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Abstract. A powerful method, pioneered by Swinnerton-Dyer, allows one to

study rational points on pencils of curves of genus 1 by combining the fibration
method with a sophisticated form of descent. A variant of this method, first
used by Skorobogatov and Swinnerton-Dyer in 2005, can be applied to the
study of rational points on Kummer varieties. In this paper we extend the

method to include an additional step of second descent. Assuming finiteness of
the relevant Tate-Shafarevich groups, we use the extended method to show that
the Brauer-Manin obstruction is the only obstruction to the Hasse principle
on Kummer varieties associated to abelian varieties with all rational 2-torsion,

under relatively mild additional hypotheses.
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1. Introduction

Let k be a number field. A fundamental problem in Diophantine geometry is to
determine for which geometric classes of smooth, proper and simply connected va-
rieties over k the Brauer-Manin obstruction is the only obstruction to the existence
of a rational point. A geometric class which is expected to exhibit an extremely
favorable behavior with respect to this question is the class of rationally con-
nected varieties. Such varieties are always simply connected, and a conjecture
of Colliot-Thélène ([CT01]) predicts that the set of rational points on a smooth,
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proper and rationally connected variety X over k is dense in the Brauer set of X.
While this conjecture is still largely open, it has been established in a wide range of
special cases. On the other extreme lie simply-connected varieties of general type.
For this class Lang’s conjecture asserts that rational points are not Zariski dense,
and their existence is not expected to be controlled at all by the Brauer-Manin ob-
struction (see [SW95] and [Sm14] for two kinds of conditional counter-examples).

An intermediate class whose arithmetic is still quite mysterious is the class of sim-
ply connected Calabi-Yau varieties. In dimension 2, these varieties are also known
as K3 surfacecs. A conjecture far less documented than the two conjectures above
predicts that the Brauer-Manin obstruction is the only obstruction to the existence
of rational points on K3 surfaces (see [Sk09, p. 77] and [SZ08, p. 484]). The only
evidence towards this conjecture is conditional, and relies on a method invented by
Swinnerton-Dyer in [SD95]. In the realm of K3 surfaces there are two cases in which
this method has been applied. The first case is when the K3 surface in question
admits a fibration into curves of genus 1 (see [CTSSD98],[SD00],[CT01],[Wi07]). In
this case Swinnerton-Dyer’s method depends on two big conjectures: the finiteness
of Tate-Shafarevich groups of elliptic curves, and Schinzel’s hypothesis. The sec-
ond case is that of Kummer surfaces ([SSD05],[HS15]). In this case the method
does not require Schinzel’s hypothesis (using, in effect, the only known case of the
hypothesis, which is covered by Dirichlet’s theorem), but only the Tate-Shafarevich
conjecture.

Recall that a Kummer surface over k is a K3 surface which is associated to a 2-
covering Y of an abelian surface A, by which we mean a torsor under A equipped
with a map of torsors p ∶ Y Ð→ A which covers the multiplication-by-2 map AÐ→ A
(and so, in particular, p is finite tale of degree 16). Given Y , the data of such a
map p is equivalent to the data of a lift of the class [Y ] ∈ H1(k,A) to a class
α ∈ H1(k,A[2]). The antipodal involution ιA = [−1] ∶ A Ð→ A then induces an
involution ιY ∶ Y Ð→ Y and one defines the Kummer surface X = Kum(Y ) as
the minimal desingularisation of Y /ιY . We note that this desingularisation simply
consists of blowing up the fixed locus of ιY . The resulting exceptional divisor
D ⊆X then forms, geometrically, a disjoint union of 16 rational curves, each of self
intersection −2.

It is well-known that the Kummer surface X does not determine A and Y up to
isomorphism (see, e.g., [RS17]). Over the algebraic closure k, a theorem of Nikulin
states that one can reconstruct A from X together with the additional data of
the exceptional divisor D ⊆ X. Over k, the data of D only determines A and Y
up to a quadratic twist. More precisely, for a quadratic extension F /k we may
consider the quadratic twists AF and Y F with respect to the Z/2-actions given by
ιA and ιY . We may then consider Y F as a torsor under AF determined by the same
class α ∈ H1(k,AF [2]) = H1(k,A[2]) and for every such F /k we have a canonical
isomorphism Kum(Y F ) ≅ Kum(Y ). We note that the collection of quadratic twists
AF can be organized into a fibration A ∶= (A×Gm)/µ2 Ð→ Gm/µ2 ≅ Gm, where the
generator of µ2 acts diagonally by (ιA,−1). In particular, for a point t ∈ k∗ = Gm(k),
the fiber At is naturally isomorphic to the quadratic twist Ak(

√
t). Similarly, we may

organize the quadratic twists of Y into a pencil Y Ð→ Gm with Yt ≅ Y F (
√
t). We

may then consider the entire family At as the family of abelian surfaces associated
to (X,D), and similarly the family Yt as the family of 2-coverings associated to
(X,D).
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When applying Swinnerton-Dyer’s method to a Kummer surfaceX, one typically
assumes the finiteness of the 2-primary part of the Tate-Shafarevich groups for all
the associated abelian surfaces At. Interestingly enough, the finiteness of the 2-
primary part of X(At) is actually equivalent to the statement that the Brauer-
Manin obstruction to the Hasse principle is the only one for any 2-covering of At

(the implication of the latter by the former is classical, see [Ma71, Thorme 6],
and the inverse implication follows from [Cr17, Theorem 1]). In fact, to make the
method work it is actually sufficient to assume that the Brauer-Manin obstruction
is the only one for all the Yt (as apposed to all the 2-coverings of all the At).
Equivalently, one just needs to assume that the class [Yt] ∈ H1(k,At) is not a
non-trivial divisible element of X(At) for any t. We may consequently consider a
successful application of Swinnerton-Dyer’s method to a given Kummer surface as
establishing, unconditionally, an instance of the following conjecture:

Conjecture 1.1. Let X be a Kummer surface over k with associated exceptional
divisor D ⊆ X. If the Brauer-Manin obstruction to the Hasse principle is the only
one for all 2-coverings Yt associated to (X,D), then the same holds for X.

Remark 1.2. In Conjecture 1.1 one may freely replace the Brauer-Manin obstruction
by the analogous obstruction formed only by the 2-primary part of the Brauer
group. This is because for 2-coverings of abelian varieties as well as for Kummer
surfaces the latter obstruction is equivalent to the full Brauer-Manin obstruction,
see [CV17, Theorem 1.2 and Theorem 1.7].

Conjecture 1.1 combined with the Tate-Shafarevich conjecture together imply
that the Brauer-Manin obstruction controls the existence of rational points on
Kummer surfaces. We may therefore consider any instance of Conjecture 1.1 as
giving support for this latter statement, or more generally, support for the conjec-
ture that the Brauer-Manin obstruction controls the existence of rational points on
K3 surfaces.

Let us now recall the strategy behind Swinnerton-Dyer’s method. Let Y be a
2-covering of A with associated class α ∈ H1(k,A[2]). To find a rational point on
X = Kum(Y ), it is enough to find a rational point on a quadratic twist Y F for
some F /k. At the first step of the proof, using a fibration argument, one produces
a quadratic extension F such that Y F is everywhere locally soluble. Equivalently,
α ∈H1(k,AF [2]) is in the 2-Selmer group of AF . At the second step one modifies
F so that the 2-Selmer group of AF is spanned by α and the image of AF [2](k)
under the Kummer map. This implies thatX(AF )[2] is spanned by the class [Y F ],
and hence dimF2 X(AF )[2] ≤ 1. Let us remark that in all existing applications of
the method, as well as in the current paper, one assumed that A (and hence all
its quadratic twists) is equipped with a principal polarization which is induced by
a symmetric line bundle (see §3.4 for further details). In that case it is known
(see [PS99]) that the Cassels–Tate pairing on X(AF ) is alternating. If one
assumes in addition that the 2-primary part of X(AF ) is finite then the 2-part of
the Cassels-Tate pairing is non-degenerate and hence the dimension of X(AF )[2]
over F2 is even. The above bound on dimF2 X(AF )[2] now implies that X(AF )[2]
is trivial and [Y F ] = 0, i.e., Y F has a rational point. Alternatively, instead of
assuming that the 2-primary part of X(AF ) is finite, it is enough to assume that
[Y F ] itself is not a non-trivial divisible element of X(AF ) (as is effectively assumed
in Conjecture 1.1). Indeed, the latter is generally weaker but implies the former
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when X(AF )[2] is generated by [Y F ].
The process of controlling the 2-Selmer group of AF while modifying F can

be considered as a type of 2-descent procedure done “in families”. In his pa-
per [SD00], Swinnerton-Dyer remarks that in some situations one may also take
into account considerations of second descent. This idea is exploited in [SD00]
to show a default of weak approximation on a particular family of quartic surfaces,
but is not included systematically as an argument for the existence of rational
points. As a main novelty of this paper, we introduce a form of Swinnerton-Dyer’s
method which includes a built-in step of “second 2-descent in families”. This in-
volves a somewhat delicate analysis of the way the Cassels-Tate pairing changes
under quadratic twists. It is this step that allows us to obtain Theorem 1.3 be-
low under reasonably simple assumptions, which resemble the type of assumptions
used in [SSD05], and does not require an analogue of [SSD05]’s Condition (E). Be-
yond this particular application, our motivation for introducing second descent into
Swinnerton-Dyer’s method is part of a long term goal to obtain a unified method
which can be applied to an as general as possible Kummer surface. In principle, we
expect the method as described in this paper and the method as appearing in [HS15]
to admit a common generalization, which would be applicable, say, to certain cases
where the Galois module A[2] is semi-simple, specializing to the cases of [HS15]
when the action is simple and to the cases of [SSD05] and the current paper when
the action is trivial.

With this motivation in mind, our main goal in this paper is to prove Con-
jecture 1.1 for a certain class of Kummer surfaces. Let f(x) = ∏5

i=0(x − ai) ∈
k[x] be a polynomial of degree 6 which splits completely over k and such that

d ∶= ∏i<j(aj − ai) =
√
disc(f) ≠ 0, and let C be the hyperelliptic curve given by

y2 = f(x). Let b0, ..., b5 ∈ k∗ be elements such that ∏i bi is a square and consider
the surface X ⊆ P5 given by the smooth complete intersection

(1) ∑
i

bix
2
i

f ′(ai)
=∑

i

aibix
2
i

f ′(ai)
=∑

i

a2i bix
2
i

f ′(ai)
= 0.

By [Sk10, Theorem 3.1] the surface X is a Kummer surface whose associated family
of abelian surfaces At is the family of quadratic twists of the Jacobian A = Jac(C).
Here, it is useful to think of the coordinates x0, ..., x5 in (1) as indexed by the
roots a0, ...a5 of f . Indeed, if we denote by W ∶= {a0, ..., a5} the set of roots of f
then we may identify A[2] with the submodule of µW2 /(−1,−1, ...,−1) spanned by
those vectors (ε0, ..., ε5) ∈ µW2 such that ∏i εi = 1 (see, e.g.,[Mu84, Lemma 2.4]).
In this formulation the action of (ε0, ..., ε5) ∈ A[2] on X (induced by the action
on the corresponding 2-covering of A) is given by xi ↦ εixi (see [Sk10, Proof of
Theorem 3.1]). As ∏i bi is a square the classes [bi] ∈ H1(k,µ2) determine a class
([b0], ..., [b5]) ∈H1(k,A[2]), and the family of 2-coverings of At associated to X is
exactly the family of 2-coverings determined by this class. Our main result is then
the following:

Theorem 1.3. Assume that the classes of b1
b0
, ..., b4

b0
are linearly independent in

k∗/(k∗)2 and that there exist finite odd places w1, ...,w5 such that for every i = 1, ...,5
we have:

(1) The elements {a0, ..., a5} are wi-integral and valwi(ai − a0) = valwi d = 1.
(2) The elements b1

b0
, ..., b4

b0
are all units at wi but are not all squares at wi.
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Then Conjecture 1.1 holds for the Kummer surface X given by (1). In particular,
if the 2-primary Tate-Shafarevich conjecture holds for every quadratic twist of A
then the (2-primary part of the) Brauer-Manin obstruction is the only obstruction
to the Hasse principle on X (see Remark 1.2).

The first known case of Conjecture 1.1 was established in [SSD05]. In that
paper, Skorobogatov and Swinnerton-Dyer consider K3 surfaces which are smooth
and proper models of the affine surface

(2) y2 = g0(x)g1(z)
where g0, g1 are separable polynomials of degree 4. These are in fact Kummer
surfaces whose associated family of 2-coverings Yt is the family of quadratic twists
of the surface D0 ×D1, where Di is the genus 1 curve given by

Di ∶ y2 = gi(x).
The associated family of abelian surfaces At is the family of quadratic twists of
E0 × E1, where Ei is the Jacobian of Di given by Ei ∶ y2 = fi(x), where fi is the
cubic resolvant of gi. Three types of conditions are required in [SSD05]:

(1) The curves E0,E1 have all their 2-torsion defined over k, i.e., f0 and f1 split
completely in k. Equivalently, the discriminants of g0 and g1 are squares and
their splitting fields are at most biquadratic.

(2) Condition (Z). This condition asserts the existence, for each i = 0,1, of mul-
tiplicative places vi,wi for Ei satisfying suitable conditions, and at which, in
particular, E1−i has good reduction and the classes α0, α1 are non-ramified. It
is known to imply that the 2-primary part of the Brauer group ofX is algebraic.

(3) Condition (E). This condition, which we shall not describe here, is to some
extent analogous to Condition (D) in applications of the method to pencils of
genus 1 curves. It is known to imply, in particular, that there is no algebraic
Brauer-Manin obstruction to the existence of rational points on X.

Given a Kummer surface X of the form (2) satisfying the above conditions, the
main result of [SSD05] asserts that Conjecture 1.1 holds for X. Even more, under
conditions (1)-(3) above there is no 2-primary Brauer-Manin obstruction on X. It
then follows (see Remark 1.2), and this is how the main theorem of [SSD05] is
actually stated, that under the Tate-Shafarevich conjecture for all the quadratic
twists of E0,E1, the Hasse principle holds for X.

The second case of conjecture 1.1 established in the literature appears in [HS15],
where the authors consider also Kummer varieties, i.e., varieties obtained by ap-
plying the Kummer construction to abelian varieties of arbitrary dimension. When
restricted to surfaces, the results of [HS15] cover two cases:

(1) The case where X is of the form (2) where now g0, g1 are polynomials whose
Galois group is S4. The only other assumption, which is analogous to Condition
(Z) above, is that there exist odd places w0,w1 such that g0 and g1 are wi-
integral and such that valwi(disc(gj)) = δi,j for i, j = 0,1.

(2) The case where X = Kum(Y ) and Y is a 2-covering of the Jacobian A of a
hyperelliptic curve y2 = f(x), with f is an irreducible polynomial of degree
5. In this case X can be realized as an explicit complete intersection of three
quadrics in P5. It is then required that there exists an odd place w such that
f is w-integral and valw(disc(f)) = 1, and such that the class α ∈ H1(k,A[2])
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associated to Y is unramified at w.

Remark 1.4. While the main theorem of [HS15] can be considered as establishing
Conjecture 1.1 for the Kummer surfaces of type (1) and (2), what it actually states
is that under the 2-primary Tate-Shafarevich conjecture (for the relevant abelian
varieties) the Kummer surfaces of type (1) and (2) satisfy the Hasse principle. The
gap between these two claims can be explained by a recent paper of Skorobogatov
and Zarhin [SZ16], which shows, in particular, that there is no 2-primary Brauer-
Manin obstruction for Kummer surfaces of type (1) and (2) (see also Remark 1.2).

2. Main results

While our main motivation in this paper comes from Kummer surfaces, it is often
natural to work in the more general context of Kummer varieties. These are the
higher dimensional analogues of Kummer surfaces which are obtained by applying
the same construction to a 2-covering Y of an abelian variety A of dimension g ≥ 2.
A detailed discussion of such varieties occupies the majority of §3.3. For now,
we will focus on formulating the main theorem of this paper in the setting of
Kummer varieties and show how Theorem 1.3 is implied by it. We begin with some
terminology which will be used throughout this paper.

Let k be a number field and let A be a principally polarized abelian variety of
dimension g over k. Assume that A[2](k) ≅ (Z/2)2g, i.e., that A has all of its
2-torsion points defined over k. Let A be the Nron model for A. We will denote by
Cv the component group of the geometric special fiber of A at v. Generalizing the
ideas of [SSD05], we will need to equip A with a collection of “special places”. We
suggest the following terminology:

Definition 2.1. Let A be an abelian variety over k whose 2-torsion points are all
rational. A 2-structure on A is a set M ⊆ Ωk consisting of 2g odd places of bad
semi-abelian reduction and such that the natural map

(3) A[2]Ð→ ⊕w∈MCw/2Cw
is an isomorphism.

Remark 2.2. If M is a 2-structure for A then for each w ∈ M the composed map
Cw[2]Ð→ Cw Ð→ Cw/2Cw is surjective, implying that the 2-primary part of Cw is
all 2-torsion, i.e., isomorphic to (Z/2)rw for some rw. Since A has all its 2-torsion
defined over k this rw must be equal to the toric rank of the (semi-abelian) reduction
at w, which we assume to be at least 1. The map (3) being an isomorphism then
implies that each rw = 1. In particular, the reduction at each w ∈M is semi-abelian
of toric rank 1 and the 2-primary part of Cw is cyclic of order 2.

To formulate our main result we will also need the following extension of the
notion of a 2-structure:

Definition 2.3. Let A be an abelian variety over k whose 2-torsion points are all
rational. An extended 2-structure on A is a set M ⊆ Ωk consisting of 2g + 1 odd
places of bad semi-abelian reduction such that for every w ∈M the set M ∖ {w} is
a 2-structure.

Example 2.4. Let E be an elliptic curve given by y2 = (x − c1)(x − c2)(x − c3). If
w1,w2,w3 are three places such that valwi(cj − ck) = 1 for any permutation i, j, k
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of 1,2,3, and such that valwi(ci − cj) = 0 for any two i ≠ j, then {w1,w2,w3}
constitutes an extended 2-structure for E.

Remark 2.5. If M ⊆ Ωk is an extended 2-structure for A then Cw/2Cw ≅ Z/2 for
every w ∈M (see Remark 2.2). Furthermore, the natural map

(4) A[2]Ð→ ⊕w∈MCw/2Cw
is injective and its image consists of those vectors (cw)w∈M ∈ ∏w∈M Cw/2Cw for
which cw ≠ 0 at an even number of w ∈M .

Remark 2.6. If A carries an extended 2-structure M then A is necessarily simple
(over k). Indeed, if A = A1 ×A2 then for every place w we have Cw = Cw,1 ×Cw,2,
where Cw,1,Cw,2 are the corresponding geometric component groups for A1,A2

respectively. Since the 2-primary part of Cw for w ∈ M is cyclic of order 2 (Re-
mark 2.2) we see that the 2-primary part of Cw,i must be cyclic of order 2 for
one i ∈ {1,2} and trivial for the other. We may then divide M into two dis-
joint subsets M = M1 ∪M2 such that for w ∈ Mi we have Cw,j/2Cw,j ≅ (Z/2)δi,j .
By definition M ∖ {w} is a 2-structure for every w ∈ M . It then follows that
∣Mi ∖{w}∣ ≥ 2dim(Ai) for every i = 1,2 and every w ∈Mi and so ∣M ∣ = ∣M0∣+ ∣M1∣ ≥
2dim(A0) + 1 + 2dim(A1) + 1 = 2g + 2, a contradiction.

Definition 2.7 ((cf. [HS15, Definition 3.4])). Let M be a semi-simple Galois
module and let R be the endomorphism algebra of M (in which case R naturally
acts on H1(k,M)). We will say that α ∈ H1(k,M) is non-degenerate if the
R-submodule generated by α in H1(k,M) is free.

Definition 2.7 will be applied to the Galois module M = A[2], which in our case
is a trivial Galois module isomorphic to (Z/2)n, and so R is the n × n matrix ring
over Z/2. In particular, if α = (α1, ..., αn) ∈ H1(k, (Z/2)n) ≅ H1(k,Z/2)n is an
element then α is non-degenerate if and only if the classes α1, ..., αn ∈ H1(k,Z/2)
are linearly independent.

We are now ready to state our main result.

