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Many categories which arise in nature, such as the categories of sets, groups,
rings and others, are large: they contain a proper class of objects, even when
the objects are considered up to isomorphism. However, in each of the exam-
ples above, the large category is in some sense determined by a much smaller
subcategory. There are two ways in which a small subcategory can determine
an entire large category. The first is via the process of taking colimits, and the
second via the process of taking limits. Let us exemplify these two possibilities
in two typical examples. Consider on one hand the category Set of sets, and on
the other hand the category Grprofin of pro-finite groups. The small subcate-
gories are going to be the full subcategory Setfin ⊆ Set of finite sets and the full
subcategory Grfin ⊆ Grprofin of finite groups.

Given an arbitrary set A ∈ Set, let Pfin(A) denote the partially ordered set
of finite subsets of A, where we say that A′ ≤ A′′ iff A′ ⊆ A′′. Similarly, given
an arbitrary pro-finite group G, let Qfin(G) denote the partially ordered set
of finite quotients G � G′, where we say that G′ ≤ G′′ if the quotient map
G � G′′ factors through G′. We may naturally treat any partially ordered set
as a category (whose morphism set Hom(x, y) is a singleton if x ≤ y and empty
otherwise). Then for every set A and every pro-finite group G we have natural
maps

colim
A′∈Pfin(A)

A′ −→ A

G −→ lim
G′∈Qfin(G)

G′

and one may verify that these are in fact (quite familiar) isomorphisms. The
former identifies any set with the colimit (or “union”) of its finite subsets, while
the second one identifies a pro-finite group with the inverse limit of its finite
quotients.

In both cases, the story doesn’t end here. To say that a small subcategory
generates all objects under limits or colimits is not enough to satisfactorily say
that the entire large category is determined by the small data. For this one
would need to know that morphisms between any two “large” objects can be
recovered from their presentation as limits or colimits of small objects. For
this one may observe that if A −→ B is a map of sets, then for every finite
subset A′ ⊆ A, the restricted map A′ −→ B factors through a finite subset of
B. Similarly, if G −→ H is a map of pro-finite groups and H � H ′ is a finite
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quotient of H then the composite G −→ H −→ H ′ factors through a finite
quotient of G. This quickly leads to the formulas

HomSet(A,B) ∼= lim
A′∈Pfin(A)

colim
B′∈Pfin(B)

HomSetfin(A′, B′)

and
HomGrprofin(G,H) ∼= lim

H′∈Qfin(H)
colim

G′∈Qfin(G)
HomGrfin(G′, H ′).

One may hence justifiably say that the category Set is determined by Setfin

and that Grprofin is determined by Grfin. To make this idea formal let us give
some definitions. Since our main motivation comes from cases which look like
Grprofin let us formulate all the definitions in this direction.

Definition 1. Let I be a small category. We will say that I is cofiltered if the
following two conditions hold:

1. For every x, y ∈ I there exists an object z ∈ I equipped with maps z −→ x
and z −→ y.

2. For every two maps f, g : x −→ y in I there exists an object z ∈ I and a
map h : z −→ x such that f ◦ h = g ◦ h.

Dually, we say that I is filtered if Iop is cofiltered.

Definition 2. Let C be a category. A pro-object in C is a diagram {Xα}α∈I in
C indexed by a small cofiltered category I. We define the morphism set between
two pro-objects by the formula

Hom({Xα}α∈I, {Yβ}β∈J)
def
= lim

β∈J
colim
α∈I

HomC(Xα, Yβ).

We let Pro(C) denote the category whose objects are the pro-objects in C and
whose morphism sets are given as above (composition is defined in a strightfor-
ward way). The category Pro(C) is called the pro-category of C0.

Remark 3. Dualizing Definition 2 using filtered diagrams instead of cofiltered
fiagrams we obtain the notions of an ind-object and of the ind-category
Ind(C) of C. In particular, an ind-object in C is the same thing as a pro-object
in Cop and there is a natural equivalence of categories Ind(C) ' Pro(Cop)op.

