg, — Setx

are both relative model categories. The fibers over a fibrant object € € Sety are the model
categories Setg and Sp® of Notation 4.4.

PROPOSITION 4.11. There is a commuting square of right Quillen functors

S
TSetk ——> LFibg,

]

SetZ T_W+> Set*A

20



QUILLEN COHOMOLOGY OF (00,2)-CATEGORIES

where the top functor induces a Quillen equivalence Te Set — SpTW+(e) between the fibers, for
each fibrant marked simplicial set C.

The remainder of this section is devoted to the proof of Proposition 4.11. Let us start by
proving that the bottom horizontal arrow of (4.12) is a right Quillen functor.

PRrOPOSITION 4.13. The functor
Tw" : Sety —> Set

is a right Quillen functor with respect to the categorical model structure.

LEMMA 4.14. Let p: X — Y be a map of marked simplicial sets and let
R (Y) :=Tw (V) xyopxy XP x X

equipped with the natural maps q: Tw™(X) — R%(Y) and ¢’ : R (Y) — Tw*(Y'). Then the
following assertions hold:

(i) If p is a trivial fibration in Set}, then q and ¢’ are trivial fibrations in Set}.

(ii) If p is a fibration in Sety, then q is a marked left fibration and ¢’ is a fibration in Set}.

Proof. We first note that ¢’ is a base change of X°P x X — Y°P x Y, so the claims concerning
q' are obvious. Furthermore, by construction the marked edges of Tw*(X) are exactly the edges
whose image in R (Y') is marked. Let p and g be the maps of simplicial sets underlying p and ¢
respectively. It will hence suffice to show that (1), if p is a trivial Kan fibration then g is a trivial
Kan fibration and that (2), if p is a Joyal fibration then g is a left fibration.

By construction the functor Tw : Seta —> Seta admits a left adjoint F' : Seta — Seta,
given on simplices by F(A™) = (A™)°P + A", Let G : Seta — Seta be the functor G(X) =
XC°PIIX. Then the functor F receives a natural transformation G(X) = F(X) which is adjoint
to the natural transformation Tw(X) — X° x X. Claim (1) about § is now equivalent to
F(0A™) goary G(A™) — F(A™) being a cofibration, which can be directly verified. Similarly,
to prove Claim (2) about g it suffices to show that F'(A{") gar) G(A™) — F(A™) is an inner
fibration for 0 < i < n. This part is indeed verified in the proof of | , Proposition 5.2.1.3]
(where the map in question is denoted K — A27+1), O

Proof of Proposition 4.15. By Lemma 4.14(i) Tw" preserves trivial fibrations and by Lemma 4.14(ii)
and Remark 2.24 it preserves fibrations between fibrant objects. The result then follows from
[ , Proposition 8.5.4]. O

Given a marked simplicial set X, the construction of Lemma 4.14 defines a functor
R (Seth) xjx —=Setn” Ni REL(Y) = Tw (¥) xyorxy X x X,
The map RL(Y) — Tw"(X) is induced by the structure map ¥ — X.
PROPOSITION 4.15. For any X € SetA, the functor

Tw* (X
Ry = (Seta) x/x — Setp (X

is a right Quillen functor.
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Proof. Unwinding the definitions, one sees that for any map X — Y — Z — X in (Set}) y ne
there is a pullback square of marked simplicial sets (over Tw* (X))

Ry (V) — Tw* (1)

L]

RE(Z) —= RE(2).

It then follows from Lemma 4.14 and Remark 2.22 that R preserves trivial fibrations and
fibrations between fibrant objects, so that the result follows from [ , Proposition 8.5.4]. [0

Remark 4.16. Let f:Y — X be amap in Set} and let ¢ : Tw*(Y) — Tw™*(X) be the induced
map. For any retractive object X — Z — X, there is a natural isomorphism

Ry (Z xxY) 2R (Z) X Tyt (X) Tw*(Y).

In other words, there is a natural isomorphism Ry o f* = ¢* o R%.

Let us now consider the functors iREg’ = Sp(R%) : Sp((SetA) x//x) — Sp™ (X) arising from
Proposition 4.15.

ProposiTIiON 4.17. The functors .’Rip assemble to a right Quillen functor
R TSeth —> LFibgp;  RP(X)pm = R, (Xnm)
covering the right Quillen functor Tw™ : Setj —> Setj, where LFibg,, is as in Construction 4.10.

Proof. Let us first verify that RSP is a right Quillen functor for the Reedy model structures, of
which both TSet; and LFibg, are left Bousfield localizations. Recall that a map f:Y — X
of (N x N),-diagrams is a (trivial) Reedy fibration if Y, — X, is a (trivial) fibration and each
matching map M, ) (f) : Yinn — Xmn xx, Ye is a (trivial) fibration in SetA. If this is the
case, then the map
RP(Y), = Tw* (V) — Tw' (X,) = RP(X).

is a (trivial) fibration in Set} by Proposition 4.13. Furthermore, for each (m,n) we can use
Remark 4.16 to identify the matching map RP(Y ), — RSP(X)mn XRSP(X)s RP(Y), with
the map

R
(4.18) Ry (Yimn) R (X xx, Ya).

This map is a (trivial) marked left fibration in Set) by Proposition 4.15. By Remark 2.24, this
marked left fibration (4.18) is a categorical fibration in Set} when X and Y are Reedy fibrant,
so RSP preserves trivial fibrations and fibrations between fibrant objects. This means that it is
right Quillen for the Reedy model structure by [ , Proposition 8.5.4].

To see that R is right Quillen for the localized model structures, it remains to be shown
(by | , Proposition 8.5.4]) that it preserves local objects. Suppose that X is a Reedy fibrant
object which is local in TSetj, i.e. Xeo — X, is a parameterized 2-spectrum object. Since
R%, is right Quillen by Proposition 4.15, its image R (Xeo) — Ry, (X.) = Tw'(X,) is an

Q-spectrum Set£W+(X*). By Remark 2.24, this is precisely a parameterized (2-spectrum of marked
simplicial sets, each left fibered over Tw(X.), i.e. a local object is LFibg,. O
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PROPOSITION 4.19. Let € be a fibrant marked simplicial set. Then the right Quillen functor R§
of Proposition 4.15 induces a right Quillen equivalence

Re” = Sp(RE) :Sp ((Seth)ee) — Sp™ (@ = Sp ((Sery™ ©).).

Proof. Let C be the Joyal fibrant simplicial set underlying €. Since forgetting the marking gives
right Quillen equivalences (see Remark 4.5)

(SetA)esje — (Seta)eye and Sp™ (O s gpTV(©)

it suffices to show that the unmarked analogue of Rg

Re : (Seta)gge — Seta" 5 Re(Y) = Tw(Y) xyor.y € x €

induces a right Quillen equivalence after stabilization. Since the covariant (resp. slice-coslice)
model structures over weakly equivalent quasicategories are Quillen equivalent, we may replace
C by an equivalent quasicategory and assume that € = N(A) for some fibrant simplicial category
A. Tt then suffices to show that the composite with the nerve (which is a Quillen equivalence)

N o R w(N(A
(4.20) (Cata)aia —= (Seta) Py oy — = Set "

induces a right Quillen equivalence on stabilization. The right Quillen functor (4.20) is naturally
equivalent (over fibrant objects) to a somewhat more accessible Quillen functor. To see this, recall
the following construction from the proof of | , Proposition 5.2.1.11]: for every simplicial
category B, there is a map of simplicial sets over N(B) x N(B°P)

By : Tw(N(B)) — Un(Mapg)

from the twisted arrow category of N(B) to the unstraightening of the mapping space functor
Mapg : Bx BP — Seta. Furthermore, 83 is an equivalence of left fibrations over N(B) x N(B°P)
whenever B is fibrant. Now (5 depends naturally on B and so for every retract diagram A —
B — A there is a commuting square of simplicial sets over N(A)°? x N(A) of the form

B/
TW(N(B)) XN(BoP)xN(B) N(‘Aop) X N(‘A) —> Un(MapB) X XN(BOPYXN(B)

| |

Tw(N(A)) i Un(Mapy)

N(A°P) x N(A)

where 653 is simply the base change of 5. When B — A is a fibration the horizontal maps are
equivalences of left fibrations over N(A)°P x N(A).

Note that the left vertical map in (4.21) is the map Rya)(N(B)) — Ryea)(N(A)) ob-
tained by applying Ry4) to N(B) — N(A). Furthermore, the naturality of the unstraight-
ening [ , Proposition 2.2.1.1] implies that the top right corner is naturally isomorphic to
Un(S*(B)), where G*(B) : A x A°P —> Setp is the restriction of Mapg to A x A°. The right
vertical map is then obtained by applying Un to the projection G*(B) — Map,. In particu-
lar, we deduce that both vertical maps are fibrations when B — A is a fibration of simplicial
categories.

The map into the pullback of (4.21) therefore yields a map of simplicial sets over Tw(N(A))
8 Ry (N(B)) — 85(Un(5%(B)))
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which depends functorially on B € (Cata)4//4 and is a weak equivalence when B is fibrant over
A. In other words, v determines a right Quillen homotopy from (4.20) to the composite right
Quillen functor

N(A°P)xN(A)

A ~ w
(Cata)a//a 5, Fun(A°P x A, Seta)vap, — (Set 2 (N

) mwniay St
The second functor takes the unstraightening over A°°?xA and pulls back along 84 : Tw(N(A)) —

Un(Map,) and the last right Quillen equivalence is given by the identity functor on the under-

lying categories (see the discussion in [ , §3.3]). It therefore suffices to verify that this
composite right Quillen functor induces a Quillen equivalence after stabilization. But this is
precisely the content of | , §3.3], using | , Theorem 3.1.14]. O

Proof of Proposition 4.11. Combine Proposition 4.13, Proposition 4.17 and Proposition 4.19. [

4.2 Categories of lifts

If C is a marked-simplicial category, then | , Corollary 3.1.16] identifies the tangent cat-
egory J¢ Catj with the model category of marked-simplicially enriched lifts of the form

T Set A

_ 7
(4.22) T L
€% x € —— Set?
) Mapc(-,-) oA
At the same time, Proposition 4.11 identifies the tangent bundle projection T Sety, — Set with
the ‘homotopy pullback’ of the projection

