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1 Lecture 1

Algebraic topology is the study of nice topological spaces and continuous maps
between them. What are nice topological spaces? Well we all agree that the
one-pointed space, let us denote it by ∗, is so basic that it has to be considered
nice. Furthermore, given any space X, we are often considering various points
of X. A point on a topological space X can be thought of as a map ∗ Ð→ X
from the one-pointed space. Hence in order to talk about points we have to
include ∗.

Now given a space X we want to know more than just the set of points of X
as a discrete set. We want to do topology, so we want to know in what ways
we can move continuously from one point to another. For example, we want
to know when two points x, y ∈ X can be connected by a continuous path.
Such a path corresponds to a continuous map γ ∶ I Ð→ X (where I = [0,1] is
the unit segment such that γ(0) = x and γ(1) = y. Hence we see that we should
definitely include I in our collection of nice spaces.

What we said so far basically gives us the set of (path)-connected components
of X: we know the points and we know when two points are in the same
component. But a topological space contains more information. For example,
some times two points can be connected by a path in two different ways.
Given two points x, y ∈X and two paths α,β ∶ I Ð→X such that α(0) = β(0) = x
and β(0) = β(1) = y we can ask whether there exists a homotopy from α to
β which fixes the end points x and y, i.e., when can we deform α continuously
until it becomes β (which staying all the time in the space of paths from x to
y). To describe such a homotopy formally one can consider the 2-disc D2 and a
partition of its boundary ∂D2 = S1 into a union of two hemispheres S1 = I+ ∪ I−
(where the intersection I+ ∩ I− is the north and south poles of S1). A homotopy
as above then corresponds to a map h ∶D2 Ð→X such that h∣I+ = α and h∣I− = β.
Hence we see that if want to really understand the various ways in which two
points can be connected we must include the spaces D2 and S1 in our collection
of nice spaces.

Remark 1.1. When x = y the questions becomes ”in what ways I can connect
x to itself inside X”. Put formally, we obtain the set of homotopy classes of
closed paths in X which start and end in x. This set of homotopy classes has
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an additional structure given by concatenation of loops, leading to the notion
of the fundamental group of X based at x. In one wants to consider all
paths (as opposed to just closed paths) then this can be done by considering
the fundamental groupoid of X. This is the groupoid whose objects are the
points of x and whose morphisms are homotopy classes of paths as above.

We can now take the considerations above one step further. Say we have two
points x, y ∈ X which are connected by two paths α,β ∶ I Ð→ X and suppose
that we know that this two paths are homotopic in the above sense. Then it is
natural to ask what are the different ways in which α,β are homotopic, i.e., what
are the various homotopies between them? As before, two such homotopies h,h′

can them selves be homotopic to each other (in a boundary fixeing way), and
such a homotopy can be encoded via a map D3 Ð→ X whose restriction to the
two hemispheres of ∂D2 = S2 gives h and h′. We hence deduce that we should
include D3 and S2 in our collection of nice spaces. But this can be continued on
and on, and we see that all the spaces of the form Dn or Sn should be included
in our collection of nice spaces.

Remark 1.2. When considering homotopies as above from the constant path at
x ∈X to itself we obtain the notion of the second homotopy group π2(X,x)
of X. Similarly, for higher homotopies we will obtain the notion of higher
homotopy groups πn(X,x) of X.

We are now in a position to ask the big question: when is a topological space
X nice? Here are are two possible heuristic answers to this question:

1. When X can be obtained by some procedure of gluing from balls and
spheres of arbitrary dimension.

2. When all the homotopical information of X is determined by points, paths,
homotopies, higher homotopies (including the concatenation structure)
etc. as above. In other words, when all the homotopical information of X
is seen by maps from spheres and balls.

A fundamental insight of classical algebraic topology, due to Whitehead,
is that these two answers essentially coincide. The first answer leads to the
notion of a CW-complex as a direct characterization of nice spaces. The
second answer can be formulated by saying that the class of nice spaces should
satisfy the property that if a map f ∶ X Ð→ Y induces an isomorphism on all
homotopy groups (in which case all questions about paths, homotopies, higher
homotopies etc. will have identical answers for X and Y ) then f should be a
homotopy equivalence. Such maps are called weak homotopy equivalences.
Whitehead proved that this property is true for CW-complexes. Furthermore,
the largest class of spaces for which this assertion holds is the class of spaces
which are homotopy equivalent to a CW-complex.

At this point, classical algebraic topology suggests to simply study CW-
complexes. This approach has some disadvantages. For example many reason-
able constructions which start from CW-complexes don’t stay inside the world of
CW complex. For example, given two CW-complexes X,Y , the mapping space

2



map(X,Y ) with the compact open topology is not a CW-complex. In some
cases (but not always) it will be homotopy equivalent to a CW-complex, but
even then there is no obvious way to make it into an actual CW-complex. What
one would want is some canonical way to take a general topological space, and
functorially produce a CW-complex which approximates it as best as possible.
In particular, this CW-complex should keep all the homotopical information of
the type we described above, and this information alone.

This can technically be done in the world of CW-complexes, but is quite
complicated and cumbersome to work with. One is then motivated to look for
other, cleaner ways to make a general space into a CW-complex. This will lead
us to our desired notion of simplicial set.

Let X be a topological space. We want to record all information regard-
ing points, homotopies, higher homotopies etc. We basically need to recode
the information of maps from discs and spheres into X. However, we observe
that spheres can themselves be constructed from gluing two discs along a lower
dimensional sphere, which can itself be decomposed further, leading to the ob-
servation that everything can be build out of discs if we have the right gluing
maps. To streamline these gluings it is convenient to replace discs with sim-
plices.

Remark 1.3. The passage from balls to simplices is not just a matter of conve-
nience. As we shall see later, it enables one to record the concatenation structure
of homotopies, which is not seen directly by just considering maps from balls
and their restrictions along hemispheres inclusions.

Definition 1.4. The n-dimensional simplex is the subspace

∣∆n∣ = {(x0, ..., xn) ∈ Rn+1∣xn ≥ 0,∑
n

xn = 1}

It is straightforward to verify that ∣∆n∣ is homeomorphic to the n-disc Dn.
The point

vi = (0, ...,0,1,0, ...,0) ∈ ∣∆n∣

is called the i’th vertex of ∣∆n∣. We will denote by [n] the set {0, ..., n} considered
as an ordered set and will think of it as parametrizing the vertices of ∣∆n∣,
where i ∈ [n] corresponds to the vertex vi above. In particular, we think of the
vertices of ∣∆n∣ as ordered.

Definition 1.5. Let k,n be two natural numbers. We will say that a continuous
map

f ∶ ∣∆k ∣Ð→ ∣∆m∣

is simplicial if it is convex and maps the vertices of ∣∆k ∣ to the vertices of ∣∆n∣
in a (weakly) order preserving way.

We will denote by ∆ ⊆ Top the category whose objects are the standard
simplices and whose morphisms are the simplicial maps. Since each convex map
is determined by its image on vertices this category admits a very combinatorial
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description: by associating with each simplex ∣∆n∣ its set of vertices [n] we can
identify ∆ with the category whose objects are the ordered sets [n] and whose
morphisms are the order preserving maps. We will not distinguish between
these two descriptions of ∆.

Now let X be a topological space. Then for each n we can consider the set

Xn = HomTop (∣∆n∣,X)

of continuous maps from ∣∆n∣ to X. This collection of sets admits a bit of extra
structure: the set Xn is contraviantly functorial in [n]. To see this, observe
that any simplicial map f ∶ ∣∆k ∣Ð→ ∣∆n∣ induces a restriction map

f∗ ∶ HomTop (∣∆n∣,X)Ð→ HomTop (∣∆k ∣,X)

In other words, the collection of sets Xn can be naturally organized into a
functor

∆op Ð→ Set

where ∆op is the opposite category of ∆ and Set is the category of sets. This
is our formal way of dealing with contravariant functors from ∆ to Set.

We now claim that the resulting functor X● ∶ ∆op Ð→ Set encodes all the
homotopical information of the kind we described above. This can be seen as
follows. First we started with the points of X. This, as a set, is just given by
X0. Next, we wanted to know which pairs x, y ∈X0 of points could be connected
via a path. The set of all paths in X is just given by the set X1. However, we
have more information. Consider the morphisms

σ{0}, σ{1} ∶ [0]Ð→ [1]

in ∆ where σ{i}(0) = i. Then the two maps σ∗{0}, σ
∗
{1} ∶ X1 Ð→ X0 tell us for

each path in X what are the starting point and ending point of that path. Now
given two points x, y ∈ X0 we see that there is a path from x to y in X if and
only if there exists an element γ ∈X1 such that

σ∗{0}(γ) = x

and
σ∗{1}(γ) = y

Note that we also have a map

s ∶ [1]Ð→ [0]

which is not injective - the constant map that sends both elements of [1] to the
single element of [0]. This map corresponds to the constant map from ∣∆1∣ to
∣∆0∣ = ∗. Hence we also have a map

s∗ ∶X0 Ð→X1
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This map gives the following information: it tells us for each point x ∈ X who
is the constant path at x.

Let us now see that we can obtain the homotopies between paths as well.
Suppose we have two elements α,β ∈X1 such that

σ∗{0}(α) = σ
∗
{0}(β)

and
σ∗{1}(α) = σ

∗
{1}(β)

Such data corresponds to a pair of paths in X which have the same starting point
(call it x) and the same ending point (call it y). Now we want to know if there
is an end-point preserving homotopy from α to β. Now for each 0 ≤ i < j ≤ 2
let σ{i,j} ∶ [1] Ð→ [2] denote the map which sends 0 to i and 1 to j. Then we
see that α will be homotopic to β if and only if there exists an element τ ∈X2,
corresponding to a map from the triangle ∣∆2∣ to X, such that

σ∗{0,1}(τ) = α

σ∗{0,2}(τ) = β

σ∗{1,2}(τ) = s
∗(y)

where we recall that s∗(y) is the constant path at y.

Remark 1.6. The above argument shows that one can recover from X● the set
of elements of the fundamental group π1(X,x) at any given base point. It is
not hard to see that one can recover the group structure as well: any triangle
τ ∈X2 such that

σ∗{0,1}(τ) = α

σ∗{0,2}(τ) = β

σ∗{1,2}(τ) = γ

is a witness to the fact that β is homotopic to the concatenation of α and γ. A
similar statement holds for the higher homotopy groups as well.

We are now ready to define the main object of study in this course:

Definition 1.7. A simplicial set is a functor

∆op ∶ ∆Ð→ Set

Maps of simplicial sets are given by natural transformations. We will denote by
Set∆ the resulting category and refer to it as the category of simplicial sets.

The operation X ↦X● is then easily seen to give a functor from topological
spaces to simplicial sets, which we denote by

Sing ∶ TopÐ→ Set∆
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The simplicial set Sing(X) = X● is sometimes called the singular simplicial
set of X. The purpose of this course is to explain in what way category of
simplicial sets can serve as a replacement for the category of topological spaces,
which captures exactly the kind of homotopy theoretic information we described
above. Furthermore, the category of simplicial sets will have many desired
formal properties, including a suitable notion of mapping space, making it into
a far more convenient model then CW compelxes.

The equivalence between Top and Set∆ will be achieved by working in the
setting of Quillen’s model categories. In particular, we will endow the cate-
gories Set∆ and Top with suitable model structured, and show that the functor
Sing fits into a suitable notion of Quillen equivalence between Top and Set∆.

2 lecture 2

2.1 Categorical Preliminaries

In the last lecture we introduced the notion of simplicial set and explain how you
can associate with each topological space X its singular simplicial set Sing(X).
Before we dive any deeper into the theory of simplicial sets let us recall a few
categorical preliminaries.

2.2 Limits and Colimits

Definition 2.1. Let C be a category and I a small category. An I-shaped
diagram in C is simply a functor f ∶ I Ð→ C. Given such an f we will define
the category Cf/ of objects in C under f as follows:

1. The objects of Cf/ are pais (X,{αi}i∈I) where X is an object in C and αi ∶
f(i) Ð→ X is a compatible choice of morphisms in C. The compatibility
here means that if β ∶ iÐ→ j is any morphism then αi = αj ○ β.

2. Morphisms from (X,{αi}) to (Y,{βi}) are morphisms ϕ ∶ X Ð→ Y such
that βi = ϕ ○ αi for every i ∈ I.

Dually, one can define the category of objects in C over f , denoted C/f ,
which is defined analogously only with the αi’s being morphisms from X to
f(i) instead of the other way around.

Now recall that an object X of a category C is called initial if there is a
unique morphism from X to any other object in C. Similarly, an object is called
terminal if there is a unique morphism into it from any other object in C. It is
a simple exercise to show that if X,X ′ are both initial objects in C then there
is a unique isomorphism X ≅X ′ in C, and similarly for final objects.

Definition 2.2. Let C be a category, I a small category and f ∶ I Ð→ C a
diagram. A colimit of f is an initial object in the category Cf/ of objects under
f . Similarly, a limit of f is a terminal object in the category C/f of objects over
f .
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Remark 2.3. As initial and final objects colimits and limits don’t have to exist.
However, when they exist they are unique up to a unique isomorphism.

Example 1. If I is the empty category then a colimit of I is simply an initial
object in C and a limit of I is a final object in C.

Example 2. If I is a set, i.e. a small category with no non-identity morphisms,
then an I-shaped diagram in C is simply given by a collection of objects Ci ∈ C
indexed by I. A colimit for such a diagram is then called a coproduct and
a limit over such a diagram is called a product. For the category of sets a
coproduct is given by taking the disjoint union ∐i∈I Ci and product by the
Cartesian product ∏i∈I Ci. The same is true for the category of topological
spaces only know we endow the disjoint union of the disjoin union topology and
the Cartesian product with the Cartesian product topology.

Example 3. Let I be the category with three objects 0,1,2 such that Hom(0,1) =
Hom(0,2) = ∗ and Hom(1,2) = Hom(2,1) = ∅. Then an I-shaped diagram in a
category C is a diagram of the form

A
g //

f

��

X

Y

A colimit for such a diagram is given by extending this diagram to a commutative
square

A
g //

f

��

X

��
Y // P

in a way that is initial among all possible choices. This type of colimit is often
called a pushout. If C is the category of sets then P is given by [X∐Y ] / ∼
where the equivalence relation is the equivalence relation generated by f(a) ∼
g(a) for every a ∈ A. If C is the category of topological spaces then P is given by
the same formula, where [X∐Y ] / ∼ is now endowed with the quotient topology.
Geometrically, we often think of this procedure as gluing X to Y along A.

Remark 2.4. Most categories you met have all limits and all colimits. Examples
of such categories include the categories of sets, topological spaces, groups, rings
and many others. Some categories don’t admit arbitrary limits and colimits but
only do so when I is finite, i.e. has finitely many objects and finitely many
morphisms. For example the category of finitely generated groups admits finite
colimits (but not finite limits) and the category of finite groups admits finite
limits but not finite colimits (in general). The category of smooth manifolds
admits finite products and finite coproducts but any other shape of diagram
might fail to have a limit/colimit.
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Definition 2.5. Let I be a small category and let F ∶ C Ð→ D be a functor.
We will say that F preserves colimits of I-shaped diagrams if for every
diagram f ∶ I Ð→ C the induced a functor

Ff/ ∶ Cf/ Ð→ DF○f/

sends initial objects to initial objects. Similarly, we will say that F preserves
limits of I-shaped diagrams if the induced functor

F/f ∶ C/f Ð→ D/F○f

sends terminal objects to terminal objects.

Example 4.

1. The archetypical example of functors which preserve limits are repre-
sentable functors. Let C be a category and X ∈ C an object. The
representable functor RX ∶ C Ð→ Set is given by the formula

RX(Y ) = HomC(X,Y )

Then it is not hard to show that RX preserves all limits. This claim is
usually written informally as

HomC (X, lim
i∈I

f(i)) ≅ lim
i∈I

HomC(X,f(i))

This property is actually strong enough to characterize limits, i.e., we
could have taken the above property as a definition for limits.

Applying the above claim to Cop we can produce a similar statement for
the corepresentable functors RX ∶ Cop Ð→ Set given by

RX(Y ) = HomC(Y,X)

Considering RX as a contravariant functor from C to Set one can say that
RX maps colimits to limits, i.e.,

HomC (colimi∈I f(i),X) ≅ lim
i∈I

HomC(f(i),X)

Again, this property completely characterizes colimits.

2. The functor D ∶ Set Ð→ Top from sets to topological spaces which as-
sociates to each set X the discrete space with point set X preserves all
colimits. However, it doesn’t preserve limits. For example, an infinite
product of discrete spaces with the product topology is not discrete.

3. The full inclusion Ab ⊆ Gr preserves limits but not colimit. For example,
the coproduct of two abelian group in the category Gr is given by the free
product which is almost never commutative.
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4. The abelianization functor Gr Ð→ Ab from groups to abelian groups pre-
serves colimits.

5. Let I be a small category and C an arbitrary category. Given an object
i ∈ I we can construct the evaluation functor evi ∶ CI Ð→ C given by

evi(f) = f(i)

Then evi preserves all limits and all colimits. In other words, limits and
colimits in functors categories are computed objectwise (this is especially
useful for us as we will be working in the category of simplical sets which
is a functor category).

6. Let I be a small category and C a category which admits I-shaped colim-
its. Then the construction of colimits can be organized into a functor

colim ∶ CI Ð→ C

and this functor preserves all colimits. This statement is usually phrased
as saying that colimits commute with colimits. The analogous statement
for limits is true as well. However, note that colimits and limits need not,
in general, commute with each other.

2.3 Functor Categories

Let I be a small category. In this section we will recall some basic properties
of the functor category SetI of functors from I to Set. We first observe that
the construction of representable functors induces a functor

ι ∶ Iop Ð→ SetI

given by ι(i) = Ri. Now let i ∈ I be an object and f ∈ SetI a functor. Given
a natural transformation T ∶ Ri Ð→ f we can associate with it the element
Ti(Idi) ∈ f(i) where Idi ∈ Ri(i) = HomI(i, i) is the identity element. We then
have the famous Yoneda lemma:

Lemma 2.6 (Yoneda). The association T ↦ Ti(Idi) ∈ f(i) determines a bijec-
tion

HomSetI(Ri, f)
≅Ð→ f(i)

Proof. It is not hard to construct an inverse to the map T ↦ Ti(Idi). Given an
element a ∈ f(i) and an element ϕ ∈ Ri(j) = HomI(i, j) we can construct the
element

f(ϕ)(a) ∈ f(b)

The association ϕ↦ f(ϕ)(a) determines natural maps

T aj ∶ Ri(j)Ð→ f(j)
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which fit together to form a natural transformation

T a ∶ Ri Ð→ f

It is then straightforward to check that the association a↦ T a is inverse to the
association T ↦ Ti(Idi).