Examples:

1. The category of pro-finite groups is naturally equivalent to the pro-category
of finite groups.

2. The category of totally disconnected compact Hausdorff spaces is naturally
equivalent to the pro-category of finite sets.

3. The category of compact Hausdorff topological groups is naturally equiv-
alent to the pro-category of lie groups (this is non-trivial, and can be
considered as a compact variant of Hilbert’s fifth problem).
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4. The category of sets is naturally equivalent to the ind-category of finite
sets.

5. The category of groups is naturally equivalent to the ind-category of
finitely presented groups. A similar statement holds for rings, modules
and other types of algebraic categories.

For any category C, the category Pro(C) admits cofiltered limits (i.e., limits
indexed by cofiltered indexing categories), and these can be computed in some
sense formally. We note that there is a canonical fully-faithful embedding ι :
C ↪→ Pro(C) where ι(X) is the constant diagram with value X indexed by
the trivial category. Moreover, the category Pro(C) is the universal category
with cofiltered limits receiving a functor ι : C −→ Pro(C): if D is any other
category with cofiltered limits then restriction along ι identifies the category
of cofiltered limit preserving functors Pro(C) −→ D with the category of all
functors C −→ D. In that sense one may consider Pro(C) as the category
obtained by freely adding cofiltered limits to C. Similarly, the category Ind(C)
is the category obtained by freely adding filtered colimits to C.

The higher categorical avatar of pro-categories was developed in the liter-
ature in two parallel paths. These two paths correspond to the two general
approaches driving modern homotopy theory. The classical approach can be
traced back to Quillen seminal work [Qu67], where he defined the notion of a
model category. A model category is an ordinary category M, equipped with
a suitable additional structure, which allows one to perform homotopy theoreti-
cal constructions in M. Similar notions which are based on categories with extra
structure include fibration/cofibration categories and relative categories. The
second approach, which was developed in recent years in the ground-breaking
works of Lurie building on previous work of Joyal, Rezk and others, establishes
the notion of an∞-category, which should be the correct homotopy theoretical
analogue of the notion of a category. Unlike a model category, an∞-category is
not an ordinary category with extra structure, and its definition is more subtle.
To any model category (or fibration/cofibration category, relative category), one
can associate a corresponding ∞-category which it models.

Returning to the notion of pro-categories, in the realm of ∞-categories,
one can define pro-categories by adapting their universal property to the ∞-
categorical setting. This was done in [Lu09] for C a small ∞-category and
in [Lu11] for C an accessible ∞-category with finite limits. On the other hand,
when C is a model category, one may attempt to construct a model structure on
Pro(C) which is naturally inherited from that of C. This was indeed established
in [EH76] when C satisfies certain conditions (“Condition N”) and later in [Is04]
when C is a proper model category. This was generalized to the case when C is
only a weak fibration category (under suitable hypothesis) in [BS15a]. Recall
that

Definition 4. A weak fibration category is a category C equipped with
two subcategories Fib,W ⊆ C containing all the isomorphisms, such that the
following conditions are satisfied:
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1. C has all finite limits.

2. W has the 2-out-of-3 property.

3. The subcategories Fib and Fib ∩W are stable under base change.

4. Every morphism f : X −→ Y can be factored as X
f ′

−→ Z
f ′′

−→ Y where
f ′ ∈W and f ′′ ∈ Fib.

To unify the above mentioned approaches it is useful to consider a general
definition specifying what it means for a model structure on Pro(C) to be in-
duced from a weak fibration structure on C. When C is small the definition
simple: we say that a model structure on Pro(C) is induced from a weak fibra-
tion structure (Fib,W) on C if it is fibrantly generated by the images of Fib
and W∩Fib in Pro(C). This means that the cofibrations are exactly those map
which have the left lifting property with respect to Fib∩W and the trivial cofi-
brations are exactly those map which have the left lifting property with respect
to Fib. If C is not a small then a slightly more elaborate definition is required,
which we will not spell out explicitly.

Our main theorem is the following:

Theorem 5. Assume that the induced model structure on Pro(C) exists. Then
the natural map

F : Pro(C)∞ −→ Pro(C∞)

is an equivalence of ∞-categories.

