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Let X be Z-scheme, i.e., a smooth separated scheme of finite type over Z. In
this talk most schemes of interest will be affine, and so given by a collection of
polynomial equations with integral coefficients. A prominent goal of Diophan-
tine geometry is to understand the set X(Z) of integral points of X. If X is
affine this is simply the set of solutions in integral numbers to the equations
defining X. More specifically, one may consider the following two (very general)
questions:

1. Given a Z-scheme X, does it have an integral point?

2. If integral points exist, are they in any sense “abundant”?

The second question above is somewhat vague, and is a bit of as a catch-
all terminology for various specific questions. For example, one might ask if
there exist integral points which further satisfy various approximation conditions
arbitrarily well. In another direction, one might ask if X(Z) is Zariski dense.
Moving from the qualitative to the quantitative, one may use a suitable height
function H : X(Z) −→ R≥0 (if we assume that X ⊆ An is affine, we may simply
use the function (x1, ..., xn) 7→ maxi |xi|), and ask for the asymptotic growth of
the counting function

N(X, B) = {P ∈ X(Z)|H(P ) ≤ B}.

In this context, one often speaks of polynomial growth when N(X, B) is com-
parable to a polynomial in B, and of polylogarithmic growth when N(X, B)
is comparable to a polynomial in log(B). It is often also desirable to consider
the counting function N(U, B) where U ⊆ X is a small enough open subset (thus
removing, for example, the contribution of certain subvarieties, which may have
a different behaviour than X as a whole).

When X is projective the set X(Z) of integral points coincides with the set
of rational points of the Q-variety X = X ⊗Z Q. In this case a fundamental
paradigm in Diophantine geometry asserts that the behaviour of rational points
should be strongly controlled by the geometry of X. Focusing on simply con-
nected varieties, three geometric classes have been singled out and intensively
studied:
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1. Rationally connected varieties. For this class it is expected that rational
points are very well-behaved. For example, a conjecture of Colliot-Thélène
([?, p. 174]) predicts that the closure of the set of rational points inside
the space of adelic points coincides with the Brauer set of X. When
rational points exist, they are conjectured to be Zariski dense, and exhibit
a polynomial growth (Manin, Batyrev).

2. Simply connected general type varieties. For this class rational points are
expected to be rather scarce. For example, a conjecture of Lang predicts
that rational points will never be Zariski dense. Furthermore, one does
not expect to obtain good sufficient conditions for the existence of rational
points.

3. Calabi-Yau varieties. This is an intermediary class, whose arithmetic is
considered very subtle and largely unknown. In dimension 2 they are also
known as K3 surfaces, in which case a bit more is known. Growth of
rational points is believed to be subpolynomial (Manin, Batyrev) and even
polylogarithmic in suitably generic cases (Swinnerton-Dyer, Van-Luijk).

When X is not projective, the situation is more subtle. To this end it is
often convenient to consider a smooth compactification X ⊆ X such that the
complement is a simple normal crossing divisor. Having the pair (X,D) one can
access many properties which are relevant to the behaviour of integral points
on X:

1. Having the pair (X,D) we can study it using the framework of log geom-
etry. This enables one to find suitable integral counterparts to the three
geometric classes of varieties described above, in the form of log rationally
connected pairs, log Calabi-Yau pairs and log general type pairs.

2. The behavior of real points on D has a strong influence on X(Z). For
example, if D(R) = ∅ then X(R) is compact. If, in addition, X is affine
then X(Z) is automatically finite. In this case we could see this directly
from X(R). However, there can be more subtle behaviours. For example,
it could be that some components of D have real points and some not, and
the same can be said for components of the intersections of components
and so on. It turns out that even small differences in the configuration of
real points on D can have an impact on the behaviour of integral points,
and hence it is useful to have direct access to D.

3. Having the pair (X,D) enables us to study questions of deformations
and moduli spaces for our objects. While the open variety X itself is
not so amenable to deformations, the pair (X,D) can be handled with
the usual set of tools. This enables us to get a basic idea of “what is out
there”.