Next we show that every functor f ∈ SetI can be obtained canonically as a
colimit of representables. Let f ∈ SetI be a functor. Define the category Iop

/f as

follows: the objects of Iop
/f are pairs (i, a) where i ∈ Iop is an object and a ∈ f(i)

is an element. A morphism (i, a) Ð→ (j, b) in Iop
/f is a morphism ϕ ∶ j Ð→ i in

I (i.e. a morphism i Ð→ j in Iop) such that f(ϕ)(b) = a. There is a natural
functor

p ∶ Iop
/f Ð→ SetI

given by (i, a)↦ Ri. Furthermore, according to the Yoneda lemma the element
a ∈ f(i) determines a natural map α(i,a) ∶ Ri Ð→ f . These maps are compatible
and we obtain an element

(f,{α(i,a)}) ∈ (SetI)/p

Proposition 2.7. The object (f,{α(i,a)}) is initial in (SetI)/p.

Proof. Consider a functor g ∈ SetI and a compatible family of morphisms

β(i,a) ∶ Ri Ð→ g

Using the Yoneda lemma we can identify a map β(i,a) ∶ Ri Ð→ g with an element
b(i,a) ∈ g(i). For each i the association a↦ b(i,a) gives a map

Ti ∶ f(i)Ð→ g(i)

and these maps fit together to form a natural transformation

T ∶ f Ð→ g

which is compatible with the structure maps {α(i,a) and {β(i,a)}, hence giving
a map

T ∶ (f,{α(i,a)})Ð→ (g,{β(i,a)})

in SetI/p. On the other hand, if

S ∶ (f,{α(i,a)})Ð→ (g,{β(i,a)})

is any competing natural transformation then the compatibility constraint at
the object (i, a) will imply that

Si(a) = b(i,a) = Ti(a)

and so we get that S = T .
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2.4 Geometric Realization

Specializing to the case of I = ∆op we know get Set∆op

= Set∆, our desired
category of simplicial sets. For each [n] ∈ ∆, the representable functor R[n] ∶
∆op Ð→ Set will be denoted by ∆n and will be referred to as the standard
simplex (now as a simplicial set, as opposed to a topological space). More
explicitly, we have

∆n([k]) = Hom∆([k], [n])

is the set of simplicial maps from ∣∆k ∣ to ∣∆n∣. For each k, this set contains a
subset which corresponds to injective simplicial maps. We call these the non-
degenerate simplices of ∆n. These exist in each dimension k between 0 and n
and correspond to the k-dimensional faces of ∆n (as well as to subsets of [n]).

Now the Yoneda lemma tells us that for an arbitrary simplicial set X one
has a natural identification

X([n]) = HomSet∆
(∆n,X)

We will refer to this set as the set of n-simplices of X. We will also usually
denote X([n]) simply by Xn. When X is the singular simplicial set of a topo-
logical space the the set of n-simplices of X is the set of maps from ∣∆n∣ to that
topological space.

Now Lemma 2.7 tells us that each simplicial set X can be built as a colimit
of simplices by forming the category ∆op

/X of simplices over X (this category

is also sometimes called the simplex category of X). The elements in this
category can be identified with pairs (∆n, f) where f ∶ ∆n Ð→ X is a map of
simplicial sets. Lemma 2.7 then states that

X ≅ colim∆nÐ→X ∆n

In other words, X can be built out of standard simplices, and the recipe for
how to do this is located in the collection of all maps ∆n Ð→ X, once this
information is properly organized into a category.

We are now ready to define the geometric realization functor ∣●∣ ∶ Set∆ Ð→
Top. The way we define this functor is essentially by choosing its value on the
standard simplices to be ∆n ↦ ∣∆n∣ and then extending by colimits. More
explictly, one defines

∣X ∣ def= colim∆nÐ→X ∣∆n∣ ∈ Top

where the colimit is taken over the category ∆op
/X of simplices over X and is

evaluated in the category Top. Note that this definition is consistent with what
we started from as

colim∆nÐ→∆k ∣∆n∣ ≅ ∣∆k ∣

due to the fact that the simplex category of ∆k has a terminal object given by
the identity map ∆k Ð→∆k.
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2.5 Adjunctions

Let C,D be categories and F ∶ C Ð→ D,G ∶ D Ð→ C a pair of functors. We will
say that a a natural transformation

uX ∶X Ð→ G(F(X))

is a unit of an adjunction F ⊣ G if for any X ∈ C, Y ∈ D the composed map

HomD(F(X), Y )Ð→ HomC(G(F(X)),G(Y ))
u∗XÐ→ HomC(X,G(Y ))

is a bijection of sets. One then says that F is left adjoint to G and that G is
right adjoint to F .

Note that by setting X = G(Y ) above we obtain a bijection

HomD(F(G(Y )), Y ) ≅ HomC(G(Y ),G(Y ))

The morphisms νY ∶ F(G(Y ))Ð→ Y , which correspond to the identity G(Y )Ð→
G(Y ) under the bijection above, fit together to form a natural transformation
F ○ G Ð→ IdD, which is called the counit of the adjunction.

Example 5.

1. Let F ∶ Set Ð→ Gr be the functor that associates the each set X the free
group < X > generated by the elements of X. Let U ∶ Gr Ð→ Set be the
functor that associates to each group its underlying set of elements. Then
the natural map

X Ð→ U(F(X))

which associates to each element of X the corresponding generator of
F(X) is a unit for an adjunction F ⊣ U .

2. Let D ∶ Set Ð→ Top be the functor that associates to each set X the
discrete topological space with point set X. Let P ∶ Top Ð→ Set be the
functor which associates to each topological space its underlying set of
points. Then the natural map

X Ð→ P(D(X))

is a unit of an adjunction D ⊣ P.

3. The abelianization functor Gr Ð→ Ab is left adjoint to the full inclusion
Ab↪ Gr.

4. Let I be a small category and C a category which admits colimits for
I-shaped diagram. Then the construction of colimits for all I-shaped
diagrams fits into a functor

colim ∶ CI Ð→ C

12



from the functor category CI to C. This functor is left adjoint to the
constant diagram functor

const ∶ C Ð→ CI

which associates to each object X ∈ C the constant diagram with value X.
A similar construction can be done for limits, in which case the construc-
tion of limits will be right adjoint to the constant diagram functor.

Proposition 2.8. Let F ∶ C Ð→ D be a functor which admits a right adjoint
G ∶ D Ð→ C. Then F preserves all colimits. Similarly if F admits a left adjoint
then F preserves all limits.

Proof. Let f ∶ I Ð→ C be a diagram and let g = F ○f ∶ I Ð→ D be the composed
diagram. The functor F induces a functor

Ff/ ∶ Cf/ Ð→ Dg/

We need to show that this functor preserves initial objects. Let (X,{αi}) be
an initial object. We need to show that (F(X),{F(αi)}) is initial in Dg/. Let
(Y,{βi}) ∈ Dg/ be an arbitrary element. We need to show that there exists a
unique map

(F(X),{F(αi)})Ð→ (Y,{βi})

in Dg/. In other words, we need to show that there exists a unique map

ϕ ∶ F(X)Ð→ Y

such that ϕ○F(αi) = βi for every i. Using adjunction and naturality, we observe
that this is equivalent to saying that there exists a unique map

ψ ∶X Ð→ G(Y )

such that
ψ ○ αi = G(βi) ○ uf(i)

But this is just a consequence of the fact that (X,{αi}) is initial in Cf/.

In certain situations Proposition 2.8 admits an inverse, i.e., if C is a pre-
sentable category then any colimit preserving functor F ∶ C Ð→ D admits
a right adjoint. Most categories that you know (which have all colimits) are
presentable. A prominent example of a category which has all colimits but is
not presentable is the category of topological spaces. This is one of the ways in
which the category of topological spaces is not so good from a category theoretic
point of view.

13



3 Lecture 3

Recall from last time:

Definition 3.1. Let X ∈ Set∆. The category of elements ∆ ↓X has objects
the maps of simplicial sets ∆n Ð→ X and maps the commutative triangles

∆n //

!!CCCCCCCC ∆m

}}{{{{{{{{

X

The realization is the functor ∣−∣ ∶ Set∆ Ð→ Top given by ∣X ∣ = colim∆nÐ→X ∣∆n∣.

Goal: for every X ∈ Set∆, ∣X ∣ is a CW-complex.

Proposition 3.2. There is an adjunction ∣ − ∣ ⊣ Sing (left adjoint on the left).

Proof. Recall that for any category C with colimits and any object c ∈ C, the
functor C(, c) ∶ Cop Ð→ Set satisfies C(colimI D, c) ≅ limI C(D, c). Now suppose
X ∈ Set∆ and Y ∈ Top. Then

Top(∣X ∣, Y ) = Top(colim∆nÐ→X ∣∆n∣, Y ) ≅ lim
∆nÐ→X

Top(∣∆n∣, Y ) ≅

lim
∆nÐ→X

Set∆(∆n, Sing(Y )) ≅ Set∆(colim∆nÐ→X ∆n, Sing(Y )) ≅ Set∆(X,Sing(Y )).

Corollary 3.3. The functor ∣ − ∣ preserves colimits.

our strategy is to build, for any simplicial set X, a ”skeleton” filtration in
which every stage is obtained from the previous one by a push-out of standard
simplicies along their boundaries, and then apply ∣− ∣ to the filtration and obtain
a CW-structure on ∣X ∣. To construct this filtration, we need to understand a
bit better the combinatorics of Set∆.

Recall:

Definition 3.4. The category ∆ has as objects the ordered sets [n] = {0, ..., n}
(n ≥ 0) and as maps the nno-decresing maps of sets. The cofaces di ∶ [n−1]Ð→
[n] (0 ≤ i ≤ n) are given by di(0→ 1→ ...→ n−1) = (0→ 1→ ...→ i−1→ i+1→
... → n) and the codegeneracies are given by sj ∶ [n + 1] Ð→ [n] (0 ≤ j ≤ n)
are given by sj(0→ 1→ ...→ n + 1) = (0→ 1→ ...→ j → j → ...→ n).

Proposition 3.5. The coface and codegeneracies satisfy the following relations:

� djdi = didj−1 if i < j.

� sjdi = disj−1 if i < j.

14



� sjdj = id = sjdj+1.

� sjdi = di−1sj if i > j + 1.

� sjsi = sisj+1 if i ≤ j.

Proposition 3.6. Any map in ∆ may be uniquely factorized as a composition
of codegeneracies sj followed by a composition of cofaces di. Thus, a simplicial
set X can equivalently be described as a collection of sets {Xn}n≥0 and face
and degeneracy maps di ∶ Xn Ð→ Xn−1, sjXn Ð→ Xn+1 (resp.) satisfying the
opposite relations to those of Proposition 3.5.

Definition 3.7. The nerve of a category is the simplicial set NC defined by
setting (NC)n to be the set of all n-composable morphisms in C

c0 Ð→ c1 Ð→ ...Ð→ cn.

The description of the cofaces and codegeneracies in Definition 3.4 gives a way
to define the face maps di and degeneracy maps sj of NC by (respectively)
composing two consecutive maps with common vertex ci or inserting the identity
at vertex j

Example 6. To every monoid M , we can associate a category BM that has one
object and the set M as morphisms (the composition is given by multiplication
in M). The realization ∣NBM ∣ is known as the classifying space of M and
plays an important role in algebraic topology.

Definition 3.8. Let X be a simplicial set. An n-simplex x ∈ Xn is called
degenerate if there is m < n, a surjection η[n] → [m] and an m−simplex
y ∈Xm such that x = η∗y.

Lemma 3.9 (Eilenberg-Zilber). Let X ∈ Set∆ and x ∈ Xn. There is a unique
surjection η ∶ [n]→ [m] and a unique m-simplex y ∈Xm such that η∗y = x.

Proof. Existence: if x is non-degenerate, take η = id[n]. if x is degenerate,
choose (η, y) such that y ∈ Xm m < n, η is surjective and η ∗ y = x. If y is
non-degenerate, we are done. Otherwise, choose a similar pair (η′, y′) for y.
This process stop after a finite number of stages. Uniqueness: Assume (η, y)
and (η′, y′) are two such pairs. observe: There is a push-out of simplicial sets

∆n
η //

η′

��

∆m

η2

��
∆m′ η1 // ∆p

Now, by assumption η∗y = x = η′∗y′ so the universal property of the push-out
yields a map z ∶ ∆p Ð→X as follows:

15



∆n
η //

η′

��

∆m

η2

�� y

��

∆m′ η1 //

y′ ,,

∆p

∃!z

!!
X.

Since y and y′ are non-degenerate, η1 = η2 = id, y = y′ and thus η = η′

3.1 The skeleton of a simplicial set

Let ∆n be the full subcategory of ∆ spanned by [0], ..., [n]. The inclusion
∆n ↪ ∆ induces a trunction functor trn ∶ Set∆ Ð→ Set∆n ∶= Set∆op

n . An
object in the target category of this functor is called an n-truncated simplicial
set. For p ≤ n the representable functor in Set∆n on [p] is denoted by ∆p

n.

Definition 3.10. The skeleton of an n-truncted simplicial set X ∈ Set∆n is
given by

sknX = colim∆p
n→X ∆p

where for p ≤ n, ∆p
n is the representable functor ∆n(−, [p]). This defines a

functor skn ∶ Set∆n Ð→ Set∆.

Proposition 3.11. There is an adjunction skn ⊣ trn.

Proof.
Set∆(sknX,Y ) ≅ Set∆(colim∆p

n→X ∆p, Y ) ≅

lim
∆p

n→X
Yp ≅ lim

∆p
n→X

Set∆n(∆p
n, trnY ) ≅ Set∆n(X, trnY )

Observe 3.12. Since sknX is a quotient of a sum of ∆p’s for p ≤ n, and the
m-simplicies of ∆p are degenerate for m > n, it follows that sknX consists only
of degenerate simplicies.

Proposition 3.13. The counit map skn trnX Ð→X is a monomorphism.

Proof. Clearly, for m ≤ n, (skn trnX)m Ð→ Xm is a bijection. It will suffice
to show that if f ∶ Y Ð→ X is a map of simplicial sets which injective for
all Ym Ð→ Xm with m ≤ n and Ym consists only of degenerate simplicies for
m > n then f is injective. Let y, y′ ∈ Ym for m > n. By E-Z lemma, there
are η ∶ [m] ↠ [p], η′ ∶ [m] ↠ [p′] and non-degenerate z ∈ Yp and z′ ∈ Yp′
s.t. η∗z = y and η′∗z′ = y′. Since p, p′ ≤ n and fp, fp′ are injective, it follows
that fp(z) and fp′(z′) are non-degenerate. Indeed, if, say, fp(z) = α∗x w/
α ∶ [p]↠ [q] and x ∈ Xq, then α has a section ε ∶ [q] ↪ [p] (αε = id) and then
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ε∗fp(z) = ε∗α∗x = x so α∗(ε∗fp(z)) = α∗x = fp(z) so z = α∗ε∗z is degenerate,
yielding a contradiction.

Now, since fm(y) = η∗fp(z) and fm(y′) = η′∗fp′(z′), if fm(y) = fm(y′) then
by E-Z η = η′ and fp(z) = fp′(z′) so we must have p = p′ and since fp is injective,
z = z′.

Notation 3.14. Let Skn ∶= skn ○ trn ∶ Set∆ Ð→ Set∆ be the composite. We
shall say that X ∈ SS is of dimension n if SknX =X.

Observe 3.15.

� The pair skn ⊣ trn provides an equivalence between the category of n-
truncated simplicial sets and the full subcategory of Set∆ spanned by the
objects of dimension n.

� Any X ∈ Set∆ is the union of its skeleta

Sk0X ⊆ Sk1X ⊆ ... ⊆ ∪SknX =X.

Definition 3.16. Let ∂i∆n be the subsimplicial set

∂i∆n ∶= Im (di ∶ ∆n−1 Ð→∆n).

This is the ı-th face of ∆n. The boundary is then ∂∆n = ∪ni=0∂
i∆n. Alterna-

tively, (∂∆n)m ∶= {α ∶ [m]Ð→ [n]∣ α is not surjective}.

Observe 3.17. ∆n has one non-degenerate simplex in dimension n and n + 1
non-degenerate simplicies in dimension n − 1, corresponding to the maps di ∶
[n − 1]→ [n]. Thus, Skn−1 ∆n = ∂∆n.

Let ∂n be the diagram of simplicial sets with objects (∆n−2)ij ≡ ∆n−2, 0 ≤
i < j ≤ n and (∆n−1)i, 0 ≤ i ≤ n and with morphisms the maps

(∆n−2)ij
dj−1

// (∆n−1)i

and

(∆n−2)ij
di // (∆n−1)j

Proposition 3.18. ∂∆n = colim∂n.

Proof. For each i < j, there is a commutative diagram

∆n−2 di //

dj−1

��

∆n−1

dj

��
∆n−1 di // ∂∆n
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which is depicted in ∂n as the diagram

(∆n−2)ij
di //

dj−1

��

(∆n−1)j

dj

��
(∆n−1)i

di // ∂∆n

so that ∂∆n is a cone over the diagram ∂n and we have a map
ϕ ∶ colim∂n Ð→ ∂∆n. ϕ is surjective since every simplex of ∂∆n factors through
some di. To see that ϕ is injective, let θ ∈ (∆n−1)i and η ∈ (∆n−1)j be such that
ϕ(θ) = ϕ(η) = α. Then α ∶ [m]→ [n] avoids i and j and thus θ avoids j − 1 and
η avoids i. Hence, α = dj ○ di ○ α and then dj−1 ∶ α ↦ θ and di ∶ α ↦ η so that
θ = η in the colimit.

Observe that by definition ∣di ∶ ∆n−1 Ð→∆n∣ = di ∶ ∣∆n−1∣Ð→ ∣∆n∣. Since ∣− ∣
preserve colimits we get

Corollary 3.19.
∣∂∆n∣ ≅ ∂∣∆n∣

and
∣∂∆n ↪∆n∣ ≅ ∂∣∆n∣↪ ∣∆n∣.

For X ∈ Set∆ let e(X)n denote the set of non-degenerate n-simplicies. For
each x ∈ e(X)n we have

∂∆n //

��

∆n

x

��
Skn−1X // SknX

and summing all of that we get

∐
e(X)n

∂∆n
//

��

∐
e(X)n

∆n

��
Skn−1X // SknX

(1)

Proposition 3.20. The square 1 is a pushout.

Proof. Since all the simplicial sets are of dimension n, it is enough to show that
this diagram is a pushout after applying trn, i.e. that

( ∐
e(X)n

∂∆n)m //

��

( ∐
e(X)n

∆n)m

��
(Skn−1X)m // (SknX)m

18



is a pushout of sets for all m ≤ n. For m ≤ n − 1 this is clear since then the
two horizontal maps are isomorphims. For m = n the complement of ∂∆n in
∆n consists of one element id[n]. Thus, the complement of ∐

e(X)n
(∂∆n)n in

∐
e(X)n

(∆n)n is isomorphic to e(X)n. But (SknX)m = (Skn−1X)n ∪ e(X)n so

that the diagram is indeed a pushout.