(4.23) LFibg, — Set}

along the functor Tw" : Setj —> Setj: for every fibrant marked simplicial set €, the fiber
TeSet} is Quillen equivalent to the fiber of (4.23) over Tw*(€). However, since the functor
R T Set} —> LFibgp, is not Setj-enriched, the image of an enriched lift as in (4.22) will not
yield an enriched lift against (4.23) over C°P x C. Instead, a lift as in (4.22) yields an enriched
lift against (4.23) over the marked-simplicial category Cry obtained by applying Tw™ to the
mapping objects of C (see (4.30) for the precise formula in a more general setting). Our goal in
this section is to prove the following proposition, which states that the passage between these
two types of lifts is in fact a right Quillen equivalence:

PROPOSITION 4.24. Let C be a fibrant marked-simplicial category. Then postcomposition with
the functor R of (4.12) induces a right adjoint functor

(4.25) Liftatap, (C* x C, T Set} ) — Liftuap,, (CP, x Cry, LFibgy,)
between the categories of Setx-enriched lifts (4.22) and of Set -enriched lifts
LFibg,
_ 7
(4.26) -7 l

CP, x Cpyy ———— Set}a .
Tw =TTV Mape,, (-) T8

This right adjoint is a right Quillen equivalence when both categories of lifts are endowed with
the projective model structure. In particular, the right hand side of (4.25) is a model for T¢ Cat;.
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The proof of Proposition 4.24 will be given below, in the form of the more general Propo-
sition 4.34. To formulate the latter, we will pass to a mildly more general setting, in order to
avoid possible confusion between the two appearances of Sety (as the domain and codomain of
the functor Tw"). Let S, T be symmetric monoidal model categories and let R : T — S be a
symmetric monoidal right Quillen functor, with left adjoint £. Consider a commuting square

NZ 5 M
(4.27) ”l ) lp
TZ s

where 7 and p are (co)Cartesian fibrations (i.e., fibrations which are both Cartesian and coCarte-
sian) that exhibit M and N as relative model categories over S and T. In particular, the fibers of
7 and p are model categories and an arrow « : s — s’ induces a Quillen pair oy : My T My : a*
between the fibers (see | , Lemma 3.6]). Let us assume that all fibers My and N; are
combinatorial and that the square has the following properties:

(i) G is a right Quillen functor with left adjoint F and the Beck-Chevalley map Lop = 1o F is
a natural isomorphism.

(ii) The category M is tensored over S in such a way that tensoring with a fixed object preserves
coCartesian edges and p preserves the tensoring. In other words, each object s € S induces
functors s ® (=) : My —> Mgy for every s’ € S and these functors commutes with the
various «y. In addition, we require that each functor s ® (-) : My — Msgs is a left Quillen
functor which preserves weak equivalences and fibrant objects. Similarly, N is tensored over
T, with the same properties.

(iii) The functor G preserves the tensoring in the sense that we have natural isomorphisms R(t) ®

G(B) — §(t® B) for t € T, B € N, which satisfy the usual compatibility conditions with
respect to the monoidal structure of T.

Remark 4.28. Condition (i) implies that G preserves relative limits and F preserves relative
colimits. In particular, § preserves Cartesian edges (and F preserves coCartesian edges) and
induces right (Quillen) functors G; : N; — Mgy on fibers. We will denote by F; : Mgy — Ny
the corresponding left adjoint, which first applies & and then changes between fibers along the
counit map via (€)1 : Neg(r) — Ni.

Remark 4.29. The square (4.12) indeed satisfies the above conditions, where the actions of
T = Sety on N = TSety and of S = Setj on M = LFibg, are both given by the levelwise
Cartesian product S ® X,e = S x X,e. Note that (i) holds because R = Tw* and G = RS commute
with the right adjoints of = and p, which send X € Set to the constant (N x N),-diagram on X.

Now suppose that J is a fibrant T-enriched category and let ¢ : J — T be an enriched
functor: for every i € J we have an associated object ¢(i) € T and for every i, € J we have a
structure map ¢(7,7) : J(i,7) ® ¢(i) —> ¢(j) such that the usual compatibility conditions hold.
Applying the functor R, we obtain an S-enriched functor ¢4 : Jg — S. Here Jg is the S-enriched
category with the same objects as J and mapping spaces Jx(i,7) = .’R(J(i,j)). The functor ¢4 is
given on objects by ¢x(i) = R(qﬁ(z)) and with structure maps ¢x(,7) given by

In(i,7) ® dn(i) = R(3(i, 7)) @ R(H(1)) > R(I(i,5) ® 6(1)) " 25 R(6())) = dm(5).
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Let Lift;l:(ﬂ, N) and Lif‘c(sb92 (Ix, M) be the categories of T-enriched (resp. S-enriched) lifts

N M

There is a functor G, : Lift;f(f] ,N) — Lift(sz)jz (I, M), which applies the functor § pointwise. More
precisely, if f:J — M is a T-enriched lift of ¢, then G.(f)(i) = §(f(i)) and for any 4,j € I,
the action of maps is given by

(430) Ta(is) ® 5. (/)(0) = ROG.1)) ® S(/(1) — = 9300 ) @ (1) = (£ (1))-

In particular, G, fits into a commuting square

G

Lift} (3,N) Lift3 (Jx, M)
(4.31) BVNL levm

ITies N (i 5 [Tics M (i)

where G, = [T;es G4(s) 1s given by pointwise applying the corresponding functors G; (see Remark
4.28). The functors evy and evy evaluate a section on the objects of J.

LEMMA 4.32. The category Liftg(ﬂ ,N) carries a combinatorial model structure (the projective
model structure) such that

ey« Lifty (3, N) — TTies Ny (i)

is both a left and a right Quillen functor, which preserves and detects weak equivalences and
fibrations. Similarly for Lift(sb (O, M).

Proof. The functor evy can be identified with the functor that restricts a lift along the inclusion
Ob(J) — J. Consequently, it admits both a left and a right adjoint, given by (enriched) left and
right Kan extension relative to ¢. Let us denote the left adjoint by Freey.

To describe this left adjoint, let i € J, a € Ny(;) and let us write a; € [T;ej Ng(;) for the tuple
(...,9,a,3,...) given by a at i and initial objects for all j # i. Then the lift Freex(a;) is given
by

(4.33) Freen(a:)(j) = ¢(i,5)1(I(i, ) ® a)

where 67, 7)1 : Noi,peo) — No()-

Note that the union of all maps a; — b; arising from generating (trivial) cofibrations a — b
in some Ny ;) serve as generating (trivial) cofibrations in [T;ej Ng;y- Since the functors ¢(3, j) and
J(i,7)®(~) are left Quillen (assumption (ii)), it follows that evy o Freex : [T;e Ngiy — Ties Ny (s)
preserves (trivial) cofibrations. The result now follows from the usual transfer argument. O

In light of Proposition 4.11 and Remark 4.29, Proposition 4.24 is now a special case of the
following assertion:

PROPOSITION 4.34. The functor
§. : Lift} (9, N) —> Lift3_(Jz, M)
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is a right Quillen functor, where both sides are endowed with the projective model structure.
Furthermore, if the Quillen adjunctions F; 4 G; are Quillen equivalences for all t € T of the form
(i) or 3(i,j) ® ¢(i), then G, is a Quillen equivalence.

Proof. Clearly G, preserves fibrations and weak equivalences, since it is given pointwise by the
right Quillen functors G;. Since G, is accessible and preserves limits, the adjoint functor theorem
provides a left adjoint F,, so that G, is right Quillen. Furthermore, if all the G; are Quillen
equivalences, then the right derived functor RS, detects weak equivalences (which are deter-
mined pointwise). It therefore suffices to show that the derived unit map id — RG,LF, is an
equivalence.

Since the evaluation functor evy, : Lift/’I(;):R(Jjg,M) — [Tieg Mg, (i) detects weak equivalences,
it suffices to show that the natural transformation

Revy — RevyRG, LT,

is an equivalence. Let X be the class of objects f in Liftiy(gjg,M) for which this map is an
equivalence. Since RS, and Revy preserve homotopy colimits (which are computed pointwise
by Lemma 4.32), the class X is closed under all homotopy colimits.

Since every object arises (up to weak equivalence and retracts) from a transfinite composition
of homotopy pushouts of maps L Freey(a;) — L Freey(b;), for cofibrations a — b in various
M, (i), it suffices to show that the class X contains all L Freeyt(a;). Let a € My, (;) be a cofibrant
object and let a; € [,y My, (i) be the induced object. The square (4.31) induces a commuting
square of left adjoints, so that there is an isomorphism of (cofibrant) lifts of ¢

fﬁ( ?reeM(ai)) = Jreey (-fﬂ (ai))

where F, is the left adjoint of G, given by pointwise applying Fg(i)- Using formula (4.33), we
have to verify that for every j € J, the map

dx (i, 5)1(Ir(i,5) ® a) —=RG 405y (¢(6, )1 @ Fy5(a))

is a weak equivalence. Let us denote ¢ := J(4, j), so that Ix(7,5) = R(t). Since Gy(;y is a Quillen
equivalence, the above map is an equivalence if its derived adjoint

(4.35) To(s) (6230 D(R() ® a)) —= $(i, )i(t ® Ty (i) (a))

is an equivalence (note that all objects involved are cofibrant, since a is cofibrant and R(t) ® (-)
is left Quillen by assumption (ii)). It follows from Remark 4.28 that

Fo(jy © O (5, 5)1 2 0(4, 7)1 0 Frgei)-
Under this isomorphism, the map (4.35) is the image under ¢(i, j); of the map between cofibrant
objects

§t®¢(z’) (fR(t) ® a) —t® \Ffd)(z) (a)

It therefore suffices to verify that this map is a weak equivalence in N;g4(;). Note that this is the
Beck-Chevalley transformation of the square

Se(i)

No(i) Mg i)
t®<—>l jszm@(—)
Nyi.j)es(i) Sror Ma(t)opm (i)
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Since Fyge(iy is a left Quillen equivalence, it suffices to verify that the derived adjoint map is
a weak equivalence. Unwinding the definitions, this derived adjoint can be identified with the
composite

R(t) =
(4.36) iR(t) ®a ﬂ>771R(Zf) ® 9¢>(2) (9(;5(2) (a)ﬁb) I 9t®¢>(i) (t ® de)(i)(a)ﬁb) .