In this talk we wish to focus out attention on log K3 surfaces and their
integral points. To give the basic definitions let us consider a general base field
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k with a fixed algebraic closure k. Given a variety X over k we will denote by
X ⊗k k the base change of X from k to k.

Definition 1. Let X be a smooth geometrically integral surface over k. A
simple compactification of X is a smooth compactification ι : X ↪→ X
(defined over k) such that D = X \ X is a simple normal crossing divisor.

Definition 2. Let X be a smooth geometrically integral surface over k. A log
K3 structure on X is a simple compactification (X,D, ι) such that [D] = −KX

(where KX ∈ Pic(X) is the canonical class of X). A log K3 surface is a
smooth, geometrically integral, simply connected surface X equipped with a
log K3 structure (X,D, ι).

Let X be a log K3 surface. Since Xk is simply connected it follows that
k∗[X] = k∗ and that Pic(Xk) is torsion free, hence isomorphic to Zr for some
r. We shall call the integer r = rank(Pic(Xk)) the geometric Picard rank
of X. Furthermore, if (X,D, ι) is a log K3 structure on X then there exists a
short exact sequence

0 −→ Z|D| −→ Pic(Xk) −→ Pic(Xk) −→ 0

where Z|D| is the free abelian group generated by the geometric components of
D. In particular, the geometric Picard rank of X is given by rank(Pic(Xk))−]D.

Claim 3. Let X be a log K3 surface and (X,D, ι) a log K3 structure on X.
Then

1. Either D = ∅ and X = X is a (proper) K3 surface or D 6= ∅ and Xk is a
rational surface.

2. If D is non-empty then D is either a smooth projective genus 1 curve or
a cycle of genus 0 curves.

When X = X and D = ∅ we obtain the usual notion of a K3 surface. We
may hence suppose that the behaviour of integral points on log K3 surfaces
is close in spirit to the behaviour of rational points on smooth projective K3
surfaces. The following is one of the variants of a conjecture appearing in [VL]:

Conjecture 4 ([VL]). Let X be a K3 surface over a number field k, and let
H be a height function associated to an ample divisor. Suppose that X has
geometric Picard number 1. Then there exists a Zariski open subset U ⊆ X
such that

N(U,B) = #{P ∈ U(k)|H(P ) ≤ B} = O(log(B)).

We note that Conjecture 4 can be backed by various counting heuristics, such
as heuristics based on the circle method. If we apply these heuristics to more
general K3 surfaces they will predict that N(U,B) grows as logr(B), where r is
the rank of the Pic(Xk)Γk . However, in this generality this heuristic is known
to break down in special cases. For example, if X admits infinitely many maps
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P1 −→ X defined over k then the growth will be polynomial on every open set.
(In this case it is conjectured that the exponent can then be made arbitrarily
small by decreasing U .) Another special case is when X admits an elliptic
fibration with a section (defined over k). In this case there may be infinitely
many fibers whose rank is larger then Pic(Xk)Γk , yielding a polylogarithmic
growth with too big an exponent. Conjecturally, these issues do not occur when
rank Pic(Xk) = 1 (for example, in this case X cannot admit an elliptic fibration,
and has a finite automorphism group).

Returning to the case of log K3 surfaces we may cautiously expect that the
growth of integral points on a small enough open subset will be, at least in
suitable cases, logarithmic. We note that the minimal geometric Picard number
a non-proper smooth log K3 surface may attain is 0, corresponding to the case
where the components of D form a basis of Pic(Xk) (although this is by no
means the “generic” case). We then consider the following (possibly overly
optimistic) conjecture:

Conjecture 5. Let X be a smooth, separated scheme over Z such that X =
X⊗Z Q is a log K3 surface with Pic(X ⊗Q Q) = 0. Let H be a height function
associated to an ample divisor. Then there exists a Zariski open subset U ⊆ X

and a constant b such that

#{P ∈ U(Z)|H(P ) ≤ B} ' O
(
log(B)b

)
.