Since ∣ − ∣ commutes with colimits we finally obtain:

Corollary 3.21. For any simplicial set X, ∣X ∣ is a CW-complex with filtration
∣Sk0X ∣ ⊆ ∣Sk1X ∣ ⊆ ... ⊆ ∣SknX ∣ ⊆ ....

4 Lecture 4

4.1 Kan complexes

The k-th horn (0 ≤ k ≤ n) is defined to be Λnk = ∪i≠kIm (di ∶ ∆n−1 →∆n).
Observe 4.1.

Set∆(Λnk ,X) = {(x0, ..., x̂k, ..., xn) ∈ (Xn−1)n∣dixj = dj−1xi ∀i < j, i ≠ k andj ≠ k}.

Definition 4.2. A map X Ð→ Y of simplicial sets is called a Kan fibration
if for every commutative diagram of solid arrows

Λnk //

��

X

��
∆n //

∃
>>

Y

the doted arrow exists (0 ≤ k ≤ n).

Recall:

Definition 4.3. A map of topological space U Ð→ V is called a Serre fibration
if every commutative diagram of solid arrows

∣Λnk ∣ //

��

U

��
∣∆n∣ //

∃
>>

V

the dotted arrow exists.

Observe 4.4. f ∶ U Ð→ V is a Serre fibration iff S(f) ∶ S(U)Ð→ S(V ) is a Kan
fibration. This follows by the adjunction ∣ − ∣ ⊣ S.

Warning 4.5. It is not trivial to show that the realization of a Kan fibration is
a Serre fibration and we shall do so in the future.
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Lemma 4.6. For every U ∈ Top, S(U)Ð→ ∗ is a Kan fibration.

Proof. The inclusion i ∶ ∣Λnk ∣ Ð→ ∣∆n∣ has a section r ∶ ∣∆n∣ Ð→ Λnk that makes
the domain a strong deformation retract of the codomain. Thus, in a diagram
of the form

∣Λnk ∣
ϕ //

��

U

��
∣∆n∣ //

∃θ
>>

∗
the dotted arrow can be defined as θ = ϕ ○ r showing that U Ð→ ∗ is a Serre
fibration and hence that S(U)Ð→ ∗ is a Kan fibration.

Recall that a groupoid is a category in which every morphism is an isomor-
phism. A second class of kan complexes can be obtained via taking the nerve
of a groupoid, as the following proposition asserts:

Proposition 4.7. For every groupoid G, NG is a Kan complex.

Proof. Observe first that a map X Ð→ NG is determined by a map tr2X Ð→ NG
since it is enough to know to which objects do the vertices X0 are sent, to which
arrows do the edges (1-simplicies) X1 are being sent and that this assignment
is compatible with composition, domain and codomain. Alternatively, X is a
colimit of its simplicies ∆n and so it is enough to see that this claim is true
for X = ∆n. But maps ∆n Ð→ NG are precisely n-composable morphisms in G
and thus these maps are completely determined by a map tr2∆n Ð→ tr2NG or,
equivalently by a map Sk2X Ð→ NG.

We consider the lifting problem

Λnk
ϕ //

��

NG

∆n

==

For n > 3 this is completely formal: we only need to provide a lift Sk2 ∆n Ð→
NG but since Sk2 Λnk Ð→ Sk2 ∆n = id for n > 3, the lifting problem is trivial.

For n = 1 we can find a lift by associating to a vertex x ∶ ∆0 Ð→ NG the
identity arrow s0x ∶ ∆1 Ð→ NG. For n = 2 and k = 1, a map Λnk Ð→ NG
is precisely a pair of composable arrows in G so that we can solve the lifting
problem for Λ2

1 by defining a map ∆2 Ð→ NG via the element (NG)2 given by
that very pair of composable morphisms. For (n = 2) k = 0 and k = 2 we solve
the corresponding lifting problem by inverting one of the arrows (recall that G
contains only iso’s) and then associating the pair of composable morphisms as
before. We are left with n = 3. we consider only the lifting problem of

Λ3
0

��

α // NG

∆3

==
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since the other cases are similar. Since Sk1 Λ3
0 = Sk1 ∆3 we are given arrows

α1 ∶ 0 → 1, α2 ∶ 1 → 2, α3 ∶ 2 → 3 and x ∶ 1 → 3. Note that the arrows
0 → 2 and 0 → 3 must be α2α1 and α3α2α1 since Λ3

0 Ð→ NG must restrict to a
commutative triangle on the faces d3 and d2 (respectively). However, the face
d0∆3 is missing in Λ3

0 so that we don’t know that the triangle

1
x //

α2

��

3

2

α3

@@�������

is commutative, and knowing this is precisely knowing that the lift we are looking
for exist (note that in this case finding a lift only requires checking that the given
data satisfies a certain condition and the is no need of constructing new data
out of the given data). So we need to know that x = α3α2. However, the faces
d1∆3 and d2∆3 together, are mapped into a commutative diagram in NG as
follows:

α0

α3α2α1

��

α2α1

!!CCCCCCCC
α1

}}{{{{{{{{

α1

x
!!CCCCCCCC α2

α3}}{{{{{{{{

α3

so that xα1 = α3α2α1 and since G has only isomorphisms, x = α3α2 as required.

Observe 4.8. The standard n-simplex ∆n, n > 0, does not satisfy the Kan
condition. Consider ∆1 and the horn Λ2

0 , which consists of the edges 0 → 2
and 0 → 1 of ∆2 and their degeneracies. Now consider the simplicial map
ϕ ∶ Λ2

0 Ð→ ∆1 that takes 0 → 2 ∈ Λ2
0 to 0 → 0 ∈ ∆1 and 0 → 1 ∈ Lam2

0 to
0 → 1 ∈ ∆1. There is a unique such simplicial map since weve specified what
happens on all the nondegenerate simplices of Λ2

0. Notice that this is perfectly
well-defined as a simplicial map since all functions on all simplices are order-
preserving. Thus, we have defined a lifting problem

Λ2
0

ϕ //

��

∆1

∆2

>>

However, this cannot be extended to a map ∆2 Ð→ ∆1 since we have already
prescribed that on vertexes, 0 ↦ 0, 1 ↦ 1 and 2 ↦ 0, which is clearly not
order-preserving on ∆2.
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A third class of Kan complexes is given by the following

Proposition 4.9. The underlying simplicial set of a simplicial group

G ∶ ∆op Ð→ Set

is a Kan complex.

Proof. Let x0, ..., x̂k, ..., xn ∈ Gn−1 be n−1-simplicies satisfying dixj = dj−1xi for
all i < j and i, j ≠ k. Then se set

� w0 = s0x0

� wi = wi−1(sidiwi−1)−1sixi, 0 < i < k.

� wn = wk−1(sn−1dnwk−1)−1sn−1xn,

� wi = wi+1(si−1diwi+1)−1sixi, k < i < n

Then x ∶= wk+1 satisfy dix = xi for all i ≠ k.

5 Lecture 5

5.1 The small object argument

Developing the homotopy theory of simplicial sets based solely on Kan fibra-
tions involves long combinatorics. The theory of anodyne extensions provides a
shortcut.

Definition 5.1. A class of mono’sM ⊆ Set∆ is called saturated if the follow-
ing conditions hold:

� Iso(Set∆) ⊆M

� M is closed under pushouts.

� M is closed under retracts – namely, if i ∈M and i′ is a retract of i i.e.
there is a commutative digram in Set∆ of the form

●

i′

��

// ●

i

��

// ●

i′

��
● // ● // ●

in which the two horizontal composites are the identity,
then i′ is in M as well.

� M is closed under coproduct (of morphisms).

� M is closed under ω-compositions, i.e. if F ∶ ω Ð→ Set∆ is a diagram
indexed by the first countable ordinal and such that for any F (n→ n+1) ∈
M for any n→ n+1 ∈ ω, then the map F (0)Ð→ colimωD (the ”countable
composition”) is in M.
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We are going to have a lot of lifting problems around, so it’s worth to have
some terminology for that.

Definition 5.2. Given a pair of maps i ∶ A Ð→ B and p ∶ X Ð→ Y we will
say that p has the right lifting property (RLP) wrt i and that i has the
left lifting property (LLP) wrt to p if every diagram of solid arrows as below
admits a dotted lift

A //

i

��

X

p

��
B // Y

A map p ∶ X → Y is said to have the right lifting property wrt a class of
mono’s M ⊆ Set∆ if it has the RLP wrt to every i ∈M.

Lemma 5.3. The class of all mono’s that have a LLP wrt a fixed map p ∶X Ð→
Y is saturated.

Proof. Closness under countable composition: consider the lifting problem

A0

i0
��

// X

��

⋮
An

77oooooooo

in

��
⋮

��
colimnAn

DD

// Y

since for each n the dashed arrow exists, we can view X as a cocone over the
diagram {An}. By the universal property of colimit, we obtain the dotted map
colimnAn Ð→ X which renders the diagram commutative. The map A0 Ð→
colimnAn is clearly a mono. closness under pushouts: consider a morphism
i ∶ AÐ→ B ∈M and a pushout diagram

A //

i

��

C //
j

��

X

p

��
B

55kkkkkkkkkk // B ∪A C

;;

// Y

The map j is clearly a mono and we need to check the lifting property. The
dashed arrow exists since i ∈ M and the dotted arrow exist by the universal
property of a pushout. Thus, j ∈M.

The rest of the conditions are verified in a similar manner.
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Definition 5.4. Let Γ ⊆ Set∆ be a class of morphisms. The intersection of all
saturated classes containing Γ is called the saturated class generated by Γ.

For example, if m ∶ AÐ→X is a mono, then we have a pushout

∐
e(X−A)n

∂∆n
//

��

∐
e(X−A)n

∆n

��
Skn−1(X) ∪A // Skn(X) ∪A

(2)

which is constructed as before. Moreover, X = colim
n≥−1

Skn(X) ∪ A and the

mapSk−1(X) ∪ A Ð→ colim
n≥−1

Skn(X) ∪ A is precisely m ∶ A Ð→ X. Thus the

saturated class generated by the maps ∂∆n ↪∆n is all monomorphisms.

Definition 5.5. The saturated class generated by {Λnk ↪ ∆n∣n ≥ 1, 0 ≤ k ≤ n}
is called the class of anodyne extensions and is denoted by A.

Proposition 5.6. A map p ∶X Ð→ Y is a Kan fibration iff it has the RLP wrt
all anodyne extensions.

Proof. A class of maps that is defined as the maps with a LLP wrt to any class
of maps F ⊂ Set∆ is saturated. When F is taken to be the class of all Kan
fibrations, we get from minimality of A that any anodyne extension has the
LLP wrt Kan fibrations. The other direction follows from the definitions.

Definition 5.7. A map E Ð→X is called a trivial fibration if it has the RLP
wrt {∂∆n ↪∆n∣n ≥ 0}.

Observe 5.8. Any trivial fibration is a fibration: the saturated class generated
by {∂∆n ↪ ∆n∣n ≥ 0} is the class of all mono’s and thus any trivial fibration
has the RLP wrt to {Λnk ↪∆n∣n ≥ 1, 0 ≤ k ≤ n}.

Theorem 5.9. Any map f ∶X Ð→ Y in Set∆ can be factored as

X

i   @@@@@@@
// Y

E

p

??~~~~~~~

where i is an anodyne extension and p is a fibration.

Proof. Consider the set L of all commutative diagrams of the form

Λnk //

��

X

f

��
∆n // Y
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summing over L gives

∐
L

Λnk //

i

��

X

f

��∐
L

∆n
// Y

and i is anodyne since it is a coproduct of such. Consider now the pushout

∐
L

Λnk //

i

��

X

i0

��∐
L

∆n
// X1.

We see that i0 is anodyne as a pushout of such and we have a factorization

X
f //

i0   BBBBBBBB Y

X1

f1

>>}}}}}}}}

We now repeat the process with f1 instead of f – summing over all the lifting
problems and taking the pushouts. Let E = colimn>0Xn and p ∶ E Ð→ Y the
induced map. We have a factorization

X
f //

i   @@@@@@@ Y

E

p

??~~~~~~~

in which i is anodyne as a countable composition of such. Let us show that
p ∶ E Ð→ Y is a fibration: we consider a lifting problem

Λnk
h //

��

E

p

��
∆n // Y.

Since Λnk has only finitely many non-degenerate simplicies, hmust factor through
some Xn. But if we extend this lifting problem to Xn+1 it must have a solution
because of how Xn+1 was constructed

Λnk
h //

��

Xn

fn

��

// Xn+1

fn+1||yyyyyyyyy

∆n //

66llllllll
Y .
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We thus obtain a lift to E.

Corollary 5.10. Any map that has the LLP wrt the class of all Kan fibrations
is anodyne.

Proof. Let i ∶ AÐ→ B be such, and factor it in the form

A
i //

j ��@@@@@@@ B

E

p

??~~~~~~~

where p is a fibration and j is anodyne. Since i and p are such, we have a lift

A
j //

i

��

E

p

��
B

k

>>

idB // B

but then, i is a retract of j via

A
idA //

i

��

A
idA //

j

��

A

i

��
B

k
// E p

// B

so that i is anodyne.

Remark 5.11. Let Set
[1]
∆ be the arrow category of simplicial sets, i.e. the cat-

egory whose objects are maps of simplicial sets and whose morphisms are the
corresponding commutative squares. Furthermore, the source and target of
morphisms can be thought of as functors

Set
[1]
∆

t
//

s //
Set∆ .

We can then consider the pullback Set
[1]
∆ s×tSet[1]∆ as the set of pairs of compos-

able morphisms. Thus a factorization of the identity functor Set
[1]
∆ Ð→ Set

[1]
∆

as
Set

[1]
∆ Ð→ Set

[1]
∆ s ×t Set[1]∆

○Ð→ Set
[1]
∆

yields a factorization of any morphism into a composable pair of morphism.

If we denote the class of Kan fibrations by F , then A,F ⊆ Set
[1]
∆ are the full

subcategories spanned by the anodyne extensions and the Kan fibrations. We
see that the factorization of Theorem 5.9 can be extended into a factorization
of id

Set
[1]
∆

as

Set
[1]
∆ Ð→ Fs ×t A

○Ð→ Set
[1]
∆

and we say that our factorizations are functorial.
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Theorem 5.12. Any map f ∶X Ð→ Y in Set∆ can be (functorially) factored

X
f //

i   @@@@@@@ Y

E

p

??~~~~~~~

where i is a mono and p is a trivial fibration.

Proof. Repeat the previous proof with {∂∆n ↪ ∆n∣n ≥ 0} instead of the horn
inclusions.

6 Lecture 6

Our goal in this lecture is define a suitable notion of a mapping space in the
setting of simplicial sets. Given two simplicial sets X,Y ∈ Set∆, we will want
to construct a new simplicial set map(X,Y ) ∈ Set∆ which will be well-behaved
in the following sense. For simplicial sets Y which are Kan we will want

1. The mapping spaces map(X,Y ) to be Kan for every Y .

2. To be able to use the mapping spaces to give a good notion of homotopy
for maps X Ð→ Y .

3. To be able to use the mapping spaces to give a good notion of homotopy
groups for Y .

Having all the above we will be in a good position to study simplicial sets as if
they were topological spaces, and to formulate in what sense they are equivalent
to spaces. Let us begin with the definition

Definition 6.1. Let X,Y ∈ Set∆ be simplicial sets. We define map(X,Y ) ∈
Set∆ to be the simplicial set whose n-simplices are given by

map(X,Y )n = HomSet∆
(X ×∆n, Y )

The map ρ∗ ∶ map(X,Y )n Ð→map(X,Y )k associated to a morphism ρ ∶ [k]Ð→
[n] is given by pre-composition with the induced map Id×ρ ∶X×∆k Ð→X×∆k.

Remark 6.2. The simplicial set map(X,Y ) depends covariantly on Y and con-
travariantly on X. Put formally, we have a functor

map(−,−) ∶ Setop
∆ ×Set∆ Ð→ Set∆

Before we proceed to questions (1) − (3) above, let us point out a very
important formal property of the mapping space constructed above. We have
an evaluation map

evX,Y ∶X ×map(X,Y )Ð→ Y
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which is defined as follows. Given an n-simplex σ ∈Xn and a map f ∶X×∆n Ð→
Y (considered as an n-simplex f ∈ map(X,Y )n we define evX,Y (σ, f) ∈ Yn to be
the n-simplex f(σ, Id) where

(σ, Id) ∶ ∆n Ð→X ×∆n

is considered as an n-simplex of X ×∆n.

Proposition 6.3 (The exponential law). The function

ev∗ ∶ HomSet∆
(K,map(X,Y ))Ð→ HomSet∆

(X ×K,Y )

which sends a map K Ð→ map(X,Y ) to the composition

X ×K Ð→X ×map(X,Y )
evX,YÐ→ Y

is a bijection which is natural in K,X ∈ Setop
∆ and Y ∈ Set∆.

Proof. An explicit inverse to ev∗ can be constructed by sending a map g ∶
X ×K Ð→ Y to the map ev−1

∗ (g) ∶K Ð→ Hom(X,Y ) which maps an n-simplex
σ ∶ ∆n Ð→K of K to the composition

X ×∆n Id×σÐ→ X ×K gÐ→ Y

Remark 6.4. In terms of adjoint functors one can phrase Proposition 6.3 by
saying that for each X the functor

map(−, Y ) ∶ Set∆ Ð→ Set∆

is right adjoint to the functor

X × (−) ∶ Set∆ Ð→ Set∆

This claim can be formalized for all X’s at once by considering a suitable notion
of an adjunction in two variables. We will not make this idea precise here.

Exercise 1. Let X,Y,Z be simplicial set. The diagonal maps ∆n Ð→∆n ×∆n

induce a composition product

map(X,Y ) ×map(Y,Z)Ð→map(X,Z)

Show that this composition is unital and associative, so that we can consider
Set∆ as a category enriched over Set∆.

Our first goal now is to address issue (1) above, i.e., we want to verify that
map(X,Y ) is Kan whenever Y is Kan. For this it will be useful to tackle a more
general situation.
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Theorem 6.5. Let K ↪ L be an inclusion of simplicial sets and let X Ð→ Y
be a Kan fibration. Then the induced map

map(L,X)Ð→ map(K,X) ×map(K,Y ) map(L,Y )

is a Kan fibration.

Corollary 6.6. Mapping spaces into a Kan simplicial set are Kan.

Proof. Theorem 6.5 applied to the case K = ∅ and Y = ∗ implies that map(L,X)
is Kan whenever X is Kan.

In order to tackle Theorem 6.5 above it will be useful to reformulate it in
terms of anodyne maps. In view of the exponential law 6.3, Theorem 6.5 is
equivalent to the following assertion:

Theorem 6.7. If f ∶K ↪ L is a monomorphism and g ∶ S Ð→ T is an anodyne
map then the induced map

f2g ∶ [S ×L] ∐
S×K

[T ×K]Ð→ T ×L

is an anodyne map.