Theorem 2.8. Let k be a number field and let A1, ...,An be principally polarized
abelian varieties over k such that each Ai has all its 2-torsion defined over k. For
each i, letMi ⊆ Ωk be an extended 2-structure on Ai such that Aj has good reduction
over Mi whenever j ≠ i. Let A =∏iAi and let α ∈H1(k,A[2]) be a non-degenerate
element which is unramified overM = ∪iMi but has non-zero image in H1(kw,A[2])
for each w ∈M . Let Xα = Kum(Yα) where Yα is the 2-covering of A determined by
α. Then Conjecture 1.1 holds for Xα. In particular (see Remark 1.2), under the
2-primary Tate-Shafarevich conjecture the 2-primary Brauer-Manin obstruction is
the only one for the Hasse principle on Xα.

Remark 2.9. The proof of Theorem 2.8 actually yields a slightly stronger result:
under the Tate-Shafarevich conjecture the 2-primary algebraic Brauer-Manin ob-
struction is the only one for the Hasse principle on X (see Remark 4.9). In fact, one
can isolate an explicit finite subgroup C(Xα) ⊆ Br(Xα) (see Definition 4.3) whose
associated obstruction is, in this case, the only one for the Hasse principle.

Remark 2.10. When A is a product of two elliptic curves with rational 2-torsion
points one obtains the same type of Kummer surfaces as the ones studied in [SSD05].
However, the conditions required in Theorem 2.8 are not directly comparable to
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those of [SSD05]. On the one hand, Theorem 2.8 does not require any analogue
of Condition (E). On the other hand, Theorem 2.8 requires each elliptic curve to
come equipped with an extended 2-structure (consisting, therefore, of three special
places for each curve, see Example 2.4), while the main theorem of [SSD05] only
requires each elliptic curve to have a 2-structure (consisting, therefore, of two special
places for each curve). Modifying the argument slightly, one can actually make the
proof of Theorem 2.8 work with only a 2-structure for each Ai, at the expense of
assuming some variant of Condition (E). In the case of a product of elliptic curves,
this variant is slightly weaker than the Condition (E) which appears in [SSD05].
This can be attributed to the existence of a phase of second descent, which does
not appear in [SSD05].

We finish this section by showing how Theorem 1.3 can be deduced from The-
orem 2.8. Let f(x) = ∏5

i=0(x − ai) ∈ k[x] be a polynomial of degree 6 which splits

completely in k and such that d ∶= ∏i<j(aj − ai) =
√
disc(f) ≠ 0. Let C be the hy-

perelliptic curve given by y2 = f(x) and let A be the Jacobian of C. If we denote by
W = {a0, ..., a5} the set of roots of f then we may identify A[2] with the submodule
of µW2 /(−1,−1, ...,−1) spanned by those vectors (ε0, ..., ε5) ∈ µW2 such that ∏i εi = 1
(see [Mu84, Lemma 2.4]). Consequently, if we denote by G ∶= k∗/(k∗)2 =H1(k,µ2)
then we may identify

H1(k,A[2]) ≅ {(β0, ..., β5) ∈ GW ∣∏βi = 1} /G.

In particular, we may represent elements of H1(k,µ2) by vectors of the form

b = (b0, ..., b5) ∈ (k∗)W , satisfying the condition that ∏i bi ∈ (k∗)2, and defined
up to squares and up to multiplication by a constant b ∈ k∗. We note that the
corresponding element β = [b] ∈H1(k,A[2]) is non-degenerate (in the sense of Def-
inition 2.7) if and only if the classes [b1/b0], ..., [b4/b0] are linearly independent in
k∗/(k∗)2.

of Theorem 1.3 assuming Theorem 2.8. Let Y be the 2-covering of A determined
by the class β = [b] ∈ H1(k,A[2]). Then the Kummer surface X = Kum(Y )
is isomorphic to the smooth complete intersection (1) by [Sk10, Theorem 3.1].
Assumption (2) of Theorem 1.3 effectively states that β is unramified over M =
{w1, ...,w5} but is non-trivial at each H1(kwi ,A[2]). To show that the assumptions
of Theorem 2.8 hold it will hence suffice to show that M forms an extended 2-
structure for A. Now for each i the polynomial f is wi-integral and the place wi
satisfies valwi(ai − a0) = 1 and valwi(aj − aj′) = 0 whenever j ≠ j′ and {j, j′} ≠
{0, i}. Since f is wi-integral it determines a wi-integral model C for C, and a local
analysis shows that the reduction of C mod wi is a curve of geometric genus 1
and a unique singular point P , which is also a rational singular point of the model
C. Blowing up at P one obtains a regular model for C at wi whose special fiber
has two components (of genus 1 and 0 respectively) which intersect at two points.
Using [BLR90, Theorem 9.6.1] we may compute that the group of components Cwi

of a Néron model for A is isomorphic to Z/2. Now for each i = 1, ...,4 let Pi ∈ A be
the point corresponding to the formal sum (ai,0)− (a5,0) of points of C. Then for
i, j = 1, ...,4 we have that the image of Pi in Cwj is nontrivial if and only if i = j.
On the other hand, all the four points P1, ..., P4 map to the non-zero component of
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w5. It then follows that the map

A[2]Ð→
5

∏
i=1
Cwi =

5

∏
i=1
Cwi/2Cwi

is injective and its image consists of exactly those vectors (c1, ..., c5) ∈ ∏5
i=1Cwi in

which an even number of the entries are non-trivial. We may hence conclude that
the composed map A[2] Ð→ ∏5

i=1Cwi Ð→ ∏i=1,...,5;i≠i0 Cwi is an isomorphism for
any i0 ∈ {1, ...,5}, and so M constitutes an extended 2-structure, as desired. □

3. Preliminaries

In this section we establish some preliminary machinery that will be used in
§4 to prove Theorem 2.8. We begin in §3.1 by recalling the Weil pairing and
establishing some useful lemmas in the case where all the 2-torsion points of A are
defined over k. In §3.2 we simply recall a definition of the Cassels-Tate pairing via
evaluation of Brauer elements. In §3.3 we give a short introduction to Kummer
varieties and consider cases where the Brauer elements appearing in §3.2 descend
to the corresponding Kummer varieties. Finally, in §3.6 we recall the approach
of Mazur and Rubin to the analysis of the change of Selmer groups in families
of quadratic twists. While mostly relying on ideas from [MR10], this section is
essentially self-contained, and we give detailed proofs of all the results we need. We
then complement the discussion of Selmer groups in families of quadratic twist by
considering the change of the Cassels-Tate pairing under quadratic twist, using
the results of §3.3.

3.1. The Weil pairing. Let A be an abelian variety over a number field k and let
Â be its dual abelian variety. Recall that for n ≥ 1 we have the Weil pairing

⟨, ⟩n ∶ A[n] × Â[n]Ð→ µn,

which is a perfect pairing of finite Galois modules. For positive integers m,k and
n = mk the Weil pairings associated to m and n are compatible in the following
sense: if P ∈ A[n] and Q ∈ Â[m] then ⟨kP,Q⟩m = ⟨P,Q⟩n ∈ µm ⊆ µn. If A is

equipped with a principal polarization, i.e., a self dual isomorphism λ ∶ A ≅Ð→ Â,
then we obtain an induced isomorphism A[n] ≅ Â[n] and an induced self-pairing

(5) ⟨, ⟩nλ ∶ A[n] ×A[n]Ð→ µn

which is known to be alternating. We will be mostly interested in the case n = 2,
where we will denote the corresponding Weil pairing simply by ⟨, ⟩λ. We note

that the principal polarization λ induces a principal polarization AF
≅Ð→ ÂF after

quadratic twist by any quadratic extension F /k. To keep the notation simple we
will use the same letter λ to denote all these principal polarizations. Similarly, we
will denote by ⟨, ⟩nλ all the associated Weil pairings.

From now until the end of this section we shall fix the assumption that A
has all of its 2-torsion points defined over k. Let M be a 2-structure on A (see
Definition 2.1). For each w ∈ M let Qw ∈ A[2] be such that the image of Qw in
Cw′/2Cw′ for w′ ∈ M is non-trivial if and only if w = w′. It then follows from
Definition 2.1 that {Qw}w∈M forms a basis for A[2]. We will denote by {Pw} the
dual basis of {Qw} with respect to the Weil pairing. We note that by construction
⟨Pw,Q⟩λ = −1 for a given point Q ∈ A[2] if and only if the image of Q in Cw/2Cw
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is non-trivial.

Remark 3.1. The 2-torsion modules A[2] and AF [2] are canonically isomorphic
for any F /k. We will consequently often abuse notation and denote by A[2] the
2-torsion module of any given quadratic twist of A. Since the Weil pairing (5)

depends only on the base change of A to k we see that the Weil pairings induced
on A[2] ≅ AF [2] by all quadratic twists of λ are the same.

Remark 3.2. While our notation for the group structure on A[2] is additive, i.e.,
we write P +Q for the sum of two points P,Q ∈ A[2], our notation for the group
structure on µ2 = {−1,1} is multiplicative. For example, the linearity of the
Weil pairing ⟨, ⟩λ in its left entry will be written as ⟨P +Q,R⟩λ = ⟨P,R⟩λ ⟨Q,R⟩λ.
Similarly, the group operation of H1(k,A[2]) will be written additively, while that
of H1(k,µ2) multiplicatively.

In what follows it will be useful to consider the bilinear pairing

(6) ⟨, ⟩λ ∶H
1(k,A[2]) ×A[2]Ð→H1(k,µ2)

induced by the Weil pairing, and which by abuse of notation we shall denote by the
same name.

Definition 3.3. We will denote by δ ∶ A(k) Ð→ H1(k,A[2]) the boundary map
induced by the Kummer sequence of A. Similarly, for a quadratic extension F /k
we will denote by δF ∶ AF (k)Ð→H1(k,A[2]) the boundary map associated to the
Kummer sequence of AF , where we have implicitly identified AF [2] with A[2] (see
Remark 3.1).

Remark 3.4. The bilinear map (P,Q) ↦ ⟨δ(P ),Q⟩λ ∈ H1(k,µ2) is not symmetric
in general. While this fact will not be used in this paper we note more precisely
that

⟨δ(P ),Q⟩λ ⟨δ(Q), P ⟩λ = [⟨P,Q⟩λ],
where [⟨P,Q⟩λ] denotes the image of ⟨P,Q⟩λ ∈ µ2 under the composed map µ2 Ð→
k∗ Ð→ k∗/(k∗)2 ≅H1(k,µ2).

For the purpose of the arguments in §4 we will need to establish some prelim-
inary lemmas. The first one concerns the behavior of the bilinear map (P,Q) ↦
⟨δ(P ),Q⟩λ under quadratic twists.

Lemma 3.5. Let A be a principally polarized abelian variety with all 2-torsion
points defined over k and let P,Q ∈ A[2] be two 2-torsion points. Let F = k(

√
a) be

a quadratic extension. Then

⟨δF (P ),Q⟩λ ⟨δ(P ),Q⟩
−1
λ = {

1 ⟨P,Q⟩λ = 1
[a] ⟨P,Q⟩λ = −1

where [a] ∈ k∗/(k∗)2 ≅H1(k,µ2) denotes the class of a mod squares.

Proof. Let ZP ⊆ A be the finite subscheme determined by the condition 2x = P .
Then ZP carries a natural structure of an A[2]-torsor whose classifying element

in H1(k,A[2]) is given by δ(P ). Given a point x ∈ ZP (k) we can represent δ(P )
by the 1-cocycle σ ↦ σ(x) − x, and consequently represent ⟨δ(P ),Q⟩λ by the 1-
cocycle σ ↦ ⟨σ(x) − x,Q⟩λ ∈ µ2. Let Γk be the absolute Galois group of k and let
χ ∶ Γk Ð→ µ2 be the quadratic character associated with F /k. In light of Remark 3.1
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we see that the class ⟨δF (P ),Q⟩λ can be represented by the 1-cocycle

σ ↦ ⟨χ(σ)σ(x) − x,Q⟩λ ∈ µ2.

We may hence compute that

⟨χ(σ)σ(x) − x,Q⟩λ ⟨σ(x) − x,Q⟩
−1
λ = ⟨(χ(σ) − 1)σ(x),Q⟩λ = {

1 χ(σ) = 1
⟨P,Q⟩λ χ(σ) = −1

This means that when ⟨P,Q⟩λ = 1 the class ⟨δF (P ),Q⟩λ ⟨δ(P ),Q⟩
−1
λ vanishes, and

when ⟨P,Q⟩λ = −1 the class ⟨δF (P ),Q⟩λ ⟨δ(P ),Q⟩
−1
λ coincides with [a], as desired.

□
For a place w ∈ Ωk we will denote by kunw /kw the maximal unramified extension of

kw and by Γkunw
the absolute Galois group of kunw . The following lemma concerns the

Galois action on certain 4-torsion points which are defined over extensions ramified
at w. The proof makes use of the Weil pairing.

Lemma 3.6. Let w ∈ M be a place in the 2-structure M of A and let P ∈ A[2]
be a point whose image in Cw/2Cw is non-trivial. Let x ∈ A(k) be a point such
that 2x = P and let LP /kunw be the minimal Galois extension of kunw such that x is
defined over LP . Then Gal(LP /kunw ) ≅ Z/2 and if σ ∈ Gal(LP /kunw ) is the non-trivial
element then σ(x) = x + Pw.

Proof. Since P is divisible by 2 in A(LP ) the class δ(P ) maps to 0 in H1(LP ,A[2]).
The restriction of δ(P ) to kunw then determines a homomorphism Γkunw

Ð→ A[2]
which descends to an injective homomorphism Gal(LP /kunw ) Ð→ A[2]. In particu-
lar, LP is a finite abelian 2-elementary extension of kunw . Since w is odd LP /kunw is
tamely ramified and hence cyclic, which means that Gal(LP /kunw ) is either Z/2 or
trivial. Since the image of P in Cw/2Cw is non-trivial x cannot be defined over kunw
and we may hence conclude that Gal(LP /kunw ) ≅ Z/2. Let σ ∈ Gal(LP /kunw ) be the
non-trivial element.

Let Q ∈ A[2] be any 2-torsion point whose image in Cw/2Cw is trivial. It then
follows from Hensel’s lemma that there exists a y ∈ A(kunw ) such that 2y = Q.
Consider the Weil pairing

⟨, ⟩4λ ∶ A[4] ×A[4]Ð→ µ4

on 4-torsion. Then by the compatibility property of the Weil pairings we have

⟨σ(x) − x,Q⟩λ = ⟨σ(x) − x, y⟩
4
λ = ⟨σ(x), y⟩

4
λ [⟨x, y⟩

4
λ]
−1
= 1

where the last equality holds since σ(y) = y, the Weil pairing is Galois invariant,
and µ4 is fixed by σ. It follows that the 2-torsion point σ(x) − x is orthogonal
to every 2-torsion point whose w-reduction lies on the identity component. The
only two 2-torsion points which have this orthogonality property are 0 and Pw by
construction. The former option is not possible since x is not defined over kunw and
hence we may conclude that σ(x) − x = Pw, as desired. □

We now explore two corollaries of Lemma 3.6.

Corollary 3.7. Let w ∈M be a place in the 2-structure M of A, let L/k be a non-
trivial quadratic extension which is ramified at w and let w′ be the unique place of
L lying above w. Let AL = A⊗k L be the base change of A to L and let Cw′ be the
group of components of geometric fiber of the Nron model of AL at w′. Then the
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2-primary part of Cw′ is cyclic of order 4 and the induced action of Gal(L/k) on
Cw′/4Cw′ ≅ Z/4 is trivial.

Proof. Since the reduction of A at w is semi-abelian the reduction of AL at w′ is
semi-abelian as well by Grothendieck’s semi-stable reduction theorem. By [HN10,
Theorem 5.7] the natural map of component groups Cw Ð→ Cw′ is injective and
Cw′/Cw has order 2. Since all the 2-torsion points of A are defined over k the group
Cw′ cannot have 2-torsion elements which do not come from Cw, and hence the
2-primary part of Cw′ must be cyclic of order 4.

Let L′ = L ⋅ kunw be the compositum of L and the maximal unramified extension
kunw . Since L is purely ramified the map Gal(L′/k) Ð→ Gal(L/k) is surjective and

restricts to an isomorphism Gal(L′/kunw )
≅Ð→ Gal(L/k) ≅ Z/2. Furthermore, this

isomorphism is compatible with the actions of both sides on Cw′ . To finish the
proof it will hence suffice to show that Gal(L′/kunw ) acts trivially on Cw′/4Cw′ . To
see this, let σ ∈ Gal(L′/kunw ) be a generator and let C ∈ Cw′ be a component of

order exactly 4. Then C(Fw′) must contain a point x ∈ C(Fw′) of order exactly
4. Using Hensel’s lemma we may lift x to a point x ∈ A(L′) of order exactly 4. It
then follows that P ∶= 2x is a 2-torsion point whose reduction lies on a component
of order exactly 2. By Lemma 3.6 we then have that σ(x) = x + Pw, and since the
reduction of Pw lies on the identity component of Cw ⊆ Cw′ by construction (note
⟨Pw, Pw⟩λ = 1) it follows that σ(C) = C. Since C is a component of order exactly 4
the image of C in Cw′/4Cw′ is a generator and hence the action of Gal(L′/kunw ) on
Cw′/4Cw′ is trivial, as desired. □

Corollary 3.8. Let P,Q ∈ A[2] be two points. Then α ∶= ⟨δ(P ),Q⟩λ is ramified at
w if and only if the images of both P and Q in Cw/2Cw are non-trivial.

Proof. If P reduces to the identity of Cw/2Cw then the entire class δ(P ) ∈H1(k,A[2])
is unramified. We may hence assume that P reduces to the non-trivial element of
Cw/2Cw. Let x ∈ A(k) be a point such that 2x = P and let LP /kunw be the minimal
Galois extension of kunw such that x is defined over LP . By Lemma 3.6 we know that
G ∶= Gal(LP /kunw ) is isomorphic to Z/2 and that if σ ∈ G denotes the non-trivial
element then σ(x) − x = Pw. Since δ(P ) vanishes when restricted to LP the same
holds for α and by the inflation-restriction exact sequence the element α∣kunw

comes

from an element α ∈ H1(LP /kunw , µ2) = H1(G,µ2), which in turn can be written
as a homomorphism α ∶ G Ð→ µ2. Furthermore, as in the proof of Lemma 3.6 the
value α(σ) is given by the explicit formula

α(σ) = ⟨σ(x) − x,Q⟩λ = ⟨Pw,Q⟩ .
By the definition of Pw we now get that α∣kunw

is trivial if and only if Q reduces to
the identity of Cw/2Cw, as desired. □

3.2. The Cassels-Tate pairing. Let A be an abelian variety over a number field
k with dual abelian variety Â. Recall the Cassels-Tate pairing

⟨α,β⟩CT ∶X(A) ×X(Â)Ð→ Q/Z
whose kernel on either side is the corresponding group of divisible elements (which
is conjectured to be trivial by Tate-Shafarevich).

There are many equivalent ways of defining the Cassels-Tate pairing. In this
paper it will be useful to have an explicit description of it via evaluation of Brauer
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element. We will hence recall the following definition, which is essentially the
“homogeneous space definition” appearing in [PS99]. Let α ∈ X(A), β ∈ X(Â)
be elements, we may describe the Cassels-Tate pairing ⟨α,β⟩CT as follows. Let
Yα be the torsor under A classified by α. Since α belongs to X(A) we have that

Yα(Ak) ≠ ∅. The Galois module Pic0(Y α) is canonically isomorphic to Â(k). Let

Br1(Yα) = Ker[Br(Yα) Ð→ Br(Y α)] be the algebraic Brauer group of Yα. The
Hochschild-Serre spectral sequence yields an isomorphism

Br1(Yα)/Br(k)
≅Ð→H1(k,Pic(Y α)).

Let

Bα ∶H1(k, Â) ≅Ð→H1(k,Pic0(Y α))Ð→H1(k,Pic(Y α)) ≅ Br1(Yα)/Br(k)
denote the composed map.