We may try to use circle method heuristics in order to estimate the constant
b. Given a log K3 surface (X,X,D, ι) over Q, let us define s to be 0 if D(R) = ∅,
to be 2 if D contains a component defined over R which contains an intersection
point defined over R, and 1 otherwise. In the terminology of [CLY10], s is
equal to 1 plus the dimension of the analytic Clemens complex of D over
R (where we agree then the empty complex has dimension −1). The circle
method heuristic will then predict that N(U, B) should grow as logb(B), where
b = rank(Pic(Xk)) + s. As we will see below, unlike in the case of projective K3
surfaces, the value of b predicted by this heuristic seems to be higher then the
true asymptotics in a few particular examples. The reason for this discrepancy
is currently completely mysterious.

Let us now review a few examples of log K3 surfaces.

Example 6. Let X ⊆ P3 be a cubic surface and D ⊆ X a hyperplane section
which is a simple normal crossing divisor. Then X is a del Pezzo surface of
degree 3 and [D] = KX . Since we assumed D to have simple normal crossings
there are three possibilities: either D is a smooth curve of genus 1 or a cycle
of genus 0 curves whose length is either 2 or 3. In all cases one can show that
X is simply connected and hence a log K3 surface. Since the geometric Picard
number of X is 7 we get that the geometric Picard number of X is then either
6, 5 or 4, accordingly. Such log K3 surfaces always admit an affine cubic equation
in three variable. The much studied surfaces

x3 + y3 + z3 = a
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are examples of such log K3 surfaces with D a smooth genus 1 curve. An
example with D a cycle of three genus 0 curves is given by the (modified)
Markoff-Rosenberger equation

ax2 + by2 + cz2 = Dxyz + 1

which is smooth as soon as D2

abc 6= 4.

Example 7. Let X −→ P1 be a conic bundle of the form

f(t, s)x2 + g(t, s)y2 = z2

where f(t, s), g(t, s) are separable homogeneous polynomials of degree 2 without
common factors, and (t : s) are homogeneous coordinates on P1. Then X is a
del Pezzo surface of degree 4 and the bisection D ⊆ P1 given by z = 0 is a
smooth curve of genus 1 whose class is the canonical class. One can then show
that X = X \ D is simply connected, and hence a log K3 surface of geometric
Picard rank 5. We may write X as a bundle of affine conics of the form

f(t, s)x2 + g(t, s)y2 = 1

where this equation should be interpreted as defining X inside the vector bundle
O(−1)⊕O(−1) over P1. As affine conics can be considered as analogues of elliptic
curves, we may say that X is a conic log K3 surface, in analogy with the
terminology of elliptic K3 surfaces in the projective case.

Remark 8. In Example 7 the compactifying variety X is a del Pezzo surface of
degree 4 equipped with a conic bundle structure. In general del Pezzo surfaces
of degree 4 need not admit such a structure. However, they always admit a pre-
sentation as complete intersections of two quadrics in P4. Cutting out a smooth
hyperplane one obtains a log K3 surface which admits an affine presentation of
the form

f(x, y, z, w) = 0

g(x, y, z, w) = 0

where f, g are (non-homogeneous) polynomials of degree 2. In their recent
paper [JS16] Janel and Damaris compute the Brauer groups and Brauer Manin
obstructions for many examples of this form.

Example 9. Let X be the blow-up of P2 at a point P ∈ P2(k). Let C ⊆ P2 be
a quadric passing through P and let L ⊆ P2 be a line which does not contain
P and meets C at two distinct points Q0, Q1 ∈ P2(k), both defined over k. Let

C̃ be the strict transform of C in X. Then D = C̃ ∪ L is a simple normal
crossing divisor, and it is straightforward to check that [D] = −KX . One can
show that the smooth variety X = X \ D is simply connected, and so X is a

log K3 surface. Since [L] and [C̃] form a basis for Pic(Xk) we get that X has
Picard rank 0.

To construct explicit equations for X, let x, y, z be projective coordinates on
P2 such that L is given by z = 0. Let f(x, y, z) be a quadratic form vanishing
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on C and let g(x, y, z) be a linear form such that the line g = 0 passes through
P and Q1. Then X is isomorphic to the affine variety given by the equation

f(x, y, 1)t = g(x, y, 1).