Note that the codomain of this map indeed computes R9t®¢(i)(t ® fﬂb(i)(a)), because t ® (-)
preserves fibrant objects (see (ii)). The second map is the isomorphism from (iii) and the first
map is the image under ¢® (-) of the derived unit map 7 of the Quillen equivalence Fy;y ~ Gy (iy-
Since t® (—) preserves all weak equivalences (by (ii)), it follows that (4.36) is a weak equivalence,
which concludes the proof. O

4.3 Families of marked left fibrations

Proposition 4.24 identifies the tangent model category J¢ Cat; with a certain model category
of enriched lifts of a diagram of marked simplicial sets against LFibg, —> Setj. Informally, one
can think of an enriched lift of such a diagram JF : J — Setj as a collection of co-functors
gi : F(i) — Sp for each i € J, together with a coherent family of natural transformations

I(i,§) x F(i) —= F(i)

|

F() —5—5p-

To prove Theorem 4.6, we will show that the data of such a family of diagrams of spectra is
equivalent to the data of a diagram of spectra over the unstraightening of &F. This section is
devoted to a proof of a preliminary unstable analogue of this result:

PROPOSITION 4.37. Let J be a marked-simplicial category and let F : 3 — Sety be a projectively
fibrant diagram. Then there is a Quillen equivalence

StV : Set 3™ ) I Lifty (9, LFib ) : Un®®

between the marked covariant model structure over the scaled unstraightening of ¥ and the
projective model structure on enriched lifts of F against LFib — Set}, as in Lemma 4.32.

Let us start by describing the projective model structure on Lifts (J,LFib) in a bit more
detail. Since the projection LFib — Set} is simply given by the codomain fibration evy :

(Setg )[1] — SetZ at the level of categories, there is an equivalence of categories

Lifty (9, LFib ) ~ Fun*(J,Set} ) /5
between the category of lifts of  and the category of enriched functors J — SeNtZ over J. If
f:F — Fisamap of lifts of F, then f is a weak equivalence (fibration) if each f; : F(i) — F'(3)
is a weak equivalence (fibration) in the marked covariant model structure on (Set} );5(;).- Under

the above equivalence of categories, the projective model structure therefore corresponds to the
following model structure on Fun®(J, Set} ) s

DEFINITION 4.38. Let F: I — Set be a projectively fibrant enriched functor. We will denote by
Fun* (7, SetZ)ﬁ" the model category of enriched functors over F, in which amap § — H — F

is a weak equivalence (fibration) if and only if each §(i) — H (1) — F(i) is a weak equivalence
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(fibration) in the marked covariant model structure on (Set} ) /(;)- We note that Fun* (7, Setg)i‘;"

proj

i and is hence

has the same trivial fibrations and more weak equivalences than Fun(J, Set} )
a left Bousfield localization of the latter.

Given a projectively fibrant functor F: J — Set}, the straightening-unstraightening equiva-

lence of | | (recalled in §2.2) induces a Quillen equivalence on slice model categories
. 1 = j .
(4.39) St ((Seth) e 1)) e < Fan (3, Set )7 Un.

It will be useful to describe the left hand side of (4.39) in terms of a suitable categorical pattern
model structure. For this we will make use of the following general lemma concerning categorical
pattern model structures:

LEMMA 4.40. Let S = (S, Es) be a marked simplicial set, Ts a collection of triangles in S and
B = (S, Eg,Ts) the associated categorical pattern (see §2.2). Let p: X = (X,Ex) — S be an
object of (Setj )y If X is ‘P-fibered then the natural equivalence of categories ((Setg)/m) /X
(Sety),x identifies the slice model structure on the left hand side with the model structure
associated to the categorical pattern p*8:= (X, Ex,p ' (Ts)) on X.

Proof. Since both model structures have the same cofibrations, it suffices to show they have
the same fibrant objects. In other words, we need to show that a map ¢ : Y — X of marked
simplicial sets over S is a fibration in (Set ) q if and only if is has the right lifting property with
respect to all p*P-anodyne maps in (Set}) /x- By the construction of p™3 we see that a map is
p*P-anodyne if and only if it forgets to a P-anodyne map in (Set}) /s- 1t therefore suffices to
show that ¢ is a fibration in (Sety ),q if and only if is has the right lifting property with respect
to all P-anodyne maps.

One direction is clear, since every B-anodyne map is a trivial cofibration in (Set}) /p- To
prove the other direction, assume that ¢: Y — X has the right lifting property with respect to
all P-anodyne maps. We wish to show that ¢ is a fibration in (Setg)/m. Leti: A— B be a
trivial cofibration in (Setj )y and consider the diagram of mapping spaces

Mapftg(B7 Y) — Map[jg(Bv X) XMapuS(A,X) Map’:'s‘(A7 Y) L Map[jg(A7 Y)

It suffices to verify that 7 is a trivial Kan fibration. Note that the map w5 and the composite
mo1 are trivial Kan fibrations, since X and Y are both B-fibered over S.

On the other hand, the map 7 is a left fibration: indeed, this follows from the fact that
for every left anodyne map j : C — D, the map j' : C! — D! is P-anodyne, so that the
pushout-product of 7 and j! is P-anodyne as well. Since 7y is a trivial fibration, the fibers of 7
are equivalent to the fibers of mo7 and are hence contractible. We conclude that the left fibration
T is a trivial fibration. O

Using Lemma 4.40 we can reformulate (4.39) as follows. Let 3 = (Un**(¥), E,T'), where E is
the set of marked edges of Un**(F) and T is the set of triangles which map to thin triangles in
N*¢(J). Combining (4.39) with Lemma 4.40 we then obtain a Quillen equivalence

(4.41) St* : (SetA) /p = Fun*(J, SetZ)%oj : Un®.

In light of the above discussion, Proposition 4.37 can now be reformulated as follows:
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PROPOSITION 4.42. The Quillen equivalence (4.41) descends to a Quillen equivalence

StV : Se tUn ‘@ 2 = (Se tA)ﬁ}’ se(5) = L Fun™ (7, SetA)COV: n
between the model categories of Definition 2.21 and Definition 4.38.

Proof. Both model structures are left Bousfield localizations of the slice model categories ap-
pearing in (4.41), by Remark 2.24. By | , Theorem 3.3.20] it suffices to verify that a slice
fibrant object § — JF is local with respect to the left Bousfield localization on the right hand
side if and only if Un**(G) — Un®(F) is local with respect to the left Bousfield localization on
the left hand side.

Let us first show that a P-fibered p: Y — Un®**(F) is fibrant in (SetZ)?"{}’HSC () if and only
if py 1Y xnseqqy {7} — Un*(F) xnse(gy {7} is a marked left fibration for each i € J. Indeed,
each py;y is a marked left fibration if p is. Conversely, if p: Y — Un*(J) is B-fibered and each
pyiy is a marked left fibration, then Y — Un*(J) is a locally coCartesian fibration by | ,

Proposition 2.4.2.11]. In addition, the fibers of p are Kan complexes, so that all edges are locally

coCartesian and p is a left fibration by | , Proposition 2.4.2.8] and [ , Proposition
2.4.2.4].
Now, for each i € J, there is a commuting square (see | , Remarks 3.5.16, 3.5.17])
Fun(J,Set} ) —— (SetA)l/‘i\CISC(j)
G~5(1) lYHYXNS%{i}){i}
Unhc l
cc
Fun({:}, Set}) -9 (SetA)/NSC({i}).

It follows from the previous paragraph that Un*(G) — Un®(F) is a marked left fibration if
and only if Unf }(9(1)) — Un (9j (7)) is a marked left fibration for each i. It remains to verify
that this is equlvalent to G(i) — F(i) being a marked left fibration for each i. In particular, it
suffices to prove the claim for the case J = *.

In this case we may identify both Fun(*,Set;) and (Set})/nsc(x) with Sety (equipped with
the categorical model structure) and consider Un® as a right Quillen functor from Set} to itself.
By | , Proposition 3.6.1], there is a natural transformation Id = Un}® which is a weak
equivalence on fibrant objects, so that every fibration p : ¥ — X between fibrant objects in
Sety fits into a commutative diagram

Y —= - Uns(Y)
(4.43) Pl lUniC(p)
X —5- Un*(X).

We can think of this map as a weak equivalence between fibrant objects in the arrow category
(SetZ)[l], so that p is a local object in the left Bousfield localization LFib of Construction 4.10
if and only if Un3°(p) is a local object. The local objects of LFib are precisely the marked left
fibrations over fibrant marked simplicial sets, so the result follows. O
COROLLARY 4.44. There is a right Quillen equivalence

@cov . Llftff (J, LFlb) Fun (j SetA)COV — (SetA)7&sc(rf)-

Proof. Compose the Quillen equivalences of Proposition 4.42 and Lemma 2.19. O
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4.4 Proof of the main theorem

To conclude the proof of Theorem 4.6, we need a spectral analogue of Corollary 4.44. More
precisely, let F:J — Set be an enriched functor and consider the category of enriched lifts of
F against LFibg, — Set}, endowed with the projective model structure of Lemma 4.32. Recall
from Construction 4.10 that the underlying functor of LFibg, — Set is given by the projection

evy : (SetZ)(NXN)* —> Set .

It follows that the category of enriched lifts of F is equivalent (as an ordinary category) to the
category of enriched functors F:J x (N x N), — SetA whose restriction to I x {+} is F. In turn,
this category is equivalent to the category of N x N-diagrams in Fun™ (7, Setg)g/ /-

LEMMA 4.45. Let F:J — Set be a projectively fibrant enriched functor. Then the equivalence
of categories described above provides an identification

(4.46) Lifty (7, LFibg,) — Sp (Fun® (3, Set4)5/y)

between the projective model structure on lifts and the stabilization of the model structure of
Definition 4.38.

Proof. 1t suffices to show that both sides have the same trivial fibrations and fibrant objects.
Let us represent an object in either of these two categories by a functor §:Jx (NxN), — Set}
whose restriction to J x {*} coincides with F, and let us denote the value of § at (i,n,m) by
Gn,m (). Since trivial fibrations are unchanged by left Bousfield localization we have that a map
H — G between such functors is a trivial fibration in either the left or right hand side if and
only if Hy, (i) — Gpm(4) is a trivial fibration of marked simplicial sets for every ¢ € J and
n,meN.

