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Abstract. Associated to a presentable ∞-category C and an object X ∈ C

is the tangent ∞-category TXC, consisting of parameterized spectrum objects
over X. This gives rise to a cohomology theory, called Quillen cohomology,
whose category of coefficients is TXC. When C consists of algebras over a

nice ∞-operad in a stable ∞-category, TXC is equivalent to the ∞-category of
operadic modules, by work of Basterra–Mandell, Schwede and Lurie. In this
paper we develop the model-categorical counterpart of this identification and
extend it to the case of algebras over an enriched operad, taking values in a

model category which is not necessarily stable. This extended comparison can
be used, for example, to identify the cotangent complex of enriched categories,
an application we take up in a subsequent paper.
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1. Introduction

A ubiquitous theme in mathematics is the contrast between linear and non-
linear structures. In algebraic settings, linear objects such as vector spaces, abelian
groups, and modules tend to have a highly structured and accessible theory, while
non-linear objects, such as groups, rings, or algebraic varieties are often harder
to analyze. Non-linear objects often admit interesting linear invariants which
are fairly computable and easy to manipulate. Homological algebra then typically
enters the picture, extending a given invariant to a collection of derived ones.
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To streamline this idea one would like to have a formal framework to understand
what linear objects are and how one can “linearize” a given non-linear object. One
way to do so is the following. Let Ab denote the category of abelian groups. A
locally presentable category C is called additive if it is tensored over Ab. We
note that in this case the tensoring is essentially unique and induces a natural
enrichment of C in Ab. If D is a locally presentable category then there exists a
universal additive category Ab(D) receiving a colimit preserving functor Z ∶DÐ→
Ab(D). The category Ab(D) can be described explicitly as the category of abelian
group objects in D, namely, objects M ∈ D equipped with maps u ∶ ∗D Ð→ M ,
m ∶M ×M Ð→M and inv ∶M Ð→M satisfying (diagramatically) all the axioms of
an abelian group. We may then identify Z ∶ D Ð→ Ab(D) with the functor which
sends A to the free abelian group ZA generated from A, or the abelianization of
A.

When studying maps f ∶ B Ð→ A one is often interested in linear invariants of
B over A. A formal procedure to obtain this was developed by Beck in [Bec67],
where he defined the notion of a Beck module over an object A (say, in a locally
presentable category D) to be an abelian group object of the slice category D/A.
Simple as it is, this definition turns out to capture many well-known instances of
“linear objects over a fixed object A”. For example, if G is a group and M is
a G-module then the semi-direct product M ⋊G carries a natural structure of an
abelian group object in Grp/G. One can then show that the associationM ↦M ⋊G
determines an equivalence between the category of G-modules and the category of
abelian group objects in Grp/G. If D = Ring is the category of associative unital
rings then one may replace the formation of semi-direct products with that of
square-zero extensions, yielding an equivalence between the notion of a Beck
module over a ring R and the notion of an R-bimodule (see [Qui70]). When R is a
commutative ring the corresponding notion of a Beck module reduces to the usual
notion of an R-module.

In the realm of algebraic topology, one linearizes spaces by evaluating homology
theories on them. This approach is closely related to the approach of Beck: indeed,
by the classical Dold-Thom theorem one may identify the ordinary homology groups
of a space X with the homotopy groups of the free abelian group generated from
X (considered, for example, as a simplicial abelian group). The quest for more
refined invariants has led to the consideration of generalized homology theories and
their classification via homotopy types of spectra. The extension of homological
invariants from ordinary homology to generalized homology therefore highlights
spectra as a natural extension of the notion of “linearity” provided by abelian
groups, replacing additivity with stability. This has the favorable consequence that
kernels and cokernels of maps become equivalent up to a shift. Using stability as the
fundamental form of linearity is also the starting point for the theory of Goodwillie
calculus, which extends the notion of stability to give meaningful analogues to
higher order approximations, derivatives and Taylor series for functors between
∞-categories.

Replacing the category of abelian groups with the ∞-category of spectra means
we should replace the notion of an additive category with that of a stable ∞-
category. Thus, instead of associating to a locally presentable category D the
additive category Ab(D) of abelian group objects in D, we now associate to a
presentable ∞-category D the ∞-category Sp(D) of spectrum objects in D,
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which is the universal stable presentable ∞-category receiving a colimit preserving
functor Σ∞+ ∶DÐ→ Sp(D).

The two forms of linearization given by Beck modules and spectra were brought
together in [Lur14, §7.3] under the framework of the abstract cotangent complex
formalism. Given a presentable∞-categoryD and an object A ∈D, one may define
the analogue of a Beck module to be a spectrum object in the slice ∞-category
D/A. As in [Lur14], we will refer to Sp(D/A) as the tangent ∞-category at A,
and denote it by TAD. These various tangent ∞-categories can be assembled into
a global object, which is then known as the tangent bundle ∞-category TD.