The map f2g above is usually called the pushout-product of f and g.
Note that the formation of pushout products is associative: if we have three
maps f, g, h then we have a natural isomorphism:

(f2g)2h ≅ f2(g2h)

In order to prove Theorem 6.7 we first observe a few reductions:

1. The class of maps g for which Theorem 6.7 holds for arbitrary f ’s is
saturated. Hence it will be enough to prove for g being a horn inclusion
Λnk ↪∆n.

2. The class of monomorphisms is closed under pushout-products. Hence
we have the following consequence: if Theorem 3 is true for a particular
anodyne map g then it is true for any anodyne map of the form h2g where
h is a monomorphism.

3. For i = 0,1 let σi ∶ ∆0 Ð→ ∆1 denote the inclusion which maps ∆0 to the
i’th vertex of ∆1. Then it is relatively straightforward to show the map
hnk ∶ Λnk ↪ ∆n is a retract of the map hnk2σi (we leave this part as an
exercise). Hence it will be enough to prove Theorem 3 for g = σi.

4. The class of maps f for which Theorem 6.7 holds for g = σi is saturated.
Hence it will be enough to prove for f being an inclusion of the form
∂∆n ↪∆n.
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We are hence left with proving the following claim: for i = 0,1 the map

[∆{i} ×∆n] ∐
∆{i}×∂∆n

[∆1 × ∂∆n]Ð→∆1 ×∆n (3)

is an anodyne map. This we will do by hand. For simplicity let us just do the
case i = 1 (the case i = 0 is completely analogous). We start by listing all the
non-degenerate simplices of ∆1 ×∆n which are not contained in the LHS of 3.
We first observe that every (n−1)-simplex of ∆1×∆n is contained in [∆1 × ∂∆n]
(because its image in ∆n is contained in ∂∆n). Furthermore, ∆1 ×∆n has non-
degenerate simplices only up to dimension ≤ n+1 while the LHS only has up to
dimension n. In dimension n, the non-degenerate simplices of ∆1 × ∆n which
are not contained the the LHS are exactly those whose projection to the ∆n is
surjective (i.e. the identity) and whose projection to the ∆1 coordinate is not
contained in ∆{1}. Those are given by

(ρi, Id) ∶ ∆n Ð→∆1 ×∆n

where ρi ∶ [n]Ð→ [1] for i = 0, ..., n − 1 is the map given by

ρi(j) = {0 j ≤ i
1 j > i

In particular, there are exactly n non-degenerate n-simplices in ∆1 ×∆n which
are not contained in the LHS of 3. Now the non-degenerate (n+ 1)-simplices of
∆1 ×∆n are given by maps of the form

τi ∶ ∆n+1 Ð→∆1 ×∆n

where τi can be described by its action on vertices as follows. The sequence of
vertices τi(0), ..., τi(n + 1) is the sequence

(0,0), (0,1), ..., (0, i), (1, i), (1, i + 1), ..., (1, n)

in the Cartesian product [1] × [n]. We now observe the following:

1. The only face of τ0 which is not contained in the LHS of 3 is ρ0.

2. For i > 0, there are exactly two faces of τi which are not contained in the
LHS of 3, namely ρi−1 and ρi.

This means that if we add the (n + 1)-simplices τ0, ..., τn+1 to the LHS of 3
in that order, then each addition will be realized as a pushout along a horn
inclusion, and hence an anodyne map. This means that the map 3 is anodyne
as desired.

Now that we know that the mapping space into any Kan simplicial set is
Kan (and in fact a much stronger claim), we can proceed to our next order of
business, which is to define the notion of homotopies in the setting of simplicial
set. We start with the basic definition:
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Definition 6.8. Let f, g ∶X Ð→ Y be two maps of simplicial sets. A homotopy
from f to g is a map

H ∶X ×∆1 Ð→ Y

such that H ∣X×∆{0} = f and H ∣X×∆{1} = g. We will say that f is homotopic to
g if there exists a homotopy from f to g, and denote f ∼ g.

Remark 6.9. In light of the exponential law (Proposition 6.3) we see that a
homotopy from f to g is the same as a 1-simplex in the map(X,Y ) from f to
g. This observation is always useful to keep in mind.

Our first task is to verify that the notion of homotopy is well behaved, at
least when the target is a Kan simplicial set:

Lemma 6.10. Let X,Y be simplicial sets such that Y is Kan. Then the relation
f ∼ g is an equivalence relation.

Proof. In light of Corollary 12.13 we may reduce to the case X = ∗. In other
words, we need to show that the relation on vertices of Y given by the existence
of edges is an equivalence relation. Now the degenerate edges give us reflexivity,
and transitivity follows by the existence of lifts to diagram of the form

Λ2
1

//

��

Y

∆2

??~
~

~
~

Let us now show symmetry. Let e ∶ ∆1 Ð→ Y be an edge from x = e∣∆{0} to
y = e∣∆{1} . By combining e with the degenerate edge s(x) from x to itself we
may construct a map

f ∶ Λ2
2 Ð→ Y

which can be diagrammatically depicted as

x
s(x)

����������
e

��???????

x y

Since Y is Kan the map f can be extended to the whole 2-simplex, yielding an
edge back from y to x. This finishes the proof of the lemma.

Definition 6.11. Given two simplicial sets X,Y such that Y is Kan we will
denote by [X,Y ] the set of homotopy classes of maps from X to Y .

Definition 6.12. The homotopy category of simplicial sets is the category
whose objects are Kan simplicial sets and whose morphisms are homotopy
classes of maps as above. We will denote this category by Ho(Set∆).
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The object of this course is to explain in what way the homotopy theory
of simplicial sets is equivalent to that of nice topological spaces. At least one
aspect of this we can already formulate (although not prove) now: the homo-
topy category of simplicial sets is equivalent to the homotopy category of CW
complexes.

7 Lecture 7

Recall from last time:

Proposition 7.1. If i ∶K ↪ L is an inclusion of simplicial sets and p ∶X Ð→ Y
a (Kan) fibration then the map

map◻(i, p)Ð→ map(K,X) ×map(K,Y ) map(L,Y )

induced from the (commutative) square

map(L,X) //

��

map(K,X)

��
map(L,Y ) // map(K,Y )

is a fibration.

Corollary 7.2.

(a) If p ∶X Ð→ Y is a fibration and K ∈ Set∆ an arbitrary simplicial set then
p∗ ∶ map(K,X)Ð→ map(K,Y ) is a fibration.

(b) If X ∈ Kan, and i ∶K ↪ is an inclusion of simplicial sets then

i∗ ∶ map(L,X)Ð→ map(K,X)

is a fibration.

Proof.

Consider the mono ∅↪K. The Square

map(K,X) //

��

map(K,Y )

��
∗ = map(∅,X) // map(∅, Y ) = ∗

is already a pullback square so that p∗ = map◻(i, p) is a fibration by
Proposition 7.1.
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(a)(b) If X ∈ Kan, p ∶X Ð→ ∗ is a fibration. The square

map(L,X) //

��

map(K,X)

��
∗ = map(L,∗) // map(K,∗) = ∗

is already a pullback so that we can use Proposition 7.1 again and deduce
that i∗ = map◻(i, p) is a fibration.

For this lecture it would be useful to establish a stronger version of propo-
sition 7.1, namely:

Proposition 7.3. In the setting of Proposition 7.1, we have in addition that
i ∶K ↪ L is anodyne, then map◻(i, p) is a trivial fibration.

Proof. We need to check a lifting property wrt boundary inclusions of standard
simplicies, i.e. to consider the lifting problem:

∂∆n

��

// map(L,X)

��
∆n

55

// map(K,X) ×map(K,Y ) map(L,Y )

This lifting problem in turn, is equivalent to the following lifting problem:

∂∆n ×L∐∂∆n×K ∆n ×K //

��

X

��
∆n ×L // Y

(this is a good exercise in applying the exponential law and using the uni-
versal properties of pushouts and pullbacks).

The vertical map on the LHS is anodyne since it was obtained as the pushout
product of an anodyne map K ↪ L and a mono ∂∆n ↪ ∆n and thus a lifting
exist since p is a fibration.

Now that we know that the mapping space into any Kan simplicial set is
Kan (and in fact a much stronger claim), we can proceed to our next order of
business, which is to define the notion of homotopies in the setting of simplicial
set. We start with the basic definition:

Definition 7.4.
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(a) Let f, g ∶ K Ð→ X be two maps of simplicial sets. A homotopy from f

to g, f
≃Ð→ g is a map

h ∶K ×∆1 Ð→X

such that h∣K×∆{0} = f and H ∣K×∆{1} = g. We will say that f is homotopic
to g if there exists a homotopy from f to g, and denote f ≃ g.

(b) Suppose i ∶ A ↪ K is an inclusion of simplicial sets and f, g ∶ K Ð→ X
satisfy f ∣A = g∣A. We will say that f ≃ g (rel A) if there is a homotopy
h ∶K ×∆1 Ð→X such that h∣K×∆{0} = f and H ∣K×∆{1} = g (as before) and
in addition ”h is stationary on A” in the sense that the following square
commutes:

A ×∆1
prA //

i×id
��

A

f ∣A=g∣A
��

K ×∆1
h

// X

Remark 7.5. In light of the exponential law we see that a homotopy from f to
g is the same as a 1-simplex in the map(X,Y ) from f to g. This observation
is always useful to keep in mind.

The notion of a homotopy between maps enables us to talk about a homotopy
between vertices since a vertex of X is simply a map of simplicial sets ∆0 Ð→X.

Lemma 7.6. For X ∈ Kan homotopy between vertices is an equivalence relation.

Proof. We need to show that the relation on vertices of X given by the existence
of edges is an equivalence relation. Now the degenerate edges give us reflexivity,
and transitivity follows by the existence of lifts to diagram of the form

Λ2
1

//

��

X

∆2

>>~
~

~
~

Let us now show symmetry. Let e ∶ ∆1 Ð→ X be an edge from x = e∣∆{0} to
y = e∣∆{1} . By combining e with the degenerate edge s(x) from x to itself we
may construct a map

f ∶ Λ2
2 Ð→K

which can be diagrammatically depicted as

x
s(x)

����������
e

��???????

x y

Since X is Kan the map f can be extended to the whole 2-simplex, yielding an
edge back from y to x. This finishes the proof of the lemma.
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We can thus define

Definition 7.7. For a Kan simplicial set X, the set of connected components
is the quotient Set∆(∆0,X)/ ≃ of vertices of X up to homotopy of vertices.

The above-mentioned lemma is in fact all we need in order to show that
homotopy of maps is an equivalence relation:

Corollary 7.8. Suppose X is fibrant and A↪K is an inclusion. Then:

(a) Homotopy between maps K Ð→X is an equivalence relation.

(b) Homotopy of maps K Ð→X (rel A) is an equivalence relation.

Proof. By Corollary 7.2 the map i∗map(K,X)Ð→map(A,X) is a fibration and
hence its fiber over any vertex v ∈ map(A,X), Fv ∶= (i∗)−1(v) is a Kan complex
since a pullback of a fibration is a fibration. Observe now that given two maps
f, g ∶ K Ð→ X that satisfy f ∣A = g∣A, a homotopy f ≃ g (rel A) is precisely a
homotopy between the corresponding vertices of f and g in the fiber Fv over
v = f ∣A = g∣A. Since Fv is Kan, the later is an equivalence relation and hence
the former.

Definition 7.9. Given two simplicial sets X,K such that K is Kan we will
denote by [X,K] the set of homotopy classes of maps from X to K.

Definition 7.10. The homotopy category of simplicial sets is the category
whose objects are Kan simplicial sets and whose morphisms are homotopy
classes of maps as above. We will denote this category by Ho(Set∆).

The object of this course is to explain in what way the homotopy theory
of simplicial sets is equivalent to that of nice topological spaces. At least one
aspect of this we can already formulate (although not prove) now: the homo-
topy category of simplicial sets is equivalent to the homotopy category of CW
complexes.

The next definition is a central one in this course. Recall that in topological
spaces we have notions of a weak equivalence and a homotopy equivalence. In
order to compare topological spaces and simplicial sets we need to have an
analogous notion, intrinsic to Set∆.

Definition 7.11. A map f ∶X Ð→ Y is called a weak equivalence if for any
Kan complex K, [f∗] ∶ [Y,K]Ð→ [X,K] is an isomorphism.

Observe 7.12. If X and Y are Kan complexes, a map X Ð→ Y is a weak
equivalence iff it is a homotopy equivalence where a map f ∶ X Ð→ Y is called
a homotopy equivalence if there is a map g ∶ Y Ð→ X such that g ○ f ≃ idX
and f ○ g ≃ idY .

As said, weak equivalences will be a key notion in this course. In order to
relate it to the previous ones, we would like to understand which of the classes
of maps that we talked about is a weak equivalence.
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Proposition 7.13. any anodyne map i ∶ S ↪ T is a weak equivalence.

Proof. Let K be a Kan complex and denote by p ∶ K Ð→ ∗ the corresponding
fibration. Then by Proposition 7.3, the map

map◻(i, p) ∶ map(T,K)Ð→map(S,K)

is a trivial fibration. We now claim that any trivial fibration between Kan
complexes induces an isomorphism on π0, as will be show below. Given this, we
are done since π0map(T,K) = [T,K] and π0map(S,K) = [S,K].

Lemma 7.14. A trivial fibration of Kan complexes X Ð→ Y induces an iso-
morphism on π0.

Proof. It is enough to show thatany vertex in Y has a source and that any
homotopy between vertices in Y can be lifted to a homotopy in X between their
sources. This is obtained by solving the lifting problems

∅ = ∂∆0 //

��

X

��
∆0 //

;;

Y

∂∆1 //

��

X

��
∆1 //

==

Y

which can be solved since a trivial fibration has a right lifting property wrt any
mono.

Next, we want to establish an analogous result for trivial fibrations. We first
claim that:

Proposition 7.15. Any trivial fibration p ∶X Ð→ Y admits a section s ∶ Y Ð→
X (ps = idY ) which is also a homotopy inverse.

Proof. We construct the section s as the solution to the lifting problem

∅ //

��

X

��
Y

>>

idY

// Y
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so that we immediately have ps = idY . It remains to show that idX ≃ sp. That
homotopy is obtained as the solution to the lifting problem

X × ∂∆1
idX ∐ sp //

��

X

p

��
X ×∆1

<<

p○prX
// Y

Note that the homotopy h is also ”compatible” with p in that the following
triangle commutes:

X ×∆1

p○pr
##GGGGGGGGG
h // X

p
��~~~~~~~~

Y

Corollary 7.16. Every trivial fibration p ∶X Ð→ Y is a (fibration and a) weak
equivalence.

Proof. As before, a homotopy inverse s ∶ Y Ð→ X induces, for every Kan com-
plex K, an inverse to

[p∗] ∶ [Y,K]Ð→ [X,K]

7.1 Simplicial homotopy groups

Having the notion of homotopy classes of maps, we can proceed to the homo-
topy groups. Of course, as we saw above we have to restrict ourselves to Kan
complexes.

Definition 7.17. Let X be a Kan complex, v ∈X0 a vertex and n ≥ 1. Consider
the set Set∆ ((∆n, ∂∆n), (X,v)) of maps α ∶ ∆n Ð→ X that send ∂∆n to v.
The n-th homotopy set of X wrt to v is the quotient set

πn(X,v) ∶= Set∆ ((∆n, ∂∆n), (X,v))/ ∼

where α ∼ β iff α ≃ β (rel ∂∆n).

The n-th homotopy set of a Kan complex is meant to constitute a simplicial
version of the homotopy groups of topological spaces. Hence, the next thing in
order is to establish the group structure.
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Definition 7.18. Given α,β ∈ πn(X,v), consider the n-simplicies

vi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

v if 0 ≤ i ≤ n − 2

α i = n − 1

β i = n.
(4)

where v stands for s0...s0v. These simplicies satisfy divj = dj−1vi, i < j, i, j ≠ n
and there is thus a diagram of solid arrows

Λn+1
n

��

(v0,...,vn−1, ,vn+1) // X.

∆n+1

∃ω

55kkkkkkkkk

we define the product to be [α] ⋅ [β] ∶= [dnω].

Observe 7.19. For an n-simplex α ∈ X, let us denote by ∂(α) = (d0α, ..., dnα)
which we shall call the boundary of α. Then

∂(dnω) = (d0dnω, ..., dn−1dnω, dndnω) = (dn−1d0ω, ..., dn−1dn−1ω, dndn+1ω) = (v, ..., v)

so that dnω indeed defines an element [dnω] ∈ πn(X,v).
Of course, Definition 7.18 is only valid once we prove:

Lemma 7.20. The homotopy class of dnω is independent of the choice of rep-
resentatives α,β, and the lift ω.

Proof. Suppose hn−1 is a homotopy α
≃Ð→ α′ (rel ∂∆n) and hn+1 ∶ β ≃Ð→

β′ (rel ∂∆n). Choose lifts ω and ω′ such that ∂(dnω) = (v, ..., v, α, dnω,β)
and ∂(dnω′) = (v, ..., v, α′, dnω′, β′) (i.e. dnω = α ⋅β and dnω

′ = α′ ⋅β′). We then
get a map

∆n+1 × ∂∆1 ∪Λn+1
n ×∆1

��

(ω′,ω,(v,...,v,hn−1, ,hn+1)) // X

∆n+1 ×∆1

ω

33fffffffffffffff

and the composite

∆n ×∆1 d
n×idÐ→ ∆n+1 ×∆1 ωÐ→X

makes the following diagram commutative
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∆n × {0}

dnω

++WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

id×d1

��
∆n ×∆1 dn×id // ∆n+1 ×∆1 ω // X

∆n × {1}id×d0

OO

dnω
′

33ggggggggggggggggggggggggggggggggggggg

(note that the order of ω′, ω was chosen so that this diagram will commute) and

hence constitutes a homotopy dnω
≃Ð→ dnω

′ (rel ∂∆n).

Having that in mind, we now claim

Theorem 7.21. The product of Definition 7.18 defines a group structure on
πn(X,v).

Proof. Let us prove that the product is associative:
Let α,β, γ ∶ ∆n Ð→ X be representatives of elements of πn(X,v). Choose

n + 1-simplicies ωn−1, ωn+1, ωn+2 as liftings with boundaries:

∂ωn−1 = (v, ..., v, α, dnωn−1, β)

∂ωn+1 = (v, ..., v, dnωn−1, dnωn+11, γ)

∂ωn+2 = (v, ..., v, β, dnωn+2, γ)

i.e. [dnωn−1] = [α] ⋅ [β], [dnωn+1] = ([α][β])γ and [dnωn+2] = [β][γ]. Then
there is a map:

Λn+2
n

��

(v,...,v,ωn−1, ,ωn+1,ωn+2) // X

∆n+2

ω

44hhhhhhhhhhhh

and the extension ω satisfies:

∂(dnω) = (v, ..., v, dn−2dnω, dn−1dnω, dndnω, dn+1dnω)

= (v, ..., v, dn−1dn−2ω, dn−1dn−1ω, dndn+1ω, dndn+2ω) = (v, ..., v, α, dnωn+1, dnωn+2)

and this in turn means that

([α][β])[γ] = [dnωn−1][γ] = [dnωn+1] = [dndnω] = [α][dnωn+2] = [α]([β][γ])
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As for the rest of it, the unit is of course (the homotopy class of) the constant

simplex e ∶ ∆n Ð→∆0 vÐ→X. Let us show right divisibility. Given two elements
α,β ∶ ∆n Ð→X, we solve the lifting problem

Λn+1
n−1

(v,...,v, ,β,α) //

��

X

∆n+1

ω

55kkkkkkkkk

this shows that [β] = [dn−1ω][α]. Left divisibility can be verified in a similar
manner.