By a suitable linear change of coordinates (over k) we may always rewrite our
equation as

(xy − 1)t = x− 1.

We note that this particular surface, unique as it is over Q, admits infinitely
many pairwise non-isomorphic forms when working over the ring of integers Z.

Example 10. Let L = k(
√
a) be a quadratic extension of k. Let P0, P1 ∈ P2(L)

be a Gal(L/k)-conjugate pair of points and let X be the blow-up of P2 at P0

and P1. Let L ⊆ P2 be a line defined over k which does not meet {P0, P1} and
let L1, L2 ⊆ P2 be a Gal(L/k)-conjugate pair of lines such that L1 contains P1

but not P2 and L2 contains P2 but not P1. Assume that the intersection point
of L1 and L2 is not contained in L. Let L̃1, L̃2 be the strict transforms of L1

and L2 in X. Then D = L ∪ L̃1 ∪ L̃2 is a simple normal crossing divisor, and
it is straightforward to check that [D] = −KX . One can show that the smooth
variety X = X \ D is simply connected and so X is a log K3 surface. Since

[L], [L̃1] and [L̃2] form a basis for Pic(Xk), we get that that X has Picard rank
0.

To construct explicit equations for X, let x, y, z be projective coordinates on
P2 such that L is given by z = 0. Let f1(x, y, z) and f2(x, y, z) be linear forms
defined over L which vanish on L1 and L2 respectively. Let g(x, y, z) be a linear
form defined over k such that the line g = 0 passes through P1 and P2. Then
X is isomorphic to the affine variety given by the equation

f1(x, y, 1)f2(x, y, 1)t = g(x, y, 1).

By a suitable linear change of variables (over k) we may always write our equa-
tion as

(x2 − ay2)t = y − 1.

As above, for each a ∈ Z this surface admits infinitely pairwise non-isomorphic
forms over Z.

Remark 11. It may seem surprising that in Examples 8 and 9 we could al-
ways bring the equation to a canonical form, while this does not seem to
be the case for Examples 6 and 7. This is because the dimension of the
space of first order deformations of the pair (X,D) which fix D is equal to
rank(Pic(Xk)) = rank(Pic(Xk)) − ]D (see [Fr15]). Hence while examples 9
and 8 are rigid, Examples 6 and 7 have a positive dimensional moduli space.

Our current understanding of the behaviour of integral points in these cases
is rather preliminary. Let us review some of what is known about the examples
above. Concerning Example 6, it is not known if there exists an a such that the
set of integral points on x3 + y3 + z3 = a is Zariski dense, and it is not known
if there exists an a such that this set is not Zariski dense. The circle method
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heuristic (see [HB92]) predicts that integral points should grow as log(B). A
result of Colliot-Thélène and Wittenberg ([CTW12]) gives sufficient conditions
for the vanishing of the integral Brauer-Manin obstruction. For example when
a = 33 the integral Brauer-Manin obstruction vanishes, but it is not known if
integral points exist or not.

For the modified Markoff-Rosenberger equation, if one assumes that a, b, c|D
then the variety

ax2 + by2 + cz2 = Dxyz + 1

is acted upon (over Z) by Z/2 ∗ Z/2 ∗ Z/2. A Theorem of [YS01] states that

there are only six choices of (a, b, c,D) with a, b, c|D and D2

abc 6= 4 for which the
set of integral points is not empty. These cases were later analysed in [BU04],
where it was shown that in each case there are finitely many orbits, and the
asymptotic growth of integral points inside each orbit grows as log2(B).

Let us now consider Example 7. The following theorem is one of the main
results of [Ha15b]. Let S be a finite set of places of Q. Recall that for a set S
of places of Q we denote by ZS the ring of S-integers, i.e., rational numbers
whose denominator is divisible only by primes in S. Let f(t, s), g(t, s) ∈ ZS [t, s]
be separable homogeneous polynomials of degrees 2 which split completely over
ZS , so that we can write f(t, s) = a(c1t + d1s)(c2t + d2s) and g(t, s) = b(c1t +
d1s)(c2t+ d2s) where each ci, di is a coprime pair of S-integers. We will denote
by ∆i,j = cjdi− cidj the respective resultants, which we assume to be non-zero.