The cotangent complex formalism allows one to produce cohomological invariants
of a given object A ∈ D in a universal way. The resulting cohomology groups
are known as Quillen cohomology groups, and take their coefficients in the
tangent ∞-category TAD (see [HNP16b, §2.2] for a more precise comparison with
the classical definition of Quillen cohomology via abelianization). In order to study
Quillen cohomology effectively one should therefore understand the various tangent
∞-categories TAD in reasonably concrete terms.

One of the main theorems of [Lur14, §7.3] identifies the tangent ∞-categories
TA(AlgP(C)) of algebras in a presentable stable ∞-category C over a given (uni-
tal, coherent) ∞-operad P with the corresponding operadic module ∞-categories
ModA(C). Earlier results along these lines were obtained in [Sch97] and [BM05].
For example, the above results identify the tangent ∞-category to E∞-ring spectra
at a given E∞-ring spectrum A with the ∞-category of A-module spectra. This
allows one to identify the (abstract) Quillen cohomology of an E∞-ring spectrum
with the corresponding topological André-Quillen cohomology.

Our main motivation in this paper is to generalize these results to the setting
where the operadic algebras take values in an∞-category which is not necessarily
stable. In this case, the objects of the tangent ∞-categories can be thought of as
“twisted” modules (see Corollary 1.0.3).

For various reasons we found it convenient to work in the setting of combinatorial
model categories, using [HNP16a] as our model for stabilization (see §2.1). Our
main result can be formulated as follows (see Corollary 4.2.1 below).

Theorem 1.0.1 (see Corollary 4.2.1). Let M be a differentiable combinatorial sym-
metric monoidal model category, P a colored symmetric operad in M and A a P-
algebra. Then under suitable technical hypotheses the Quillen adjunction

TAAlgP(M)
//
TAModPA(M)⊤oo

induced by the free-forgetful adjunction is a Quillen equivalence.

Remark 1.0.2. The role of the technical conditions alluded to in Theorem 1.0.1 is
mostly to ensure that all the relevant model structures exist and are homotopically
sound. They hold, for example, when every object in M is cofibrant and P is a
cofibrant single-colored operad, or when M is the category of simplicial sets with
the Kan-Quillen model structure and P is an arbitrary cofibrant colored operad (see
Remark 4.1.2). When the model structures above do not exist, we can still obtain a
similar comparison result for the associated relative categories (see Corollary 4.2.2).

The main idea behind Theorem 1.0.1 becomes most apparent in the case where
A is the initial P-algebra. In this case, P-algebras over A are just augmented P-
algebras and A-modules are augmented algebras over the sub-operad P≤1 Ð→ P
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containing only the 0- and 1-ary operations of P. We can reformulate the key prin-
ciple behind Theorem 1.0.1 as follows: the process of stabilization is insensitive to
algebraic operations of arity ≥ 2. This is the content of Theorem 4.1.1, which
relies on a skeletal filtration discussed in Section 3.2.

In fact, this principle also implies the theorem for a general P-algebra A, by the
following two observations:

(1) Since spectrum objects are canonically pointed, the tangent category of AlgP(M)
at A is equivalent to the tangent category of the under-category AlgP(M)A/, at
A. Since A is the initial object of AlgP(M)A/, the tangent category TAAlgP(M)
is equivalent to the stabilization of augmented objects in P-algebras under
A. Similarly, TAModPA(M) is equivalent to the stabilization of augmented A-
modules under A.

(2) P-algebras under A are algebras over the enveloping operad PA of A, while A-
modules under A are algebras over the sub-operad PA≤1 Ð→ PA. In other words,
by replacing P by PA we reduce to the case where A is the initial algebra, as
described above.

Under suitable assumptions, the tangent model category at a given operadic
algebra A can therefore be identified with the tangent category to A in the model
category of A-modules. This latter tangent category can be further simplified into
something that resembles a functor category with stable codomain. To make this
idea precise it is useful to exploit the global point of view obtained by assembling
the various tangent categories into a tangent bundle, using the model categorical
machinery of [HNP16a]. The final identification of TAAlgP(M) then takes the
following form (see Corollary 4.2.4 below):

Corollary 1.0.3. Let M,P and A be as in Theorem 1.0.1. Then we have a natural
Quillen equivalence

TAAlgP(M)
∼ //

FunM/M(PA1 ,TM)⊤oo

where PA1 is the enveloping category of A and FunM/M(PA1 ,TM) denotes the category
of M-enriched lifts

TM

��
PA1 A

//

==

M

(1.0.1)

of the underlying A-module A ∶ PA1 Ð→M.

We note that an enriched functor out of PA1 is exactly the notion of an A-module.
We may hence think of lifts as in (1.0.1) as twisted modules. Since the fibers
of TM Ð→M are stable these twisted modules are susceptible to the same kind of
manipulations as ordinary modules in the stable setting.