8 Lecture 8

Let X,Y be Kan simplicial sets and let p ∶ X Ð→ Y be a Kan fibration. Let
x0 ∈X0 be a base vertex and y0 = p(x0) ∈ Y0 its image in Y . Let F = p−1(y0) ⊆X
be the fiber of p over y0, so that F is a Kan simplicial set as well (which contains
x0). Like in classical algebraic topology, the homotopy groups of X,Y and F
can be related via a long exact sequence. In order to set up this long exact
sequence we need to construct a boundary map

∂ ∶ πn(Y, y0)Ð→ πn−1(F,x0)

An element [α] ∈ πn(Y, y0) can be represented by a map

α ∶ ∆n Ð→ Y

such that α∣∂∆n is constant with value y0. Consider the diagram

Λn0
f //

��

X

p

��
∆n α //

θ

>>|
|

|
|

Y

(5)

Where f is constant with image x0. The lift θ exists because the left vertical
map is an anodyne map and the right vertical map is a Kan fibration. One then
defines

∂([α]) = [θ∣∆{1,...,n}] ∈ πn−1(F,x0)

where θ∣∆{1,...,n} is considered as a map from ∆n to F ⊆ X. The element
[θ∣∆{1,...,n}] can be shown to be independent of the choice of the representative
α (because any homotopy α ∼ α′ can be lifted to θ) and of the lift θ (because
the space of lifts satisfies the extension property with respect to ∂∆1 ↪∆1 and
is hence connected).
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Let us spell out the situation for n = 1. In this case an element of π1(Y, y0)
can be represented by a path α ∶ ∆1 Ð→ Y which starts and ends at y0. We
then lift α to a path θ ∶ ∆1 Ð→ X which starts at x0 and ends at some other
point, which must lie over y0. The image ∂[α] ∈ π0(F,x0) is then the connected
component containing the end point of θ. Note that we may lift θ in many
different ways, but the connected component of the end point of γ will not
change. One way to explain this is as follows: by replacing each fiber of p with
its set of connected components one would obtain a covering map over Y . It
is then well known that covering maps admit unique lifts to paths given a choice
of starting point.

Remark 8.1. In the case of n = 1 we see that there is actually an action of
π1(Y, y0) on the set of connected components π0(F ) of the fiber over y0. The
map ∂ is then given by sending a class [α] to [α][x0] where [x0] ∈ π0(F ) denotes
the component of x0.

Our next goal is to show that ∂ is a homomorphism of groups when n ≥ 2.
Let α1, α2, α3 ∶ (∆n, ∂∆n)Ð→ (Y, y0) be maps. Recall that [α3] = [α1] ⋅ [α2] in
πn(Y, y0) if and only if there exists a map

ω ∶ ∆n+1 Ð→ Y

such that the n-faces of ω are given by (y0, y0, ..., y0, α1, α3, α2). For i = 1,2,3
let θi ∶ ∆n Ð→ X be a lift as in 5 so that [αi] = [θi∣∆{1,...,n}]. Observe that θi
sends the (n − 1)-skeleton of ∆n to x0. We can hence construct a commutative
diagram of the form

Λn+1
0

g //

��

X

p

��
∆n+1 ω //

γ

=={
{

{
{

Y

where g sends the faces of Λn+1
0 to (x0, x0, ..., x0, θ1, thet3, θ2) (note that since

n ≥ 2 the horn Λn+1
0 has at least 3 faces). We now observe that γ∣∆{1,...,n} is an

n-simplex in F whose (n − 1)-faces are exactly

(x0, ..., x0, (θ1)∣∆{1,...,n} , (θ3)∣∆{1,...,n} , (θ2)∣∆{1,...,n})

which means that
∂([α3]) = ∂([α1])∂([α2])

Our next goal is to show that ∂ enables one to relate the homotopy groups
of X,Y and F in a long exact sequence

Proposition 8.2. The sequence

...Ð→ πn(F,x0)Ð→ πn(X,x0)Ð→ πn(Y, y0)
∂Ð→

πn−1(F,x0)Ð→ ...Ð→ π1(Y, y0)
∂Ð→ π0(F,x0)Ð→ π0(X,x0)Ð→ π0(Y, y0)

is an exact sequence of pointed sets.
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Proof. We will now prove the exactness of

πn(X,x0)
p∗Ð→ πn(Y, y0)

∂Ð→ πn(F,x0)

The exactness at the other places is left as an exercise. We need to show that
an element [α] ∈ πn(Y, y0) comes from πn(X,x0 if and only if ∂([α]) = 0. If α
comes from πn(X,x0) then there exists a β ∶ (∆n, ∂∆n) Ð→ (X,x0) such that
pβ ∶ ∆n Ð→ Y represents the class [α]. In this case we are allowed to choose β
as a lift of α for the purpose of constructing ∂[α]. But β∣∆1,...,n is constant on
x0 and so ∂([α]) = 0.

On the other direction, assume that ∂([α]) = 0. Let θ ∶ ∆n Ð→ X be a
lift such that ∂([α]) = θ∣∆{1,...,n} . The triviality of ∂([α]) Then there exists a
homotopy

h0 ∶ ∆n−1 ×∆1 Ð→ F

from θ∣∆{1,...,n} to the constant map on x0 such that h0 is constant along ∂∆n−1×
∆1. Hence we can trivially extend h0 to a homotopy h′0 from θ∣∂∆n to the
constant map on x0. We then obtain a diagram of the form

(∆n ×∆{0}) ∪ (∂∆n ×∆1)

��

(θ,h′0) // X

∆n ×∆1

h

66mmmmmmmm

in which the lift exists because the vertical map is anodyne and X is Kan. We
hence obtain a homotopy from θ to a map θ′ = h∣∆n×∆{1} which is constant on
∂∆n. Then θ′ defines an element of πn(X,x) which is mapped to the same class
as [α] in πn(Y, y0), as the homotopy p ○ h shows.

9 Lecture 9

We have talked quite a bit about homotopy groups and it is perhaps good to
have a simple example in mind.

Example 7. Let G be a group, thought of as a category. We saw that the
simplicial set BG ∶= NG is a Kan complex (this was true for the nerve of any
groupoid). We have BG0 = e ∶= eG, BG1 = G and BG2 = G×G. Since BG has only
one vertex, π0BG = 0 and in addition, any pair of 1-simplicies α,β ∶ ∆1 Ð→ BG
must send ∂∆1 to e and thus define elements in π1(BG,e). The maps α,β are
homotopic iff there is h ∶ ∆1 ×∆1 Ð→ BG s.t. h∣∆1×∆{0} = α, h∣∆1×∆{1} = β and
h∣∂∆1×∆1=e. Thus, such h gives rise to a commutative square

e
α //

s0e

��

e

s0e

��
e

β
// e
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in G which means that e ⋅ α = β ⋅ e or α = β. Thus, π1(BG) = G and we can
also say that πn(BG) = 0 for n > 1 – this is because there is only one n-simplex
∆n Ð→ BG that sends ∂∆n to e. The simplicial set BG is called the classifying
space of G is sometimes denoted K(G,1) – an Eilenberg-Maclane space of
type (G,1).

Recall from last time:

Proposition 9.1. Let X be a Kan complex. Then X Ð→ ∗ is a trivial fibration
iff for every vertex x0 ∈X, πn(X,x0) = 0 for all n ≥ 0.

Definition 9.2. A map of Kan complexes f ∶ X Ð→ Y is called a homotopy
isomorphism is π0f ∶ π0X Ð→ π0Y is an isomorphism and for any vertex
x0 ∈X, πnf ∶ πn(X,x0)Ð→ πn(Y, f(x0) is an isomorphism.

Using this and the LES for a fibration, we can prove the following:

Proposition 9.3. If a map of Kan complexes p ∶ X Ð→ Y is a fibration and a
homotopy isomorphism then it is trivial fibration.

Proof. Assume p is a fibration and a homotopy isomorphism. we consider a
lifting problem

∂∆n //

��

X

p

��
∆n

f
// Y.

We denote by v0 ∈ ∆n the vertex associated to the zero map [0]Ð→ [n] and by
f(v0) the constant map ∆n Ð→ Y .

Claim: f is homotopic to f(v0): we first define a homotopy we need to define
a map ∆n ×∆1 Ð→∆n and we thus define a map of posets [n]× [1]Ð→ [n] via
the diagram

0 //

��

0 //

��

⋯ // 0

��
0 // 1 // ⋯ // n.

This is clearly a homotopy from v0 ∶ ∆n Ð→ ∆n to id∆n . Post-composing this
homotopy with f yields a homotopy from f(v0) to f .

Let us denote by h ∶ f ≃Ð→ f(v0) ”the” inverse homotopy to the one we just
constructed and by abuse of notation we write h ∶ ∂∆n×∆1 Ð→ Y its restriction.
The lifting problem

∂∆n ×∆{0} //

��

X

��
∂∆n ×∆1

θ

99t
t

t
t

t
// Y

admits a solution since the left vertical map is anodyne. Moreover, the compos-
ite

p ○ θ∣∂∆n×∆{1}
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is
h∣∂∆n×∆{1} = f(v0)

so that we can write

θ∣∂∆n×∆{1} ∶ ∂∆n ×∆{1} Ð→ F ∶= p−1(f(v0))

. However, since p is a homotopy isomorphism, the LES tells us that πn(F, f0) =
0 for any vertex f0 ∈ F and 9.1 implies that F Ð→ ∗ is a trivial fibration. We
thus obtain a lift of the form

∂∆n ×∆{1} //

��

X

∆n ×∆{1}.

ϕ

::tttttttttt

We now combine all that data into a lifting problem of solid arrows:

∂∆n ×∆{0} //

��

(∂∆n ×∆1) ∐
∂∆n×∆{1}

(∆n ×∆{1}) //

��

X

��
∆n ×∆{0} // ∆n ×∆1 //

l

66lllllllll
Y

which admits a lift since the left vertical map is anodyne and p ∶ X Ð→ Y is a
fibration. Precomposing l with the dotted arrows we obtain a lift to the original
problem. Thus, p ∶X Ð→ Y is a trivial fibration.

Let X be a Kan complex and x0 ∈X a vertex.

Definition 9.4. The path space of (X,x0) is the pullback

PX //

��

map(∆1,X)

ev0=(d1)∗

��
∆0 // map(∆0,X).

This comes with a map π ∶ PX Ð→X which is the composite

PX ↪map(∆1,X)
(d0)∗
Ð→ map(∆0,X).

Observe 9.5. The map PX Ð→ ∆0 is a trivial fibration, so that PX is a Kan
complex with πn(PX,x) = 0 for any vertex x ∈ X. Moreover, The map π ∶
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PX Ð→X is a fibration since we can obtain PX as a two-stage pullback

PX //

π=(d0)∗

��

map(∆1,X)

((d0)∗,(d1)∗)
��

X //

��

map(∂∆1,X) =X ×X

pr2

��
∆0 // X

in which the top-right vertical map is a fibration. This is indeed a two-stage
pullback since the bottom square is a clear pullback and the entire rectangle is
the defining pullback square of PX (use the pasting lemma for pullbacks).

Definition 9.6. The loop space of (X,x0) is the fiber ΩX ∶= π−1(∗). In other
words, ΩX = map ((∆1, ∂∆1), (X,x0))

We obtain, for any pointed Kan complex (X,x0) a fiber sequence ΩX Ð→
PX Ð→ X. Moreover, ΩX is a Kan complex since the map ΩX Ð→ ∗ is a
pullback of the fibration π ∶ PX Ð→X.

Corollary 9.7. For every n ≥ 1, πn(X) ≅ πn−1(ΩX).

Proof. Use the LES for a fibration and the fact that πn(PX) = 0 for any n.

We now claim that the loop space on X admits a binary operation ”up to
homotopy”. To see this, consider the map

map ((∆2, (∆2)0), (X,x0))
(i1)∗Ð→ map ((Λ2

1, (Λ2
1)0), (X,x0))

that is induced by the inclusion i1 ∶ Λ2
1 Ð→∆2, or in other words

map ((∆2, (∆2)0), (X,x0))
(i1)∗Ð→ map ((∆1, ∂∆1), (X,x0))×map ((∆1, ∂∆1), (X,x0)) = ΩX×ΩX.

We also have a map

map ((∆2, (∆2)0), (X,x0))
(d1)∗
Ð→ map ((∆1, (∆1)0), (X,x0)) = ΩX

The map (d1)∗ is a trivial fibration since it is a pullback of

map(∆2,X)Ð→map(Λ2
1,X)

(which is a trivial fibration since i1 is anodyne) along the map

map ((Λ2
1, (Λ2

1)0), (X,x0))Ð→map(Λ2
1,X).

Thus, (d1)∗ admits a section s ∶ ΩX ×ΩX Ð→ map ((∆2, (∆2)0), (X,x0)) and
we obtain a map

ΩX ×ΩX
⋆∶=(d1)∗○s // ΩX .
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The map ⋆ induces a binary operation ΩX upon passage to Ho(Set∆) and this
does not depend on our choice of section since we saw that any two sections of
a trivial fibration are homotopic. It can easily be verified that ⋆ is unital wrt
the constant path x0 ∶ ∆1 Ð→X.

Consider now π1(ΩX,x0) = [∆1/∂∆1,ΩX]∗. This set admits another oper-
ation, induced from that of ⋆,

⋆ ∶ [∆1/∂∆1,ΩX]∗ × [∆1/∂∆1,ΩX]∗ Ð→ [∆1/∂∆1,ΩX]∗

(in other words for α,β ∶ ∆1 Ð→ ΩX representatives of elements of π1(X,x0)
define α ⋆ β(x) = α(x) ⋆ β(x)). This last map is a group homomorphism since
π1 is a functor to groups. If we denote the group structure of π1(ΩX,x0) by ⋅,
this means that for any α,β, γ, δ ∈ π1(X,x0),

(α ⋅ β) ⋆ (γ ⋅ δ) = (α ⋆ γ) ⋅ (β ⋆ γ).

Lemma 9.8 (Eckmann-Hilton). If A is a pointed set with two unital binary
operations ⋅ and ⋆ such that for any α,β, γ, δ ∈ A,

(α ⋅ β) ⋆ (γ ⋅ δ) = (α ⋆ γ) ⋅ (β ⋆ γ)

then ⋅ = ⋆ and the operation is commutative and associative.

Proof.
α ⋆ β = (α ⋅ e) ⋆ (e ⋅ β) = (α ⋆ e) ⋅ (e ⋆ β) = α ⋅ β

and also
β ⋆ α = (e ⋅ β) ⋆ (α ⋅ e) = (e ⋆ α) ⋅ (β ⋆ e) = α ⋅ β.

Associativity follows similarly.

Corollary 9.9. For any pointed Kan complex (X,x0), the higher homotopy
groups πn(X,x0) (n ≥ 2) are abelian.

Proof. We saw that π2(X,x0) ≅ π1(ΩX) is abelian by the last lemma. But for
n ≥ 2, πn(X) = π1(Ω(...(ΩX)) so it is abelian as well.

10 Lecture 10

Let p ∶ X Ð→ Z be a Kan fibration. Geometrically, we would like to think of p
as describing a family of spaces which is parameterized ”continuously” by the
space Z. To make this intuition precise, we would like to prove that if v, u ∈ Z0

are two vertices which are connected by an edge, then the fibers p−1(v) and
p−1(u) are weakly equivalent. This will be achieved by the following lemma:

Lemma 10.1. Let p ∶ X Ð→ Z be a Kan fibration and let e ∶ ∆1 Ð→ Z be an
edge. Then the natural map

ι ∶ p−1(e(0)) =X ×Z ∆{0} Ð→X ×Z ∆1

induced by the inclusion ι ∶ ∆{0} ⊆ ∆1 admits a homotopy inverse. In partic-
ular, ι is a weak equivalence.
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Proof. We will prove for i = 0. The proof for i = 1 is completely analogous. We
would like to construct a homotopy inverse for ι. Let π ∶X ×Z ∆1 Ð→∆1 be the
natural projection. Let h ∶ ∆1 Ð→∆1 Ð→∆1 be a homotopy from the constant
map h∣∆1×∆{1} = s0 on ∆{0} to the identity h∣∆1×∆{0} = Id which is constant on
∆{0}. By composing h with π we then obtain a homotopy

h1 ∶ π′ ∼ π ∶X ×Z ∆1 Ð→∆1

where π′ is the constant map taking the value ∆{0}. Now the restriction of
h1 to X ×Z ∆{0} is a constant homotopy and so we can lift it to the constant
homotopy from

Cι ∶ (X ×Z ∆{0}) ×∆1 Ð→X ×Z ∆1

from ι to itself. We can then extend this homotopy to all of X ×Z ∆1. Formally
speaking, we choose a lift in the following diagram:

[(X ×Z ∆{1}) ×∆1]∐(X×Z∆{0})×∆{0} [(X ×Z ∆1) ×∆{1}]

��

// X ×Z ∆1

��
(X ×Z ∆1) ×∆1

H

33gggggggggggg
h1 // ∆1

The map H can be interpreted as a homotopy from some map g ∶X ×Z ∆1 Ð→
X ×Z∆1 to the identity map, such that the image of g is contained in X ×Z∆{0}

and such that g∣X×Z∆{0} = ι. We then see that we can interpret g is a map from

X ×Z ∆1 to X ×Z ∆{0} which is a homotopy inverse of ι.

Corollary 10.2. Let p ∶X Ð→ Z be a Kan fibration. Then any edge e ∶ ∆1 Ð→
X induces a homotopy equivalence

p−1(e(0))Ð→ p−1(e(1))

Proof. Compose the map ι ∶ p−1(e(0)) ↪ X ×Z ∆1 with the homotopy equiva-
lence

g ∶X ×Z p−1(e(1))

constructed in 10.1.

The above statements can be generalized to pullbacks along arbitrary maps
AÐ→ Z:

Exercise 2. Let p ∶ X Ð→ Z be a Kan fibration. Let f, g ∶ A Ð→ X be two
maps and let f∗Z Ð→ A and g∗X Ð→ A denote the two pullbacks. Then any
homotopy H ∶ A ×∆1 Ð→X from f to g induces a fiberwise weak equivalence

f∗X
≃ //

!!CCCCCCCC g∗X

}}{{{{{{{{

A
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In algebra topology the notion of a fibration has rigid analogue which is
known as a fiber bundle maps. Fiber bundle maps satisfy the property that the
fibers over close enough points in the base have isomorphic fibers. Our purpose
in this lecture is to generalize this rigid analogue to the world of simplicial sets.