Definition 3.9. Let B ∈ Br(Yα) be an element whose class in Br(Yα)/Br(k) is
Bα(β) and let (xv) ∈ Yα(Ak) be an adelic point. Then the Cassels-Tate pairing of
α and β is given by

⟨α,β⟩CT ∶= ∑
v∈Ωk

B(xv) ∈ Q/Z

Given a principal polarization λ ∶ A ≅Ð→ Â we obtain an isomorphism X(A) ≅
X(Â) and hence a self-pairing

⟨, ⟩CT
λ ∶X(A) ×X(A)Ð→ Q/Z

Remark 3.10. The pairing ⟨, ⟩CT
λ is not alternating in general. However, as is shown

in [PR11], it is the case that ⟨, ⟩CT
λ is alternating when λ is induced by a symmetric

line bundle on A. The obstruction to realizing λ via a symmetric line bundle is an
element cλ ∈ H1(k,A[2]), which vanishes, for example, when the Galois action on
A[2] is trivial, see [HS15, Lemma 5.1]. In particular, in all the cases considered
in this paper the Cassels-Tate pairing associated to a principal polarization will be
alternating.

3.3. Kummer varieties. In this section we will review some basic notions and
constructions concerning Kummer varieties. Let A be an abelian variety over k
(not necessarily principally polarized) of dimension g ≥ 2. Let α ∈ H1(k,A[2]) be
a class and let Yα be the associated 2-covering of A. Then Yα is equipped with a
natural action of A[2] and the base change of Yα to the algebraic closure of k is
A[2]-equivariantly isomorphic to the base change of A. More precisely, the class
α determines a distinguished Galois invariant subset of A[2]-equivariant isomor-

phisms Ψα ⊆ IsoA[2](Y α,A) which is a torsor under A[2] with class α (where A[2]
acts on IsoA[2](Y α,A) via post-composition). Using any one of the isomorphisms

ψ ∈ Ψα we may transport the antipodal involution [−1] ∶ A Ð→ A to an involution

ιψ ∶ Y α Ð→ Y α. Since [−1] commutes with translations by A[2] it follows that ιψ is
independent of ψ, and is consequently Galois invariant. By classical Galois descent
we may realize this Galois invariant automorphism uniquely as an automorphism
ιYα ∶ Yα Ð→ Yα defined over k.

Let Zα ⊆ Yα denote the fixed locus of ιYα (considered as a 0-dimensional sub-

scheme). We note that the points of Zα(k) are mapped to A[2] by any of the isomor-
phisms ψ ∈ Ψα, and the Galois invariant collection of isomorphisms {ψ∣Zα

∣ψ ∈ Ψα}
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exhibits Zα as a torsor under A[2] with class α. The quotient (Yα)/ιYα has Zα
as its singular locus and this singularity can be resolved by a single blow-up. Al-
ternatively, one can first consider the blow-up Ỹα of Yα at Zα, and then take the
quotient of Ỹα by the induced involution ιỸα

. A local calculation then shows that

Ỹα/ιỸα
is smooth.

Definition 3.11. The Kummer variety associated to Yα is the variety

Kum(Yα) = Ỹα/ιỸα

Let now Xα = Kum(Yα) be the Kummer variety of Yα. We will denote by

Dα ⊆ Ỹα the exceptional divisor. Since the action of ιỸα
on Dα is trivial we will

abuse notation and denote the image of Dα in Xα by the same name. Let us denote
by Uα = Ỹα ∖Dα and Wα =Xα ∖Dα, so that the quotient map Ỹα Ð→Xα restricts
to an étale covering pα ∶ Uα Ð→ Wα of degree 2. Let ιUα ∶ Uα Ð→ Uα denote the
restriction of ιYα . We note that we may also identify Uα with the complement
of the 0-dimensional scheme Zα in Yα. Since the codimension of Zα in Yα is
at least 2 we may identify H1(Uα,Q/Z(1)) with H1(Y α,Q/Z(1)) ≅ Â(k)tor and

H1(Uα,Q/Z(1))ιUα with Â(k)[−1]tor = Â[2]. Applying the Hochshild-Serre spectral

sequence and using the vanishing of H2(⟨ιUα⟩ ,H0(Uα,Q/Z(1))) =H2(⟨ιUα⟩ ,Q/Z)
we now obtain a short exact sequence of Galois modules

(7) 0Ð→ µ2
ιÐ→H1(Wα,Q/Z(1))

p∗αÐ→ Â[2]Ð→ 0

where the image of ι is spanned the element [pα] ∈H1(Wα, µ2) ⊆H1(Wα,Q/Z(1))
which classifies the tale covering pα ∶ Uα Ð→Wα.

Our next goal is to describe the Galois module H1(Wα,Q/Z(1)) in more explicit
terms. For this it will be convenient to use the following terminology. Let us say
that a map of schemes L ∶ Zα Ð→ µ2 is affine-linear if there exists a Q ∈ Â[2]
such that for every geometric point x ∈ Zα(k) and every P ∈ A[2] we have L(Px) =
⟨P,Q⟩ ⋅ L(x) (here the notation Px denotes the action of A[2] on its torsor Zα).
We will refer to Q as the homogeneous part of L. We note that Q (when

exists) is uniquely determined by L. We will denote by Aff(Zα, µ2) the abelian
group of affine-linear maps (under pointwise multiplication). The action of Γk on

Zα induces an action on Aff(Zα, µ2) by pre-composition and we will consequently

consider Aff(Zα, µ2) as a Galois module. The map

hα ∶ Aff(Zα, µ2)Ð→ Â[2]
which assigns to each affine-linear map its homogeneous part is then a homomor-
phism of Galois modules. The following lemma is a variant of [SZ16, Proposition
2.3] and is essentially reformulated to make the Galois action more apparent. Here

we consider Aff(Zα, µ2) as a Galois submodule of H0(Zα,Q/Z), by identifying

elements of the latter with set theoretic functions Zα(k) Ð→ Q/Z and using the
embedding µ2 ≅ 1

2
Z/Z↪ Q/Z.

Lemma 3.12 ((cf. [SZ16, Proposition 2.3])). The residue map H1(Wα,Q/Z(1))Ð→
H0(Dα,Q/Z) is injective and its image coincides with Aff(Zα, µ2). Furthermore,

the resulting composed map H1(Wα,Q/Z(1)) Ð→ Aff(Zα, µ2)
hαÐ→ Â[2] coincides

with the map p∗α appearing in (7).
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Proof. For the purpose of this lemma we may as well extend our scalars to the
algebraic closure. We may hence assume without loss of generality that α = 0
(i.e., that X = Kum(A)) and that the Galois action on A[2] is trivial. We will
consequently write A instead of Y , A[2] instead of Zα, W instead of Wα and U

instead of Uα. Let Q ∈ Â[2] be a non-zero element and let fQ ∶ B Ð→ A be the

degree 2 isogeny of abelian varities classified by Q ∈ Â[2] ≅H1(A,µ2) (in particular,

the kernel of the dual isogeny f̂Q ∶ ÂÐ→ B̂ is spanned by Q). Given another point
P ∈ A[2] we will denote by fQ,P ∶ B Ð→ A the map given by fQ,P (x) = fQ(x) + P .

Let Ã denote the blow-up of A at the subscheme A[2] and let B̃ be the variety
obtained from B by blowing up the pre-image M = f−1Q (A[2]) of A[2]. For each

P ∈ A[2] the map fQ,P is a degree 2 tale covering sending M to A[2] and hence
induces an tale covering

f̃Q,P ∶ B̃ Ð→ Ã.

Consider the automorphisms ιB̃ ∶ B̃ Ð→ B̃ and ιÃ ∶ ÃÐ→ Ã induced by the respec-
tive antipodal involutions. Since fP,Q commutes with the antipodal involutions the

same holds for f̃Q,P . We then obtain an induced (ramified) degree 2 map between
smooth varieties

gQ,P ∶ B̃/ιB̃ Ð→ Ã/ιÃ = Kum(A).
Note that gQ,P is unramified over the complement W ⊆ Kum(A) of the image of

the exceptional divisor in Ã: indeed, any geometric point x ∈W (k) has two points

lying above it in Ã, and hence four points lying above it in B̃, which must give two
distinct points in B̃/ιB̃ . The pullback of gQ,P to W hence determines an tale map
of degree 2

g′Q,P ∶ V Ð→W

which is classified by an element [g′Q,P ] ∈ H1(W,µ2) ⊆ H1(W,Q/Z(1)). Now con-
sider the commutative diagram

(8) B ∖M //

f ′Q,P

��

V

g′Q,P

��
U

p // W

where the map f ′Q,P is obtained by restricting the domain and codomain of fQ,P ∶
B Ð→ A and the horizontal maps are quotients by the respective antipodal involu-
tions. Then all the maps in the square (8) are tale of degree 2 and by inspecting the
fibers overW we see that the induced map B∖M Ð→ V ×W U is an isomorphism. It
follows that p∗[g′Q,P ] = [f ′Q,P ] ∈H1(U,µ2). On the other hand, the inclusion U ⊆ A
as the complement of A[2] induces an isomorphism H1(U,µ2) ≅ H1(A,µ2) ≅ Â[2]
which identifies the image of [f ′Q,P ] in H1(U,µ2) with Q ∈ Â[2]. Finally, a di-

rect examination verifies that gQ,P ∶ B̃/ιB̃ Ð→ Ã/ιÃ is ramified at the exceptional
divisor Dx ⊆ X ∖W corresponding to x ∈ A[2] if and only if x is not in the im-
age of fQ,P ∣B[2] ∶ B[2] Ð→ A[2]. By the compatibility of the Weil pairing with
duality of isogenies we see that the image of fQ,P ∣B[2] consists of exactly those
x ∈ A[2] such that the Weil pairing ⟨x + P,Q⟩ is trivial. It then follows that the

residue resD([g′Q,P ]) ∈H0(A[2],Q/Z) can be identified with the affine-linear func-

tion LQ,P (x) = ⟨x + P,Q⟩ = ⟨x,Q⟩ ⟨P,Q⟩.
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We note that by varying P we obtain in this way for each non-zero Q ∈ A[2] at
least two different elements of H1(W,µ2) whose image in H1(U,µ2) ≅ Â[2] is Q. By
the short exact sequence (7) we have thus covered all elements of H1(W,Q/Z(1))
whose image in Â[2] is non-trivial. On the other hand, the only non-trivial ele-

ment of the kernel H1(W,Q/Z(1))Ð→ Â[2] is the one classifying the tale covering
p ∶ U Ð→ W , which is ramified at all the components Dx, and whose residue
hence corresponds to the constant function A[2] Ð→ Q/Z with value 1/2. Finally,
the trivial element has trivial residue, which corresponds to the constant function
A[2] Ð→ Q/Z with value 0. This concludes the enumeration of all element of
H1(W,Q/Z(1)), and so the proof is complete. □

Lemma 3.12 tells us that the residue map induces an isomorphism of Galois
modules H1(Wα,Q/Z(1)) ≅ Aff(Zα, µ2). We may hence rewrite the short exact
sequence (7) as

(9) 0 // µ2
ι // Aff(Zα, µ2)

hα // Â[2] // 0 ,

where ι ∶ µ2 ↪ Aff(Zα, µ2) is the inclusion of constant affine-linear functions. We

note that since Uα ≅ Y α ∖ Zα ≅ A ∖A[2] has no non-constant invertible functions

the same holds for Wα and so we have a canonical isomorphism of Galois modules
H1(Wα,Q/Z(1)) ≅ Pic(Wα)tor. We note that the injectivity of the residue map

H1(Wα,Q/Z(1)) Ð→H0(Dα,Q/Z) implies, in particular, that H1(Xα,Q/Z(1)) =
0 and hence that Pic(Xα) is torsion free.

Remark 3.13. Consider the pullback map Pic(Xα) Ð→ Pic(Wα) on geometric Pi-

card groups. The inverse image Π ⊆ Pic(Xα) of the torsion subgroup Pic(Wα)tor ⊆
Pic(Wα) is called the Kummer lattice in [SZ16]. Given an affine-linear map

L ∶ Zα Ð→ µ2, we may realize the corresponding element of Pic(Wα)tor as a degree

2 covering of Wα. This covering extends to a degree 2 covering of Xα which is
ramified along Dx if and only if L(x) = −1. It then follows that there exists a class

EL ∈ Pic(Xα) such that

2EL = ∑
x∈Zα(k)∣L(x)=−1

[Dx]

and the image of EL in Pic(Wα)tor is L. In particular, the Kummer lattice is
generated over Π0 by the classes EL. This description of the Kummer lattice was
established by Nikulin ([Ni75]) in the case of Kummer surfaces and extended to
general Kummer varieties by Skorobogatov and Zarhin in [SZ16].

From now until the rest of this section we fix the assumption that the Galois
action on A[2] is trivial. Recall from §3.2 that we have a homomorphism

Bα ∶H1(k, Â)Ð→ Br(Yα)/Br(k)
which can be used to define the Cassels-Tate pairing between the image of α in
H1(k,A) and a class β ∈ H1(k, Â). It will be useful to consider similar types

of Brauer elements on Wα. Using the map H1(k,Pic(Wα)) Ð→ Br(Wα)/Br(k)
furnished by the Hochschild-Serre spectral sequence, the map

Aff(Zα, µ2) ≅ Pic(Wα)tor Ð→ Pic(Wα)
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determines a map

(10) Cα ∶H1(k,Aff(Zα, µ2))Ð→ Br(Wα)/Br(k)
which fits into a commutative square

H1(k,Aff(Zα, µ2))

Cα

��

(hα)∗ // H1(k, Â[2])

Bα

��
Br(Wα)/Br(k) // Br(Yα)/Br(k)

where the bottom horizontal map is induced by the composition of p∗α ∶ Br(Wα)Ð→
Br(Uα) and the isomorphism Br(Uα) ≅ Br(Yα) induced by the inclusion Uα ⊆ Yα
(since its complement has codimenional at least 2). It will be useful to recall the
following general construction:

Construction 3.14. Let G be a group acting on an abelian group M and let
f ∶ Γk Ð→ G be a homomorphism, through which we can consider M as a Galois
module. Let kf /k be the fixed field of ker(f) ⊆ Γk. We will refer to kf as the
splitting field of f . Given an element x ∈ H1(k,M) we may consider the torsor

Zx under M classified by x, and the Galois action on Zx(k) is via the semi-direct
productM⋊G. The kernel of the resulting homomorphism Γk Ð→M⋊G is a normal
subgroup Γx ⊆ Γk and we will refer to the corresponding normal extension kx/k as
the splitting field of x. We then obtain an induced injective homomorphism
x ∶ Gal(kx/k) Ð→ M ⋊G. We note that the field kx contains the field kf and the
restriction of x to Gal(kx/kf) lands inM . Finally, the homomorphism f ∶ Γk Ð→ G

descends to an injective homomorphism f ∶ Gal(kf /k) Ð→ G, and we obtain a
commutative diagram with exact rows and injective vertical maps

(11) 1 // Gal(kx/kf) //
� _

x∣kf

��

Gal(kx/k) //
� _

x

��

Gal(kf /k) //
� _

f

��

1

1 // M // M ⋊G // G // 1

Now let β ∈H1(k, Â[2]) be an element and suppose that θ ∈H1(k,Aff(Zα, µ2))
is such that (hα)∗(θ) = β ∈ H1(k, Â[2]). Applying Construction 3.14 with G =
A[2],M = Aff(Zα, µ2) and α ∶ Γk Ð→ A[2] the homomorphism determined by
the class α ∈ H1(k,A[2]) we obtain a commutative diagram with exact rows and
injective vertical maps

(12) 1 // Gal(kθ/kα) //
� _

θ∣kα

��

Gal(kθ/k) //
� _

θ
��

Gal(kα/k) //
� _

α

��

1

1 // Aff(Zα, µ2) // Aff(Zα, µ2) ⋊A[2] // A[2] // 1

where kα and kθ are the splitting fields of α and θ respectively. Let kβ be the
splitting field of β and let kα,β be the compositum of kα and kβ . Applying Con-

struction 3.14 again with G = A[2] and M = Â[2] (with trivial A[2]-action) we
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obtain a commutative diagram with exact rows and injective vertical maps

(13) 1 // Gal(kα,β/kα) //
� _

β∣kα
��

Gal(kα,β/k) //
� _

β×α
��

Gal(kα/k) //
� _

α

��

1

1 // Â[2] // Â[2] ×A[2] // A[2] // 1

By the naturality of Construction 3.14 and since (hα)∗(θ) = β the left vertical maps
in 13 and 14 fit together in a commutative diagram with exact rows and injective
vertical maps of the form:

(14) 1 // Gal(kθ/kα,β) //
� _

��

Gal(kθ/kα) //
� _

θ∣kα

��

Gal(kα,β/kα) //
� _

β∣kα
��

1

1 // µ2
// Aff(Zα, µ2) // Â[2] // 1

In particular, the extension kθ/kα,β is either trivial or quadratic. The following
proposition plays a key role in the analysis of the behavior of the Cassels-Tate
pairing under quadratic twists (see Proposition 3.29):

Proposition 3.15.

(1) An element β ∈ H1(k, Â[2]) can be lifted to an element θ ∈ H1(k,Aff(Zα, µ2))
if and only if α ∪ β = 1 ∈ H2(k,µ2). Furthermore, if S is a set of places which
contains a set of generators for the class group of k and α,β are unramified
outside S then θ can be chosen so that the splitting field kθ is unramified outside
S.

(2) The image of the residue resDα(Cα(θ)) ∈H1(Dα,Q/Z) in H1(Dα⊗kkα,β ,Q/Z)
is constant and comes from the element uθ ∈H1(kα,β ,Z/2) which classifies the
(at most) quadratic extension kθ/kα,β.

Proof. We begin by proving (1). Consider the exact sequence

(15) H1(k,µ2)Ð→H1(k,Aff(Zα, µ2))
(hα)∗Ð→ H1(k, Â[2]) ∂Ð→H2(k,µ2)

associated to the short exact sequence (9). We note that by choosing a base point

x0 ∈ Zα(k) we may identify Zα(k) ≅ A[2] and consequently identify each affine-

linear map L ∶ Zα(k)Ð→ µ2 with an affine-linear map A[2]Ð→ µ2 of the form P ↦
ε ⋅ ⟨P,Q⟩ for some Q ∈ Â[2] and ε ∈ µ2. The association L ↦ (ε,Q) then identifies

the underlying abelian group of Aff(Zα, µ2) with the abelian group µ2 ⊕ Â[2] and
identifies the corresponding Galois action as σ(ε,Q) = (ε ⋅ ⟨α(σ),Q⟩ ,Q). Now

let β′ ∶ Γ Ð→ Aff(Zα, µ2) ≅ µ2 × A[2] be the 1-cochain β′(σ) = (1, β(σ)), where
β ∶ Γk Ð→ Â[2] is the homomorphism determined by the class β. Then

β′(σ) + σβ′(τ) − β′(στ) = (⟨α(σ), β(τ)⟩ ,0)
and so

∂β = α ∪ β ∈H2(k,µ2).

It then follows that β lifts to H1(k,Aff(Zα, µ2)) if and only if α ∪ β vanishes.
Now let S be a set of places which contains a set of generators for the class

group of k and such that α,β are unramified outside S. By (14) we have that kθ
is an at most quadratic extension of kα,β which is classified by an element uθ ∈
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H1(kα,β ,Z/2). Furthermore, if we replace θ by θ′ = θ ⋅ ι∗φ for some φ ∈ H1(k,µ2)
then we get uθ′ = uθ + φ∣kα,β

: this follows from the formula

θ
′
∣kα = θ∣kα ⋅ (ι ○ φ∣kα) ∶ Gal(kθ/kα)Ð→ Aff(Zα, µ2)

relating the homomorphisms associated to the classes θ∣kα ∈ H1(kα,Aff(Zα, µ2)),
θ′∣kα ∈ H1(kα,Aff(Zα, µ2)) and φ∣kα ∈ H1(kα, µ2). Now for every v ∉ S, since kθ
is Galois over k we have that the ramification index of kθ/kα,β is the same for all
places u of kα,β which lie above v. Let T denote the set of places v of k such that
kθ/kα,β is ramified at all places u of kα,β which lie above v. Since S contains a set
of generators for the class group we can find an a ∈ k∗ such that for every v ∉ S we
have that valv(a) is odd if and only if v ∈ T . If we now set θ′ = θ ⋅ ι∗([a]) then we
get that kθ is unramified outside S, as desired.