Examples:

1. If M is a proper model category then the induced model structure on
Pro(M) exists by the work of [Is04]. For example, if M is the category of
simplicial sets with the Kan-Quillen model structure then M is a model for
the ∞-category of spaces and by Theorem 5 we get that Pro(M) with the
induced model structure is a model for the ∞-category of pro-spaces. We
will return to this example when we discuss pro-finite homotopy theory.

2. Let T be a Grothendieck site. Then the category C of simplicial sheaves
on T with local weak equivalences and local fibrations is a weak fibration
category, which is a model for the ∞-category of sheaves of spaces on T.
By the results of [BS15a] the induced model structure on Pro(C) exists
in this case, and so by Theorem 5 we get that Pro(C) is a model for the
∞-category of pro-sheaves of spaces on T. We will return to this example
when we discuss the étale homotopy type.

In order to prove Theorem 5 one needs, in particular, to be able to compare
the mapping spaces on both sides. If C is an ∞-category then the mapping
spaces in Pro(C) can be described by a similar formula as in the ordinary case, by
replacing limits and colimits by the corresponding homotopy limits and colimits
of mapping spaces:

MapPro(C)(X,Y ) = holimj∈J hocolimi∈I MapC(Xi, Yj). (1)
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The first step towards proving Theorem 5 is to obtain a similar formula for
the derived mapping space associated to an induced model structure on Pro(C)
when C is a weak fibration category. For this, we need to a good way to describe
mapping spaces in weak fibration categories.

Definition 6. Let C be a weak fibration category. Let X,Y ∈ C two objects.

We denote by HomC(X,Y ) ⊆ C/X×Y consisting of those objects X
p←− Z f−→ Y

such that p is a trivial fibration.

There is a natural map from the nerve N HomC(X,Y ) to the simplicial set
MapLH(C,W)(X,Y ) where LH(C,W) denotes the hammock localization of C with
respect to W. We hence obtain a natural map

N HomC(X,Y ) −→ MaphC(X,Y ). (2)

Proposition 7 (Cisinski). Let C be a weak fibration category. Then for every
X,Y ∈ C with Y fibrant the map 2 is a weak equivalence.

The first step towards the proof of Theorem 5 is to prove that when C is a
weak fibration category, formula 2 holds for the derived mapping spaces in the
induced model structure on Pro(C). We first observe that the limit part of 2 is
equivalent to the statement that the maps Y −→ Yj exhibit Y as the limit, in
Pro(C), of the diagram j 7→ Yj . The analogous statement for homotopy limits
in the setting of the induced model structure is essentially a consequence of the
following proposition

Proposition 8. Let (C,W,Fib) be a weak fibration category. If the induced
model structure on Pro(C) exists then every levelwise weak equivalence is a weak
equivalence in Pro(C).

Corollary 9. Let C be a weak fibration category and let Y = {Yj}j∈J ∈ Pro(C)
be a pro-object. Let F : J/ −→ Pro(C) be the limit diagram extending F(j) = Yj
so that F(∗) = Y (where ∗ ∈ J/ is the cone point). Then F is also a homotopy
limit diagram.

The main step towards Theorem 5 then becomes the following:

Proposition 10. Let X = {Xi}i∈I be a pro-object and Y ∈ C ⊆ Pro(C) a
simple object. Then the compatible family of maps X −→ Xi induces a weak
equivalence

hocolimi∈I MaphC(Xi, Y ) −→ MaphPro(C)(X,Y ) (3)

Sketch of Proof. The idea of the proof is to use the mapping space description
of Proposition 7 to relate the mapping space MaphPro(C)(X,Y ), which depends

on trivial fibrations in Pro(C) of the form X ′
'
� X, to the various mapping

spaces MaphPro(C)(Xi, Y ), which, in turn, depend on trivial fibrations in C of the

form Y
'
� Xi. These two types of data could be related if one could restrict to

using trivial fibrations which are simultaneously levelwise trivial fibrations.
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One hence needs to know that levelwise trivial fibrations are in some sense
sufficiently common. When C is small this can be achieved by the dual version
of the small object argument. In general one needs to require certain conditions
which we have builtin to our definition of when a model structure on Pro(C) is
induced from C. These conditions can be shown to hold in all the examples we
consider.