Weak zero-objects and homotopy Cartesian squares in Fun+(U,SetZ)C§°/‘;§ are detected in

Fun™ (7, Setg)%oj. An object G is on the right hand side is therefore fibrant if and only if Gee(7)

is an Q-fibrant spectrum object over F(i) and each G, (i) — F(i) is a marked left fibration.
This means precisely that G is fibrant on the left hand side. O

We are now ready to harness the above results to compute the tangent categories of Cat s 2) ~
(Cat})oo-

Proof of Theorem 4.6. Let C be a marked-simplicial category, let Cp,, be the marked-simplicial
category obtained by applying Tw" to its mapping objects and let Mapg,, (-, -): C1, xCrpy, —
SetA be the mapping functor. Combining | , Corollary 3.1.16] with Proposition 4.24,
Lemma 4.45 and Corollary 4.44 (where J = Map¢,. ) we obtain a composable sequence of natural
right Quillen functors, which are Quillen equivalences when C is fibrant:

U : T Cath ﬁ Liftaap. (C% x C, T Set})

—— Liftaap,, (CF, x Cry, LFibsp)

(1.47) —=— 5p (Fun” (CF, % Cu Set2)§Rhpe, )

= v wo(C
T Sp ((SetA)(/:%insc(MapCTw)) = SpL2( )
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Unraveling the definitions, one sees that Uc sends an N x N-diagram C — Dye —> C to the
N x N-diagram

@SC ( K/Iapc(*,*) ( MapD" ([/—, L_)))
where the scaled unstraightening is over Cry, X (C?F?V. Using the compatibility of the scaled un-

straightening with restriction one finds that the Quillen equivalence Ug depends naturally on C,
as asserted. O

Proof of Theorem /.1. Using the identification
(Sp™=(®)) = Sp (Fun(Tw,(C),8.)) = Fun(Tw,(C), Sp)

we may conclude that the underlying oco-category (J¢ Cat})e is naturally equivalent to the
oco-category Fun(Tw,(C),Sp) of functors from Tw,(C) to spectra. O

4.5 The cotangent complex of an (oo,2)-category

Theorem 4.1 identifies the tangent co-category to Catl at a marked-simplicial category C with
the oco-category of spectrum-valued functors Tw,(C) — Sp from the twisted 2-cell co-category
of C. Our goal in this section is to identify the image of the cotangent complex L¢ of C under
this equivalence.

Throughout, let us fix a fibrant model S for the sphere spectrum in the model category
Sp* = Sp((SetA)i’ﬁ*), i.e. the stable model structure on N x N-diagrams of pointed simplicial

sets. In particular, S, , ~ hocolimy, QFS™F Let 7 : Tw,(C) — * denote the terminal map. We
then claim the following:

PROPOSITION 4.48. Under the equivalence of Theorem 4.1, the cotangent complex L¢ corre-
sponds to the constant diagram Tw,(C) — Sp on the twice desuspended sphere spectrum
S[-2]. More precisely, there is a weak equivalence

Oc : *S[-2] — RUc(Lc)

Tw,(C)

in the model category Sp , where Ug is the right Quillen equivalence of Theorem 4.6.

COROLLARY 4.49. Let F : Twy(C) — Sp be a functor and let My € Tc Cat; be the correspond-
ing parameterized spectrum object under the equivalence of Theorem 4.1. Then the n-th Quillen
cohomology group can be identified as

(M) 2 (bl 00,

In particular, if A : Tw,(C) — Ab is a diagram of abelian groups, then H’é(@; My ) is naturally
isomorphic to the (n +2)-th derived functor R"*> limpy, (c)(A)-

Proof. By definition we have Hf)(C; My) = [Lc,Mg‘[’I’L]]
identified with

[S[-2], E[n]]Fun(LWQ (©)5p) = [S[-n - 2], 3"]Fun<LW2 (©)5p) = T2 (holimry, (c) F)

T Cath " By Theorem 4.1 this can be

where S denotes the constant diagram with value the sphere spectrum. O

Proof of Proposition /./8. Let us start by treating the special case where C = [0] is the terminal
marked-simplicial category. In that case, Tw,([0]) = * is terminal as well, and we can identify
Sp* with the stable model structure on N x N-diagrams of pointed simplicial sets. Let us denote
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the terminal marked simplicial set by A® (to avoid confusion with the terminal simplicial set *).
In this case, the functor Upy) can be identified with the composite

Sp Sp
[0] 0 o Un®v . K
Upoy : Tjoj Cath, — Tao Seth —5>Sp™" ——>Sp™ = Sp((Seta)<7),) = Sp((Setx?).).
Here the functor 9%’] is the right Quillen equivalence of | , Corollary 3.1.16], which sends
an N x N-diagram of pointed marked-simplicial categories [0] =5 Dee —> [0] to the diagram of
pointed marked simplicial sets Mapp, , (*,*). By | , Proposition 3.2.1], there is a weak
equivalence
S s

(450) n: LAO [—1] — RS[[%(L[O]) € (*TAO Setg

between the (derived) image of the cotangent complex of [0] and the desuspension of the cotan-
gent complex of the marked simplicial set A°. To compute this cotangent complex, recall from
§2.1 that the functor (=) : SetiQ —> Set}y is a left Quillen functor. Since left Quillen functors
preserve cotangent complexes, we conclude that Lao is the image of the cotangent complex of
the point in SetiQ, which is St.

Since S* is a fibrant object of Tpo Set’, we have that

(4.51) RRD (Lao) = RO5 (S1) = Tw (S1) sy (A” x A%) = QS ~ SH-1]

where the pullback and looping are computed degreewise. Finally, the unstraightening Un®" :

(Setp)* — SetiQ is naturally equivalent to the functor forgetting the marked edges by
[ , Proposition 3.6.1]. It follows that there is a weak equivalence

Ojo) : S[-2] — Un* R (S'[~1]) = RUn“'RRY, (La0) — RU[oy (L))
where the last equivalence is induced by the equivalence 1 of (4.50).
For a general fibrant marked-simplicial category C, let p: C — [0], ¢ : N°(C) — A and

r: Twy(C) — * be the terminal maps. We then obtain a commuting diagram of right Quillen
functors

sC U
T po Set’s < Ty Cath ——— Sp*

/| I B

Tnse(c) Seta <;— T Cathy TZC> SpIwa(C)

All vertical functors take pullbacks of parameterized spectrum objects along the indicated maps.
The horizontal functors are all right Quillen equivalences (the left horizontal functors take
scaled nerves). By | , Lemma 4.2.6], the bicategorical model structure on Set’y is Carte-
sian closed, so that the functor ¢* : Setx — (Set) nsc(c) is also a left Quillen functor. It
follows that ¢* maps the cotangent complex of A? in Txo Set to the cotangent complex of
N*¢(C) in Tyse(cy Set’x. Since 7 is conjugate to ¢* via Quillen equivalences, it follows that 7*
sends RU[g1(L[g)) to RUc(Lc). The desired equivalence therefore arises from the equivalence
00 : S[-2] — RU[1(L{07)- O

It will be useful to record the following enhanced version of Proposition 4.48, which allows

one to compute relative cotangent complexes as well. Let f : C — D be a map of fibrant marked-
simplicial categories and let ¢ : Tw,(C) — Tw, (D) be the induced functor on twisted 2-cell
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oo-categories. Theorem 4.6 gives a commutative square of Quillen adjunctions

Jc
Tc Catz L Sprw2 ©

(152 1

Ip
Tp Cath =~ L _ Spiwa(®)
Up

where the horizontal Quillen adjunctions are Quillen equivalences and the functors f* and ¢* take
the pullback of a parameterized spectrum (of marked simplicial categories, resp. left fibrations)
along f and ¢. We then have the following:

COROLLARY 4.53. Let f : C — I be a map of fibrant marked-simplicial categories and let
r: Twy(C) — = denote the terminal map. Then there is a natural weak equivalence in SpLwa (D)

05 : L (r*S[-2]) — RUpLfi(Lc).
Remark 4.54. Under the equivalences of co-categories
(SpTJ?GC) )OO ~ Fun(Tw,(C), Sp) (SpTl2(D) )oo ~ Fun(Tw, (D), Sp)

the functors ¢* and ¢y correspond to restriction and left Kan extension along ¢. Corollary 4.53
should hence be read as follows: given a map f: C — D, the suspension spectrum of the object
C € (Cat}) /p corresponds, under the equivalence of Theorem 4.1, to the left Kan extension of
the constant functor S[-2]: Tw,(C) — Sp along the induced map ¢ : Tw,(C) — Tw,(D).

Proof. Proposition 4.48 provides a natural weak equivalence O¢ : r*S[-2] = Uc(Lc). Since
Fe 4 Ug is a Quillen equivalence, this map is adjoint to a weak equivalence G%d LI (r*S) —
L¢[2]. Using the commutativity of (4.52) we obtain a natural weak equivalence

Lf62d
LIpLn(r*S) = LALFc(r*S) — ot o Lfy(Le[2]) -

The equivalence 6 is the weak equivalence which is adjoint to this map under the Quillen
equivalence Jp - Up. ]

COROLLARY 4.55. Let f : C — DD be a map of marked-simplicial categories. Then there is a
natural homotopy cofiber sequence in SpTl2(D)

(4.56) Tw,(C) xS — Twy(D) xS — Up(Lp/c[2])
Proof. By Corollary 4.53 the left term of the above sequence can be identified with UpL f(Lc[2]),

while the middle term is given by Up(Lp[2]) by Proposition 4.48. This identifies the above
sequence with the image of the cofiber sequence Lfi(Lc[2]) — Lp[2] — Lp;c[2] under Up. O

The cofiber sequence (4.56) can also be rewritten as

57 (p) — 7 (Idrw, @) — Un(Lp/cl2])

Recall that a map p: X — Y of simplicial sets is said to be coinitial if p°P is cofinal, i.e., if p is
equivalent to the terminal object in (Set A);‘;}’ (cf. | , Definition 4.1.1.1]). We may therefore
conclude the following:

COROLLARY 4.57. Let f : C — D be a map of fibrant marked-simplicial categories such that
the induced map ¢ : Twy(C) — Twy (D) is coinitial. Then the relative cotangent complex of f
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vanishes. In particular, for any coefficient system M € Tp Cat}, the relative Quillen cohomology
groups vanish:

HP,(C,D; M) 2 0.

Remark 4.58. The notion of coinital appears in the literature under various names, including
right cofinal and initial. By the oo-categorical Quillen theorem A (see, e.g., | , Theorem
4.1.3.1]) amap p: X — Y from a simplicial set to an oo-category is coinitial if and only if for
every object y € Y the simplicial set X xy Y}, is weakly contractible.

5. Application - the classification of adjunctions

In this section we will demonstrate the above machinery on a particular example, by showing
that the inclusion of 2-categories ¢ : [1] — Adj has a trivial relative cotangent complex. Here
Adj is the walking adjunction and [1] = ¢ — e is considered as a 2-category with no non-trivial
2-cells. If C is a fibrant marked-simplicial category then the data of a functor Adj — C is
equivalent to the data of a homotopy coherent adjunction in C, while functors [1] — C classify
l-arrows in C.