Let us now prove (2). Let C ∈ Br(Wα) be a Brauer element whose image in
Br(Wα)/Br(k) is Cα(θ), and let rθ = resDα(C) ∈ H1(Dα,Q/Z). Since Cα(θ) is a
2-torsion element it follows that 2C is a constant class and hence rθ is a 2-torsion
element. We may hence (uniquely) consider rθ as an element of H1(Dα,Z/2). Let
r′θ = (rθ)∣Dα⊗kkα,β

∈ H1(Dα ⊗k kα,β ,Z/2) denote the restriction of rθ. Since θ

vanishes in H1(kθ,Aff(Zα, µ2)) it follows that the image of C in Br(Wα ⊗k kθ) is
constant and hence r′θ vanishes in H1(Dα ⊗k kθ,Z/2). It then follows that r′θ is
either trivial or is the pullback of uθ. To show that r′θ can only be trivial if uθ
is trivial we use the fact that both r′θ and uθ depend on the choice of θ in the
same way. More precisely, if we replace θ by θ′ = θ ⋅ ι∗φ for some φ ∈ H1(k,µ2)
then θ′ still maps to β ∈ H1(k, Â[2]), and both r′θ′ − r′θ and uθ′ − uθ will equal the
corresponding image of φ. For uθ this was shown above. As for r′θ, this follows
from the fact that the Brauer element Cα(ι∗φ) can be identified with the image of
the cup product φ ∪ [pα] ∈ H2(Wα, µ2), and hence the residue of Cα(ι∗φ) along
Dα is the image of φ. It will now suffice to show that r′θ = uθ for just a single θ
which lifts β. As such we may choose θ so that both uθ and r′θ are non-zero, in
which case they must coincide by the above considerations (i.e., since r′θ vanishes
in H1(Dα ⊗k kθ,Z/2)). □

We finish this section with some analysis of the way the Brauer element Cα(θ)
pairs with local points in certain circumstances. We begin with some remarks
concerning integral models for the open subvariety W .

Let v be a finite odd place of k and let A be an abelian variety over kv such that
the Galois module A[2] is unramified (in the cases of interest in this paper, the
Galois action on A[2] will in fact be trivial). Let AÐ→ spec(Ov) be a Nron model
forA and letA[2] ⊆ A be the scheme theoretic fixed locus of the antipodal involution
ιA ∶ AÐ→ A, so that the special fiber A[2]Fq is just the 2-torsion subscheme of AFq .
Let U = A ∖A[2] be the complement of A[2] in A, so that U is a v-integral model
for U and inherits a free involution ιU ∶ U Ð→ U which extends the free involution
of ιU ∶ U Ð→ U . Since A is quasi-projective (see [BLR90]) so is U and so we may
realize the quotient of U by ιU as a scheme W ∶= U/ιU. Furthermore, since we
assume that v is odd the corresponding action of Z/2 is tame and hence W is also
a universal geometric quotient (see [CEPT96]). This means, in particular, that
the generic fiber of W is isomorphic to W and that its special fiber is the quotient
of UFq = AFq ∖AFq [2] by the associated antipodal involution.
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Now let α ∈ H1(kv,A[2]) be an unramified element. Then we may naturally
consider α as an element of H1(Ov,A[2]) and consequently twist A by α. This
results in a regular Ov-model Yα for Yα, whose special fiber (Yα)Fv is a torsor
under the special fiber AFv of A associated to the reduction α ∈H1(Fv,A[2]Fv). In
particular, Yα inherits an involution ιYα ∶ Yα Ð→ Yα which extends the involution
ιYα ∶ Yα Ð→ Yα. Repeating the construction of the previous paragraph with Yα
instead of A and ιYα instead of the antipodal involution we obtain natural v-integral
models Uα and Wα for Uα andWα respectively, together with an tale quotient map
Uα Ð→Wα.

Lemma 3.16. Let w be a finite odd place of k, let A be an abelian variety over kw
with semi-abelian reduction of toric rank 1 and such that the Galois module A[2]
is unramified. Let α ∈H1(kw,A[2]) be an unramified and non-zero element and let
x ∈ Wα(kw) be a point. Then there exists a (possibly trivial) unramified quadratic
extension F /kw such that x lifts to a point y ∈ UFα which extends to an integral
point y ∈ UFα (Ow). In particular, x extends to an integral point x ∈Wα(Ow).

Proof. Let F /kw be the (at most) quadratic extension splitting the fiber (Ỹα)x
of the degree 2 map Ỹα Ð→ X over the point x (note that x belongs to Wα(kw)
by assumption and hence does not lie on the ramified locus). We first claim that
that F /kw is unramified. Assume by way of contradiction that F /kw is ramified,
and let wF be a valuation extending w. Since the image of α in H1(kw,A[2]) is
unramified there exists an unramified finite extension K/kw and an isomorphism
φK ∶ (Yα)K ≅ AK such that φK ○ ιYα = ιA ○ φ. Let L be the compositum of F
and K. Our assumption that F /kw is ramified means that L is quadratic ramified
extension of K. Let σ ∈ Gal(L/K) be the non-trivial element.

Let AK be a Nron model for AK and let AL be a Nron model for AL. Let
wK and wL be valuations extending w, and let CwK

and CwL
denote the groups of

components of the geometric special fibers of AK and AL respectively. Since L/K is
purely ramified it induces an isomorphism of residue fields FwK

≅ FwL
. Since A, and

hence also AK , has semi-abelian reduction of toric rank 1, we have an isomorphism
CwK
/2CwK

≅ Z/2. Arguing as in Corollary 3.7 we see that the group CwL
/4CwL

is
cyclic of order 4 and the induced action of Gal(L/K) on CwL

/4CwL
is trivial.

By construction there exists a point y ∈ Ỹα(F ) which maps to x and such that
σ(y) = ιYα(y). Let y′ ∈ Yα(F ) be the image of y and let y′′ ∈ A(L) be the image

of y′ under the induced isomorphism φL ∶ (Yα)L
≅Ð→ AL. In particular, we have

σ(y′′) = ιA(y′′) = −y′′. Since the action of Gal(L/K) on CwL
/4CwL

is trivial we
may conclude that y′′ reduces to a component of CwL

/4CwL
of order 2, and hence

to a component in the image of the open inclusion (AK)FwK
↪ (AL)wL

. This

implies that y′′ and σ(y′′) have the same reduction in the special fiber of AL, and
so this reduction must be a 2-torsion point. It then follows that the reduction of
y′ mod w determines an Fw-point of the fixed point subscheme Zα ⊆ (YFα )Fw under
the induced involution. But this is now a contradiction to our assumption that α
is non-zero (since in this case Zα has no points defined over Fw) and so we may
conclude that F /kw must be unramified.

Now let y ∈ YFα (Ow) be a v-integral point extending the points y ∈ Y Fα (kw) that
lifts x (such a point exists since YFα is proper). To finish the proof it will suffice
to show that y lies in UFα (Ow), i.e., has trivial intersection with Zα ⊆ (YFα )Fw , but
this is simply because the intersection of y with (YFα )Fw is a point defined over Fw,
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while Zα has no points defined over Fw when α ≠ 0. □

Corollary 3.17. Let w be a finite odd place of k and let A be an abelian variety
over kw with semi-abelian reduction of toric rank 1 and such that the Galois action
on A[2] is trivial. Let α ∈H1(kw,A[2]) be an unramified element. Let R ⊆Wα(kw)
be the subset consisting of those points x ∈Wα(kw) which lift to UFα (kw) for some

unramified quadratic extension F /kw. Finally, let θ ∈ H1(kw,Aff(Zα, µ2)) be an
unramified element whose image under the composite map

H1(kw,Aff(Zα, µ2))Ð→H1(kw, Â[2])Ð→H1(kw, Â)
is trivial and let C ∈ Br(Wα)[2] a 2-torsion Brauer element whose image in Br(Wα)/Br(k)
is Cα(θ). Then R ≠ ∅ and the evaluation map evC ∶ R Ð→ Z/2 restricted to R is
constant.

Proof. We separate the proof into two cases, according to whether or not α is
trivial. First assume that α is non-trivial. In this case Lemma 3.16 implies that
every point in Wα(kw) extends to an integral point x ∶ spec(Ow) Ð→ Wα. Let
x0 ∶ spec(Fw)Ð→ (Wα)Fw be the restriction to the residue point. Then the pairing
of x with C can then be computed as

evC(x) = resFw(x∗C) = x∗0 res(Wα)Fw (C) ∈H
1(Fw,Q/Z) ≅ Q/Z

where the second equality is by the compatibility of residues with base change (see
discussion on page 25 of [BBL16]) and the last isomorphism is given by evaluation
on the Frobenius element. Since θ is unramified it follows that C becomes constant
after base changing to kunw and hence the residue of C along (Wα)Fw vanishes in

(Wα)Fw ⊗Fw Fw. It then follows that the residue res(Wα)Fw (C) is constant on each
irreducible component of (Wα)Fw . To show that it is actually constant consider
the pulled back element p∗αC ∈ Br(Uα). Then the image of p∗αC in Br(Uα)/Br(k)
coincides with the restriction of B((hα)∗θ) ∈ Br(Yα)/Br(k) which vanishes thanks

to our assumption that the image of θ in H1(kw, Â) vanishes. We may hence
conclude that p∗αC is constant. Let (pα)Fw ∶ (Uα)Fw Ð→ (Wα)Fw be the restriction
of pα ∶ Uα Ð→Wα to the special fibers. Using again the compatibility of residues and
base change we now get that (pα)∗Fw

res(Wα)Fw (C) = res(Uα)Fw (p
∗
αC) is constant, i.e.,

comes from a class inH1(Fw,Q/Z). Now since A has semi-abelian reduction of toric
rank 1 and A[2] is unramified we have that AFw has two geometric components,
which are thus preserved by the antipodal involution. It then follows that the
tale covering (pα)Fw is geometrically non-trivial on each irreducible component of
(Wα)Fw . Finally, since res(Wα)Fw (C) is constant on each irreducible component
and (pα)∗Fw

res(Wα)Fw (C) is globally constant we may conclude that res(Wα)Fw (C)
is actually constant, as desired.

Now assume that α = 0. In this case we simply write W instead of Wα and U
instead of Uα. Let D0 ⊆D be the component corresponding to 0 ∈ A[2]. Since D0 ≅
Pg−1 the residue resD0(C) ∈ H1(D0,Q/Z) is constant and comes from some class
φ ∈H1(k,Q/Z). We may then write C as a sum C ′+[p]∪φ where C ′ ∈ Br(W ) is such
that resD0(C ′) = 0. In this case C ′ extends toW ∪D0 and so we can write C ′ = C ′′+
C0 where C0 ∈ Br(k) ⊆ Br(W ) is a constant class and C ′′ vanishes when restricted
to Br(D0). It will hence suffice to show that [p]∪φ and C ′′ both pair trivially with
R ⊆W (kw). For [p]∪φ this is clear ev[p]∪φ(x) = [x∗p]∪φ = 0 since the classes [x∗p]
and φ are both unramified by assumption (for [x∗p] this is because x ∈ R, and for φ
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this is because θ is unramified). It is hence left to show that C ′′ pairs trivially with
R. Let F /kw be an unramified quadratic extension such that x lifts to y ∈ UF (kw).
Then the pairing of x with C ′′ is equal to the pairing of y with (pF )∗C ′′, and so
it will suffice to show that (pF )∗C ′′ = 0 ∈ Br(UF ). Now by construction the image
of (pF )∗C ′′ in Br(UF )/Br(k) coincides with B(h∗(θ + ι∗φ)) = B(h∗(θ)), where
h∗ ∶ H1(kw,Aff(A[2], µ2)) Ð→ H1(kw, Â[2]) is the induced map. Since the image

of h∗(θ) in H1(k, Â) vanishes by assumption it follows that (pF )∗C ′′ is a constant
Brauer element. On the other hand, since C ′′ extends by 0 to W ∪D0 we get that
(pF )∗C ′′ extends by 0 to UF ∪ {D0} ⊆ ÃF . It then follows that (pF )∗C ′′ = 0, as
desired. □

3.4. The Tate pairing and its quadratic refinement. Let A be an abelian

variety over a field k equipped with a principal polarization λ ∶ A ≅Ð→ Â. Then the
Weil pairing ⟨, ⟩λ ∶ A[2] ×A[2]Ð→ µ2 induces a symmetric cup product pairing

∪λ ∶H1(k,A[2]) ×H1(k,A[2])Ð→H2(k,µ2)
which is known as the Tate pairing. In [PR12], Poonen and Rains construct a nat-
ural quadratic refinement of ∪λ. In this section we will review this construction,
which plays a role in the analysis of the change of Selmer groups under quadratic
twists. In particular, to make the argument work we will need to know that this
quadratic refinement is invariant under quadratic twists, a statement whose proof is
the main goal of this section. We wish to thank the anonymous referee for pointing
out this gap in the argument after reading a previous version of this paper.

Before we review Poonen and Rains’ construction let us consider the preliminary
question of quadratic refinements of the Weil pairing. Note that since we are
considering the 2-torsion module the Weil pairing (which is usually skew-symmetric)
is also symmetric, and so the question of quadratic refinements is meaningful. Recall

that there is a natural isomorphism of Galois modules NS(A) ≅ Sym(A, Â) between
the Nron Severi group of A and the group of symmetric isogenies A Ð→ Â. In
particular, the principal polarization λ ∶ A Ð→ Â determines a Galois invariant
element (which we will call by the same name) λ ∈ NS(A)Γk . As the antipodal

involution ιA ∶ AÐ→ A fixes NS(A) while acting as [−1] on Pic(A)0 ≅ Â(k)
λ
≅ A(k)

we obtain a short exact sequence of Galois modules

(16) 0 // A[2] // Pic(A)ιA π // NS(A) // 0

where the middle term is the subgroup of Pic(A) fixed by the induced action of
the antipodal involution. We note that this latter group classifies symmetric line
bundles on A, i.e., line bundles L such that ι∗AL ≅ L. Now if L is a symmetric

line bundle on A such that π(L) = λ then, over k, we may write λ ∶ A Ð→ Â using
the formula λ(x) = [τ∗xL⊗L−1] (where τx denotes translation by x), in which case
one says that λ is the polarization induced from L. However, it is in general
not possible to choose a preimage L ∈ π−1(λ) which is Galois invariant (and thus
realizable as a line bundle on A defined over k). The obstruction to the existence
of such a Galois invariant symmetric line bundle is the class

(17) cλ ∶= ∂λ ∈H1(k,A[2])
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where ∂ ∶ H0(k,NS(A)) Ð→ H1(k,A[2]) is the boundary map associated to (16).
We think of cλ as the element classifying the A[2]-torsor π−1(λ) of symmetric

line bundles on A which map to λ ∈ NS(A). It will consequently be useful to
note that this torsor can be identified combinatorially as the torsor of quadratic
refinements of the Weil pairing ⟨, ⟩λ. More precisely, given a symmetric line bundle

L on A such that π(L) = λ we may define a quadratic refinement of ⟨, ⟩λ as follows

(see [Po03]): since L is symmetric there exists an isomorphism σ ∶ L ≅Ð→ ι∗AL, and
we may choose σ uniquely such that the induced map (L)0 Ð→ (ι∗AL)0 = (L)0 is the

identity. It then follows that the composition L
σÐ→ ι∗AL

ι∗AσÐ→ L is an automorphism
of L which is the identity on (L)0 and is hence itself the identity. In particular, for
every 2-torsion point P ∈ A[2] the induced map (L)P Ð→ (ι∗AL)P = (L)P has order
2 and is consequently given by multiplication by an element qL(P ) ∈ µ2. One may
then show (see [Po03, Proposition 13.1]) that the association P ↦ qL(P ) satisfies
the equality

(18) qL(P +Q) ⋅ qL(P ) ⋅ qL(Q) = ⟨P,Q⟩λ .
Functions qL ∶ A[2] Ð→ µ2 satisfying (18) are also known as quadratic refine-
ments of ⟨P,Q⟩λ (in particular, they are not homomorphism of groups, but rather
quadratic maps). We note that the collection Quad(λ) of all such quadratic refine-
ments is naturally a torsor under Hom(A[2], µ2) ≅ A[2] (where Hom(A[2], µ2) acts
by levelwise multiplication). Furthermore, since ⟨, ⟩λ is Galois invariant we obtain
a natural Galois action on Quad(A[2]) (induced by the Galois action on A[2]),
which is compatible with this torsor structure. Finally, one can show that the as-
sociation L ↦ qL determines a map (and hence an isomorphism) of A[2]-torsors
π−1(λ) Ð→ Quad(λ). In particular, the A[2]-torsor Quad(λ) is also classified by
the element cλ ∈ H1(k,A[2]), and so cλ = 0 if and only if ⟨, ⟩λ admits a Galois
invariant quadratic replacement.

Now since the line bundles in the A[2]-torsor π−1(λ) are all equal up to 2-torsion

element of Pic(A), the square K = L⊗L is independent of the choice of L ∈ π−1(λ),
and is hence a line bundle defined over k. This line bundle can also be identified
with the pullback (Id, λ)∗P, where P is the Poincar line bundle on A × Â. The

isomorphism σ ∶ L ≅Ð→ ι∗AL then induces an isomorphism ρ ∶ K ≅Ð→ ιAK, and for
every P ∈ A[2] the induced map ρP ∶ KP Ð→ (ι∗AK)P is given by multiplication by
qλ(P )2 = 1, i.e., by the identity. We may summarize the situation as follows:

(1) Geometrically, every principal polarization λ is induced by a line bundle L.
This line bundle is however not unique: for every field extension K/k, the
choice of such a line bundle over K is equivalent to the choice of a ΓK-invariant
quadratic enhancement of ⟨, ⟩λ.

(2) The square of any line bundle inducing λ is isomorphic to K = (Id, λ)∗P, which
is always defined over k. In addition, there exists a (unique) isomorphism
ρ ∶ K Ð→ ι∗AK with the property that ρP ∶ KP Ð→ (ι∗AK)P is the identity for
every P ∈ A[2].

We now proceed to Poonen and Rains’ construction of the quadratic enhance-
ment of the Tate pairing. Let K = (Id, λ)∗P be as above. If L is a field containing
k and x ∈ A(L) is a point defined over L, then by construction the line bundle

τ∗xK ⊗ K−1 on A ⊗k L has degree 0 and its class in Â(L) coincides with 2λ(x).
In particular, if P is a 2-torsion point then K ≅ τ∗PK. We may then consider the
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(non-abelian) group HK(L) whose elements are pairs (P,ϕ) where P ∈ A[2](L) is
a 2-torsion point defined over L and ϕ ∶ KL Ð→ τ∗PKL is an isomorphism over K.
Composition is defined by (P,ϕ)(Q,ψ) = (P + Q, (τ∗Qϕ) ○ ψ). Mumford ([Mu91])

has shown that the functor L ↦ HK(L) is represented by a group scheme HK

defined over k, which sits in a short exact sequence

(19) 1 // Gm // HK
// A[2] // 1

in which the two maps in the middle are given by t ↦ (0,mt) and (P,ϕ) ↦ P
respectively, where mt ∶ K Ð→ K is the multiplication by t automorphism. Follow-
ing [PR12] we will refer to HK as the Heisenberg group scheme of K.

Proposition 3.18 ([PR12, Corollary 4.7]). The connecting homomorphism

(20) qλ ∶H1(k,A[2])Ð→H2(k,Gm)
induced by 19 is a quadratic map whose associated bilinear pairing is (x, y)↦ x∪λy.

Remark 3.19. Since qλ is quadratic and H1(k,A[2]) is a 2-torsion group we see
that qλ(x) ∈ H2(k,Gm) is a 4-torsion element for every x ∈ H1(k,A[2]). One may
then show (see [PR12]) that

2qλ(x) = x ∪λ x = x ∪λ cλ ∈H2(k,µ2) ⊆H2(k,Gm)
for every x ∈ H1(k,A[2]), where cλ is the element defined above (see (17)), which
vanishes if and only if the Weil pairing ⟨, ⟩λ admits a Galois invariant quadratic
enhancement. In this latter case (which occurs, for example, when that Galois
action on A[2] is trivial), the quadratic map qλ takes values in H2(k,µ2).

Our goal for the rest of this section is to show that the quadratic map (20)
is invariant under quadratic twists. Let U ⊆ A be the complement of A[2] and
p ∶ U Ð→ W = U/µ2 the quotient by the free action of ±1 (see §3.3). Since the
action of A[2] on A by translations preserves U and commutes with multiplication
by ±1 it descends to an action of A[2] on W (which for P ∈ A[2] we will also
denote by τP ∶ W Ð→ W ). The idea is then to show that the line bundle K∣U
which is used to define qλ descends to a line bundle K on W (defined over k) which
is invariant under the action of A[2]. This would mean that one can define the
Heisenberg group, and consequently the map (20), by using W instead of A, and
hence manifestly in a way that is invariant under quadratic twists.

Lemma 3.20. There exists a line bundle K on W such that p∗K ≅ K∣U and such

that τ∗PK ≅K for every P ∈ A[2].