Definition 10.3. Let p ∶ X Ð→ Z be a Kan fibration. Let σ,σ′ ∶ ∆n Ð→ X
be two n-simplices. We will say that σ is p-equivalent to τ (written σ ∼p σ′) if
there exists a homotopy h ∶ ∆n × ∆1 Ð→ X from σ to τ such that h∣∂∆n and
p ○ h are constant homotopies.

Let p ∶X Ð→ Z be a Kan fibration. Then we know that the map

p∗ ∶ map(∆n,X)Ð→map(∆n, Z) ×map(∂∆n,Z) map(∂∆nX)

is a Kan fibration. Given a map τ ∶ ∂∆n Ð→ X (considered as a vertex in
map(∂∆n,X)) and an n-simplex ρ ∶ ∆n Ð→ Z (considered as a vertex in
map(∆n, Z)) such that ρ∣∂∆n = p ○ tau we can consider the fiber p−1

∗ (τ, ρ) of
the map p∗ over the vertex (τ, ρ) (which is always a Kan simplicial set). One
can then rephrase definition 10.3 as follows: two n-simplices σ,σ′ ∈ X are p-
equivalent if σ∣∂∆n = σ∂∆n , p ○ σ = p ○ p′ and σ,σ′ are related by a path inside
p−1
∗ (τ, ρ). This way we can conclude from previous lectures that the relation ∼p

is an equivalence relation.

Definition 10.4. Let p ∶ X Ð→ Z be a Kan fibration. We will say that p is
a minimal Kan fibration if every p-equivalence class contains exactly one
element. We will say that a simplicial set X is minimal Kan complex if the
trivial map X Ð→ ∗ is a minimal Kan fibration.

Remark 10.5. The property of being a minimal Kan fibration is stable under
pullbacks. In particular, the fibers of a minimal Kan fibration are minimal Kan
complexes.

Our next goal is to show that minimal fibrations indeed behave like fiber
bundles. For this it will be useful to use the following lemma, whose proof is
left as an exercise:

Exercise 3. Let p ∶ Y Ð→ Z be a minimal Kan fibration. Let H1,H2 ∶ ∆n ×
∆1 Ð→ Y be two homotopies such that

H1∣∂∆n×∆1 =H2∣∂∆n×∆1

and
p ○H1 = p ○H2

Then H1∣∆n×∆{0} =H2∣∆n×∆{0} if and only if H1∣∆n×∆{1} =H2∣∆n×∆{1} .

We are now ready to prove the key property of minimal Kan fibrations:

Proposition 10.6. Let

Y
f //

��@@@@@@@ Y ′

~~}}}}}}}

Z
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be a map of minimal Kan fibrations over Z which is a fiberwise weak equivalence.
Then f is a fiberwise isomorphism. In particular, f is an isomorphism.

We can assume without loss of generality that Z = ∗. Since weak equivalences
between Kan complexes have homotopy inverses the desired result will now
follow from the following lemma:

Lemma 10.7. Let f, g ∶X Ð→ Y be two homotopic maps between minimal Kan
complexes. Assume that g is an isomorphism. Then f is an isomorphism as
well.

Proof. We first prove that fn ∶ Xn Ð→ Yn is injective by induction on the
n. Assume that fi was injective for i ≤ n − 1 and let σ1, σ2 ∶ ∆n Ð→ X be
two n-simplices such that f(σ1) = f(σ2). Then f identifies the boundaries
σ1∣∂∆n and σ1∣∂∆n so our induction hypothesis implies that σ1∣∂∆n = σ2∣∂∆n .
Let H ∶ X ×∆1 Ð→ Y be a homotopy from f to g. By restricting H to σ1 and
σ2 we obtain two homotopies

H1,H2 ∶ ∆n ×∆1 Ð→ Y

such that Hi is a homotopy from f(σi) to g(σi). Since σ1∣∂∆n = σ2∣∂∆n we see
that H1 and H2 agree on ∂∆n×∆1. Since f(σ1) = f(σ2) we may use Exercise 3
to conclude that g(σ1) = g(σ2). Since g was injective it follows that σ1 = σ2.

Let us now prove that f is surjective. Assume by induction that fi is sur-
jective for i ≤ n − 1 and let σ ∶ ∆n Ð→ Y be an n-simplex. Since we already
know that fi is injective for i ≤ n − 1 we can conclude that f maps skn−1(X)
isomorphically to skn−1(Y ). Hence there exists a map τ ∶ ∂∆n Ð→X such that
fτ = σ∣∂∆n .

By restricting the homotopy H along τ we obtain a homotopy

Hτ ∶ ∂∆n ×∆1 Ð→ Y

from fτ = σ∣∂∆n to gτ . We can then choose an extension of Hτ to a homotopy

Hτ ∶ ∆n ×∆1 Ð→ Y

such that Hτ ∣∆n×∆{0} = σ. Let σ′ = Hτ ∣∆n×∆{1} . Then σ′∣∂∆n = gτ . Since g is
an isomorphism there exists a ρ ∶ ∆n Ð→ X such that gρ = σ′ and such that
ρ∣∂∆n = τ . Finally, if we restrict the homotopy H to ρ we obtain a homotopy

Hρ ∶ ∆n ×∆1 Ð→ Y

from fρ to gρ = σ′. But now Hτ and Hρ are two homotopies which end at σ′

and agree on ∂∆n. From exercise 3 we conclude that Hτ and Hρ also start at
the same simplex. This means that fρ = σ and so we found a pre-image for σ
as desired.
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Corollary 10.8. Let p ∶X Ð→ Z be a minimal Kan fibration. Let f, g ∶ AÐ→X
be two maps and let f∗Z Ð→ A and g∗X Ð→ A denote the two pullbacks. Then
any homotopy H ∶ A ×∆1 Ð→X from f to g induces an isomorphism

f∗X
≅ //

!!CCCCCCCC g∗X

}}{{{{{{{{

A

Corollary 10.9 (The fiber bundle property). Let p ∶ Y Ð→ Z be a minimal
Kan fibration and let σ ∶ ∆n Ð→ Z be a simplex. Let v0 ∈ (∆n)0 denote the 0’th
vertex and let z0 = σ(v0) be its image under σ. Then we have an isomorphism

σ∗Y
≅ //

""DDDDDDDDD ∆n × p−1(z0)

yyrrrrrrrrrr

∆n

Proof. This follows directly from Corollary 10.8 because σ is homotopic to the
constant map c ∶ ∆n Ð→ Y which sends everything to z0, and the pullback
Y ×Z ∆n along the constant map c ∶ ∆n Ð→ X is isomorphic to the product
∆n × p−1(z0).

Corollary 10.10. Let Y Ð→ Z be a minimal Kan fibration and assume that Z
has finitely many non-degenerate simplices. Then the map ∣Y ∣ Ð→ ∣Z ∣ is a fiber
bundle.

Proof. We can assume without loss of generality that Z is connected. Let z0 ∈ Z
be a vertex and define F = p−1(z0). We will show that ∣Y ∣Ð→ ∣Z ∣ is a fiber bundle
with fiber ∣F ∣. By using induction on the simplices of Z it will be enough to
prove the following. Suppose we are given a pushout square of the form

∂∆n //

f

��

∆n

��
Z0

// Z1

and suppose that E Ð→ ∣Z0∣ is a fiber bundle. Suppose that we are given an
isomorphism ρ ∶ ∣∂∆n∣ × ∣F ∣ ≅ ∣f ∣−1E of bundles over ∣∂∆n∣. We can then form
the space E′ as the pushout in the diagram.

∣∂∆n∣ × ∣F ∣ //

��

∣∆n∣ × ∣F ∣

��
E // E′

where the left vertical map is given by composing ρ with the natural map
f−1E Ð→ E over ∣Z0∣. We then have a natural map E′ Ð→ ∣Z1∣. In order
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to finish the proof we need to show that this map is a fiber bundle. We leave
the topological details to the reader.

Our next goal is to show that minimal fibrations exist in abundance. More
precisely, every Kan fibration is equivalent in rather strong way to a minimal
fibration. We begin with an auxiliary definition

Definition 10.11. Let p ∶ X Ð→ Z be a Kan fibration and let ι ∶ Y ↪ X be
an inclusion. We will say that Y is p-minimal if whenever we have two n-
simplices σ1, σ2 ∶ ∆n Ð→ Y such that ι(σ1), ι(σ2) are p-equivalent then σ1 = σ2.
We will say that Y is maximal p-minimal if it is p-minimal and is not properly
contained in any other p-minimal sub-complex of X.

Remark 10.12. Note that in the definition of p-minimality we do not require
that p ○ ι will be a Kan fibration.

Now let p ∶ X Ð→ Z be a Kan fibration. Note that the empty set ∅ ⊆ X
is always p-minimal in X. Furthermore, if we have an ascending chain {Yα} of
p-minimal sub-complexes then their union is p-minimal as well. By Zorn lemma
we get that a maximal p-minimal sub-complex always exist.

Lemma 10.13. Let p ∶ X Ð→ Z be a Kan fibration and let ι ∶ Y ↪ X be
a maximal p-minimal sub-complex. Let σ ∶ ∆n Ð→ X be an n-simplex whose
boundary σ∣∂∆n is contained in Y . Then σ is p-equivalent to a unique n-simplex
which is contained in Y .

Proof. If there exists a σ ∶ ∆n Ð→ X such that σ∣∂∆n is contained in Y and
such that σ is not p-equivalent to any n-simplex in Y then we can add σ to Y
and form a larger p-minimal subcomplex. Since Y is maximal this is impossible.
The uniqueness part is a direct consequence of the p-minimality of Y .

Our final goal is to show that if Y ↪X is a maximal p-minimal sub-complex
then Y is a fiberwise strong deformation retract of X. In particular, p○ ι ∶ Y Ð→
Z is a minimal Kan fibration which is equivalent to p.

Proposition 10.14. Let p ∶ X Ð→ Z be a Kan fibration and let ι ∶ Y ↪ X be a
maximal p-minimal sub-complex. Then Y is a fiberwise deformation retract of
X.

Proof. We need to construct a map r ∶ X Ð→ Y over Z such that r ○ ι = Id and
such that ι ○ r is fiberwise homotopic to the identity on X. We shall construct
r by induction on the skeletons of X. First consider the set of vertices X0.
According to Lemma 10.13, for each x ∈ X0 there exists a unique y ∈ Y0 such
that x is p-equivalent to y. By setting r0(x) = y we obtain a map r0 ∶X0 Ð→ Y0

over Z0 such that r0 ○ ι0 = Id. On the other hand, since x is p-equivalent to
r0(x) we can choose a path from x to r0(x) which is contained in the fiber over
p(x). This gives a fiberwise homotopy from the identity to ι0 ○ r0.

Now let n ≥ 1 and assume that a map rn−1 ∶ skn−1(X) Ð→ skn−1(Y ) over
skn−1(Z) has been constructed such that rn−1 ○ ιn−1 = Id. Assume in addition
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that we are provided with a fiberwise homotopy Hn−1 from the identity on
skn−1(X) to ιn−1 ○ rn−1. We wish to extend rn−1 to skn(X). Now for each
non-degenerate n-simplex σ ∶ ∆n Ð→ X, we can consider the restriction of
Hn−1 to the boundary of σ. This gives a homotopy over Z from σ∣∂∆n to
τ = ιn−1(rn−1(σ∣∂∆n)). We can then choose an extension of this homotopy to a
homotopy (over Z)

H ′
σ ∶ ∆n ×∆1 Ð→X

which goes from σ to some σ′ satisfying σ′∣∂∆n = τ . Now since τ is contained in
Y we get from Lemma 10.13 that there exists a unique n-simplex σ′′ ∶ ∆n Ð→ Y
which is p-equivalent ot σ′. We can then choose a homotopy H ′′

σ over Z from
σ′ to σ′′ which is constant on ∂∆n. By setting rn(σ) = σ′′ we obtain a map rn ∶
Xn Ð→ Yn extending rn−1. Furthermore, by gluing together all the homotopies
H ′
σ and H ′′

σ we obtain, respectively, a pair of homotopies

H ′
n,H

′′
n ∶ skn(X) ×∆1 Ð→ skn(X)

such that H ′
n extends Hn−1 and H ′′

n is constant on skn−1. We can then construct
a fiberwise composition Hn of H ′

n and H ′′
n which extends Hn−1. Then H ′′

n gives
the desired fiberwise homotopy from the identity to ιn ○ rn.

Corollary 10.15. Let p ∶ X Ð→ Z be a Kan fibration and let ι ∶ Y ↪ X be a
maximal p-minimal sub-complex. Then q = p ○ ι is a minimal Kan fibration.

Proof. From the fact that q is a retract of p we can deduce two things:

1. q is a Kan fibration.

2. Two n-simplices σ,σ′ of Y are q-equivalent if and only if ι(σ), ι(σ′) are
p-equivalent.

since Y is p-minimal we deduce that it is q-minimal as well, i.e., q ∶ Y Ð→ Z is
a minimal Kan fibration.

11 Lecture 11

Goal 11.1. At the point we’re at, there are five classes of maps in Set∆:
monomorphisms, fibrations, weak equivalences, anodyne and trivial fibrations.
The goal which we have been revolving around in the past few weeks is to show
that these five classes are actually three, namely that a map is a trivial fibration
iff it is a fibration and a weak equivalence, and that it is an anodyne iff it is a
monomorphism and a weak equivalence.

Recall from last time:

Proposition 11.2. Let p ∶ X Ð→ Y be a Kan fibration. Then p is a fiber-
wise deformation retract of a minimal fibration. In other words, there exist a
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factorization:

Z

q
  @@@@@@@

i // X
r //

p

��

Z

q
~~~~~~~~~

Y

such that

1. ri = idZ

2. q ∶ Z Ð→ Y is a minimal fibration, and

3. There is a homotopy h ∶ i ○ r⇒ idX which renders the following trianghle
commutative:

X ×∆1

pr
##GGGGGGGGG
h // X

p
��~~~~~~~~

Y

Our key claim today is the following

Proposition 11.3. The map r ∶ Z Ð→ Y of Proposition 11.2 is a trivial fibra-
tion.

Proof. The following proof is somewhat technical but does not depend on the
explicit construction of r. We consider a lifting problem of the form:

∂∆n u //

��

X

r

��
∆n

v
// Z.

Then we obtain commutative diagrams

∂∆n ×∆1

��

u×1 // X ×∆1 h // X

p

��
∆n ×∆1

pr
// ∆n

qv
// Y

and

∂∆n

��

u // X // Z
i // X

p

��
∆n

v
// Z q

// Y

and thus a lifting problem with a lift h′:
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(∂∆n ×∆1) ∪ (∆n ×∆{0})

��

(h(u×1),iv) // X

p

��
∆n ×∆1

∃h′
44hhhhhhhhhhhh

pr
// ∆n

qv
// Y.

(6)

Note that iv agrees with h(u × 1) on the intersection of the two factors in the
top-left corner since on that iv = iru = h0u.

Let v1 be the n-simplex defined by the composite v1 ∶ ∆n × ∆{1} Ð→ ∆n ×
∆1 h′Ð→ X. We wish to show that v1 is our desired lift i.e. that the upper and
lower triangles in

∂∆n u //

��

X

r

��
∆n

v1

<<zzzzzzzz
v
// Z

commutes. The upper triangle commutes since h′∣∂∆n×∆{1} = h∣∂∆n×∆{1} ○u = u.
Let us show that the lower triangle commutes. The composite

∆n ×∆1
v1×1 // X ×∆1 h // X

r // Z

is a homotopy
rirv1 = rv1 ⇒ rv1

which restricts to rh(u × 1) on ∂∆n × ∆1 since the upper triangle commutes.
We can thus formulate the lifting problem:

(∂∆n ×∆2) ∪ (∆n ×Λ2
2)

��

(s0(rh(u×1)),(rh′,rh(u×1),−)) // Z

q

��
∆n ×∆2

H

22ffffffffffffffffffffffffffffffffff
pr

// ∆n
qv
// Y

in which the upper-horizontal map is well-defined since

rh′∣∂∆n×∆1 = rh(v1 × 1)

by 6. Taking the extended edge that arises from H we get a homotopy H(1×d2)
from d1(H(1 × d2)) = rh0v1 = rirv1 = rv1 to d0(H(1 × d2)) = rh′0 = riv = v. We
now claim that H(1×d2) is in fact a fiberwise homotopy relative to the boundary
in that

∂∆n ×∆1

��

pr // ∂∆n

ru

��
∆n ×∆1

��

H(1×d2) // Z

q

��
∆n

qv
// Y
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commutes. The lower square clearly commutes and the upper one does since
H(1 × d2)∣∂∆2×∆1 = rh(u × 1) = riru = ru where the next to last equality comes
from the fact that h is a fiberwise homotopy.

We conclude that v = rv1 and so r is a trivial fibration.

There are two types of ways to continue from here to accomplish goal 11.1.
One of them is intrinsic to Set∆ and the other uses topological spaces; we shall
choose the latter since it is shorter. In order to do so, we shall need to restrict
ourselves to the category of ”nice” topological spaces as follows:

Definition 11.4. A topological space X is called compactly generated weak
Hausdorff (CGWH) space if

1. a subset U ⊆X is open iff t−1(U) is open for all continuous maps t ∶ C Ð→
X from a compact Hausdorff space into X (CG).

2. For every compact Hausdorff space C and a continuous map t ∶ C Ð→ X,
the image t(C) is closed in X (WH).

We denote by Topc the full subcategory spanned by compactly generated weak
Hausdorff spaces.

We refer the reader to Strickland to a self contained account on CGWH-
spaces. Let us mention the highlights.

� The class of CGWH-spaces includes: CW-complexes, metric spaces and
locally compact Hausdorff spaces.

� The product of X,Y ∈ Topc is calculated by applying k ∶ Top Ð→ Topc
(the left adjoint to the inclusion) on X × Y ∈ Top; we shall denote it by
X ×k Y . Similarly, the fiber product of X Ð→ Z ←Ð Y ∈ Topc is X×kZY .

� Although it is not true that ∣X × Y ∣ ≅ ∣X ∣ × ∣Y ∣, it is true that ∣X × Y ∣ ≅
∣X ∣ ×k ∣Y ∣ and this is a key advantage that Topc has over Top. Thus,
we think of the realization as a functor ∣ − ∣ ∶ Set∆ Ð→ Topc (since the
realization is a CW-complex and any CW-complex is a CGWH-space)
and it is then true that ∣ − ∣ commutes with fiber products.

From now on, we shall restrict our attention to Topc and think of the re-
alization functor as landing there instead of in Top. Under these assumptions,
thing become very easy. For example:

Lemma 11.5. If p ∶ X Ð→ Y is a trivial fibration, ∣p∣ ∶ ∣X ∣ Ð→ ∣Y ∣ is a Serre
fibration.

Proof. The solution to the lifting problem in Set∆:

X //

(1,p)
��

X

p

��
X × Y prY

// Y
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presents p as a retract of the projection prY . It follows that ∣p∣ is a retract of
the projection ∣X ∣ ×k ∣Y ∣Ð→ ∣Y ∣ and hence a Serre fibration.

Corollary 11.6 (Quillen). The realization of a Kan fibration is a Serre fibra-
tion.

Proof. Decompose the Kan fibration into a retract followed be a minimal fibra-
tion. We have seen that this retract is a trivial fibration and thus realizes into
a Serre fibration. We have also seen that the realization of a minimal fibration
is a Serre fibration and thus the composite is so.

Our next task is to compare the simplicial and topological homotopy groups:

Proposition 11.7. Suppose X is a Kan complex. Then the unit map X Ð→
S∣X ∣ is a homotopy isomorphism.

Proof. Observe that the definition of realization can be formulated as ∣X ∣ =
∐n≥0Xn × ∣∆n∣/ ∼ where (x, sjt) ∼ (sjx, t) and (x, dit) ∼ (dix, t). Thus, every
map v ∶ ∣∆0∣ Ð→ ∣X ∣ factors through a realization of a simplex in X, ∣σ∣ ∶
∣∆n∣ Ð→ ∣X ∣ so that every vertex of S∣X ∣ has a source in X0 and in particular
π0(ηX) ∶ π0X Ð→ π0S∣X ∣ is onto. On the other hand, X is a disjoint union
of its path components and S∣ − ∣ preserves disjoint unions and thus π0(ηX)
is a monomorphism. Assume by induction that for all Kan complexes X, all
base-points x ∈ X and all i ≤ n, πi(ηX) ∶ πn(X,x) Ð→ πi(S∣X ∣, ηX(x)) is an
isomorphism. Using the fibration ΩX Ð→ PX Ð→X we get

πn+1(X,x) //

≅
��

πn+1(S∣X ∣, ηX(x))

��
πn(ΩX,x)

≅ // πn(S∣ΩX ∣, ηX(x))

so that it is enough to show that S∣ΩX ∣ Ð→ S∣PX ∣ Ð→ S∣X ∣ is a fibration and
that S∣PX ∣ has trivial homotopy groups. The first claim follows from adjunction
and the fact that ∣ΩX ∣ Ð→ ∣PX ∣ Ð→ ∣X ∣ is a Serre fiber sequence (note that
∣ − ∣now preserves fiber sequnces since it commutes with fiber products). The
second claim follows from the fact that PX is homotopy equivalent to ∗ using
the homotopy h in

(∆0 ×∆1) ∪ (PX × ∂∆1)
(x,(1PX ,x)) //

��

PX

��
PX ×∆1 //

h

44iiiiiiiiiiiiiiiiiii
∆0
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Observe that

πn(S∣X ∣, ηX(x)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂∆n //

��

∆0

��
∆n // S∣X ∣

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

/ ≃

and

πn(∣X ∣, ∣x∣) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∣∂∆n∣ //

��

∣∆0∣

��
∣∆n∣ // ∣X ∣

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

/ ≃ .

Moreover, a homotopy h ∶ ∆n × ∆1 Ð→ S∣X ∣ between α,β ∶ ∆n Ð→ S∣X ∣ gives
rise to and arises from a homotopy h ∶ ∣∆n∣×k ∣∆1∣Ð→ ∣X ∣ between the adjoints
of α and β. Using this observation and the previous proposition gives:

Corollary 11.8. For a pointed Kan complex (X,x),

πn(X,x) ≅ πn(∣X ∣, ∣x∣)

and this isomorphism is natural in X. Thus, a map of Kan complexes X Ð→ Y
is a homotopy isomorphism iff ∣X ∣Ð→ ∣Y ∣ is a weak equivalence.

We can now acomplish our declared goal:

Theorem 11.9. A fibration p ∶X Ð→ Y is trivial iff it is a weak equivalence.

Proof. We have seen that if p is a trivial fibration then it has a homotopy inverse
and hence is a weak equivalence. Conversely, by Proposition 11.3 it is enough to
show that a minimal fibration which is a weak equivalence is a trivial fibration
so we assume p is minimal. A lifting problem

∂∆n α //

��

X

p

��
∆n

β // Y

is the same as a lifting problem

∂∆n //

��

∆n ×Y X

��

≅ // ∆n × Fy

xxqqqqqqqqqqq

∆n 1 // ∆n

where Fy is the fiber over y = β(v0) and v0 ∈ (∆n)0 the zero vertex. The
isomorphism in the last diagram is obtained from minimality of p. We see that
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it is enough (in fact equivalent) to solve the lifting problem

∂∆n

��

// Fy

∆n

<<z
z

z
z

Claim: ∣p∣ has a homotopy inverse.
Proof: As we saw, [∣Y ∣, ∣X ∣] ≅ [Y,S∣X ∣] and since p is a weak equivalence, this
is isomorphic to [X,S∣X ∣] ≅ [∣X ∣, ∣X ∣]. One can check that the class in [∣Y ∣, ∣X ∣]
that corresponds to id∣X ∣ is a homotopy inverse to ∣p∣.

Now, ∣p∣ is a homotopy isomorphism so that πn∣Fy ∣ = 0 for all n ≥ 0. But Fy
is a Kan complex so πnFy = 0 fro all n ≥ 0. It follows from a previous proposition
that Fy Ð→ ∗ is a trivial fibration and hence the desired lift exist.

Corollary 11.10. A monomorphism i ∶ A Ð→ B is anodyne iff it is a weak
equivalence.

Proof. If i is anodyne, then for any Kan complex K, map(B,K)Ð→map(A,K)
is a trivial fibration of Kan complexes which is thus a homotopy isomorphism.
In particular, it is an isomorphism on π0 which precisely means that [B,K]Ð→
[A,K] is an isomorphism so that i is a weak equivalence. Suppose i is a weak
equivalence and factor it as an anodyne followed by a fibration

A
i //

j ��@@@@@@@ B

E

p

??~~~~~~~

It follows that p is a weak equivalence since j and i are such, and so p is a trivial
fibration by Theorem ??. But then solving the lifting problem

A //

i

��

E

p

��
B

r

>>~
~

~
~

1
// B

presents p as a retract of j and hence an anodyne.

12 Lecture 12

12.1 Model categories

In this lecture we will finally give a formal meaning to our desired claim that
the homotopy theory of simplicial sets is equivalent to the homotopy theory
of topological spaces. This will be done through Quillen’s notion of model
categories.
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Definition 12.1. A model category is a category M equipped with three
distinguished subcategories W,Cof,Fib ⊆M such that:

1. M has all small limits and colimits.

2. W,Cof,Fib contain all isomorphisms (hence in particular all objects) and
are closed under retracts.

3. M satisfies the 2-out-of-3 property.

4. Every morphism f ∶X Ð→ Y in M can be factored (not uniquely) as

(a) X
iÐ→X ′ pÐ→ Y with i ∈ Cof ∩W and p ∈ Fib.

(b) X
iÐ→X ′ pÐ→ Y with i ∈ Cof and p ∈ Fib ∩W.

5. Any square

A //

i

��

Y

p

��
X // B

in which i ∈ Cof, p ∈ Fib and at least one of i, p is in W admits a lift
f ∶X Ð→ Y .

The morphisms in W will be called weak equivalences, the morphisms
in Cof will be called cofibrations and the morphisms in Fib will be called
fibrations. A cofibration which is also a weak equivalence will be called a
trivial cofibration, and similarly for fibrations. An object X will be called
cofibrant if the map from the initial object ∅Ð→X is a cofibration. Similarly,
an object will be called fibrant if the map to the terminal object X Ð→ ∗ is a
fibration.

Remark 12.2. The axioms of model categories are very restrictive, and hence
small pieces of data often determine the whole structure. For example, any two
of the trioW,Cof,Fib determines the third (if exists). In particular, the classes
Cof,Fib ∩W determine each other via the relation

Fib ∩W = (Cof)⊥

Cof =⊥ (Fib ∩W)

and similarly for Cof ∩W and Fib.
Examples:

1. The category Set∆ of simplicial set together with W = weak equivalences
of simplicial sets, Cof = injective maps and Fib = Kan fibrations forms a
model category, called the Kan model category. We will prove this fact
later in this lecture.
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2. The category CG of compactly generated spaces with W = weak equiva-
lences of spaces, Cof = saturated class generated from {Sn−1 ↪ Dn} and
Fib = Serre fibrations forms a model category, called the Quillen model
category. We will prove this fact in the next lecture.

3. The category CG of compactly generated spaces withW = homotopy equiv-
alences, Cof = closed Hurewitz cofibrations and Fib = Hurewitz fibrations
forms a model category, called the strom model category. We will not
prove this fact in this course.

4. Let R be a ring and let Ch≥0(R) be the category of non-negatively graded
chain complexes. Then the category Ch+ ≥ 0(R) together with W = quasi-
isomorphisms, Cof = injective maps with projective cokernel and Fib =
maps which are surjective in degrees ≥ 1 forms a model category. This
model category is standardly used in homological algebra for the study of
derived functors of ⊗ and Hom.

To get some basic intuition for the notion let us start by explaining how to
do basic ”homotopy theory” in a general model category. Let f, g ∶X Ð→ Y be
two morphisms in a model category M. We claim that the model structure on
M enables us to define the notion of a homotopy from f to g.

Definition 12.3. Let M be a model category and X ∈M an object. We will
say that a diagram of the form

X∐X
iÐ→ C

pÐ→X

exhibits C as a cylinder object for X if the map i is a cofibration, the map
p is a weak equivalence and the composition p ○ i ∶ X∐X Ð→ X is the identity
on each X component.

Now observe that by factoring the natural map

f ∶X∐X Ð→X

as a cofibration followed by a trivial fibration we can produce a cylinder object
for every X. Also note that every two cylinder obejcts for X are weakly equiv-
alence. Now suppose that we are given two maps f, g ∶ X Ð→ Y and a cylinder
object C for X. A homotopy from f to g with respect to C is a map

H ∶ C Ð→ Y

such that the composed map

X∐X Ð→ C Ð→ Y

is equal to (f, g). We will say that f is homotopic to g if there exists a
homotopy between them with respect to some cylinder object of X.
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Lemma 12.4. If X is cofibrant and Y is fibrant then the relation of homotopy
between maps X Ð→ Y is an equivalence relation. We will denote by [X,Y ] the
set of homotopy classes of maps from X to Y .

Definition 12.5. Let M be a model category. The homotopy category
Ho(M) is the category whose objects are the objects ofM and whose morphism
sets are [Xcof , Y fib] where Xcof is a cofibrant replacement for X and Y fib is a
firant replacement for Y .

Remark 12.6. Given two maps f, g ∶ X Ð→ Y and two homotopies H1,H2

between them we may talk of relative homotopies from H1 to H2. One can
then talk about homotopies between homotopies between homotopies and so
on. In fact, one can construct a whole homotopy type describing the ”space of
maps” from X to Y . When X is cofibrant and Y is fibrant this space of maps is
well-behaved, and in particular its set of connected components can be identified
with [X,Y ]. Note that up to weak equivalence one can always replace X with

a cofibrant substitute X ′ ≃Ð→X and Y with a fibrant substitute Y
≃Ð→ Y ′. The

resulting mapping space is usually referred to as the derived mapping space
from X to Y .

Remark 12.7. The technology of model categories enables one to do much more
than just constructing derived mapping space. It enables one to construct suit-
able homotopy theoretic analogous to the notions of limits and colimits as well,
yielding the notions of homotopy limits and colimits. We will not develop
this idea further in this course but we recommend the curious student to read
more about this.

Now that we know what model categories are, let us explain how to map
one model category to another.

Definition 12.8. Let M,N be model categories. A map from M to N is an
adjunction

M
L //
N⊥

R
oo

such that L preserves cofibrations and trivial cofibrations (or equivalently (see
Remark 12.2), R preserves fibrations and trivial fibraitons). Such an adjunction
is called a Quillen adjunction.

Now let

M
L //
N⊥

R
oo

be a Quillen adjunction. Then for any The association X ↦ L(Xcof) determines
a well defined functor

LL ∶ Ho(M)Ð→ Ho(N)
which is called the left derived functor of L. Similarly, the association Y ↦
R(Y fib) determines a well defined functor

RR ∶ Ho(N)Ð→ Ho(M)
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which is called the right derived functor of R. The pair LL,RR always forms
an adjunction between Ho(M) and Ho(N).

Definition 12.9. We will say that a Quillen adjunction

M
L //
N⊥

R
oo

is a Quillen equivalence if the derived adjunction

Ho(M)
LL //

Ho(N )⊥
RR
oo

is an equivalence of categories.

In this course we will show that the adjunction

Set∆

∣●∣ //
CG⊥

Sing
oo

is a Quillen equivalence.

12.2 The Kan model structure

In this section we will set up a model structure on the category Set∆ is simplicial
sets, known as the Kan-Quillen model structure. In order to do this we will need
the following notion:

Definition 12.10. Let C be a category which admits small colimits, X ∈ C and
object and I a class of maps in C. Let I be smallest saturated class containing
I. We will say that X is small with respect to I if whenever we have an infinite
sequence

Y0
f0Ð→ Y1

f1Ð→ Y2 Ð→ ...

such that fi ∈ I for every i then the natural map

colimiHomC(X,Yi)Ð→ HomC(X, colimi Y )

is a bijection of sets.

Remark 12.11. If I, J are two collections of maps in C such that J ⊆ I then any
object which is small with respect to I is small with respect to J .

Example 8. Let C = Set∆ be the category of simplicial set and let X ∈ C be
an object with finitely many non-degenerate simplices. Then X is small with
respect to any class of maps I (i.e., it is small with respect to I = C).

Example 9. Let C = CG be the category of compactly generated Hausdorf spaces
and let X ∈ C be a compact space. Let I = {Sn−1 ↪ Dn}n≥0. Then X is small
with respect to I.
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The relevance of small objects to the construction of model structures is
explained in the following lemma:

Lemma 12.12. Let C be a category which admits small colimits and let I be
a set of maps. Assume that the domain of every morphism in I is small with
respect to I. Let I denote the saturated class generated from I and by let I⊥ be
the set of all maps which have the right lifting property with respect to I. Then

any map f ∶X Ð→ Y in C can be factored as X
iÐ→ Z

pÐ→ Y such that i ∈ I and
p ∈ I⊥.

Proof. Let f ∶ X Ð→ Y be a map in C. Given a morphism i ∶ A Ð→ B let us
denote by Si,f the set of commutative squares of the form

A //

i

��

X

f

��
B // Y

We then define
Fi = ∐

Si,f

A

Gi = ∐
Si,f

B

and we defined H1 to be the pushout in the natural diagram

∐i∈I Fi //

��

X

��
∐i∈I Gi // H1

We observe that we have a natural factorization

H1

  AAAAAAAA

X

>>|||||||| f // Y

and that the map X Ð→H1 is in I. We can now apply the above procedure to
the map H1 Ð→ Y . Iterating this repeatedly we obtain a sequence

X //

��

H1
//

��

H2
//

��

...

Y Y Y ...
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Let H = colimnHn be the colimit of the above sequence. Then we have a natural
factorization

H

  @@@@@@@@

X

>>}}}}}}} f // Y

and the map X Ð→H is in I. We claim that the map H Ð→ Y is in I⊥. To see
this, consider a square of the form

A
g //

i

��

H

��
B // Y

(7)

with i ∈ I. Since A is small with respect to I we get that there exists an n such
that g factors as the composition

A
g′Ð→Hn Ð→H

and so we obtain a commutative diagram of the form

A
g′ //

i

��

Hn

��
B // Y

By the definition of Hn+1 we obtain a diagram of the form

A //

i

��

Hn+1

��
B //

<<zzzzzzzz
Y