The triviality of the relative cotangent complex of ¢ : [1] — Adj means that the relative
Quillen cohomology groups H%(Adj, [1]; M) vanish for every coefficient object M € Tag; Cat
(see §2.4). By the obstruction theory mentioned in §1 (see also [ , 2.6] and [ )]
this means that a l-arrow f in a fibrant marked-simplicial category C extends to a homotopy
coherent adjunction if and only if it extends to an adjunction in the homotopy (3,2)-category
Ho3(C). In fact, the space of derived lifts in the square

| ]

e

is weakly contractible. We note that the analogous contractibility statement for lifts of [1] — Ad}]
against C — Ho<o(C) was established in | ] by using a somewhat elaborate combinatorial
argument and an explicit cell decomposition of Adj. As we hope to demonstrate below, the
argument concerning the relative cotangent complex of [1] — Adj is rather simple in com-
parison. Recall that Adj contains two objects 0,1 € Adj, its 1-morphisms are freely generated
by a morphism f : 0 — 1 (the left adjoint) and a morphism g : 1 — 0 (the right adjoint)
and its 2-morphisms are generated (via both horizontal and vertical compositions) by a unit
2-cell u:Idy = T = gf and counit 2-cell v : K := fg = Id; subject to the relations that the
compositions

(vf)o(fu): f=fgf=Ff (gv)o(ug):g=gfg=yg
are equal to the identity 2-cells. Our goal in this section is then to prove the following:

THEOREM 5.1. Let ¢ : [1] — Adj be the inclusion which sends the non-trivial morphism of [1]
to f. Then the map

be s Twy([1]) — Twy (Ad))
induced by ¢ is coinitial. In particular (see Corollary 4.57), the relative cotangent complex of ¢
is trivial.

Let us start by describing the mapping categories of Adj in more detail.
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DEFINITION 5.2. Let us denote the finite ordinal of size n by (n) = [n—1] = {0,...,n—1}. For
z,y €{0,1}, let A, be the following category of (x,y)-ordinals:

— objects given by finite ordinals with at least min(x,y) elements.
— maps given by order-preserving maps that preserve the initial z elements and the final y
elements (i.e. no further condition when = =y = 0).
For z,y,z € {0,1}, consider the functor
®y: Ay x Ay, — Ay (n)®y (M) =(n-y+m)

which concatenates (n) and (m) and identifies the final element of (n) with the initial element
of (m) ify=1.

EXAMPLE 5.3. When z = y = 0 we have that Agg = A, is the category of all (possibly empty)
finite ordinals, which is often called the extended simplex category. When x = y = 1 we have
that Ay is the subcategory of A consisting of all objects and only end-point preserving maps,
also known as active maps.

OBSERVATION 5.4 cf. ]. There is a natural identification Map q;(,y) = Ay such that the
composition functors Mapaq;(,y) x Mapsq;(y, 2) — Mapag;(, 2) are given by ®,.

Recall that Adj admits a natural duality functor Adj — Adj°°°P, where the directions of
1-morphisms and 2-morphisms are reversed in Adj®°°P. This functor switches 0 with 1, f with g
and v with v. In terms of Definition 5.2, this functor can be described as follows:

DEFINITION 5.5. Let z,y € {0,1} and let (n) € A;, be an (x,y)-ordinal. A gap in (n) is a map
of (z,y)-ordinals g : (n) — (2) = {0,1}. We denote by (n) the linear order of gaps in (n), where
g<g'if g71(0) < (¢)71(0).

—_—

Remark 5.6. The notation (n) is slightly abusive: it does not reflect the dependency of the notion
of a gap in x and y.

OBSERVATION 5.7. Let z,y € {0,1} be elements. Then the association (n) — {n) maps (z,y)-
ordinals contravariantly to (1 —z,1 - y)-ordinals and determines an equivalence of categories

(5.8) Ay — (A1_g1y)°P.

Under the identification of Observation 5.4, these equivalences describe the canonical duality
functor Adj — Adj®°°P.

By Proposition 3.9 and Observation 5.4, the twisted 2-cell co-bicategory of Adj can be modeled
by the Grothendieck construction

5.4
(5.9) f Mapagj,, (%,9) =

(z,y)eAdj%I"N x Adjpy, (z,y)eAdj%I"N x Adjpy,

Tw(Azy)-

For the remainder of this section we will therefore just take (5.9) as the definition of Twa(Adj).
In particular, we may represent objects in Two(Adj) as tuples (x,y,0) where x,y are objects of
Adj and 0 € Tw(A; ) is a map of (x,y)-ordinals o : (n) — (m), describing a 2-cell between two
1-morphisms from z to y.

By Remark 2.4, the twisted 2-cell co-category of Adj is equivalent to (the coherent nerve
of) the simplicial category obtained from Two(Adj) by replacing each mapping category with
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its classifying space. On the other hand, since [1] is a 2-category with no non-trivial 2-cells it
follows from Example 3.7 that the twisted 2-cell oo-category of [1] is equivalent to its ordinary
twisted arrow category Tw([1]) = ¢ — e «— e. Theorem 5.1 then follows from the following
weak contractibility statement:

PROPOSITION 5.10. Let (x,y,0) € Twa(Adj) be an object. Then the nerve of the 1-category

op
(511) —/eeTW([l]) MapTWg(Adj)(L*(e)7(x7y70-))

is weakly contractible. Here [P denotes the 1-categorical Grothendieck construction of a con-
travariant functor to Cat.

Proof of Theorem 5.1 assuming Proposition 5.10. Let us start with the following observation:

let C N D — D' be a diagram of simplicial categories, where C is a discrete category and
D — D’ replaces each mapping object by a weakly equivalent Kan complex. Fix an object
d € D, which we can equivalently consider as an object d € D' or an object d € N(D"). Consider
the right fibration N(C) xy(pry N(D') ;4 — N(C), which is obtained from the right fibration
N(D'),4 — N(D') by base changing along N(C) — N(D'). By [ , Corollary 3.3.4.6] the
classifying space [N(C) xy(pry N(ID') g| is a model for the oco-categorical colimit of the restriction
of the representable functor Mapyp)(—,d) along N(C) — N(D’). Applying | , Theorem
4.2.4.1] we get that this co-categorical colimit coincides with the classical homotopy colimit

hocolimccor Mapp (f(-),d) ~ hocolimeccor Mapp, (f(-),d).

Now consider the case where C = Tw[1] and D = Twa(Adj)x is obtained by taking the nerves of
all mapping categories in Two(Adj). The co-functor N(C) — N(D') is then equivalent to the
functor ¢ : Tw([1]) — Tw,(Adj). The above homotopy colimit is equivalent to the nerve of the
category (5.11) and is hence contractible by Proposition 5.10. By Remark 4.58, the oo-functor
L% 18 now coinitial, so that Theorem 5.1 follows from Corollary 4.57. O

The remainder of the section is devoted to the proof of Proposition 5.10. Fix z,y € {0,1} =
Obj(Adj) and let o € Tw(Mappg;(z,y)) = Tw(Az,) be a map of (z,y)-ordinals o : (n) —
(m). Consider the object Idy : 0 — 0 of Tw([1]). By Remark 6.3, the mapping category
Mapy, (adj) (¢+(Ido), o) can be identified with the contravariant Grothendieck construction

op

f Mappy(a, ) (® @1, 0) 2 (Tw(Az0) x Tw(Aoy)) XTw(a,,) (TW(Azy)/0)-

peTw(Ag,0)

YeTw(Ao,y)
This is just the comma category of the concatenation functor ® : Tw(Az o) x Tw(Ag,) —
Tw(Agy) over o € Tw(Azy). A similar unfolding shows that we can identify Mappy, (adgj) (¢+(I1d1),0)
with the comma category of the functor ®; : Tw(Az 1) x Tw(Aq,) — Tw(A,,) over o.

Finally, if e : 0 — 1 is the non-identity arrow of [1] then the mapping category Mapy, (aqj) (¢+(€), )

identifies with the comma category over o of the functor Tw(Az o) x Tw(A1y) — Tw(Azy)
given by ({(n),(m)) — (n) ® (1) ® (m) % (n+m). To describe these various products of twisted
arrow categories concisely, let us introduce the following terminology:

DEFINITION 5.12. Let x,y € {0,1} be fixed numbers. A gapped ordinal is an object of the
over-category Agp = (Agy)/2), i-e., a pair ((n),g) where (n) € A, is an (z,y)-ordinal and
g :{n) — (2) is a gap in (n). A pointed ordinal is an object of the under-category Ay :=
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(Azy)(z+14y)/s 1., @ pair ((n),4) where (n) € A, is an (x,y)-ordinal and i : (x + 1 + y) — (n)
can be identified with an element i € (n) = {0,...,n - 1}. Finally, a split ordinal is a triple
({n),g,i) where ({(n),7) € Ay is a pointed ordinal and g € (n) is a gap such that 7 is a minimal
element of g~!(1). The split ordinals form a full subcategory Agp € Agp XA, ,, Apt-

Remark 5.13. The forgetful functor Ay, — A, admits a left adjoint which sends a gapped
ordinal ({n),g) to the split ordinal ((n)u{a},a,g,), where (n) U {a} is the ordinal obtained by
adding to (n) a new element a and setting the order to be such that a is bigger then all the
elements in g~!(0) and smaller than all the elements in g~!(1). The new gap g, : (n)u{a} — (2)
extends g by setting gq(a) = 1. Similarly, the forgetful functor Ay, — Ay admits a right
adjoint which sends a pointed ordinal ({m),j) to the split ordinal ({m) u {b},b,gy) where
(m) u {b} is obtained by adding to (m) a new element b and setting the order to be such that b
is the smallest element which is bigger than j € (m). The gap gy : (m) U {b} — (2) is defined so
that b is the minimal element of g;'(1).

The types of gapped, pointed and split ordinals we will come across will mostly be of the
following forms:

CONSTRUCTION 5.14. Given two ordinals (n) € Ay o, (m) € Ay, the concatenation (n) ®g (m) e
A,y comes equipped with a natural gap g : (n) ® (m) — (2) which is obtained by applying
the functor ®q to the terminal maps (n) — (1) and (m) — (1). Explicitly, g sends the first
n elements of (n) ®) (m) to 0 and the last m elements of (n) ®y (m) to 1. Similarly, for (n) €
Ag1,(m) € Ay, the ordinal (n) ®; (m) € A, comes equipped with a distinguished base point:
the map (z+1+y) — (n) ® (m) obtained by applying the functor ®; to the initial maps
(r+1) — (n) and (1+y) — (m). More explicitly, this base point is the element n — 1 in
(n)®1(m) = {0, ...,n+m—1}. Finally, if we take an object (n) € A, o and an object (m) € A; , then
(n) ® (1) ®1 (m) is naturally split. It contains both a natural base point induced from the initial
maps (z) — (n), (1) — (1) and (1 + y) — (m) and a natural gap g: (n) ® (1) ® (m) — (2)
induced from the terminal maps (n) — (1),Id: (1) — (1) and (m) — (1).