We give two applications of our general comparison theorem. Our first ap-
plication involves the theory of shapes of topoi. In [AM69], Artin and Mazur
defined the étale homotopy type of an algebraic variety. This is a pro-object
in the homotopy category of spaces, which depends only on the étale site of X.
Their construction is based on the construction of the shape of a topological
space X, which is a similar type of pro-object constructed from the site of open
subsets of X. More generally, Artin and Mazur’s construction applies to any
locally connected site.

In [BS15a] the first author and Schlank used their model structure to define
what they call the topological realization of a Grothendieck topos. Their
construction works for any Grothendieck topos and refines the previous con-
structions form a pro-object in the homotopy category of spaces to a pro-object
in the category of simplicial sets. On the ∞-categorical side, Lurie constructed
in [Lu09] an ∞-categorical analogue of shape theory and defined the shape as-
signed to any∞-topos as a pro-object in the∞-category S∞ of spaces. A similar
type of construction also appears in works of Toën and Vezzosi. One then faces
the same type of pressing question: Is the topological realization constructed
in [BS15a] using model categories equivalent to the one defined in [Lu09] using
the language of ∞-categories? We give a positive answer to this question:

Theorem 11. For any Grothendieck site C there is a weak equivalence

|C| ' Sh(Ŝhv∞(C))

of pro-spaces, where |C| is the topological realization constructed in [BS15a] and

Sh(Ŝhv∞(C)) ∈ Pro(S∞) is the shape of the hyper-completed ∞-topos Ŝhv∞(C)
constructed in [Lu09].

Combining the above theorem with [BS15a, Theorem 1.11] we obtain:

Corollary 12. Let X be a locally Noetherian scheme, and let Xét be its étale

site. Then the image of Sh(Ŝhv∞(Xét)) in Pro(Ho(S∞)) coincides with the étale
homotopy type of X.

Our second application is to the study of profinite homotopy theory.
Let S be the category of simplicial sets, equipped with the Kan-Quillen model
structure. The existence of the induced model structure on Pro(S) (in the sense
above) follows from the work of [EH76] (as well as [Is04] and [BS15a] in fact).
In [Is05], Isaksen showed that for any set K of fibrant object of S, one can
form the “maximal” left Bousfield localization LK Pro(S) of Pro(S) for which
all the objects in K are local. When choosing a suitable candidate K = Kπ,
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the model category LKπ Pro(S) can be used as a theoretical setup for profinite
homotopy theory.

On the other hand, one may define what profinite homotopy theory should
be from an∞-categorical point of view. Recall that a space X is called π-finite
if it has finitely many connected components, and finitely many non-trivial
homotopy groups which are all finite. The collection of π-finite spaces can be
organized into an∞-category Sπ∞, and the associated pro-category Pro(Sπ∞) can
equally be considered as the natural realm of profinite homotopy theory. One
is then yet again faced with the salient question: is LKπ Pro(S) a model for the
∞-category Pro(Sπ∞)? We give a positive answer to this question:

Theorem 13. The underlying ∞-category LKπ Pro(S) is naturally equivalent
to the ∞-category Pro(Sπ∞) of profinite spaces.

Isaksen’s approach is not the only model categorical approach to profinite
homotopy theory. In [Qu11] Quick constructs a model structure on the category

Ŝ of simplicial profinite sets and uses it as a setting to perform profinite
homotopy theory. His construction is based on a previous construction of Morel,
which endowed the category of simplicial profinite sets with a model structure
aimed at studying p-profinite homotopy theory. We then have the following
result:

Theorem 14. There is a Quillen equivalences

ΨKπ : LKπ Pro(S) � ŜQuick : ΦKπ

In particular, Quick’s model category is indeed a model for the ∞-category of
profinite spaces.
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