Proof. Let ρ ∶ K ≅Ð→ ι∗AK be the isomorphism of (2), which is characterized by
the property that ρP ∶ KP Ð→ (ι∗AK)P is the identity for every P ∈ A[2]. In
particular, the composition ρ ○ ι∗Aρ ∶KÐ→ K is an automorphism of K which is the
identity on the fiber at 0, and hence must itself be the identity. This means that
ρ∣U ∶ K∣U Ð→ K∣U is a descent datum for K∣U with respect to p ∶ U Ð→ W , and
hence by tale descent for line bundles the pair (K∣U , ρ∣U) determines a line bundle
Kρ on W such that p∗Kρ ≅ K∣U . We now claim that for every P ∈ A[2] the line
bundle τ∗PKρ is isomorphic to Kρ. By tale descent the line bundle τ∗PKρ is classified
by the descent data (τ∗PK∣U , τ∗P ρ∣U). Applying the uniqueness part of tale descent
it will suffice to prove that this descent data is equivalent to (K∣U , ρ∣U), i.e., that
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there exists an isomorphism ϕ ∶ K∣U Ð→ τ∗PK∣U such that the square

(21) K∣U
ϕ //

ρ∣U
��

τ∗PK∣U

τ∗P ρ∣U
��

ι∗UK∣U
ι∗Uϕ

// ι∗Uτ
∗
PK∣U

commutes. Now by the construction of K we know that there is some isomorphism
ϕ ∶ KÐ→ τ∗PK defined over all of A. It will hence suffice to show that the square of
line bundles over A

(22) K
ϕ //

ρ

��

τ∗PK

τ∗P ρ

��
ι∗AK

ι∗Aϕ

// ι∗Aτ
∗
PK

commutes. Since A has no non-constant invertible functions the square (22) com-
mutes if and only if the corresponding square of fibers at 0 commutes. Unwinding
the definitions we may identify the latter square with

(23) K0
ϕ0 //

ρ0

��

KP

ρP

��
K0

ϕ0

// KP

which indeed commutes since both ρ0 and ρP are the identity maps by the main
property of K (see (2)). □

Corollary 3.21. The quadratic map (20) is invariant under quadratic twists.

Proof. Let K be a line bundle onW satisfying the conclusion of Lemma 3.20 and let
us fix an isomorphism p∗K ≅ K∣U . Since neitherW nor U have non-constant invert-

ible functions we obtain an induced isomorphism Aut(K) ≅ Aut(K∣U) ≅ Aut(K).
We may then conclude that for every field L containing k the L-points of the
Heisenberg group are in canonical bijection with the group of pairs (P,ϕ) where
P ∈ A[2](L) and ϕ ∶ K ≅Ð→ τ∗PK is an isomorphism. By transport of structure the
latter groups also assemble the form a group scheme H

K
over k, which is equipped

with a canonical isomorphism H
K
≅HK.

Now suppose that we replace A by a quadratic twist AF . Then we have a
canonical isomorphism AF [2] ≅ A[2] and the complement of AF [2] in A is the
twist UF of U and carries a canonical map pF ∶ UF Ð→X (which can be identified
with the twist of the tale covering p by the class of F ). The induced action of AF [2]
on W then coincides with the action of A[2] via the isomorphism AF [2] ≅ A[2].
Let PF be the Poincar line bundle on AF × ÂF and let KF ∶= (Id, λF )∗P be the

pulled back line bundle on AF . We now claim that pFK is isomorphic to KF ∣U .
Since the map Pic(UF ) Ð→ Pic(UF ⊗k F ) is injective it will suffice to show that

pFK becomes isomorphic to KF ∣U over F . Now by the construction there exists

a canonical isomorphism of abelian varieties T ∶ U ⊗k F
≅Ð→ UF ⊗k F which is
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compatible with the corresponding principal polarizations and compatible with the
projections p ∶ U Ð→ W and pF ∶ UF Ð→ W . Since the Poincar line bundle is
preserved under base change it follows that the isomorphism T identifies the line
bundle KF ∣U with the line bundle K∣U . On the other hand, T also identifies (pF )∗K
with K∣U . It then follows that (pF )∗K is isomorphic to KF ∣U over F and hence
over k. We hence obtain canonical isomorphisms of Heisenberg groups

HK ≅HK
≅HK′

which are compatible with the canonical isomorphism AF [2] ≅ A[2]. It then follows
that the quadratic refinement (20) of the Tate pairing is invariant under quadratic
twists, as desired. □

3.5. Finite quadratic modules. Let M be a finite abelian group. By a qua-
dratic form on M we will mean a function q ∶M Ð→ Q/Z such that

(1) The function Bq ∶M ×M Ð→ Q/Z given by Bq(x, y) = q(x + y) − q(x) − q(y) is
additive in each variable separately;

(2) q(av) = a2v for every a ∈ Z.

A finite quadratic module is a finite abelian group M together with a quadratic
form q ∶ M Ð→ Q/Z such that the associated pairing Bq ∶ M ×M Ð→ Q/Z is

perfect, i.e., induces an isomorphism M Ð→ M̂ = Hom(M,Q/Z). If (M,q) is a
finite quadratic module then we say that a subgroup L ⊆ M is isotropic if q
vanishes on L, in which case L is contained in its orthogonal complement L⊥ = {m ∈
M ∣Bq(m, l) = 0,∀l ∈ L}. A Lagrangian of (M,q) is an isotropic subgroup L ⊆M
such that the inclusion L ⊆ L⊥ is an equality.

Remark 3.22. If L is a Lagrangian of a finite quadratic module (M,q) then the
associated bilinear form Bq(−,−) induces a perfect pairing between L and M/L. It
then follows that ∣L∣ = ∣M/L∣ and ∣M ∣ = ∣L∣∣M/L∣ = ∣L∣2. In particular, if M admits
a Lagrangian then the size ofM is a perfect square and the size of every Lagrangian
is a square root of ∣M ∣.

Our goal in this section is to prove the statement below, which restricts the
possible ways in which Lagrangian subgroups of a given finite quadratic module can
intersect. The following proposition can be considered as a (mild) generalization
of [KMR11, Proposition 2.4] to the setting of finite quadratic modules (using a
very similar proof). While we could in principle have made due only with the
statements of [KMR11] (as was done in a previous version of this paper), this
would have come at a cost of some unnecessary restrictions of generality in the
usage of the Mazur-Rubin lemma (see §3.6), and make some of the arguments less
transparent. Motivated by some of the remarks made by the referee after reading
a previous version of the paper, and with an eye towards future generalizations, we
have opted to offer a self-contained proof of the precise result we needed:

Proposition 3.23. Let (M,q) be a finite quadratic module and let L0, L1, L2 ⊆M
be three Lagrangian subgroups. For i, j = 0,1,2 let us denote Li,j = Li/(Li ∩ Lj).
Then ∣L0,1∣ ⋅ ∣L1,2∣ ⋅ ∣L2,0∣ is a perfect square.
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Proof. To facilitate sign conventions we will consider L0, L1, L2 as indexed by Z/3.
Consider the chain complex

C● =
⎡⎢⎢⎢⎢⎣
⊕

i∈Z/3
Li ∩Li,i+1 // ⊕

i
Li // M

⎤⎥⎥⎥⎥⎦
,

located in degrees 1Ð→ 0Ð→ −1. Here the first map sends x ∈ Li ∩Li+1 to the sum
of the image of x in the Li component and the image of −x in the Li+1 component,
and the second map is simply induced by the inclusions Li ⊆ M . Since ∣M ∣ is a
square by Remark 3.22 it will suffice to show that

∣L0,1∣∣L1,2∣∣L2,0∣
∣M ∣

= ∣C0∣
∣C−1∣∣C1∣

= ∣H0(C●)∣
∣H−1(C●)∣∣H1(C●)∣

is a rational square.
We now observe that the diagonal inclusion L0 ∩ L1 ∩ L2 ↪ ⊕i∈Z/3Li ∩ Li,i+1

induces an isomorphism L0∩L1∩L2
≅Ð→H1(C●) and the natural projection M Ð→

M/(L1 + L2 + L3) induces an isomorphism H−1(C●)
≅Ð→ M/(L1 + L2 + L3). In

particular, the perfect pairing Bq then induces a perfect pairing between H1(C●)
and H−1(C●), and so ∣H1(C●)∣ = ∣H−1(C●)∣. To finish the proof it will hence suffice
to show that the order of H0(C●) is a square.

To prove this we will construct a perfect alternating self-pairing on H0(C●).
Explicitly, we may represent elements of H0(C●) by 0-cycles, which in the case of
C● are triples (x0, x1, x2) ∈ L0⊕L1⊕L2 such that x0+x1+x2 = 0 ∈M . We then define
a self-pairing on the level of 0-cycles by Bφ((x0, x1, x2), (x′0, x′1, x′2)) = Bq(x0, x′1).
This bilinear form is alternating already on the level of 0-cycles:

Bφ((x0, x1, x2), (x0, x1, x2)) = Bq(x0, x1) = q(x0+x1)−q(x0)−q(x1) = q(−x2)−q(x0)−q(x1) = 0,
since L0, L1, L2 are all isotropic. In particular, we haveBφ((x0, x1, x2), (x′0, x′1, x′2)) =
Bq(x0, x′1) = −Bq(x′0, x1). It then follows that this pairing vanishes for every
(x′0, x′1, x′2) as soon as x0 = 0 or x1 = 0 or x0 = −x1 (since L1 is isotropic with
respect to Bq). The kernel of this pairing then contains the image of the differen-
tial ∂ ∶ C1 Ð→ C0 and hence descends to an alternating self-pairing on H0(C●).

To show that this pairing is perfect suppose that (x0, x1, x2) is orthogonal to all 0-
cycles (x′0, x′1, x′2). It then follows that x0 is Bq-orthogonal to all x′1 ∈ L1∩(L0+L2),
which means that x0 belongs to (L1 ∩ (L0 + L2))⊥ = L1 + (L2 ∩ L0). By adding to
(x0, x1, x2) a 0-boundary of the form (y,0,−y) = ∂y for y ∈ L2 ∩ L0 ⊆ C1 we may
assume that x0 belongs to L1. Since x2 = −x0 − x1 it then follows that x2 belongs
to L1 as well. We then obtain that (x0, x1, x2) is the boundary of the element
(x0,−x2,0) ∈ (L0 ∩ L1) ⊕ (L1 ∩ L2) ⊕ (L2 ∩ L0) and so (x0, x1, x2) vanishes in
H0(C●). □

3.6. Quadratic twists and the Mazur-Rubin lemma. Let A be an abelian va-

riety over k equipped with a principal polarization λ ∶ A ≅Ð→ Â. Let α ∈H1(k,A[2])
be an element and let Yα be the associated 2-covering of A. Then Yα carries
an adelic point if and only the image [Yα] ∈ H1(k,A) of α lies in X(A). Re-
call that the Selmer group Sel2(A) ⊆ H1(k,A[2]) is defined as the preimage of
X(A) ⊆H1(k,A) under the natural map H1(k,A[2])Ð→H1(k,A). We then have
a short exact sequence

0Ð→ A(k)/2A(k)Ð→ Sel2(A)Ð→X(A)[2]Ð→ 0.
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Given a quadratic extension F /k we may canonically identify H1(k,A[2]) with
H1(k,AF [2]), and consequently consider the Selmer groups Sel2(AF ) for all F /k
as subgroup of the same group H1(k,A[2]). In order to use Swinnerton-Dyer’s
method in the proof of the main theorem, we will need to know how the Selmer
group changes when one makes sufficiently simple quadratic twists. For this purpose
we will use an approach developed by Mazur and Rubin for analyzing the behavior
of Selmer groups in families of quadratic twists (see [MR10, §3]).

For a place v of k and a (possibly trivial) quadratic extension F /k, let WF
v ⊆

H1(kv,A[2]) be the kernel of the mapH1(kv,A[2]) =H1(kv,AF [2])Ð→H1(kv,AF ).
The Selmer group Sel2(AF ) ⊆H1(k,A[2]) is then determined by the condition that
locv(x) ∈WF

v for every place v ∈ Ωk. When F is the trivial quadratic extension we
will denoteWF

v simply byWv. The intersection Uv =Wv∩WF
v is then a measure of

the difference between the Selmer conditions before and after a quadratic twist by
F . It will also be useful to encode this information via the corresponding quotients

W v =Wv/Uv and W
F

v =WF
v /Uv. Given a finite set of places T ⊆ Ωk we will write

W
F

T ∶= ⊕v∈TW
F

v and denote by V FT ⊆W
F

T the image of Sel2(AF ). As above, when
F is the trivial extension we will simply drop the supscript F from the notation,
yielding WT and VT .

For each place v of k we have the local Tate pairing (see §3.4):

(24) ∪v ∶H1(kv,A[2]) ×H1(kv,A[2])Ð→H2(kv, µ2)
inv
≅ Z/2.

as well as its quadratic refinement

(25) qkv ∶H1(kv,A[2])Ð→H2(kv,Gm)
inv
≅ Q/Z.

defined as in (20). Local arithmetic duality for abelian varieties asserts that the
pairing (24) is non-degenerate and admitsWv ⊆H1(kv,A[2]) as a maximal isotropic
subspace. Furthermore, by [PR12, Proposition 4.9] the quadratic enhancement qkv
vanishes onWv, and soWv is in fact a Lagrangian subgroup (see §3.5). In particular,
dim2Wv = 1

2
dim2H

1(kv,A[2]).
We note that the pairing ∪v is defined only in terms of the Galois module A[2],

and hence in the presence of a quadratic extension F /k the canonical isomorphism
A[2] ≅ AF [2] identifies the Tate pairings (24) associated to A and AF respectively.
By Corollary 3.21 this isomorphism also identifies the quadratic enhancements (25)
associated to A and AF respectively.

Lemma 3.24. Let v be a place of good reduction for A and let F be a quadratic
extension which is ramified at v. Then Uv = 0.

Proof. See [HS15, Lemma 4.3]. □

Lemma 3.25. Let w be a place of semi-abelian reduction for A whose geometric
component group is cyclic of order 2 mod 4. Let F be a quadratic extension in which

w is inert (and in particular unramified). Then dim2Ww =W
F

w = 1. Furthermore,
the intersection Ww ∩WF

w contains exactly the elements of Ww (or WF
w ) which are

unramified.

Proof. Since F is unramified at w the components groups Cw and CFw of A and AF

respectively are naturally isomorphic. To compute Ww ∩WF
w we use Lemma 4.1
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of [HS15] which asserts that

Ww ∩WF
w = δ(N(A(Fw)))

where Fw = F ⊗k kw and N ∶ A(Fw)Ð→ A(kw) is the norm map. Combining [Ma72,
Proposition 4.2, Proposition 4.3], and using the fact that A is isomorphic to its
dual by the principal polarization λ, we may deduce that

A(kw)/N(A(Fw)) ≅H1(Gal(F /kv),Cw) ≅ Z/2.
On the other hand, since 2A(kw) ⊆ N(A(Fw)) the boundary map δ ∶ A(kw) Ð→
H1(kv,A[2]) induces an isomorphism

A(kw)/N(A(Fw)) ≅ δ(A(kw))/δ(N(A(Fw))) ≅Ww/(Ww ∩WF
w )

and so the latter group is isomorphic to Z/2, as desired. Finally, let us note that
since F /kw is unramified the base change AF also has a semi-abelian reduction at
w with component group CFw ≅ Cw. In particular CFw /2CFw ≅ Z/2 has trivial Galois
action and so every point in N(A(Fw)) reduces to a component in 2Cw. Since
A(kw)/N(A(Fw)) ≅ Z/2 it follows that this condition is sufficient as well, i.e., the
points of A(kw) which are norm from A(Fw) are exactly those whose image in
Cw/2Cw is trivial. On the other hand, by Hensel’s lemma these are also exactly the
points which are divisible by 2 in A(kunw ), and hence exactly the points x ∈ A(kw)
such that δ(x) is unramified. □

Remark 3.26. Suppose that the abelian variety A admits a 2-structure M ⊆ Ωk in
the sense of Definition 2.1, and let {Qw}w∈M be the basis of A[2] described in §3.1.
Then any place w which belongs to M will satisfy the conditions of Lemma 3.25.
Combining Lemma 3.25 and Corollary 3.8 we may conclude that the Selmer con-
dition subspace Ww ⊆ H1(kw,A[2]) is generated over Ww ∩H1(Ow,A[2]) by the
element δ(Qw). This implies that every element of Sel2(A) can be written uniquely
as a sum of an element unramified over M and an element in the image of A[2].

Now let T be such that Wv = WF
v for every v ∉ T . Then the kernel of the

surjective map Sel2(A) Ð→ VT can be identified with the kernel of the surjective
map Sel2(AF )Ð→ V FT , and hence

dim2(Sel(AF )) − dim2(Sel(A)) = dim2(V FT ) − dim2(VT ).
The following lemma, which is based on the ideas of Mazur and Rubin for analyzing
the behavior of Selmer groups in families of quadratic twists (see [MR10, §3]), is our
key tool for controlling the difference dim2(Sel(AF ))−dim2(Sel(A)) after quadratic
twists.

Lemma 3.27 ((Mazur-Rubin)). Let A be a principally polarized abelian variety.
Let F /k be a quadratic extension and let T be a finite set of odd places of k such

that Wv =WF
v for every v ∉ T . Let r = dim2WT = dim2W

F

T . Then

dim2 VT + dim2 V
F
T ≤ r

and the gap r − dim2 VT − dim2 V
F
T is even.

Proof. Let

(26) Wv ×WF
v Ð→ Z/2
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be the restriction of the local Tate pairing 24. Since Wv and WF
v are both maximal

isotropic with respect to 24 it follows that the left and right kernels of 26 can both
be identified with Wv ∩WF

v , and so 26 descends to a non-degenerate pairing

(27) W v ×W
F

v Ð→ Z/2
By summing over the places of T we obtain a non-degenerate pairing

(28) WT ×W
F

T Ð→ Z/2
between two vector spaces of dimension r. Finally, by quadratic reciprocity and

the fact that Wv =WF
v for v ∉ T we get that the subspaces VT ⊆WT and V FT ⊆W

F

T

are orthogonal to each other with respect to (28) and so VT is contained in the
orthogonal complement of V FT , and vice versa. This yields the desired bound

dim2(VT ) + dim2(V FT ) ≤ r.

Let us now show that that the gap between dim2(VT )+dim2(V FT ) and r is even

(cf. [HW16, Theorem 2.3]). Since dim2W v = 0 for v ∉ T we see that for the
purpose of this lemma we may as well replace T with any bigger finite subset of
places. In particular, we may assume that Wv = H1(Ov,A[2]) for v ∉ T and by
global duality theory we may also insure that the group H1(OT ,A[2]) embeds in

∑v∈T H1(kv,A[2]) as a maximal isotropic subgroup with respect to the sum of local
cup products ∪T = ∑v∈T ∪v. Now let

qT ∶ ∑
v∈T

H1(kv,A[2])Ð→ Q/Z

be the quadratic map obtained by summing the local quadratic refinements qkv (25).
We then have qT (x + y) − qT (x) − qT (y) = x ∪T y and qT is invariant under qua-
dratic twists by Corollary 3.21. By [PR12, Proposition 4.9, Theorem 4.13] the
quadratic form qT vanishes on the isotropic subgroups H1(OT ,A[2]), ⊕vWv and
⊕vWF

v . In particular, the pair (⊕v∈TH1(kv,A[2]), qT ) is a finite quadratic mod-
ule (see §3.5) which admits L0 ∶= H1(OT ,A[2]), L1 ∶= ⊕vWv and L2 ∶= ⊕vWF

v as
Lagrangians. Now let V ′T ⊆ ∑v∈T Wv and (V FT )′ ⊆ ∑v∈T WF

T be the images of
Sel2(A) and Sel2(AF ) respectively. Then the kernel of V ′T Ð→ VT and the ker-
nel of (V FT )′ Ð→ V FT are both isomorphic to the image of Sel2(A) ∩ Sel2(AF ) in
∑v∈T [Wv ∩WF

v ] and so

dim2 VT − dim2 V
F
T = dim2 V

′
T − dim2(V FT )′.