LEMMA 5.15. The functors Az x Agy —> Agp, Ap1 x A1y —> Apg and Ay x Ay — Agp
described in Construction 5.14 are equivalences of categories.

Proof. The functor ({n),g) = (¢7(0),g71(1)) is inverse to the first functor, the functor ({n),7) +
({7 e(n)ly <i},{j € (n)|j > i}) is inverse to the second functor and the functor ({(n),g,7) ~
(971(0),{j € (n)|j 2 i}) is inverse to the third. O

COROLLARY 5.16. Let o : (n) —> (m) be a map of ordinals, considered as a 2-cell in Adj from
(n):x — y to (m): x —> y. Then we have natural equivalences of categories

MapTWQ(Adj)(L* (Ido), J) = TW(Agp)/U = TW(Agp) XTw(Ag,y) TW(AZ,y)/av
Mapry, (adj) (¢4 (1d1),0) = Tw(Apt) /6 = TW(Apt) XTw(a,,) TW(Azy)/0
and
MaPTWQ(Adj)(L* (e),0) ~ TW(ASP)/O = Tw(Agp) X Ty (Aa.y) TW(ALy)/U.

Remark 5.17. Under the equivalences of Corollary 5.16 the maps from Maprpy, agj)(¢+(€),0)
to Mapry, (aqj) (¢+(Ido), o) and Maprpy, adj) (¢+(Id1),0) obtained by restricting along the mor-
phisms Idg — e,Id; — e in Tw([1]) correspond to the maps induced by the natural projections
Agp —> Agp and Agp —> Apys.
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Consider the forgetful functor Apt = (Azy)(z414y)) — Day- This is a left fibration, and the
fiber (Apt)(;my over the (z,y)-ordinal (m) is the set of possible base points Map,,  ((z +1+y),(m))
{0,...,m =1}, Let (Apt)/im) = Bpt XA, (Azy)/m) be the associated comma category. Then we
have a natural functor (Apt) /(my — (Apt)(m) Which sends a pair (({(k),4), ¢ : (k) — (m}) to the
element (i) € (Apt) (). Similarly, Ag, — Az, is a right fibration, the fiber (Agp)(yy is the set
(n) = Mapy,, ,({n),(2)) of gaps in (n), and we have a natural functor ((Agp)™)(ny — (Agp)(n)
obtained by pulling back the gap.

DEFINITION 5.18. Let o : (n) — (m) be a map in A, ,. We will say that an element j € (m) is

—_—

compatible with a gap g € (n) if the following condition holds: for any i € (n) such that o (i) < j
we have g(i) = 0 and for any i € (n) such that o(i) > j we have g(i) = 1. We will denote by

o C <n’\> x (m)
the subset consisting of those pairs (g, ) such that j is compatible with g.

The following proposition will play a key role in the proof of Proposition 5.10.

PROPOSITION 5.19. Let o : (n) — (m) be a map in A, ,. Then the following holds:

i) The composed functor Tw(A — ((Agp)°P — (A induces a weak equivalence
gp//o gp) ) /{n) gp/(n)
on nerves.

(ii) The composed functor Tw(Apt) /e — (Apt)jmy — (Apt)(m) induces a weak equivalence
on nerves.

(iii) The composed functor
(520) TW(Asp)/g e TW(Agp)/o- X TW(Apt)/g —_—> (Agp)(n) X (Apt)(m) = (\’I’L) X (m)
induces a weak equivalence N(Tw(Agp) /o) =5 &, ¢ {n) x (m).

Proof. Let us begin with Claim (1). We will depict objects of Tw(Agp)/, as commutative dia-
grams

({1),9) <——(n)
(5.21) Tl lo
p
((k),h) ——(m)
where the horizontal arrows indicate maps which are defined just on the underlying ungapped
sets. Let A € Tw(Agp)), be the full subcategory spanned by those objects as in(5.21) such that

¢+ (n) — (l) is an isomorphism. Then the inclusion A ¢ Tw(Ag,)/, admits a left adjoint
Tw(Agp)/o —> A which sends an object ¥ as in (5.21) to the object

Id ()
({n),¢*g) =——(n)

(5.22) rou -
<<k>l ) — <7£>

It then follows that the inclusion of A induces a weak equivalence N(A) — N(Tw(Agp)/s) on
nerves. We now observe that the category A decomposes as the disjoint union

A= U .Agl

g'e(n)
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where A is the full subcategory containing those objects as in (5.22) such that ¢*(g) = ¢'. The
restriction of the map Tw(Agp)/; — (Agp)iny to A sends Ay to the gap g’ € (Agp)(ny = (n). It
will hence suffice to show that each Ay is weakly contractible. But this now holds simply because

Ay has an initial object, corresponding to the diagram

({n).g") <=2 (n)

(5.23) Idl la

({n),g") ——(m)
Let us now prove Claim (2). The proof is essentially dual to the proof of (1). We will depict
objects of Tw(Apt)/, as commutative diagrams

({1 i) ~2— (n)
(5.24) Tl lg
(k) ,5) —= (m)

Let B ¢ Tw(Apt)/, be the full subcategory spanned by those objects as in(5.24) such that
Y : (k) — (m) is an isomorphism. As in the case of Claim (1) the inclusion B € Tw (At )/, admits

a left adjoint Tw(Apt),; —> B, and so induces a weak equivalence N(B) = N(Tw(Apt)/s) on
nerves. We now observe that the category B decomposes as the disjoint union

Bz [] By
j'e(m)
where B is the full subcategory containing those objects such that ¢ (j) = j', and the restriction
of the map Tw(Apt) /e — (Apt)(m) to B sends Bjr to the element j' € (Apt) () = (m). Finally,
each Bjs has an initial object and is hence weakly contractible.
We shall now proceed to prove Claim (3). We will depict objects of Tw(Agp) /o @s commutative
diagrams

(1), 9,7) <*— (n)
(5.25) Tl la
(k) , by ) —2 (m)

where the horizontal arrows indicate maps which are defined just on the underlying unpointed
ungapped sets. Here ({l),g,7) and ((k),h,j) are split ordinals (see Definition 5.12). In partic-
ular, 4 is the minimal element of g~'(1), and similarly j is the minimal element of h~(1). The
functor (5.20) sends a diagram as in (5.25) to the pair (¢*g,¥(j)). Now the element 1(j) € (m)
is compatible with the gap ¢*g € (n) in the sense of Definition 5.18: indeed, if i’ € (n) is such
that o(i") < 1(j) then necessarily (i) < i and so ¢*g(i") = g(v(i")) = 0. Similarly, if i’ € (n)
is such that o(i’) > ¥(j) then necessarily ¢(i') >4 and so ¢*g(i") = g(¢(i")) = 1. In particular,
the image of (5.20) is contained in €,. We now observe that the category Tw(Ayp)/, splits as a
disjoint union
Tw(Asp)jo= LI Co)
(9"3")e€o

where C(y ;) denote the full subcategory spanned by those objects as in (5.25) such that
(v"9,9(4)) = (¢',5")- It will hence suffice to show that each €y ;) is weakly contractible. For
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this we will show that each C(y ;) has a terminal object. Given (¢',;j') € & € {n) x (m) let
U(yr.in) € Cgr 47y be the object corresponding to the diagram

({n)u{a},a,g.) < (n)
(5.26) ml la
({m) U {b}, b, ) —2= (m)

where ((n)u{a},a,g,) and ({(m) u {b},b,gy) are obtained by applying the adjoint functors of
Remark 5.13 to ((n),g¢") and ({m), ") respectively. The map ¢ : (n) = (n) u{a} is the natural
embedding and the map g : (m) u {b} — (m) is the identity when restricted to (m) and
sends b to j'. Finally, the map 79 : (n) U {a} — (m) u {b} is uniquely determined by universal
mapping properties insured by Remark 5.13. More explicitly, 79 sends a to b, identifies with o
on {i e (n)|o(i) # 5’} u(g")"1(0), and sends every i € o~ 1(j') n (¢’)"1(1) to b. It is then clear
that W, iy is an object of Tw(Asp)/, which maps to (¢',j') € €5, and is hence contained in
C(g,j)- We now claim that W, ;) is terminal in €4 ;). Indeed, suppose that W € € is an object
as in (5.25) such that (¢*g,%(j)) = (¢',7"). Then maps ¥ — W, iy in C(y ;) correspond to
diagrams of the form

({1) ,i,9) <— ({n) u {a}, a, g0) <—— (n)
(527) Tl/ (o4 g
. P’ Yo
((k>7]7h)_> (m)u{b}7b7gb)_><m>
with ¢’ 1" maps of split (z,y)-ordinals and such that the external rectangle identifies with (5.25).

The existence of a unique such pair ¢’, 1’ now follows from the universal mapping properties of
({(n)u{a},a,gqs) and ({(m)u{b},b,gp) provided by Remark 5.13. O

Proof of Proposition 5.10. By Corollary 5.16 and Lemma 5.19 it will suffice to prove that the
homotopy pushout (n) H’ga (m) is weakly contractible. Since (n}), (m) and &, are all discrete sets
this homotopy pushout is equivalent to the underlying space of a bipartite graph G whose set
of vertices is {n) I (m) and such that (g,j) € {n) x (m) is an edge if and only if j is compatible
with ¢ in the sense of Definition 5.18.

Let us show that G is connected. Let j € (m) be an element. If j > 0 then we may consider
the gap g_ : (n) — (2) given by ¢g_(i) = 0 < 0(i) < j. Then both j and j — 1 are compatible
with g_ and so j is connected to 7 — 1 in G. It then follows that all of (m) lies in a single
component of G. Similarly, if g : (n) — (2) is a gap such that ¢g~'(0) is non-empty and we set
imax = max(g~1(0)) then g is compatible with ¢ (imax ). On the other hand, the gap g’ : (n) — (2)
given by ¢'(i) = 0 < i < ipax is also compatible with o(imax), and so g and ¢’ are connected
in G. We hence get that all of (77) lies in the same component. Finally, since there are edges

—_—

connecting (n) and (m) we may conclude that G is connected.