yielding a lift for the diagram 7.

Corollary 12.13. Let M be a category with all small limits and colimits. Let
W ⊆M be a subcategory containing all isomorphisms, closed under retracts and
closed under 2-out-of-3. Let I, J ∈M be two sets of maps whose domains are
small with respect to I, such that

(i) J = I ∩W

(ii) I⊥ = J⊥ ∩W

Then (M,W,Cof,Fib) is a model category, where Cof = I and Fib = J⊥.
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Proof. First note that Cof and Fib contain all isomorphisms and are closed
under retracts. In light of (i) and (ii) above we see that axiom (4) follows
directly from Lemma 12.12 and axiom (5) holds by definition.

Corollary 12.14. Let M = Set∆ with W the collection of weak equivalences,
I = {∂∆n Ð→ ∆n}n≥0 and J = {Λni Ð→ ∆n}n≥1,i≤n. Then I and J satisfy the
assumptions of Theorem 12.13. This proves the existence of the Kan model
structure.

13 Lecture 13

Summary 13.1. In this lecture we shall establish the equivalence of the ”homo-
topy theories” of simplicial sets and topological spaces.

Our first part will be to replace the category of all topological spaces with
a (full) subcategory of ”nice” spaces. The key property we require from this
subcategory is that the realization functor ∣− ∣ ∶ Set∆ Ð→ Top will factor through
it and will preserve finite limits.

Our second part will be to show ”transfer” the model structure from simpli-
cial sets to that of (nice) topological spaces. Once we do that, we will be able
to show easily that the two model structures are actually equivalent.

13.1 Compactly generated spaces

In this part we shall focus on the point-set topology level. For convenience,
we view a topology τ on a set X as a collection of closed subsets of X which
is closed under finite unions and arbitrary intersections. Thus, when we say a
topological space (or just a space) in this section we really mean an arbitrary
topological space. Furthermore, our arrows will be assumed by default to
be continuous and we will explicitly say ”function” when there is no continuity
assumption.

Let CH the category of compact Hausdorff spaces.

Definition 13.2. Let (X,τ) be a space. A subset Y ⊆ X is k-closed if for
every K ∈ CH and every continuous map u ∶ K Ð→ X, u−1(Y ) is closed in K.
We write k(τ) for the collection of all k-closed sets. Clearly, τ ⊆ k(τ) and k(τ)
is a topology on X.We write kX = (X,k(τ)) and say that X is compactly
generated if X = kX. We denote by Topc the full subcategory of Top spanned
by the compactly generated spaces.

Observe 13.3. Let (X,τ) ∈ Top and K ∈ CH. Then a function u ∶ K Ð→ X is
continuous iff u ∶K Ð→ kX is continuous. We see that k2X = kX.

Proposition 13.4. Let X ∈ Topc and Y ∈ Top. Then a function f ∶X Ð→ Y is
continuous ⇔ f ∶X Ð→ kY is continuous.

Proof. ⇐: If Z ⊆ Y is closed in Y then Z is closed in kY so f−1(Z) is closed
in X. ⇒: Let Z ⊆ Y be k-closed, K ∈ CH and u ∶ K Ð→ X a map. Then fu
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is continuous so (fu)−1(Z) = u−1(f−1(Z)) is closed in K. Since X ∈ Topc it
follows that f−1Z is k-closed and thus closed in X.

The previous proposition can actually be phrased in a nicer way – For any
X ∈ Topc, Y ∈ Top and a continuous map f ∶ X Ð→ Y , there is a unique lift as
follows:

kY

id

��
X

f //

∃!f
==|

|
|

|
Y

In other words:

Corollary 13.5. There is an adjunction

Topc

i //
Top

k

⊥oo

It is perhaps good to show first that Topc contains enough ”nice” spaces.
There are many classes of spaces that can be considered, but what we actu-
ally need in this course just the CW-complexes. Since the latter are always
Hausdorff, it is good to first see:

Proposition 13.6. Let X be a Hausdorff space. Then a subset Y ⊆ X is k-
closed ⇔ Y ∩K is closed for any compact Hausdorff K ⊆X.

Proof. ⇒: Trivial. ⇐: If K ∈ CH and u ∶ K Ð→ X a map then u(K) is compact
Hausdorff so u(K)∩Y is closed and thus u−1(Y ) = u−1(u(K)∩Y ) is closed.

We assume that the students are familiar with the following statement. Proof
can be found for example in Hatcher.

Proposition 13.7. Let X be a CW-complex. Then Y ⊆ X is closed iff Y ∩ eαn
is closed for any cell eαn.

Corollary 13.8. Any CW-complex X is compactly generated.

Proof. If Y ⊆ X is k-closed, Y ∩ eαn is closed since eαn is compact and thus Y is
closed in X.

Next we want to have quotients in Topc.

Proposition 13.9. If X ∈ Topc and E is an equivalence relation on X then
X/E ∈ Topc.

Proof. q ∶ X Ð→ k(X/E) is continuous so if Z ⊆ X/E is k-closed then q−1(Z)
is k-closed in X so it is closed in X since X ∈ Topc. By the definition of the
quotient topology, this means that Z is closed in X/E.

Having done that, we take care of the coproducts:
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Proposition 13.10. If {Xi}i∈I ⊆ Topc then X ∶=∐iXi ∈ Topc.

Proof. If Z ⊆X is k-closed write Z =∐iZi where Zi ∶= Z∩Xi. It is then enough
to show that Zi ⊆ Xi is closed but since Xi ∈ Topc it is enough to show that
Zi is k-closed. Let K ∈ CH and u ∶ K Ð→ Xi a map. then, for ji ∶ Xi Ð→ X,
(u ○ ji)−1(Z) = u−1(Zi) so u−1(Zi) is closed since Z ⊆X ∈ Topc.

Having done that, we now examine products:

Definition 13.11. Given X,Y ∈ Top, write X ×o Y for their product in Top.
We denote by X × Y ∶= k(X ×0 Y ) and similarly for a family of spaces {Xi} we
write ∏iXi ∶= k(∏0,iXi).

Proposition 13.12. Let {Xi}i∈I ⊆ Topc. Then the projection maps πi∏iXi Ð→
Xi are continuous and, moreover, for any Y ∈ Topc, f ∶ Y Ð→∏iXi is continu-
ous iff πi ○ f is so for each i.

Proof. The projections πi are continuous since the topology of ∏iXi is bigger
than that of ∏0,iXi. The second part follows from the fact that the map
f ∶ Y Ð→ ∏0,iXi is continuous iff πi ○ f is so for each i and from Proposition
13.4.

In other words, the previous proposition shows that ∏iXi is the product in
the category Topc.

Theorem 13.13. The category Topc is bicomplete.

1. Limits are computed by applying the functor k to the limit in Top.

2. Colimits are computed as in Top.

Proof. Let I be a small category and X
̃
∶ I Ð→ Topc a diagram.

1. For any W ∈ Topc,

Topc(W,k(lim
i
ιXi)) ≅ Top(ιW, lim

i
ιXi) ≅ lim

i
Top(ιW, ιXi) ≅ lim

i
Topc(W,Xi)

so k(limi ιXi) is the limit in Topc.

2. colimi ιXi is a quotient of a coproduct of compactly generated spaces and
so compactly generated itself. Moreover, for any Y ∈ Topc,
Topc(colimi ιXi, Y ) ≅ Top(ιX, ιY ) ≅ Top(colim ιXi, ιY ) ≅ limi Top(ιXi, ιY )
≅ limi Topc(Xi, Y )
so colimi ιXi is the colimit in Topc.

Observe 13.14.
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1. Since Sn ∈ Topc, for anyX ∈ Top, πn(X) = Top∗(Sn,X)/ ≃≅ Topc,∗(Sn, kX)/ ≃
= πn(kX).

2. A map p ∶ X Ð→ Y is a Serre fibration iff kX Ð→ kY is a Serre fibration
(this is again because ∣Λnk ∣, ∣∆n∣ ∈ Topc and k is a right adjoint).

Thus, every Serre fibration in Topc induces a LES on homotopy groups where
the fiber is now taken in Topc – the fiber in Topc is always weakly equivalent to
that in Top.

13.2 A model structure on Topc

Recall from last time:

Definition 13.15. We define the following classes of morphisms in Topc

1. W the class of weak homotopy equivalence of topological spaces.

2. I = {∣∂∆n∣Ð→ ∣∆n∣}n

3. J = {∣Λnk ∣Ð→ ∣∆n∣}n,k.

4. Cof = I the saturated class generated from I

5. Anodyne=J the saturated class generated from J .

6. Fib = J⊥ the maps with the right lifting property wrt J

7. trivial fibrations=I⊥ the maps with the right lifting property wrt I.

As was shown in the last talk, the small object argument applies to this case
since the domains of I and J are small relative to I. This means that we have
a factorization of any map into an anodyne followed by a fibration and into a
cofibration followed by a trivial fibration.

In order to show that the abovementioned classes of maps define a model
structure on Topc it is thus left to show:

� J = I ∩W and

� I⊥ = J⊥ ∩W.

We proceed as follows

Proposition 13.16. J ⊆ I ∩W.

Proof. First, J ⊆ I since we saw that any horn inclusion can be obtained as a
transfinite composition of pushouts along ∂∆n Ð→ ∆n and ∣ − ∣ preserves these
as a left adjoint. By definition, J ⊆ I. Second, i ∶ ∣Λnk ∣Ð→ ∣∆n∣ is a deformation
retract and thus any pushout i of it is such, so i ∈ W. Now, a transfinite
composition of maps in PO(J) ∩W ⊆ I ∩W is in W since πn(colimiXi) ≅
colimπn(Xi) for any sequence X1 Ð→ X2 Ð→ ... of maps in I since Sn is small
relative to I. Finally, W is closed under retracts and so J ⊆ I ∩W.

68



Proposition 13.17. I⊥ = J⊥ ∩W i.e. a Serre fibration is trivial iff it is a weak
equivalence.

Proof. If p ∶ X Ð→ Y is a trivial fibration then for any y ∈ Y , Fy Ð→ ∗ is a
trivial fibration and hence πnFy = 0 directly from the lifting property. Thus p is
a weak equivalence by the LES for homotopy groups. Conversely, if p is a weak
equivalence and

∣∂∆n∣ //

��

X

��
∣∆n∣

f // Y

then f is homotopic to the constant map f(v0) where v0 ∈ ∣∆n∣ and we can
proceed exactly as in the case of simplicial sets.

The next proposition shows that the inclusion I ∩W ⊆ J is a formal conse-
quence of what we did so far and has nothing to do with topological spaces.

Proposition 13.18. I ∩W ⊆ J

Proof. Let f ∶ X Ð→ Y be a cofibration (=∈ I) and a weak equivalence. Factor

f as f = (X jÐ→ Z
pÐ→ Y ) where j is anodyne and p is a fibration. As we saw, j

is a weak equivalence so by the 2-out-of-three property, p is a weak equivalence
which, as we saw, implies that it is a trivial fibration. This means that p has a
right lifting property with respect to maps in I and hence wrt maps in I. But
f ∈ I so we can solve the lifting problem

X
j //

f

��

Z

p

��
Y

∃g
>>~

~
~

~
Y

and we can thus present f as a retract of j via

X

f

��

X

j

��

X

f

��
Y g

// Z p
// Y

and we conclude that f is anodyne.

Corollary 13.19. The tuple (Topc,W,Fib,Cof) is a model category.
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13.3 Equivalence of homotopy theories

Observe 13.20. The adjunction

Topc
S
// Set∆

∣−∣
⊥

oo

now becomes a Quillen adjunction since clearly the realization of a cofibration
or a trivial cofibration is so. In order to prove that this is in fact a Quillen equiv-
alence, we need to show that the derived unit and counit are weak equivalences.
But since every object in Set∆ is cofibrant and every object in Topc is fibrant
this amounts to proving that the actual unit and counit are weak equivalences.

Proposition 13.21. For every X ∈ Set∆, X Ð→ S∣X ∣ is a weak equivalence.

Proof. Factorize X Ð→ ∗ to an anodyne followed by a fibration X Ð→ X Ð→ ∗
so that X is Kan. Then

X
∼ //

��

X

∼
��

S∣X ∣ // S∣X ∣

so that it is enough to show that S∣X ∣ Ð→ S∣X ∣ is a weak equivalence. But
∣X ∣Ð→ ∣X ∣ is an anodyne between CW-complexes hence a homotopy equivalence
so S∣X ∣Ð→ S∣X ∣ is a homotopy equivalence hence a weak equivalence.

Proposition 13.22. For any X ∈ Topc, the counit map ε ∶ ∣SX ∣ Ð→ X is a
weak equivalence.

Proof. By comparing the fibration sequences ΩX Ð→ PX Ð→X and ∣SΩX ∣Ð→
∣SPX ∣ Ð→ ∣SX ∣ we see that it is enough to show that for any X ∈ Topc, ε is an
iso on π0. But it is clearly onto vertices (since (SX)0 =X) and onto homotopies
between vertices and so an isomorphism indeed.

14 Lecture 15

Today we are going to see some applications of the theory of homotopy (co)limits.
The main point to promote, is that when we take homotopy limits or colimits,
we get cleaner and more general statements. We start with

14.1 Postnikov towers

Let X be a topological space.
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Definition 14.1. A Postnikov tower for X is a diagram of spaces

⋮
P2X

q2

��
P1X

q1

��
X

f0 //

f1 =={{{{{{{{

f2

FF















P0X

s.t.

1. For all i, and for all k ≤ i, πk(fi) ∶ πk(X)Ð→ πk(PiX) is an isomorphism.

2. πk(PiX) = 0 for all k > i.

Observe 14.2.

1. In such a situation, it follows that πk(Pi+1X) Ð→ πk(PiX) is an isomor-
phism for all k ≠ i + 1 and trivial for k = i + 1.

2. Thus, the LES for a homotopy fibration sequence implies that the homo-
topy fiber Fh(qi+1) is an Eilenberg-Maclane space of type K(πi+1X, i+1).

Construction 14.3. We construct PiX as a cw-complex relative to X. We
set (PiX)i+1 = X and we attach an (i + 2)-cell to (PiX)i+1 for every map
Si+1 Ð→ (PiX)i+1. At the next stage, we attach an (i + 3) cell to (PiX)i+2

for every map Si+2 Ð→ (PiX)i+2. The maps fi ∶ X Ð→ PiX are the skeleton
inclusion, and the maps qi+1 ∶ Pi+1X Ð→ PiX are constructed as X-cellular maps
as follows. (Pi+1X)i+1 =X = (PiX)i+1 so we define qi+1 to be the identity on the
(i + 1)-skeleton. On the (i + 2)-skeleton, the map (Pi+1X)i+2 =X Ð→ (PiX)i+2

is the inclusion of skeleta.
On the (i + 3)-skeleton, let Φ ∶ Di+3 Ð→ (Pi+1X)i+3 be a cell of Pi+1X with

an attaching map ϕ ∶ Si+2 Ð→ (Pi+1X)i+2 = X. The composite qi+1 ○ ϕ is

an attaching map in (PiX)i+2 and so underlines a map
○

Di+3 ≅ Φ(
○

Di+3) Ð→
(PiX)i+3 and so we can extend qi+1 to the i+3 skeleton and repeat the process.
It follows from our construction that qi+1 ○ fi+1 = fi since this is true on each
skeleton and the two properties of Definition 14.1 are immediate to check.

Proposition 14.4. In (TopN
op

)
inj

, a tower {Xn}n is fibrant if Xn Ð→ Xn−1

is a fibration for any n.

Proof. Let {An}Ð→ {Bn} be a trivial cofibration if (TopN
op

)
inj

and consider a

lifting problem

{An}

��

// {Xn}

{Bn}

;;w
w

w
w

w
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. The assumption that {An} Ð→ {Bn} is a trivial cofibration in the injective
model structure on towers of spaces means simply that for each n, An Ð→ Bn
is a trivial cofibration in Top. Now, since X0 is fibrant, we get a lift of the form

A0

��

// X0

B0

==|
|

|
|

. Then, we can solve the lifting problem

A1
//

��

X1

��
B1

//

66nnnnnnnn
B0

// X0

(since A1 Ð→ B1 is a trivial cofibration and X1 Ð→ X0 is a fibration) and a
trivial induction gives a lift for any n and hence a lift of towers.

Remark 14.5. The converse implication of the previous Proposition is also true,
i.e., any tower of fibrations is a fibrant object in the injective model structure
on (TopN

op

)
inj

.

Construction 14.6. Let X be a space and {PnX} its Postnikov tower of
Construction 14.3. Set P0X ∶= P0X factor the map q1 ∶ P1X Ð→ P0X to

P1X
c1Ð→ P1X

q1Ð→ P0X

where the first map is trivial cofibration and the second is a fibration. Then,
factor the composite P2X Ð→ P1X Ð→ P1X into

P2X
c2Ð→ P2X

q1Ð→ P1X

where again the first map is a trivial cofibration and the second is a fibra-
tion. The various Pn’s assemble into a tower together with a map of towers
c ∶ {PnX}Ð→ {PnX} which is a weak equivalence in (TopN

op

)
inj

.

Corollary 14.7. holimPnX ∼ limPn.

Proof. Since each qn+1 ∶ Pn+1X Ð→ PnX is a fibration, and c ∶ {PnX} Ð→
{PnX} is a weak equivalence, {PnX} is a fibrant replacement of {PnX} in
(TopN

op

)
inj

. By definition, holimPnX ∼ limPn.

We now turn into the comparison between a space and the homotopy limit
of its Postnikov tower.

Proposition 14.8. For any sequence of fibrations of pointed spaces ⋯ Ð→
X2

q2Ð→ X1
q1Ð→ X0, the map λi ∶ πi(limnXn) Ð→ limn πi(Xn) is surjective.

Moreover, λi is injective if πi+1(qn) ∶ πi+1(Xn) Ð→ πi+1Xn−1 is surjective for
sufficiently large n.
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The proof of Proposition 14.8 is not hard and will be omitted. Using it, we
can immediately conclude:

Corollary 14.9. For any X ∈ Top, X ∼ holimPnX.

Proof. The map
λi ∶ πi(lim

n
PnX)Ð→ lim

n
πi(PnX)

satisfy the strong hypothesis of Proposition 14.8 an isomorphism. Thus, the
map

πi(lim fn) ∶ πiX Ð→ πi(limPnX) ≅ limπi(PnX)

is an isomorphism since the right hand stabilzes on πiX after a finite number
of stages.

We see that the notion of homotopy limit enables us to formulate clean
statements. Note that Corollary 14.9 applies to any ”abstract” Postnikov tower
of X as in Definition 14.1 so that we do not have to commit to a model.

14.2 Homotopy colimits

We now turn into investigating the notion of a homotopy colimit. Recall that
a homotopy colimit of a diagram D ∶ I Ð→ Set∆ (or D ∶ I Ð→ Top) was defined
by the colimit of a cofibrant replacement of D in (TopI)

proj
.

Theorem 14.10 (Bousfield-Kan). Let D ∶ I Ð→ Set∆ be a diagram of simplicial
sets. Consider the diagram S ∶ Iop Ð→ Set∆ given by S(i) = N(Iop/i). Then
hocolimI D ≃∐S(i) ×D(i)/ ∼ where for any α ∶ i Ð→ j, (cj , α∗di) ∼ (α∗cj , di).
If D ∶ I Ð→ Top then replacing S with ∣S∣ in the above formula give the homotopy
colimit in Top.

Example 10. Let I = (0 Ð→ 2 ←Ð 1). Then Iop = (0 ←Ð 2 Ð→ 1) and we see

that N(Iop/0) = N(Iop/1) = ∆0 and that N(Iop/2) = Λ2
2. Now, if D = (A fÐ→

X
g←Ð Y ) is an I-diagram in Top, then the Bousfield-Kan formula implies that

hocolimI D ≃X∐A×Λ2
2∐Y / ∼ where (a,0) ∼ f(a) and (a,1) ∼ g(a). Thus, we

obtain a model for the homotopy pushout X∐hA Y in Topological spaces which
is usually referred to as the double mapping cylinder.

In general one could obtain a model for the homotopy pushout by replacing
the maps f and g by any cofibration and then take the corresponding pushout.

Example 11. Let D = (∗Ð→X ←Ð ∗). Then the Bousfield-Kan formula gives
hocolimD ≃ ΣX.

It will be convenient to have a notion of a square which is commutative and
models a homotopy pushout.
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Definition 14.11. A (commutative) square

A //

��

X

��
Y // P

is called homotopy coCartesian, if the canonical map X∐hA Y Ð→ P is a
weak equivalence.

It now turns out, that Van-Kampen Theorem works in much higher gener-
ality.

Theorem 14.12. For any homotopy coCartesian square of pointed connected
topological spaces

A //

��

X

��
Y // P

the square
π1A //

��

π1X

��
π1Y // π1P

is a coCartesian (i.e. a pushout) square in Gp.

Another application of homotopy pushouts is obtained via the following

Proposition 14.13. The category Ch≥0(Z) admits an ”injective” model struc-
ture for which the weak equivalences are quasi-isomorphisms and the cofibra-
tions are the monomorphisms. The functor Ch ∶ Set∆ Ð→ Ch≥0(Z) defined as
the composite of the free simplicial abelian group functor followed by the functor
to chain complexes which take the alternating sum of the face maps is a left
Quillen functor.

Corollary 14.14. The functor Ch preserves homotopy coCartesian squares.

Proof. Any left Quillen functor preserves homotopy colimits.

Thus, if

A //

��

X

��
Y // P
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is a homotopy coCartesian square of simplicial sets, the square

Ch(A) //

��

Ch(X)

��
Ch(Y ) // Ch(P )

is homotopy coCartesian in Ch≥0(Z) and this means that

Ch(A) //

��

0

��
Ch(X)⊕Ch(Y ) // Ch(P )

is a homotopy coCartesian square, i.e.,

Ch(A)Ð→ Ch(X)⊕Ch(Y )Ð→ Ch(P )

is a homotopy cofibration sequence in Ch≥0(Z) and so induces a LES on ho-
mology. We thus get a generalized version of the Mayer-Vietoris sequence for
homotopy pushouts:

Corollary 14.15 (Mayer-Vietoris). For any homotopy coCartesian square of
simplicial sets

A //

��

X

��
Y // P

there is a LES

⋯Ð→Hn(A)Ð→Hn(X)⊕Hn(Y )Ð→Hn(P )Ð→Hn−1(A)Ð→ ⋯
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