In particular, dim2 VT + dim2 V
F
T has the same parity as dim2 V

′
T + dim2(V FT )′. On

the other hand, since Wv =WF
v =H1(Ov,A[2]) for v ∉ T we have V ′T = L1 ∩L0 and

(V FT )′ = L2 ∩ L0. Applying Proposition 3.23 to L0, L1, L2 (and using the fact that
all Lagrangians have the same size) we may conclude that the quantity

dim2 V
′
T + dim2(V FT )′ = dim2(L1 ∩L0) + dim2(L2 ∩L0)

has the same parity as

r = dim2(WT ) = dim2(L1/(L1 ∩L2)).
It then follows that dim2 VT + dim2(V FT ) has the same parity as r, as desired. □

The above lemma of Mazur and Rubin will be used to understand the change
in Selmer groups under quadratic twists. This step in Swinnerton-Dyer’s method
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can be roughly described as performing “2-descent in families”. As explained in §1,
our current application of this method includes a new step of “second 2-descent in
families”. To this end we will need to know not only how the Selmer group changes
in quadratic twists, but also how the Cassels-Tate pairing changes in quadratic
twists.

From this point on we fix the assumption that the Galois action on A[2] is triv-
ial. By pre-composing the Cassels-Tate pairing with the natural map Sel2(A) Ð→
X(A)[2] we obtain an induced (generally degenerate) pairing

⟨, ⟩CT
A ∶ Sel2(A) × Sel2(A)Ð→ Z/2.

We note that if α,β ∈ Sel2(A) are elements which also belong to Sel2(AF ) then the

Cassels-Tate pairings ⟨α,β⟩CT
A and ⟨α,β⟩CT

AF are generally different. The following

proposition gives some information on the difference between ⟨α,β⟩CT
A and ⟨α,β⟩CT

AF .
To phrase the result we will need to establish some terminology.

Recall that the Cassels-Tate pairing is defined using a certain homomorphism

Bα ∶H1(k, Â[2])Ð→ Br(Yα)/Br(k)
as described in §3.2. For every quadratic extension F /k let

BFα ∶H1(k, Â[2])Ð→ Br(Y Fα )/Br(k)

be the analogous map, constructed using the canonical isomorphism Â[2] ≅ ÂF [2].
Let us now resume the notation of §3.3. In particular, we have the involution

ιYα ∶ Yα Ð→ Yα whose fixed locus is the 0-dimensional scheme Zα ⊆ Yα. The

variety Ỹα is the blow-up of Yα at Zα and the Kummer variety Xα is defined as
the quotient Ỹα/ιYα . Recall that we have denoted by Dα ⊆ Xα the image of the

exceptional divisor of Ỹα and by Wα = Xα ∖Dα ⊆ Xα its complement. The degree
2 map Ỹ Ð→ Xα is then ramified exactly along Dα ⊆ Xα and restricts to an tale
covering pα ∶ Uα Ð→ Wα, where Uα ⊆ Yα is the complement of Zα. In particular,
we may find an open subset X0

α ⊆ Xα and a regular function f on X0
α such that

div(f) = Dα ∩ X0
α =∶ D0

α and such that the map Ỹα ×Xα X
0
α Ð→ X0

α admits an
affine equation of the form x2 = f inside X0

α ×A1
k, where x is a coordinate on A1

k.
Reducing X0

α if necessary we may also assume that the differential df is nowhere
vanishing on D0

α.
In §3.3 we considered a map of the form

Cα ∶H1(k,Aff(Zα, µ2))Ð→ Br(Wα)/Br(k),

see (10) and the discussion following it. In particular, if θ ∈ H1(k,Aff(Zα, µ2)) is
an element such that (hα)∗(θ) = β, then p∗αCα(θ) = Bα(β)∣Uα ∈ Br(Uα)/Br(k). In
fact (pFα )∗Cα(θ) = BFα (β)∣UF

α
for every F /k.

Let us now fix a finite set S of places containing all the archimedean places,
all the places above 2 and all the places of bad reduction for A. By possibly
enlarging S we may find OS-smooth models Xα,X

0
α and Dα for Xα,X

0
α and Dα

respectively and an S-integral regular function f ∈ OS[X0
α] extending f such that

D0
α ∶= div(f) is an integral model for D0

α and such that df does not vanish on D0
α.

We then also obtain an OS-smooth model Wα ∶= Xα ∖Dα for Wα. For a v ∉ S we
will denote by (Xα)v, (X0

α)v, (D0
α)v and (Dα)v the respective base changes from

spec(OS) to spec(Ov). Finally, by possibly enlarging S we may assume that the
class [pα] ∈ H1(Wα,Z/2) comes from H1(Wα,Z/2) and that for every v ∉ S the
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corresponding evaluation map Wα(Ov)Ð→H1(Ov,Z/2) ≅ Z/2 sending x ∈Wα(Ov)
to [x∗pα] ∈H1(O,Z/2) is surjective.

Remark 3.28. Let v ∉ S be a place. Given a uniformizer π ∈ Ov and an Fv-point
x ∈ D0

α(Fv) ⊆ X0
α(Fv), since df(x) ≠ 0 we may use Hensel’s lemma to find a point

x ∈ X0
α(Ov) which reduces to x and such that f(x) = π mod (π2). In particular, in

this case x ∶ spec(On) ↪ X0
α intersects D0

α ⊆ X0
α transversely and the tale covering

x∗pα ∶ Ỹα ×Xα spec(kv)Ð→ spec(kv) is classified by [π] ∈H1(kv, µ2).

Proposition 3.29. Let α,β ∈ Sel2(A) be two elements unramified outside S ∖M
and let θ ∈H1(k,Aff(Zα, µ2)) be an element such that (hα)∗(θ) = β, and such that
the splitting field kθ is unramified outside S ∖M . Assume in addition that Cα(θ)
can be represented by a Brauer element C ∈ Br(Wα) which extends to the S-integral
model Wα. Let a ∈ k∗ be an element which is a unit over S and a square over S∖M ,
and such that for each place v with valv(a) odd, the Frobenius element Frobv(kα,β)
is trivial. Set F = k(

√
a). Then α and β belong to Sel2(AF ) and

⟨α,β⟩CT
AF − ⟨α,β⟩CT

A = ∏
valv(a)=1mod 2

Frobv(kθ/kα,β) ∈ Gal(kθ/kα,β) ⊆ Z/2

Proof. Let us first show that α and β belong to the Selmer group Sel2(AF ) after
quadratic twist. For a place v ∈ S ∖M we have that a is a square at v and hence
the Selmer conditions of A and AF are the same at v. For w ∈ M the fact that
α,β satisfy the Selmer condition of A at w and are furthermore unramified at w
implies by Lemma 3.25 that α,β satisfy the Selmer condition of AF at w. Finally,
for v ∉ S, if valv(a) is even then AF has good reduction at v and so the Selmer
condition of AF at v is the same as that of A. On the other hand, if valv(a) is
odd then by assumption the Frobenius element Frobv(kα,β) is trivial which means
that α,β restrict to 0 in H1(kv,A[2]), and hence in particular satisfy the Selmer
condition of AF at v. We may hence conclude that α,β ∈ Sel2(AF ).

Now since α belongs to both Sel2(A) and Sel2(AF ) we may find two adelic points
(xv), (xFv ) ∈∏vWα(kv) ⊆ Xα(Ak) such that (xv) lifts to ∏v Uα(kv) ⊆ Yα(Ak) and
(xFv ) lifts to ∏v UFα (kv) ⊆ Y Fα (Ak). Furthermore, by the properties of S and using
Remark 3.28 we may insure the following:

(1) For every place v such that a is a square at v (e.g., every v ∈ S ∖M) we have
xFv = xv.

(2) For every v such that valv(a) is odd the Zariski closure xFv ∈ (Xα)v of xFv
intersects (Dα)v ⊆ (Xα)v transversely at a single closed point of degree 1 (see
Remark 3.28).

(3) For every v ∉ S we have xv ∈Wα(Ov).
(4) For every v ∉ S such that valv(a) is even we have xFv ∈Wα(Ov).

Let S(a) denote the set of places v such that valv(a) is odd. Since p∗αCα(θ) =
Bα(β)∣Uα and (pFα )∗Cα(θ) = BFα (β)∣UF

α
and by our assumptions on C we have

⟨α,β⟩CT
A =∑

v

invv C(xv) = ∑
v∈S

invv C(xv)

and
⟨α,β⟩CT

AF =∑
v

invv C(xFv ) = ∑
v∈S∪S(a)

invv C(xFv ).
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Now for v ∈ S ∖M we have xv = xFv and so C(xv) = C(xFv ). Furthermore, by
Corollary 3.17 we have that C evaluates to the same value on xw and xFw for every
w ∈M . We may hence conclude that

⟨α,β⟩CT
AF − ⟨α,β⟩CT

A = ∑
v∈S(a)

invv C(xFv ).

Now let v ∈ S(a) be a place. Since C extends to the S-integral model Wα it has
non-trivial residues only along Dα. Since xFv intersects Dα transversely at a single
closed point of degree 1 we see that the residue of x∗C ∈ Br(spec(kv)) along spec(Fv)
coincides with the restriction of resDα(C) ∈H1(Dα,Q/Z) to the intersection point
xFv ∩Dα. Now since the images of α and β in H1(kv,A[2]) vanish it follows that
the extension kα,β/k splits completely over kv for every v ∈ S(a). To prove the
theorem we may hence extend our scalars to kα,β . Proposition 3.15(2) now tells
us that the residue resDα(C) ∈ H1(Dα,Q/Z) becomes constant when restricted to
Dα ⊗k kα,β and its value there is given by the quadratic extension kθ/kα,β . The
restriction of resDα(C) ∈ H1(Dα,Q/Z) to the intersection point xFv ∩Dα is then
trivial if and only if the Frobenius element Frobv(kθ) is trivial, and so the desired
result follows. □

4. Rational points on Kummer varieties

Our goal in this section is to carry out the proof of Theorem 2.8. We will do
so in three steps, which are described in sections §4.1, §4.2 and §4.3, respectively.
Each of these steps will be formalized as a proposition (see Propositions 4.8, 4.10
and 4.12 respectively) and the proof of Theorem 2.8, which appears in §4.4, essen-
tially consists of assembling these three propositions into one argument.

In the course of all three steps it will be convenient to know that the abelian vari-
eties and associated 2-coverings under consideration satisfy the following technical
condition:

Definition 4.1. Let A be an abelian variety such that the Galois action on A[2]
is trivial, let M be a 2-structure for A (Definition 2.1) and let α ∈ H1(k,A[2]) be
an element. We will say that (A,α) is admissible if for every pair of functions
f ∶M Ð→ {0,1} and h ∶M ×M Ð→ {0,1} such that

∏
w∈M
⟨α,Pw⟩f(w)λ ∏

(w,u)∈M×M
⟨δ(Pw), Pu⟩h(w,u)λ = 1 ∈H1(k,µ2)

we also have

∏
(w,u)∈M×M

⟨Pw, Pu⟩h(w,u)λ = 1 ∈ µ2.

The following lemma will be used to insure that the condition of Definition 4.1
can be assumed to hold whenever necessary.

Lemma 4.2. Let A,M and α be as in Definition 4.1. Let S be a finite set of
places containing all the archimedean places, all the places above 2, all the places
of bad reduction for A and all the places where α is ramified. Let F = k(

√
a) be a

quadratic extension which is unramified over S but that is ramified in at least one
place outside S. Then (AF , α) is admissible.
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Proof. Assume that (AF , α) is not admissible and let (f, h) ∈ (Z/2)M × (Z/2)M×M
be such that

∏
w∈M
⟨α,Pw⟩f(w)λ ∏

(w,u)∈M×M
⟨δF (Pw), Pu⟩h(w,u)λ = 1 ∈H1(k,µ2)

but

∏
(w,u)∈M×M

⟨Pw, Pu⟩h(w,u)λ = −1.

According to Lemma 3.5 and Remark 3.1 we then have

∏
w∈M
⟨α,Pw⟩f(w)λ ∏

(w,u)∈M×M
⟨δ(Pw), Pu⟩h(w,u)λ = [a] ∈H1(k,µ2)

Since k(
√
a) is ramified outside S and A has good reduction outside S we obtain a

contradiction. It follows that (AF , α) is admissible. □

4.1. Quadratic twists with points everywhere locally. Let A be an abelian
variety over k such that the Galois action on A[2] is trivial and let α ∈H1(k,A[2])
be an element. Let Xα = Kum(Yα) be the Kummer variety associated to Yα and
let Wα ⊆ Xα be as in §3.3. Suppose that X(Ak)Br ≠ ∅. In this section we will
consider the problem of finding a quadratic extension F /k such that Y Fα (Ak) ≠ ∅,
i.e., such that α ∈ Sel2(AF ). Furthermore, to set some prerequisite conditions for
the following steps we will wish to guarantee that Y Fα contains an adelic point
which is furthermore orthogonal to certain Brauer elements. Recall that for every
quadratic extension F /k we have a homomorphism

BFα ∶H1(k, Â[2])Ð→ Br(Y Fα )/Br(k)
which can be used to define the Cassels-Tate pairing on AF of α against any other
element. Recall also that in §3.3 we considered a similar type of map

Cα ∶H1(k,Aff(Zα, µ2))Ð→ Br(Wα)/Br(k),
see (10) and the discussion following it.

Definition 4.3. We will denote by C(Wα) ⊆ Br(Wα)/Br(k) the image of Cα.
Similarly, we will denote by C(Xα) ⊆ Br(Xα)/Br(k) the subgroup consisting of
those elements whose image in Br(Wα)/Br(k) lies in C(Wα).

Proposition 4.4. Let B ⊆ H1(k,A[2]) be a finite subgroup which is orthogo-
nal to α with respect to ∪λ. If Xα contains an adelic point which is orthogo-
nal to C(Xα) ⊆ Br(Xα)/Br(k) then there exists a quadratic extension F /k such
that (AF , α) is admissible and Y F contains an adelic point which is orthogonal to
BFα (B) ⊆ Br(Y Fα )/Br(k). Furthermore, if M is a 2-structure for A such that α is
unramified over M but the image of α in H1(kw,A[2]) is non-zero for every w ∈M
then we may choose F to be unramified over M .

Proof. Let Y = (Ỹα ×Gm)/µ2
where µ2 acts on Ỹα by ιYα and on Gm by multipli-

cation by −1. Projection on the second factor induces a map Y Ð→ Gm/µ2 ≅ Gm
and for t ∈ Gm(k) = k∗ we may naturally identify the fiber Yt with the qua-

dratic twist Ỹ
k(
√
t)

α (which is birational to Y Fα ). As in [SSD05, §5] one can show
that Y Ð→ Gm can be compactified into a fibration X Ð→ P1 whose fibers over
0,∞ ∈ P1 are geometrically split (in the sense that they contain a geometric com-
ponent of multiplicity 1). Furthermore, as explained in [SSD05, §5], the projection
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Y Ð→ Ỹα/ιYα = Xα extends to a map π ∶ X Ð→ Xα which is birational over
Xα to the projection Xα ×k P1 Ð→ Xα. It then follows that the pullback map
π∗ ∶ Br(Xα)Ð→ Br(X ) is an isomorphism.

By Proposition 3.15 we may find a finite subgroup C ⊆ H1(k,Aff(Zα, µ2)) such
that (hα)∗(C) = B. Since Xα(Ak)C(Xα) ≠ ∅, Harari’s “formal lemma” implies the
existence of an adelic point (xv) ∈Xα(Ak) which lies in Wα and is orthogonal both
to C(Xα) and to Cα(θ) for every θ ∈ C. For every v ∈ S let us fix a quadratic

extension Fv = kv(
√
tv)/kv such that xv lifts to a local point yv ∈ Ỹ Fv

α (kv). In the
presence of a 2-structure M satisfying the conditions of the proposition we may
rely on Lemma 3.16 to insure that Fw/kw is unramified for every w ∈ M . The
collection (tv, yv) now determines an adelic point (x′v) ∈ X (Ak) which maps to
(xv) ∈Xα(Ak). Since the pullback map π∗ ∶ Br(Xα)Ð→ Br(X ) is an isomorphism
we may deduce that (x′v) is orthogonal to the pullbacks of the classes in C(Xα)
and the classes Cα(θ) for θ ∈ C. We note that the classes corresponding to C(Xα)
contain, in particular, all the vertical classes with respect to the fibration X Ð→ P1

(these are the classes of C(Xα) whose corresponding elements inH1(k,Aff(Zα, µ2))
are in the kernel of (hα)∗). Let us now choose a place vad ∉ S such that α maps to
0 in H1(kvad ,A[2]). Let tvad ∈ Ov be a uniformizer and Fvad = kvad(

√
tad). Then

Ỹ
Fvad
α ≅ ÃFvad and so we may choose a point xvad ∈Xα(kvad) which lifts to a point

yvad ∈ Ỹ
Fvad
α (kv).

By [HW15, Theorem 9.17] there now exists a t ∈ k∗ ⊆ P1(k) and an adelic point

(x′v) ∈ Yt(Ak) = Ỹ k(
√
t)

α (Ak) with the following properties:

(1) t is arbitrarily close to tv for every v ∈ S ∪ {vad}.
(2) x′v is arbitrarily close to xv for every v ∈ S ∪ {vad}.
(3) (x′v) is orthogonal to π∗Cα(θ)∣Ỹ k(

√
t)

α

= Bk(
√
t)

α ((hα)∗(θ)) ∈ Br(Ỹ k(
√
t)

α ) for θ ∈ C.

The quadratic extension F = k(
√
t) now has all the required properties (where the

admissibility of (AF , α) follows from Lemma 4.2 applied with respect to the place
vad). □

Let us now specialize to the case where A carries a principal polarization λ ∶
A

≅Ð→ Â. We will furthermore fix the assumption that A admits a 2-structure
M such that α is unramified over M but has a non-trivial image in H1(kw,A[2])
for w ∈M .

Remark 4.5. As explained in §3.4, the obstruction cλ ∈ H1(k,A[2]) to realizing λ
as induced by a symmetric line bundle on A vanishes when the Galois action on
A[2] is trivial (since we can clearly find a Galois invariant quadratic enhancement
to the Weil pairing in that case). We may hence assume without loss of generality
that λ is induced by a symmetric line bundle.

We would like to describe a particular finite subgroupB ⊆H1(k,A[2]) ≅H1(k, Â[2])
to which we will apply Proposition 4.4. Let B0 ⊆ A[2]⊗A[2] denote the kernel of
the Weil pairing map A[2] ⊗A[2] Ð→ µ2. The bilinear map (P,Q) ↦ ⟨δ(P ),Q⟩λ
(see §3.1) then induces a homomorphism T ∶ B0 Ð→ H1(k,µ2). We will denote
by Lλ the minimal field extension such that T (β) vanishes when restricted to Lλ
for every β ∈ B0. We will further denote by Lλ,α = Lλkα the compositum of Lλ
with the splitting field kα of α (see Construction 3.14). Finally, we will denote by
LM,α ⊆ Lλ,α the maximal subextension of Lλ,α which is unramified over M .
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Remark 4.6. The field LM,α is invariant under replacing A by a quadratic twist
AF .

We are now ready to describe the finite subgroup B ⊆ H1(k,A[2]) we wish to
apply Proposition 4.4 to. For this it will be convenient to employ the following ter-
minology: given a field extension K/k, we will say that an element β ∈H1(k,A[2])
is K-restricted if β∣K = 0 ∈ H1(K,A[2]). We will denote by SelK2 (A) ⊆ Sel2(A)
the subgroup consisting of K-restricted elements.

Definition 4.7. We will denote by Bα ⊆H1(k,A[2]) the finite subgroup consisting
of those elements β ∈ H1(k,A[2]) which are both LM,α-restricted and satisfy α ∪λ
β = 1 ∈H2(k,µ2).

The following proposition summarizes the main outcome of this section.

Proposition 4.8. If Xα(Ak)C(Xα) ≠ ∅ then there exists a quadratic extension F /k
such that (AF , α) is admissible, α belongs to Sel2(AF ), and α is orthogonal to

Sel
LM,α

2 (AF ) with respect to the Cassels-Tate pairing. Furthermore, if α is unram-
ified over M but the image of α in H1(kw,A[2]) is non-zero for every w ∈M then
we may choose F to be unramified over M .