To show that G is weakly contractible it will hence suffice to show that the number of edges
is equal to the number of vertices minus 1. But this just follows from the direct observation that
the valence of the vertex corresponding to j € (m) is equal to |[o71(j)|+1if 2 <j<n—-1-y,
equal to [o71(j)|-1if j =2 =y =m =1 and is equal to |o71(j)| in all other cases. This
means that the total number of edges is m + n — x — y, while the total number of vertices is

—

[{m)[+{n)l =m+n+1-z-y. O
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6. Scaled unstraightening and the Grothendieck construction

In this section we give a proof of Proposition 2.15, which compares the co-categorical Grothendieck
construction of a 2-functor F : C — Cat; (realized by the scaled unstraightening functor) to
its 2-categorical Grothendieck construction. Let us start by recalling the following generaliza-
tion of the Grothendieck construction mentioned in §2.2, which applies to (strict) 2-functors
F : C — Catg from a 2-category to the 2-category of (strict) 2-categories (see | D:

DEFINITION 6.1. Let C be a 2-category and let F : C — Cats be a 2-functor. The Grothendieck

construction fC F is is the 2-category defined as follows:

— The objects of [ F are pairs (A, X) with A€ C and X € F(A).

— The 1-morphisms from (A, X) to (B,Y) are given by pairs (f,¢), where f: A — B is a
1-morphism in C and ¢ : fiX — Y is a morphism in F(B) (here fi = F(f)).

— If (f,¢),(g,v) are two 1-morphisms from (A, X) to (B,Y) then the 2-morphisms from (f, )
to (g,%) are given by pairs (0,%) where o : f = g is a 2-morphism in C and X : ¢ =Yoo is
a 2-cell in the diagram

(e

hX E!X aX
(6.2) R ;%

The various compositions of 1-morphisms and 2-morphisms are defined in a straightforward way,
see | ]. The projection (A, X) — A determines a canonical functor 7 : [ F — C.

Remark 6.3. Given two objects (A, X),(B,Y) € [ F, the opposite of the mapping category from
(A, X) to (B,Y) can be identified, by definition, with

op
Mapy (A, X),(B,Y) = [ L Mapg(s (AX.Y),

where [“P denotes the 1-categorical Grothendieck construction of a contravariant functor to
Cat.

Remark 6.4. The Grothendieck construction is evidently compatible with base change: given
2-functors g : C — C’ and F : C' — Caty, there is a natural isomorphism [ ¢*F = C x¢ [ F.

Let Funs (C, Cats) denote the 1-category of 2-functors C — Caty. The 2-categorical Grothendieck
construction described above can then be promoted to a functor Funy(C, Caty) — Caty /C (of
1-categories) and the Grothendieck construction described in §2.2 is the restriction
6.5) Funy(C, Cat; ) — Funy(C, Cats) —> Cats /C.

Let us start by describing the image of the functor (6.5).

DEFINITION 6.6. Let p: D — C be a 2-functor. We will say that a 1-morphism e : 2 — y is
p-coCartesian if for every object z € D the diagram

e*

Mapp (y, 2) Mapp (z, 2)

]

Mape(p(y),p(2)) 22 Mape (p(2), p(2))
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is homotopy Cartesian.

Remark 6.8. When all vertical arrows in (6.7) are right (or left) fibrations, the condition that
e :x —> y is p-coCartesian can be checked locally in the following sense: for every 1-morphism
g:p(y) — p(z) in C one needs to verify that the induced functor

MapD(y7 z)g > Ma'pﬂ])(xv z)gop(e)

is an equivalence. Here Mapp, (y, 2) 4 denotes the homotopy fiber of Mapp, (y, 2) — Mapc(p(y), p(2))
over g and similarly for Mapp (7, 2) gop(e)-

DEFINITION 6.9. Let p: D — C be a 2-functor. We will say that p is opfibered in categories
if the following conditions are satisfied:

(i) For every x,y € D the functor Mapp(z,y) — Mapc(p(x),p(y)) is a right fibration whose
fibers are sets (i.e., fibered in sets in the sense of Grothendieck).

(ii) For every x € D and 1-morphism f: p(xz) — y in C there exists a p-coCartesian 1-morphism
e:x —> y' in C such that p(e) = f.

If p: D — C is opfibered in categories, then p°P : D°? — C°P is in particular a 2-fibration in
the sense of | ]. By | , Theorem 2.2.11], such a 2-fibration is an unstraightened model
of a 2-functor C°°°? — Caty, whose value at an object C is the fiber of p°? over C. On the
other hand, if p°? is a 2-fibration, then p is opfibered in categories if and only if the fibers of p
are l-categories, i.e., the corresponding 2-functor C°°°? — Caty lands in Cat;. The following is
then a special case of | , Proposition 3.3.4]:

PROPOSITION 6.10 | ]. Let C be a 2-category and F : C — Cat; a 2-functor. Then the
map [-F — C is opfibered in categories.

Recall from §2.1 that the 2-nerve No(C) of a strict 2-category C is an oo-bicategory, i.e. a
fibrant scaled simplicial set. We will write N,(C) for the underlying simplicial set of Ny(C).

LEMMA 6.11. Let p:ID — C be a 2-functor which is opfibered in categories. Then the induced
map No(D) — Ny(C) is a scaled coCartesian fibration in the sense of Definition 2.7.

Proof. Let us first show that the underlying map of simplicial sets N, (D) — N,(C) is an in-
ner fibration. Given an inner horn inclusion ¢ : A} — A", the associated functor ¢, : €*°(A}') —
5¢(A™) induces a bijection on objects and an isomorphism Mapgse(an) (4,5") — Mapgse(any (4, 5")
for all (5, ") # (0,n). On the other hand, recall that Mapgsc(any(0,7) = (AH L= g an (n-1)-
cube. If we denote by

K = 9(A)(LeisLitliwn=1} | (ATY{Lei-Litlen=1) _

the inclusion of the boundary of the (n—2)-cube obtained by forgetting the i-th coordinate, then
Mapgse(pny(0,1) —> Mapgse(any(0,n) can be identified with

I x A{l} U K x Al cLx Al _ (Al){l,...,n—l}‘
KxAf{l}

This map is right anodyne, being the pushout-product of the right anodyne map At} & Al and
the inclusion K — L. It follows from Condition (i) of Definition 6.9 that Dy+ — Cy+ has the
right lifting property with respect to ¢, : €°(A') — €(A™). Consequently, Ny(D) — N,(C)
has the right lifting property with respect to ¢: A} = A", as desired.
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Next we claim that if o : A2 — N, (C) is a thin triangle, then ¢* f : N, (D) XN, (C) A? — A?
is a coCartesian fibration. Indeed, in this case o determines a map A? — C with values in the
maximal sub-(2,1)-category of C, so we may reduce to the case where C is a (2,1)-category.
Condition (i) of Definition 6.9 now implies that D is a (2, 1)-category as well, so that Cn+ and
Dy+ are fibrant marked-simplicial categories whose mapping objects have all edges marked. The
desired result now follows by applying | , 2.4.1.10] to the underlying simplicial categories
of Cn+ and D+ respectively.

We conclude that p : No(ID) — N,(C) is a T-locally coCartesian fibration, where 7" is the
collection of thin triangles in Ny(C). To finish the proof we have to show that the thin triangles
in No(D) are exactly those triangles whose image in No(C) is thin. This is a direct consequence
of Condition (i) of Definition 6.9, since right fibrations detect isomorphisms. O

We can now consider two different ways to “unstraighten” a 2-functor ¥ : C — Cat; into
a map of scaled simplicial sets. On the one hand, we can take the Grothendieck construction
Je F — C and apply the 2-nerve functor Ny to obtain a map Na( [ F) —> N2(C). On the other
hand, we can form the associated enriched functor N*F : Cny+ — Setj (obtained by applying
N* to the values of F as well as to the action maps Mapg(c,d) x F(c) — F(d)) and take the
scaled unstraightening Un" (N*F) — N5¢(Cy-+ ) 2 Ny (C) (see Notation 2.12 and Notation 2.14).
We now claim the following:

PROPOSITION 6.12. For F : C — Caty there exists a natural map
(6.13) Oc(F) : Ny (fc 9) — U0 (N*9)

of scaled simplicial sets over No(C) with the following properties:

(i) ©c(F) preserves locally coCartesian edges over No(C).
(ii) For every 2-functor g : C — C’ and every F : C' — Cat; the diagram

Na (for g79) Un™ (N*g*9)

| |

—=—SC
N2 (/C/?)WUH (N+3~)

Oc(9)

commutes.

We will construct (6.13) from a natural transformation between the associated left adjoint
functors. To this end, observe that the sequence of functors (6.5) gives rise to a sequence of left
adjoints

LL; : Catq /C LR Funs (C, Cats) Iy Funy(C, Caty ).

The functor | —|; is given pointwise by sending a 2-category D to the 1-category |[D|; with the
same objects and hom-sets Homp|, (z,y) = mo| Mapp (x,y)| (see (2.2)). The left adjoint L to the
2-categorical Grothendieck construction exists by the adjoint functor theorem, but can also be
described explicitly as follows (cf. [ , §4.2]). Given a 2-functor f: D — C, let D/, be the
2-category where

— an object is a pair (d,«), where d is an object of D and «: f(d) — ¢ is a morphism in C.
— a l-morphism is a pair (3,7) : (d,a) — (d’, o), where :d — d' is a 1-morphism in D and
T:a=a'o f(f) is a 2-morphism in C.
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— a 2-cell (B,7) = (B',7') is a 2-cell o : § = ' such that the diagram

o o f(8) —LZ— o' o (8

o N,

commutes in Mapc(a,a’ o f(5)).

The left adjoint L to the Grothendieck construction [ : Funy(C, Caty) — Caty /C then sends
f:ID — C to the 2-functor

L(f):C— Caty; c+ Dy,

Remark 6.15. The analogous description of the left adjoint to the 1-categorical Grothendieck con-
struction is well-known (see, e.g., | , Proposition 3.1.2]). The above 2-categorical analogue
can be proven in a similar fashion, by explicitly describing the unit and counit. More precisely,
the unit u: D — [ D/, sends d to the tuple (f(d),(d,Idsq))) and the counit v: L(f F) = F
sends (z,a: ¢ — ¢) in ([ F)/c to ay(z) in F(e).

Remark 6.16. Remark 6.4 implies, by passing to left adjoints, that Ly is compatible with (Cati-
enriched) left Kan extensions: if f : D — C and g : C — C’ are 2-functors then there is a
natural isomorphism L;(gf) = Lang(Li(f)) of functors C' — Cat;.

We conclude that the composite left adjoint L; : (Catz),c — Fung(C, Cat) sends f: D — C
to the functor L;(f) : C — Cat; ¢+ |D/c|1. We will prove Proposition 6.12 by relating this left
adjoint L; to the scaled straightening functor of | , §3.5]. To do this, it will be convenient
to describe L in terms of lax cones.