Theorem 12. Let S be a finite set of places of Q containing 2,∞. Let f(t, s), g(t, s) ∈
ZS [t, s] be homogeneous polynomials of degree 2 which split completely over ZS

and let Y −→ P1
S be the pencil of affine conics determined inside O(−1)⊕O(−1)

by the equation
f(t, s)x2 + g(t, s)y2 = 1.

Let a, b and ∆i,j 6= 0 be as above. Assume the following:

1. The S-integers a, b are square-free and not divisible by 3 or 5.

2. The classes of the elements {−1, a, b}∪{∆i,j}i>j are linearly independent
in Q∗/(Q∗)2.

3. Y has an S-integral adelic point.

Then Y has a Zariski dense set of S-integral points.

The proof of Theorem 11 uses an integral point adaptation of a method
which was pioneered by Swinnerton-Dyer to study rational points on pencils of
elliptic curves.

Let us now consider Example 8.

Theorem 13 ([Ha15a]). Let X/Z be as in Example 8. Then the set of integral
points X(Z) is not Zariski dense.
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Proof. Applying a suitable coordinate change we have that X is isomorphic over
Q (though not over Z) to the affine surface in A3 given by the equation

(xy − 1)t = x− 1 (1)

Hence the coordinates x, y, t determine three rational functions fx, fy, ft on the
scheme X which are regular when restricted to X. It follows that the poles of
fx, fy and ft are all “vertical”, i.e., they are divisors of the form M = 0 for
some M ∈ Z. In particular, there exists divisible enough M such that for every
P ∈ X(Z) the values Mfx(P ),Mfy(P ) and Mft(P ) are all integers. Given an
M ∈ Z, we will say that a number x ∈ Q is M -integral if Mx ∈ Z. We will say
that a solution (x, y, t) of 1 is M -integral if each of x, y and t is M -integral.
Now by the above there exists an M such that (fx(P ), fy(P ), fz(P )) is an M -
integral solution of 1 for every P ∈ X(Z). It will hence suffice to show that for
every M ∈ Z, the set of M -integral solutions of 1 is not Zariski dense (in the
affine variety 1).

Since the function f(y) = y−1
y on R converges to 1 as y goes to either ±∞ it

follows that there exists a positive constant C > 0 such that
∣∣∣ y
y+1

∣∣∣ < C for every

M -integral number −1 6= y ∈ Q. We now claim that if (x, y, t) is a M -integral
solution then either |y| ≤ 2M or |x − 1| ≤ 2C or t = 0. Indeed, suppose that
(x, y, t) is an M -integral triple such that |y| > 2M , |x − 1| > 2C, and t 6= 0.

Then |x− 1| > 2
∣∣∣y−1

y

∣∣∣ and hence

|(xy − 1)t| = |(x− 1)y + (y − 1)||t| > 1

2M
|(x− 1)y| > |x− 1|,

which means that (x, y, t) is not a solution to 1. It follows that all the Q-integral
solutions of 1 lie on either the curve t = 0, or on the curve x−1 = i for |i| ≤ 2C
an M -integral number, or the curve y = j for |j| ≤ 2M an M -integral number.
Since this collection of curves is finite it follows that M -integral solutions to 1
are not Zariski dense.

Theorem 12 raises the following question:

Question 14. Is it true that X(Z) is not Zariski dense for any integral model
of any log K3 surface of Picard rank 0?

We shall now show that the answer to question 13 is negative. Theorem I
of [Na88] implies, in particular, that there exists a real quadratic number field
L = Q(

√
a), ramified at 2 and with trivial class group, such that the reduction

map O∗
L −→ (OL/p)∗ is surjective for infinitely many prime ideals p ⊆ OL of

degree 1 over Q. Given such an L, we may find a square-free positive integer
a ∈ Q such that L = Q(

√
a). Now let X be the ample log K3 surface over Z

given by the equation
(x2 − ay2)t = y − 1. (2)

We now claim the following:
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Proposition 15. The set X(Z) of integral points is Zariski dense.