Proof. Apply Proposition 4.4 with the subgroup Bα ⊆H1(k,A[2]) of Definition 4.7,

and use the fact that any element β ∈ SelLM,α

2 (AF ) satisfies α ∪λ β = 1 ∈ H2(k,µ2)
by local duality. □
Remark 4.9. The group C(Xα) ⊆ Br(Xα)/Br(k) belongs in fact to Br1(Xα)/Br(k),
where Br1(Xα) is the kernel of the map Br(Xα) Ð→ Br(Xα). Furthermore, since
C(Xα) is a finite 2-torsion group we can find a finite subgroup C′ ⊆ Br1(X){2}
in the 2-primary part of Br1(X) that maps surjectively onto C(Xα). We hence
see that in Proposition 4.8 we only need to assume the triviality of the 2-primary
algebraic Brauer-Manin obstruction.

4.2. First descent. In this section we resume all the notation of §4.1, and we keep
the assumption that the Galois action on A[2] is trivial, that A carries a principal

polarization λ ∶ A ≅Ð→ Â (automatically induced by a symmetric line bundle, see
Remark 4.5), and that the Kummer surface Xα = Kum(Yα) contains an adelic point
which is orthogonal to the subgroup C(Xα) ⊆ Br(Xα)/Br(k) of Definition 4.3. We
will also, as above, assume that A admits a 2-structureM such that α is unramified
over M but has a non-trivial image in H1(kw,A[2]) for each w ∈ M . In light of
Proposition 4.8 we may, by possibly replacing A by a quadratic twist, assume that
the following two conditions hold as well:

(A1) (A,α) is admissible.

(A2) α belongs to Sel2(A) and is orthogonal to Sel
LM,α

2 (A) with respect to the
Cassels-Tate pairing.

Our goal in this subsection is to find a quadratic extension F /k such that Con-
ditions (A1) and (A2) still hold for AF and such that in addition Sel2(AF ) is

generated by Sel
LM,α

2 (AF ) and the image of A[2]. We will do so by showing that if
this is not the case then there is always a quadratic twist making the Selmer rank
smaller.

Proposition 4.10. Let A an abelian variety as above with a 2-structure M and let

α ∈ Sel2(A) be an element which is unramified overM and orthogonal to Sel
LM,α

2 (A)
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with respect to the Cassels-Tate pairing. Assume that Conditions (A1) and (A2)

hold for (A,α). If Sel2(A) is not generated by Sel
LM,α

2 (A) and δ(A[2]) then there
exists a field extension F = k(

√
a) with a a unit over M and such that:

(1) Conditions (A1) and (A2) hold for (AF , α).
(2) dim2 Sel2(AF ) < dim2 Sel2(A).

Proof. Let S be a finite set of places containing all the archimedean places, all
the places above 2 and all the places of bad reduction for A or Xα, and such that
S ∖M contains a set of generators for the class group of k. Since the Selmer
condition subgroups Wv ⊆ H1(kv,A[2]) are isotropic with respect to ∪v it follows
that for every β ∈ Sel2(A) we have α ∪λ β = 1 ∈ H2(k,µ2). By Proposition 3.15 we

may choose a finite subgroup Cα ⊆ H1(k,Aff(Zα, µ2)) such that (hα)∗ maps Cα

surjectively onto Sel
LM,α

2 (A), and such that for every θ ∈ Cα the splitting field kθ
is unramified outside S ∖M . Furthermore, by possibly enlarging S we may assume
that we have an OS-smooth S-integral model Wα for Wα and such that for every
θ ∈ Cα the element Cα(θ) ∈ Br(Wα)/Br(k) can be represented by a Brauer element
on Wα which extends to Wα.

Our method for constructing the desired element a ∈ k∗ consists of two parts.
In the first part we find two places v0, v1 ∉ S whose associated Frobenius elements
in Γk satisfy suitable constraints. These constraints imply in particular that there
exists an element a ∈ k∗ such that div(a) = v0 + v1. In the second part of the proof
we show that the quadratic extension F = k(

√
a) has the desired properties.

By Remark 3.26 every element of Sel2(A) can be written uniquely as a sum of
an element unramified over M and an element in the image of A[2]. In particular,

the Selmer group Sel2(A) is generated by Sel
LM,α

2 (A) and δ(A[2]) if and only if

Sel
LM,α

2 (A) contains all elements which are unramified overM . Let us hence assume
that there exists a β ∈ Sel2(A) which is unramified over M and does not belong to

Sel
LM,α

2 (A).
Let V = A[2]⊕A[2]⊕ (A[2]⊗A[2]) and consider the homomorphism

Φ ∶ V Ð→H1(k,µ2)
given by the formula Φ(P0, P1,∑i Pi ⊗ Qi) = ⟨α,P0⟩λ ⋅ ⟨β,P1⟩λ ⋅ ∏i ⟨δ(Pi),Qi⟩λ.
Let R ⊆ V be the kernel of Φ and let kϕ/k be the minimal Galois extension
such that all the elements in the image of Φ vanish when restricted to kϕ. Then
kϕ/k is a 2-elementary extension and we have a natural isomorphism Gal(kϕ/k) ≅
Hom(V /R,µ2).

Let B0 ⊆ A[2] ⊗ A[2] be the kernel of the Weil pairing A[2] ⊗ A[2] Ð→ µ2

and let b ∈ A[2] ⊗ A[2] be an element which is not in B0, so that A[2] ⊗ A[2] is
generated over B0 by b. Let Vα ⊆ V be the image of the left most A[2] factor. The
admissibility of (A,α) is then equivalent to the following inclusion of subgroups of
V :

R ∩ (Vα +A[2]⊗A[2]) ⊆ Vα +B0,

which in turn is equivalent to the statement

b ∉ R + Vα +B0.

On the other hand, the fact that β is not LM,α-restricted means that there exists
a wβ ∈ M such that Φ(0, Pwβ

,0) does not belong to the subgroup of H1(k,µ2)
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spanned by Φ(Vα) and Φ(0,0,B0), a statement that is equivalent to

Pwβ
∉ R + Vα +B0.

We may hence conclude that there exists a homomorphism h ∶ V Ð→ µ2 which
vanishes on R+Vα +B0 but does not vanish on Pwβ

and does not vanish on b. Now
since h vanishes on R it determines a well-defined homomorphism h′ ∶ V /R Ð→ µ2

which we may consider as an element of Gal(kϕ/k). By Chabotarev’s theorem we
may choose a place v0 ∉ S such that Frobv0(kϕ) = h′. By construction we now have

that ⟨α,P ⟩λ is a square in kv0 for every P ∈ A[2], that ⟨β,Pwβ
⟩
λ
is not a square in

kv0 , and that ⟨δ(P ),Q⟩λ is a square in kv0 if and only if ⟨P,Q⟩λ = 1. We shall now
proceed to choose v1.

Let is fix a finite large Galois extension L/k which is unramified outside S ∖M
and which contains LM,α and all the splitting fields kθ above. Let m be the modulus
which is a product of 8 and all the places in S except wβ , let km be the ray class field
of m, and let us set L′ = kmL. Since S ∖M contains a set of generators for the class
group we may find a quadratic extension Kwβ

/k which is purely ramified at wβ and
is unramified outside S. Since L′ is unramified at wβ while Kwβ

is purely ramified
at wβ it follows that Kwβ

is linearly disjoint from L′. We may hence deduce the
existence of a place v1 ∉ S ∪ {v0} such that

(1) Frobv1(L′) = Frobv0(L′)−1.
(2) Frobv0(Kwβ

) ⋅ Frobv1(Kwβ
) is the non-trivial element of Gal(Kwβ

/k) ≅ Z/2.

By property (1) above we see that the divisor v0 + v1 pairs trivially with the kernel
of H1(k,Q/Z) Ð→ H1(km,Q/Z) and so there exists an a ∈ k∗ which is equal to 1
mod m and such that div(a) = v0 + v1. In particular, we see that a is a square at
each v ∈ S / {wβ}. By Artin reciprocity for the quadratic extension Kwb

/k together
with Property (2) above we get that a is not a square at wβ . We now claim that
F = k(

√
a) will give the desired quadratic twist.

Let T = {wβ , v0, v1}. Then WF
v =Wv for every v ∉ T . By Lemmas 3.24 and 3.25

we see that dim2(Wwβ
) = 1 and dim2(W v0) = dim2(W v1) = 2g. Using Lemma 3.27

we may conclude that

dim2 Sel2 (AF ) − dim2 Sel2 (A) = dim2 V
F
T − dim2 VT

with
dim2 V

F
T + dim2 VT ≤ dim2W v0 + dim2W v1 + dim2Wwβ

= 4g + 1.
To show that the 2-rank of the Selmer group decreased we hence need to show that
dim2 VT ≥ 2g + 1.

Since ⟨δ(Pw0), Pw1⟩λ is a square in kv0 if and only if ⟨Pw0 , Pw1⟩λ = 1 we deduce
that the local images of {δ(Pw)}w∈M at v0 are linearly independent and hence

span a 22g-dimensional subspace of Wv0 = W v0 , which is consequently all of Wv0 .
It will hence suffice to show that the image of β in VT is not contained in the
subgroup generated by the local images of {δ(Pw)}w∈M . Let Q′ ∈ A[2] be such
that the local image of δ(Q′) and β at v0 coincides. By construction ⟨β,Pwβ

⟩
λ
is

not a square in kv0 and so ⟨δ(Q′), Pwβ
⟩
λ
is not a square at v0. This means that

⟨Q′, Pwβ
⟩
λ
= −1 and so by Corollary 3.8 we know that ⟨δ(Q′),Qwβ

⟩
λ
is ramified at

wβ . Since ⟨β,Qwβ
⟩
λ
is unramified at wβ it follows that δ(Q′) and β have different

local images at wβ . We hence deduce that the image of β in VT cannot be spanned
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by images of {δ(Pw)}w∈M and so dim(VT ) ≥ 2g + 1. This implies that

dim2 Sel2(AF ) < dim2 Sel2(A).

We now claim that Sel
LM,α

2 (AF ) = Sel
LM,α

2 (A). Let β′ ∈ H1(k,A[2]) be an
LM,α-restricted element. Then β′ is unramified overM and in particular at wβ . By
Lemma 3.25 this means that β′ satisfies the Selmer condition of A at wβ if and only
if β′ satisfies the Selmer condition of AF at wβ . By our choice of v0 and v1 we see
that LM,α splits completely at v0 and v1 and so the local images of β′ are trivial at v0
and v1. This implies that for LM,α-restricted elements the local Selmer conditions

for A and AF are identical at every place and so Sel
LM,α

2 (AF ) = SelLM,α

2 (A).
Finally, applying Proposition 3.29 to α and any LM,α-restricted element β′, and

using the fact that Frobv1(kθ) = Frobv0(kθ)−1 we may now conclude that α belongs

to Sel2(AF ) and is furthermore orthogonal to Sel
LM,α

2 (AF ) with respect to the
Cassels-Tate pairing associated to AF . By Lemma 4.2 (AF , α) is admissible and so
Conditions (A1) and (A2) hold for (AF , α), as desired.

□

4.3. Second descent. In this section we resume all the notation of §4.1 and
§4.2, and we keep the assumption that the Galois action on A[2] is trivial, that

A carries a principal polarization λ ∶ A ≅Ð→ Â, and that the Kummer surface
Xα = Kum(Yα) contains an adelic point which is orthogonal to the subgroup
C(Xα) ⊆ Br(Xα)/Br(k) of Definition 4.3. Until now we have only used the fact that
A admits a 2-structure M ⊆ Ωk. For the purpose of the second descent phase we
will need to utilize the stronger assumption that appears in Theorem 2.8, namely,
that A can be written as a product A =∏iAi such that each Ai has an extended
2-structureMi ⊆ Ωk, and such that Aj has good reduction overMi for j ≠ i. Apply-
ing Proposition 4.10 repeatedly using M = ∪iMi we may find a quadratic extension
F /k, unramified over M , and such that

(B1) Each (AF , α) is admissible.

(B2) α belongs to Sel2(AF ) and is orthogonal to Sel
LM,α

2 (AF ) with respect to
the Cassels-Tate pairing.

(B3) Sel2(AF ) is generated by Sel
LM,α

2 (AF ) and δ(AF [2]).
Let Sel○2(A) ⊆ Sel2(A) denote the subgroup consisting of those elements which are
orthogonal to every element in Sel2(A) with respect to the Cassels-Tate pairing.
We note that Conditions (B1) (B2) and (B3) imply in particular

(B4) α belongs to Sel○2(A).
ReplacingA withAF and using the canonical isomorphism Kum(Yα) ≅ Kum(Y Fα )

we may assume without loss of generality that Conditions (B1) and (B4) already
hold for A. We now observe that we have a natural direct sum decomposition
Sel2(A) ≅ ⊕i Sel2(Ai) and so we can write α = α1 + ... + αn with αi ∈ Sel2(Ai) ⊆
Sel2(A). Condition (B4) now implies that αi ∈ Sel○2(A) for every i = 1, ..., n. Our
goal in this subsection is to show that under these conditions one can find a qua-
dratic extension F /k such that Sel○2(AFi ) is generated by αi and the image of Ai[2].
Equivalently, we will show that Sel○(AF ) is generated by α1, ..., αn and the image
of A[2].

We begin with the following proposition, whose goal is to produce quadratic
twists which induce a prescribed change to the Cassels-Tate pairing in suitable
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circumstances. We note that while the Weil pairing takes values in µ2 (which
we write multiplicatively), the Cassels-Tate pairing takes values in Z/2 (which we
write additively). For the purpose of the arguments in this section, it will be
convenient to use the fact that the Galois modules µ2 and Z/2 are isomorphic.
Although this isomorphism is unique, it does involves a change between additive
and multiplicative notation, and so it seems appropriate to take it into account
explicitly. We will hence use the notation

(−1)(−) ∶ Z/2Ð→ µ2

for the isomorphism in one direction and the notation

log(−1)(−) ∶ µ2 Ð→ Z/2

for the isomorphism in the other direction. Given a subgroup B ⊆ H1(k,A[2])
and an element σ ∈ Γk, we will denote by ρσ ∶ B Ð→ A[2] the homomorphism
sending β to β(σ) ∈ A[2], where by abuse of notation we simply identify β with the
corresponding homomorphism

β ∶ Γk Ð→ A[2].
Given σ, τ ∈ Γk we will denote by ρσ ∧ ρτ ∶ B ×B Ð→ Z/2 the antisymmetric form

(ρσ ∧ ρτ)(β,β′) = log(−1) ⟨ρσ(β), ρτ(β′)⟩λ + log(−1) ⟨ρσ(β
′), ρτ(β)⟩λ .

Proposition 4.11. Let B ⊆ Sel2(A) be a subgroup containing only elements which
are unramified over M . For any two elements σ, τ ∈ Γk there exists a field extension
F = k(

√
a), unramified over M , and such that

(1) Sel2(AF ) contains B and dim2 Sel2(AF ) = dim2 Sel2(A).
(2) For every β,β′ ∈ B we have ⟨β,β′⟩CT

AF = ⟨β,β′⟩CT
A + (ρσ ∧ ρτ)(β,β′).

Proof. Let S be a finite set of places which contains all the archimedean places,
all the places above 2, all the places of bad reduction for A or Xα, and such
that S ∖M contains a set of generators for the class group. In particular, every
β ∈ B is unramified outside S ∖M . Now for any two β,β′ ∈ B ⊆ Sel2(A) we have
β ∪λ β′ = 1 ∈ H2(k,µ2), and so by Proposition 3.15 we may choose an element

θ ∈ H1(k,Aff(Zβ , µ2)) such that (hβ)∗(θ) = β′ and such that the splitting field
kθ/kβ,β′ is unramified outside S ∖M . By possibly enlarging S we may assume that
we have an OS-smooth S-integral model Wα for Wα and that for every θ as above
the element Cβ(θ) ∈ Br(Wα)/Br(k) can be represented by a Brauer element onWα

which extends to Wα. We may consequently fix a finite large Galois extension L/k
which is unramified outside S ∖M and which contains all the splitting fields kθ.

For each w,w′ ∈M let Kw,w′ be the quadratic extension classified by the element
⟨δ(Qw),Qw′⟩ ∈ H1(k,µ2). By Corollary 3.8 we have that Kw,w is ramified at w
whileKw,w′ is unramified overM for w ≠ w′. Since L is unramified overM it follows
that the compositum of the Kw,w’s is linearly independent from the compositum
of L’s with the Kw,w′ ’s for w ≠ w′. Let m be the modulus which is a product of
8 and all the places in S, and let km be the ray class field of m. We note that km
contains all the Kw,w′ for w,w

′ ∈M . Let ε = στσ−1τ−1 ∈ Γk be the commutator of
σ and τ and let εL ∈ Gal(L/k) be its corresponding image.

Since the image of ε is trivial in any the Galois group of any abelian extension of
k it follows from Chabotarev’s density theorem that there exists places v0, v1 ∈ Ωk
such that
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(1) Frobv0(L) = εL.
(2) Frobv1(L) = 1.
(3) v0 is inert Kw,w for every w ∈M and splits in Kw,w′ for every w ≠ w′.
(4) Frobv1(km) = Frobv0(km)−1.

It follows from (4) that the divisor v0+v1 pairs trivially with the kernel ofH1(k,Q/Z)Ð→
H1(km,Q/Z) and so there exists an a ∈ k∗ which reduces to 1 mod m and such that
div(a) = v0 + v1. In particular, a is a square at each v ∈ S. We now claim that
F = k(

√
a) will give the desired quadratic twist.

We begin by Claim (1) above. Since a is a square at each v ∈ S it follows the
Selmer condition for A and AF is the same for every v ∈ S. Since the image of ε is
trivial in any the Galois group of any abelian extension of k we have by construction
that v0 and v1 split in kβ for every β ∈ B. It then follows that for v ∈ {v0, v1} we
have locv β = 0 ∈ H1(kv,A[2]) for every β ∈ B. In particular, every β ∈ B satisfies
the Selmer condition of AF for every v ∈ S ∪ {v0, v1} and is unramified outside
S ∪ {v0, v1}, implying that B ⊆ Sel2(AF ).

To see that dim2 Sel2(AF ) = dim2 Sel2(A) we use Lemma 3.27 with T = {v0, v1}.
Indeed, WF

v = Wv for every v ∉ T and by Lemma 3.24 we see that dim2(W v0) =
dim2(W v1) = 2g. We then have by Lemma 3.27 that

dim2 Sel2 (AF ) − dim2 Sel2 (A) = dim2 V
F
T − dim2 VT

with
dim2 V

F
T + dim2 VT ≤ 4g.

Now since ⟨δ(P ),Q⟩λ is unramified outside S (and in particular at v0, v1) for every
P,Q ∈ A[2], Lemma 3.5 implies that ⟨δF (P ),Q⟩λ is ramified at v0 if and only if
⟨P,Q⟩λ = −1. The non-degeneracy of the Weil pairing now implies that the image of

δ(A[2]) in V FT spans a 2g-dimensional subspace. On the other hand, by Property
(3) above ⟨δ(Qw),Qw′⟩λ is a square at v0 if and only if w = w′, and so the image of

δ(A[2]) in VT is 2g-dimensional as well. It then follows that dim2 VT = dim2 V
F
T = 2g

and so dim2 Sel2 (AF ) = dim2 Sel2 (A).
We now prove Claim (2). Fix β,β′ ∈ B and let θ ∈ H1(k,Aff(Zβ , µ2)) be the

element chosen above such that (hβ)∗(θ) = β′. Let εθ ∈ Gal(kθ/k) be the image of
εL ∈ Gal(L/k). By Proposition 3.29 we have

⟨β,β′⟩CT
AF −⟨β,β′⟩CT

A = Frobv0(kθ/kβ,β′) ⋅Frobv1(kθ/kβ,β′) = εθ ∈ Gal(kθ/kβ,β′) ⊆ Z/2.
Recall from §3.3 the commutative diagram (12) for the class β, which is given by

(29) 1 // Gal(kθ/kβ) //
� _

θ∣kβ

��

Gal(kθ/k) //
� _

θ
��

Gal(kβ/k) //
� _

β

��

1

1 // Aff(Zβ , µ2) // Aff(Zβ , µ2) ⋊A[2] // A[2] // 1

with exact rows and injective vertical maps. Let us write θ(σ) = (x,β(σ)) ∈
Aff(Zβ , µ2) ⋊ A[2] and θ(τ) = (y, β(τ)) ∈ Aff(Zβ , µ2) ⋊ A[2] for suitable x, y ∈
Aff(Zβ , µ2). We may then compute that

[θ(σ), θ(τ)] = (xyβ(σ)xβ(τ)y,0).
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Now x ∈ Aff(Zβ , µ2) is an affine-linear map whose homogeneous part is β′(σ) ∈ A[2]
and so x⋅xβ(τ) is the constant affine-linear map with value ⟨β′(σ), β(τ)⟩

λ
. Similarly,

y ⋅ yβ(σ) is the constant affine-linear map with value ⟨β′(τ), β(σ)⟩
λ
. It then follows

that the image εθ ∈ Gal(kθ/k) of ε is trivial if and only if (ρσ ∧ ρτ)(β,β′) = 0, and
so the desired result follows. □

We are now ready to prove the main result of this section, showing that if
Sel○2(A) is not generated by α1, ..., αn and the image of A[2] then there exists
a field extension F = k(

√
a) such that Sel○2(AF ) is strictly smaller then Sel○2(A).