DEFINITION 6.17. Let D be a 2-category. The lax cone LaxCone(D) on DD is the 2-category with
object set {+} U Ob(ID) and mapping categories

MapLaXCone(]D)) (:Cv y) = MapD(xvy) MapLaxCone(]D)) (ﬂ?, >e) =0 MapLaXCone(]D))(*?x) = |D/x|1
for z,y € D. The composition is defined using the functorial dependence of [D/,[1 on = € D.

Similarly, if f : D — C is a 2-functor, then the lax cone of f is the 2-category LaxCone(f) :=
LaxCone(D) [ C.

Remark 6.18. The reason for the terminology of Definition 6.17 is that for any 2-category E the
data of a 2-functor LaxCone(D) — E is equivalent to the data of a 2-functor p : D — E together
with a lax natural transformation from a constant diagram to p (see | , Theorem 11]).

For every 2-functor f:ID — C, there is a natural isomorphism of functors C — Caty

Ll(f) = MapLaxCone(f)(*a _)'

Indeed, when f is the identity map this holds by construction. For more general functors f, it
follows from the universal property of pushouts that Mapy axcone(s)(*, =) is the (Cat;-enriched)
left Kan extension of Mapy ,xcone(n)(*, ) = L1(Idp) along f, which can be identified with L, (f)
by Remark 6.16.

Now recall that the scaled straightening functor St* of | | is also defined in terms of
a suitable cone construction: for a marked simplicial set X = (X, Fx), the scaled cone of X
(see | , Definition 3.5.1]) is given by

COHG(X):(XXAl,T) I_[ {1},
(Xx{0}),
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where T is the collection of those triangles (o,7) : A? — X x A! such that o is degenerate
and such that either o|,(0.1; belongs to Ex or 7|52y is degenerate. Given a marked-simplicial
category C, the scaled unstraightening functor St* : (Setp)/nse(cy — Fun™(C,Sety) is then
given by

StSC(X) = MapCSC(Cone(X)) HQ‘SC(Kb) (C(*? _)'

LEMMA 6.19. Let €3 : Set’y — Cata be the left adjoint to the 2-nerve Ny (see Remark 2.5).
Then there is a natural transformation of simplicial objects in the category (Cats). of pointed
2-categories

(6.20) U, : & Cone((A')b)) — LaxCone(A*).

Remark 6.21. Let Hog : Sety —> Caty denote the left adjoint of the marked nerve N*, which
sends a marked simplicial set (S, Fg) to the category freely generated by the simplicial set S,
localized at the arrows from Fg. If X is a scaled simplicial set, then €3(X) is the 2-category
obtained from the marked-simplicial category €%¢(X) by applying Ho<; to the mapping objects.

Proof. Let us start by describing the 2-category LaxCone(A™) more explicitly. For i,j € [n],
the mapping category Mapy,ccone(an)(i,4') is the poset of chains C' ¢ [n] starting at i and
ending at i’, ordered by inclusion. To describe the category of maps * — 7, observe that AZ.

can be identified with the 2-category whose objects are chains C' ¢ [n] ending at i: such a chain
determines a map min(C) — ¢ in A", If C' and C’ are two such chains, then

MapAZ(C, C")={D < [n] : min(D) = min(C), max(D) = min(C"),C c Du '}

is a subposet of chains in [n], ordered by inclusion. In particular, Map an (C,C") is nonempty if
and only if min(C) < min(C") and each j € C' is contained in C’ as soon as j > min(C"). In that
case, the poset contains a maximal chain, namely the interval [min(C'), min(C")]. It follows that
the associated 1-category (see (2.2))

MapLaxCone(A")(*v i) = ‘A;Lzll

is the poset of chains C' ¢ [n] ending at i, where C' < C” if min(C') < min(C") and if each j € C
with j > min(C") is also contained in C".

To describe Cg( Cone((A")b)), let us start by identifying €°(A™ x A, T'), where the scaling
T is described above Lemma 6.19. By | , Remark 3.7.5], this marked-simplicial category
has objects (i,¢) € [n] x [1], while Mapganxa1)((i,€), (4',€")) is the nerve of the poset of chains
C ¢ [n] x[1] starting at (¢,¢) and ending at (i’,"). When € = &', this is simply a poset of chains
in [n] =[n] x{e}.

On the other hand, let us denote by P; ;» the poset of chains from (7,0) to (i’,1) and for each
such chain C, let Cy = C'n([n] x {0}) and C; = C' n([n] x {1}) be the associated two chains in
[n]. Examining the scaling T, we see that all the marked edges W lie in these P; ;: an inclusion
C ¢ C' determines a marked edge in Mapganxa1 7y((,0), (4',1)) if and only if Cp = Cfj and
C; = C1 u {max(Cp)}. Using Remark 6.21, we therefore conclude that €3(A"™ x Al T) is the
2-category with objects (i,¢) and mapping categories

Map@g(A"xAl,T)((ia O)? (i,> O)) = Map@g(A"xAl,T)((i> 1)7 (ilv 1)) = An(% i,)
Map@z(A"XAl,T)((i’ 0), (i,? 1)) = {‘Pi,i’[W_l]-
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Composition proceeds by concatenation of chains. Since the functor €5 is a left adjoint and
Co(*) = %, there is a natural isomorphism

€y( Cone((A™)")) 2 & (A" x AL T) [ =
C2(A™x{0})

By the above isomorphism, the natural transformation ¥, of (6.20) is determined uniquely by

natural functors ¥,, : €2(A" x A1, T) — LaxCone(A™) collapsing €(A" x {0}) to *. We simply

define these functors by

— U, sends €3(A" x {0}) to » € LaxCone(A"™).

— U, sends €3(A" x {1}) isomorphically to A™ = €3(A") ¢ LaxCone(A™).

— U,((4,0), (4", 1)) : Piu[W] — HA}lyHl arises from the functor P;;; — HA%, |1 sending
C ~ {max(Cy)} u C1, which indeed sends marked edges to identities.

This determines the desired natural transformation ¥, as in (6.20). O

Proof of Proposition 6.12. Tt will suffice to define ©¢(F) on the underlying simplicial sets since
the thin triangles on both sides of (6.13) are exactly those triangles whose image in N3(C) is
thin. In particular, we need to construct a natural transformation N, [~(-) = Un*(-) between
two functors Fung(C, Cat;) — Seta which is compatible with base change.

To do this, let us consider, for each simplicial set X, the natural map of pointed 2-categories
(6.22) U(X): & (Cone(X")) = LaxCone(€2(X,))

defined as follows: since both sides of (6.22) are functors on Seta which commute with colimits,
the natural transformation W(-) is uniquely determined by its value on simplices, which we take
to be the natural transformation ¥, of Lemma 6.19. For each 2-category C, this determines a
natural transformation of functors (Seta)n,cy — (Cat2). ¢/

(6.23) Ue(X): € (Cone(X")) J] C= LaxCone(€>(X,)) [] C.

€2(Xs) €2(Xs)
This natural transformation ¥¢(-) is also natural in C. Taking mapping categories out of the
basepoint *, we obtain a natural transformation of functors (Seta )/, (c) — Fun(C, Caty)

(6.24) Ye(X) : Hoqp St(X?) = Ly (€2(X,))

where Ho<y is the functor from Remark 6.21. Since V¢ depends naturally on C, the natural
transformation ¢ (X)) is compatible with Cat-enriched left Kan extensions along functors C —
C’. The natural transformation X¢ is therefore adjoint to a natural transformation of functors
Fun(C, Cat1) — (Seta)/n,(c)

Oc(F) N, ( [.F) — 1w (v*5)

which is compatible with base change, as desired.

It remains to be shown that this ©¢ (JF) preserves coCartesian edges. In light of the compatibil-
ity with base change (ii), it will suffice to work over C = [1] = ¢ — o. Unwinding the definitions,
we see that Li([1]) : [1] — Caty is the diagram of categories {0} = [1]. A natural transforma-
tion o : L1([1]) = F is adjoint to a coCartesian edge of f[l] F — [1] if and only if o(1) maps
L1([1])(1) = [1] to an isomorphism in F(1). On the other hand, Ho<; St**(Al) : [1] — Cat; is
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the functor depicted by the diagram

Hog A o Hog (A5 T (A0MY).
A{0,1}
A natural transformation 7 : Hogy St*(A') = F is adjoint to a marked edge of Un%; (N*F) if
and only if it factors through Hocy St¢((AN)!) = Hog (St(AN)), i.e., if 7(1) sends A0} ¢ A2
to an isomorphism in F(1). The desired result now follows from the fact that 2[1](A1)(1) :
Hoc1 (A2 T a0y (AT91)E) — [1] maps the edge corresponding to A% onto [1]. O

Proposition 2.15 now follows from the following:

PROPOSITION 6.25. The map O¢(F) (6.13) constructed above is a bicategorical equivalence of
scaled simplicial sets over No(C).

Proof. By Lemma 6.11 and Proposition 6.12(i) we know that ©¢(F) is a map between two

scaled coCartesian fibrations over No(C) which preserves locally coCartesian edges. We may

hence promote it to a natural map in the model category (SetZ)lﬁ\C12 (©)

(6.26) 0L(%) :NQ([C ?)h — Un® (N*(5)).

By Lemma 2.11 we see that O¢(F) (6.13) is a bicategorical equivalence of scaled simplicial sets
if (6.26) is a weak equivalence in (SetZ)l/Cl\ﬁ2 (c)- To show the latter it will suffice to show that for

every x € No(C) the induced map

b
N, ( [3) e Lo} — Un (') xyqe o)

is a categorical equivalence of marked simplicial sets. Since O¢ () is compatible with base change
we see that we now just need to prove the proposition in the case C = *. In this case the data of
F is just a category € and (6.26) becomes a natural transformation of the form

(6.27) 07(€) : N(€)! = N*(€) — Un¥*(N*(€))

The restriction of this natural transformation to A ¢ Caty, corresponds under the adjunction
St5° =4 Un$’, to a natural transformation of cosimplicial objects in Set}

SEE((A%)") — (A®)
and hence extends to a natural transformation of left Quillen functors o : St = Idgey - As
explained in the beginning of | , §3.6], there is only one such natural transformation «,
which is a natural weak equivalence by [ , Proposition 3.6.1]. Since N7 is fully faithful,

the map ©7(C) is the component of the adjoint natural transformation o : Idgery = Un at
N*(€). Since N*(C) is fibrant, we conclude that ©7(C) is a weak equivalence. O
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