Proof. Let p = (π) ⊆ OL be an odd unramified prime ideal of degree 1 such that
O∗

L −→ (OL/p)∗ is surjective and let p = NL/Q(π). Let r ∈ F∗
p be the image of

the residue class of
√
a under the (unique) ring isomorphism OL/p ∼= Fp. Let

σ ∈ Gal(L/Q) be a generator. Then the image of the residue class of
√
a under

the isomorphism OL/σ(p) ∼= Fp is necessarily −r.
By our assumption on L there exists a u ∈ O∗

L such that the residue class
of uσ(π) mod p is equal to 2r. Since L is ramified at 2 there exists x0, y0 ∈ Z
such that uσ(π) = x0 +

√
ay0. Let x0, y0 ∈ Fp be the reductions of x0 and y0

mod p respectively. By construction we have x0 − ry0 = 0 and x0 + ry0 = 2r
and hence x0 = r and y0 = 1. It follows that y0 − 1 is divisible by p and since
x2

0 − ay2
0 = NL(uσ(π)) = ±p there exists a t0 ∈ Z such that

(x2
0 − ay2

0)t0 = y0 − 1.

In particular, the triple (x0, y0, t0) is a solution for 2. Let Cp ⊆ X be the curve
given by the additional equation x2 − ay2 = p. We have thus found an integral
point on either Cp or C−p. By multiplying u with units whose image in OL/p
is trivial we may produce in this way infinitely many integral points on Cp.
Now any irreducible curve in X is either equal to Cp = Cp ⊗Z Q for some p
or intersects each Cp at finitely many points. Our construction above produces
infinitely many p’s for which Cp has infinitely many integral points, and hence
X(Z) is Zariski dense, as desired.

Question 16. Does conjecture 5 hold for the surface 2? If so, what is the
appropriate value of b?

Remark 17. The circle method heuristic discussed above suggests that both
Example 8 and Example 9 should exhibit a growth of N(X,B) ∼ log2(B). This
is clearly wrong for 8, and for 9 it also does not seem to agree with some
preliminary simulations (which tend to favour the estimate N(X,B) ∼ log(B)).
Other heuristic simulations suggest that the when all the components of D, all
the intersection points of D are defined over Q, and the Galois action on Pic(X)k
is trivial, then the correct estimate should be N(X,B) ∼ logr(B) where r is the
geometric Picard rank.

A natural question that may arise at this point is to what extent do exam-
ples 8 and 9 represent the class of log K3 surfaces of Picard rank 0? To answer
this question it will be useful to introduce the following terminology:

Definition 18. Let X be a log K3 surface. We shall say that X is ample if it
admits a log K3 structure (X,D, ι) such that KX is ample (i.e., such that X is
a del Pezzo surface).

Theorem 19 ([Ha15a]). Any ample log K3 surface of Picard rank 0 over a field
k of characteristic 0 admits a log K3 structure of the form (X,D, ι) where X is
a del Pezzo surface of degree 5 and D is a cycle of five (−1)-curve.
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Given a log K3 structure (X,D, ι) of the form considered in Theorem 18 we
may consider the Galois action on the dual graph of D, yielding an invariant
α ∈ H1(k,D5), where D5 is the dehidral group of order 10, considered here
as the automorphism group of a cyclic graph of length 5. We then obtain the
following classification theorem:

Theorem 20 ([Ha15a]). Let k be a field of characteristic 0. The association
X 7→ αX determines a bijection between the set of k-isomorphism classes of
ample log K3 surfaces of Picard rank 0 and the Galois cohomology set H1(k,D5).

Theorem 21 ([Ha15a]). Let k be a field of characteristic 0. An ample log K3
surface X of Picard rank 0 over a field k is isomorphic to one of the log K3
surface of Example 8 if and only if its characteristic class αX ∈ H1(k,D5) is
trivial. It is isomorphic to one of the log K3 surface of Example 9 if and only
if αX is in the image of the map H1(k,Z/2) −→ H1(k,D5), where Z/2 ⊆ D5 is
generated by a reflection.
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