Proposition 4.12. Let A1, ...,An be abelian varieties as above such that each Ai is
equipped with an extended 2-structureMi over which Aj has good reduction for j ≠ i.
Let A =∏iAi and let α ∈ Sel2(A) be a non-degenerate element (see Definition 2.7)
which is unramified over M = ∪iMi and write α = ∑i αi with αi ∈ Sel2(Ai). Assume
that Conditions (B1) and (B4) are satisfied. If Sel○2(A) is not generated by α1, ..., αn
and the image of A[2] then there exists a field extension F = k(

√
a) with a is a unit

over M and such that

(1) Conditions (B1) and (B4) hold for (AF , α).
(2) dim2 Sel

○
2(AF ) < dim2 Sel

○
2(A).

Proof. Let U ⊆ Sel2(A) denote the subgroup consisting of those elements which
are unramified over M . By Remark 3.26 we have that Sel2(A) decomposes as a
direct sum Sel2(2) = U ⊕ δ(A[2]). Let S be a finite set of places which contains
all the archimedean places, all the places above 2, all the places of bad reduction
for A or Xα, as well as a set of generators for the class group. In particular,
every β ∈ U is unramified outside S ∖M . Now for any two β,β′ ∈ U we have
β ∪λ β′ = 1 ∈ H2(k,µ2), and so by Proposition 3.15 we may choose an element

θ ∈ H1(k,Aff(Zβ , µ2)) such that (hβ)∗(θ) = β′ and such that the splitting field
kθ/kβ,β′ is unramified outside S ∖M . By possibly enlarging S we may assume that
we have an OS-smooth S-integral model Wα for Wα and that for every θ as above
the element Cβ(θ) ∈ Br(Wα)/Br(k) can be represented by a Brauer element onWα

which extends to Wα.
Our general strategy for proving Proposition 4.12 is the following. We first find

a suitable a ∈ k∗ which is a unit over S and such that after a quadratic twist
by F = k(

√
a) the dimension of the Selmer group Sel2(AF ) increases by 1 and

contains in particular a new element γ which certain favorable properties. We
then use Proposition 4.11 in order to find a second quadratic twist which suitably
modifies the Cassels-Tate pairing between γ and the elements from Sel2(A). This
last part is done in a way that effectively decreases the number of elements in the
Selmer group which are in the kernel of the Cassels-Tate pairing.

Let U○ = U ∩ Sel○2. Since Sel○2 contains δ(A[2]) we obtain a direct sum decom-
position Sel○2(A) = U○ ⊕ δ(A[2]). Similarly, for every i = 1, ..., n we have a direct
sum decomposition Sel2(Ai) = Ui ⊕ δ(Ai[2]) and Sel○2(Ai) = U○i ⊕ δ(Ai[2]), where
Ui = U ∩ Sel2(Ai) and U○i = U○ ∩ Sel2(Ai). Let β ∈ U○ be an element which does
not belong to the subgroup of U○ spanned by α1, ..., αn and let us write β = ∑i βi
with βi ∈ Sel2(Ai). It then follows that βi ∈ U○i . Since β is not spanned by the αi’s
there exists an i such that βi ∉ 0, αi.

Let us now write Mi = {w0, ...,w2gi} where gi = dimAi. By the definition of an
extended 2-structure we may choose, for every j = 0, ...,2gi − 1, a 2-torsion point
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Qj ∈ Ai[2] such that the image of Qj in Cwj′ /2Cwj′ is non-trivial if and only if

∣j′ − j∣ ≤ 1. Similarly, let Q2gi be such that the image of Q2gi in Cwj′ /2Cwj′ is

non-trivial if and only if j′ ∈ {2gi,0}. We note that by construction ∑2gi
j=0Qj = 0.

We now claim that there exists a j ∈ {0, ...,2gi} such that ⟨βi,Qj⟩λ is non-trivial
and different from ⟨αi,Qj⟩λ. Indeed, assume otherwise and let J ⊆ {0, ...,2gi} be
the subset of those indices for which ⟨βi,Qj⟩λ = ⟨αi,Qj⟩λ (so that ⟨βi,Qj⟩λ = 0 for
j ∉ J). Then

∏
j∈J
⟨αi,Qj⟩λ =

2gi

∏
j=0
⟨βi,Qj⟩λ = ⟨βi,

2gi

∑
j=0

Qi⟩
λ

= 1 ∈H1(k,µ2).

Since βi ≠ 1, αi and the Qj ’s span Ai[2] we have that ∅ ⊊ J ⊊ {0, ...,2gi}, and
so we obtain a non-trivial relation between the elements ⟨αi,Qj⟩λ, contradicting
our assumption that α ∈ H1(k,A[2]) is non-degenerate (Definition 2.7). We may
hence conclude that ⟨βi,Qj⟩ ≠ 1, ⟨αi,Qj⟩ for some j = 0, ...,2gi. To fix ideas let us
assume that we have this for j = 2gi. We shall now remove w2gi from Mi and work
with the resulting 2-structure M ′

i = Mi ∖ {w2gi} = {w0, ...,w2gi−1}. Let {Pw}w∈M ′

and {Qw}w∈M ′
i
be the corresponding dual bases of Ai[2]. By comparing images in

⊕w∈M ′
i
Cw/2Cw we see that the 2-torsion point Qw0 ∈ Ai[2] coincides with the point

Q2gi we had before. In particular, we have that ⟨βi,Qw0⟩ ≠ 0, ⟨αi,Qw0⟩.
Let us now complete M ′

i into a 2-structure for A by choosing, for every i′ ≠ i, a
2-structureM ′

i′ ⊆Mi′ , and settingM ′ =M ′
1∪ ...∪M ′

n. We now note that since Ai[2]
is orthogonal to Ai′[2] with respect to the Weil pairing when i ≠ i′ it follows that
⟨β,Qw0⟩ = ⟨βi,Qw0⟩ and ⟨α,Qw0⟩ = ⟨αi,Qw0⟩. We have thus found a pointQw0 ∈M ′

such that ⟨β,Qw0
⟩ ≠ 1, ⟨α,Qw0⟩. We may now forget about the factorization of A

into a product of the Ai’s, and reconsider it as a single abelian variety.
For each w,w′ ∈ M ′ let Kw,w′ be the quadratic extension corresponding to the

element ⟨δ(Qw),Qw′⟩ ∈H1(k,µ2). By Corollary 3.8 we have that Kw,w is ramified
at w while Kw,w′ is unramified over M ′ when w ≠ w′. Let us now fix a finite large
Galois extension L/k which is unramified outside S ∖M ′ and which contains all
the splitting fields kβ′ for β

′ ∈ U , all the splitting fields kθ, and all the fields Kw,w′

for w ≠ w′. Let m be the modulus which is a product of 8 and all the places in
S ∖{w0}, and let km be the ray class field of m. We note that since L is unramified
overM ′ it is linearly independent from the compositum of all the Kw,w’s. Similarly,
the compositum L′ ∶= kmL, which is unramified over w0, is linearly independent of
Kw0,w0 . By Chabotarev’s density theorem that there exists places v0, v1 ∈ Ωk such
that

(1) v0 splits in L.
(2) v0 is inert Kw,w for every w ∈M ′.
(3) v1 splits in Kw0,w0 .
(4) Frobv1(L′) = Frobv0(L′)−1.

It then follows that the divisor v0+v1 pairs trivially with the kernel ofH1(k,Q/Z)Ð→
H1(km,Q/Z) and so there exists an a ∈ k∗ which reduces to 1 mod m and such that
div(a) = v0 + v1. In particular, a is a square at each v ∈ S ∖ {w0}. Artin reciprocity
for the field Kw0,w0 and conditions (2) and (3) above imply that a is not a square
at w0. We note that conditions (1)+(4) imply that v1 splits completely in kβ′ for
every β′ ∈ U , in all the kθ’s, and in Kw,w′ for w ≠ w′. On the other hand, conditions
(2)+(4) imply that v1 is inert in Kw,w for every w ≠ w0. Applying Proposition 3.29
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we now get that U ⊆ Sel2(AF ) and that the Cassels-Tate pairing between every two
elements β,β′ ∈ U is the same in AF and A.

Let T = {w0, v0, v1}. We then have that WF
v = Wv for every v ∉ T and by

Lemmas 3.24 and 3.25 we see that dim2(W v0) = dim2(W v1) = 2g and dim2(Ww0) =
1. By Lemma 3.27 we have that

dim2 Sel2 (AF ) − dim2 Sel2 (A) = dim2 V
F
T − dim2 VT

with

dim2 V
F
T + dim2 VT ≤ dim2(W v0) + dim2(W v1) + dim2(Ww0) = 4g + 1

and 4g + 1 − dim2 V
F
T − dim2 VT ≥ 0 is even. Arguing as in the proof of Proposi-

tion 4.11 we see that the image of δ(A[2]) in V FT spans a 2g-dimensional subspace
by Lemma 3.5. By Properties (1)+(2) above we have that ⟨δ(Qw),Qw′⟩ is a square
at v0 if and only if w = w′ and so by the non-degeneracy of the Weil pairing the
image of δ(A[2]) spans a 2g-dimensional subspace of VT as well. On the other hand
for every β′ ∈ U we have locv0(β′) = locv1(β′) = 0 and locw0(β′) ∈ Ww0 ∩WF

w0
by

Lemma 3.25, and so the image of U in VT is trivial. Since Sel2(2) = U ⊕ δ(A[2]) it
follows that the dimension of VT is exactly 2g. The parity constraint of Lemma 3.27
now forces dim2 V

F
T to be 2g+1. Since we saw that Sel2(AF ) contains U it now fol-

lows that Sel2(AF ) is generated by U , δF (A[2]) and one more element γ ∈ Sel2(AF ).
Furthermore, by adding to γ an element of δ(AF [2]) we may assume that γ is un-
ramified over M ′.

Lemma 4.13. There exists an element σ ∈ Γk such that γ(σ) = Qw0 and such that
β′(σ) = 0 for every β′ ∈ U .

Proof. First observe that since γ is unramified over M we have that locw0(γ) ∈
Ww0 ∩WF

w0
and since the image of γ in V FT is orthogonal to VT with respect to (28)

we may conclude, in particular, that

invv0 [γ ∪λ δ(P )] = invv1 [γ ∪λ δ(P )]
for every P ∈ A[2]. Using the mutually dual bases Qw and Pw we may write this
equality as

invv0 ∑
w′∈M ′

[⟨γ,Pw′⟩λ ∪ ⟨δ(P ),Qw′⟩λ] = invv1 ∑
w′∈M ′

[⟨γ,Pw′⟩λ ∪ ⟨δ(P ),Qw′⟩λ] .

Let us now plug in P = Qw for some w ∈ M ′. By construction we have that
⟨δ(Qw),Qw′⟩λ vanishes at both v0 and v1 whenever w ≠ w′ and so we obtain

invv0 [⟨γ,Pw⟩λ ∪ ⟨δ(Qw),Qw⟩λ] = invv1 [⟨γ,Pw⟩λ ∪ ⟨δ(Qw),Qw⟩λ] .
Now if w ≠ w0 then ⟨δ(Qw),Qw⟩λ is unramified and non-trivial at both v0 and v1
and so for such w we obtain

(30) valv0 ⟨γ,Pw⟩λ = valv1 ⟨γ,Pw⟩λ mod 2

while if w = w0 then ⟨δ(Qw),Qw⟩λ is unramified and non-trivial at v0 but is trivial
at v1, and so we obtain

valv0 ⟨γ,Pw0⟩λ = 0 mod 2

We now observe that valv1 ⟨γ,Pw0⟩λ must be odd. Indeed, otherwise Equation (30)
would hold for all w ∈ M ′, and so there would exist a Q ∈ A[2] such that γ′ =
γ + δF (Q) is unramified, and hence trivial, at both v0 and v1. It would then follow
that γ′ satisfies the Selmer condition of Sel2(A) at all places except possibly w0.



SECOND DESCENT AND KUMMER VARIETIES 45

Since the image of γ′ in V FT is orthogonal to the image of δ(Qw0) in VT to (28)
we may conclude that γ′ satisfies the Selmer condition of A at w0 as well, i.e.,
γ′ ∈ U ⊆ Sel2(A)∩Sel2(AF ). But this would imply that Sel2(AF ) is generated by U
and δF (A[2]), contradicting the above. We may hence conclude that valv1 ⟨γ,Pw0⟩λ
is odd and so

valv0 ⟨γ,Pw⟩λ + valv1 ⟨γ,Pw⟩λ = {
0 ∈ Z/2 w ≠ w0

1 ∈ Z/2 w = w0
.

It then follows that the class ⟨γ,Pw0⟩λ ∈ H1(k,µ2) does not split in the minimal
field splitting kβ′ for all β′ ∈ U and splitting ⟨γ,Pw⟩λ for w ≠ w0. Consequently,
there must exist an element σ ∈ Γk such that β′(σ) = 0 ∈ A[2] for every β′ ∈ U and
⟨γ(σ), Pw⟩λ = 1 ∈ µ2 for every w ≠ w0, while ⟨γ(σ), Pw0⟩λ is non-trivial. Then γ(σ)
must be equal to Qw0 , as desired. □

Now recall that we have an element β ∈ U such that ⟨β,Qw0⟩λ and ⟨α,Qw0⟩λ
are two different non-trivial classes in H1(k,µ2). It follows that for any two
elements εα, εβ ∈ µ2 there exists an element τ ∈ Γk such that ⟨α(τ),Qw0⟩λ = εα and
⟨β(τ),Qw0⟩λ = εβ . For our purposes let us set

εα = (−1)⟨α,γ⟩
CT

AF and εβ = (−1)1−⟨β,γ⟩
CT

AF .

Let B ⊆ Sel2(AF ) be the subgroup generated by U and γ and let ρσ ∧ρτ ∶ B×B Ð→
Z/2 be the alternating form constructed above. Since ρσ(β′) = β′(σ) = 0 for every
β′ ∈ U it follows that ρσ ∧ ρτ(β′, β′′) = 0 for every β′, β′′ ∈ U ⊆ B. On the other
hand, since ρτ(γ) = γ(τ) = Qw0 we have ρσ ∧ ρτ(β′, γ) = log(−1) ⟨β′(τ),Qw0⟩λ for

every β′ ∈ U . Applying Proposition 4.11 with B the subgroup generated by U and
γ and with the elements σ, τ ∈ Γk we obtain a quadratic twist F ′ = k(

√
a′) such

that (with a′′ ∶= a′a and F ′′ ∶= k(
√
a′′)) we have

(1) Sel2(AF
′′
) contains U and γ and dim2 Sel2(AF

′′
) = dim2 Sel2(AF ).

(2) For every β′, β′′ ∈ U we have ⟨β′, β′′⟩CT
AF ′′ = ⟨β′, β′′⟩CT

AF .

(3) For every β′ ∈ U we have ⟨β′, γ⟩CT
AF ′′ = ⟨β′, γ⟩CT

AF + (ρσ ∧ ρτ)(β,β′). In particular

⟨α, γ⟩CT
AF ′′ = 0 and ⟨β, γ⟩CT

AF ′′ ≠ 0.
Let V ⊆ Sel2(AF

′′
) be the subgroup consisting of those elements which are un-

ramified over M ′, so that we have a direct sum decomposition Sel2(AF
′′
) = V ⊕

δF ′′(A[2]). Property (1) above implies that V is generated by U and γ ∉ U . Let

V ○ = V ∩ Sel○2(AF
′′
). Since all the elements of V ○ are in particular orthogonal

to β with respect to the Cassels-Tate pairing, Properties (2) and (3) above imply
that V ○ ⊆ U . Since all the elements of V ○ are also orthogonal to γ with respect
to the Cassels-Tate pairing, Properties (2) and (3) further imply that β ∉ V ○ ⊆ U
while α ∈ V ○. This means in particular that Condition (B4) holds for (AF

′′
, α).

By Lemma 4.2 we have that (AF
′′
, α) is admissible, i.e., Condition (B1) holds as

well. Finally, since Sel○2(AF
′′
) is a direct sum of V ○ and the image of the 2-torsion

we may now conclude that dim2 Sel
○
2(AF

′′
) < dim2 Sel

○(A). It follows that the
quadratic extension F ′′ has the desired properties and so the proof is complete.

□

4.4. Proof of the main theorem. In this section we will complete the proof of
Theorem 2.8. Let k be a number field and let A1, ...,An be principally polarized
simple abelian varieties over k, such that each Ai has all its 2-torsion defined over
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k. For each i, let Mi ⊆ Ωk be an extended 2-structure for Ai such that Aj has good
reduction over Mj whenever i ≠ j. Let A = A1 × ... ×An and let α ∈H1(k,A[2]) be
a non-degenerate element which is unramified over M = ∪iMi but which has a non-
trivial image in H1(kw,A[2]) for each w ∈ M . We may uniquely write α = ∑i αi
with αi ∈ H1(k,Ai[2]). Let Yαi be the 2-covering of Ai determined by αi so that
Yα =∏i Yαi is the 2-covering of A determined by α. Finally, let Xα = Kum(Yα) be
the associated Kummer surface.

of Theorem 2.8. To prove that Conjecture 1.1 holds for Xα, let us assume that the
2-primary Brauer-Manin obstruction to the Hasse principle is the only one for each
Y Fα , i.e., that [Y Fα ] ∈ H1(k,A) is not a non-trivial divisible element of X(AF ) for
any F /k. Since H1(k,A) = ⊕kH1(k,Ai) and X(A) = ⊕iX(Ai) this is equivalent
to saying that [Y Fαi

] ∈H1(k,Ai) is not a non-trivial divisible element of X(AFi ) for
any F .

In light of Lemma 4.2 we may, by possibly replacing A by a quadratic twist, as-
sume that (A,α) is admissible. Applying Proposition 4.8 we may find a quadratic
extension F /k, unramified over M , such that (AF , α) satisfies Conditions (A1)
and (A2) above. Replacing A with AF we may assume that Conditions (A1)
and (A2) already hold for (A,α). By repeated applications of Proposition 4.10

we may find a quadratic extension F ′/k, unramified over M , such that (AF
′
, α)

satisfies Conditions (B1) and (B4) above. Replacing A with AF
′
we may assume

that Conditions (B1) and (B2) already hold for (A,α). By repeated applications of
Proposition 4.12 we may find a quadratic extension F ′′/k, unramified over M , and

such that the subgroup Sel○2(AF
′′
) ⊆ Sel2(AF

′′
) consisting of those elements which

are orthogonal to all of Sel2(AF
′′
) with respect to the Cassels-Tate pairing is gen-

erated by α1, ..., αn and the image of the 2-torsion. It then follows that Sel○2(AF
′′

i )
is generated by αi and the image of the 2-torsion. Let X○(AF

′′

i ) ⊆X(AF
′′

i ) be the
subgroup orthogonal to all of X(AF

′′

i )[2] with respect to the Cassels-Tate pairing.

Then we may conclude that X○(AF
′′

i ) is generated by the image of αi, i.e., by the

class [Y F
′′

αi
] of Y F

′′

αi
. Since we assumed that [Y F

′′

αi
] is not a non-trivial divisible

element it now follows that X(AF
′′

i ){2} is finite. The Cassels-Tate pairing induces

a non-degenerate self-pairing of X(AF
′′

i ){2}, which is alternating in our case by
Remark 3.10. This means, in particular, that if we write the abstract abelian group

X(AF
′′

i ){2} as a direct sum ⊕iZ/2ni of cyclic groups then for each n it will have
an even number of Z/2n components. Now the multiplication by 2 map induces

an isomorphism X(AF
′′

i )[4]/X(AF
′′

i )[2] ≅X
○(AF

′′

i ) and so by the above we may

conclude that the 2-rank of X○(AF
′′

i ) is even. Since it is generated by a single

element it must therefore vanish, implying that [Y F
′′

α ] = 0. This means that Y F
′′

α

has a rational point and so Xα has a rational points as well, as desired. □
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