While Theorem 1.0.1 pertains to model categories, it can also be used to ob-
tain results in the ∞-categorical setting, using the rectification results of [PS18]
and [NS15]. This is worked out in §4.3, where the following ∞-categorical analogue
of the above result is established (see Theorem 4.3.3):

Theorem 1.0.4. Let C be a closed symmetric monoidal, differentiable presentable
∞-category and let O⊗ ∶= N⊗(P) be the operadic nerve of a fibrant simplicial operad.
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Then the forgetful functor induces an equivalence of ∞-categories

TAAlgO(C)
≃Ð→ TAModOA(C).

Here ModOA(C) is the ∞-category of A-modules in C, which is closely related to
the∞-operad of A-modules defined in [Lur14, §3.3] (see Section 4.3). In the special
case where C is stable the conclusion of Theorem 1.0.4 reduces to the following
statement (cf. [Lur14, Theorem 7.3.4.13]):

Corollary 1.0.5. If, in addition to the above assumptions, C is stable, then there
is an equivalence of ∞-categories

TAAlgO(C)
≃Ð→ModOA(C).

While Theorem 1.0.4 is only applicable to ∞-operads which are nerves of simpli-
cial operads (these are most likely all of them, see [CHH16],[HHM15]), it does cover
∞-operads which are not necessarily unital or coherent, as is assumed in [Lur14,
Theorem 7.3.4.13]. We also note that the model-categorical statement of Theo-
rem 1.0.1 can handle not only simplicial operads, but also enriched operads. This
allows one, for example, to consider dg-operads such as the Lie or Poisson operad,
which do not come from simplicial operads and thus are not covered by [Lur14, The-
orem 7.3.4.13]. It is likely that Theorem 1.0.4 could be generalized to the setting
of enriched ∞-operads of [CH17], see Remark 4.3.5.

One application of the non-stable comparison theorem is that it allows one to
study the tangent ∞-categories and Quillen cohomology of enriched ∞-categories,
an application we take up in [HNP16b] (see also Example 4.1.3). In particular,
if C is an ∞-category, then we identify TCCat∞ with the ∞-category of functors
Tw(C) Ð→ Spectra from the twisted arrow ∞-category of C to spectra. Similarly,
in [HNP18] we show that if C is an (∞,2)-category then TCCat(∞,2) can be identi-
fied with the ∞-category of functors from a suitable twisted 2-cell ∞-category
Tw2(C) of C to spectra.

Conventions and Notation. There are various points in the text (notably in
§4.3) where we make use of the theory of ∞-categories as developed by Joyal and
Lurie. In particular, by an ∞-category we will always mean a quasicategory in
the sense of Joyal. For a model category M, we will denote by M∞ its associated∞-
category, obtained as the ∞-categorical localization of M at the weak equivalences.
When M is a combinatorial model category, M∞ is a presentable ∞-category by
[Lur14, Proposition 1.3.4.22]. By [MG16, Theorem 2.1] (see also [Hin13, Proposi-
tion 1.5.1]), any Quillen adjunction F ∶ M Ð→⊥←Ð N ∶ G induces an adjunction on the
level of ∞-categories, which we will denote by

F∞ ∶M∞ Ð→⊥←Ð N∞ ∶ G∞.

For any model category M and any small category I, there is a natural functor
of ∞-categories Fun(I,M)Ð→ Fun(I,M∞). When M is combinatorial, this functor
realizes Fun(I,M∞) as the localization of Fun(I,M) at the pointwise weak equiv-
alences [Lur14, Proposition 1.3.4.25], i.e., every diagram in M∞ can be rectified to
a diagram in M. By [Lur14, Proposition 1.3.4.24], the homotopy colimit of such a
rectified diagram presents the colimit in M∞.
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2. Tangent categories and tangent bundles

In this section we will recall the notions of tangent categories and tangent bun-
dles, as well as their model categorical presentations developed in [HNP16a]. We
will then elaborate further on the particular case of (enriched) functor categories
(see §2.2) and establish some results which will be used in §4.2.

2.1. Stabilization of model categories. Recall that a model category is called
stable if its homotopy category is pointed and the induced loop-suspension ad-
junction Σ ∶ Ho(M) Ð→⊥←Ð Ho(M) ∶ Ω is an equivalence of categories (equivalently, the
underlying ∞-category of M is stable in the sense of [Lur14, §1]). Given a model
category M, it is natural to try to look for a universal stable model category M′

related to M via a Quillen adjunction M Ð→⊥←ÐM′. When M is combinatorial the un-
derlying∞-category M∞ is presentable, in which case a universal stable presentable
∞-category Sp(M∞) admitting a left adjoint functor from M∞ indeed exists. When
M is furthermore pointed and left proper there are various ways to realize Sp(M∞)
as a certain model category of spectrum objects in M (see [Hov01]).

However, most of these constructions require M to come equipped with a point-
set model for the suspension-loop adjunction (in the form of a Quillen adjunction),
which, to our knowledge, is not readily available in some cases of interest, such as
enriched categories (see [HNP16b]). As an alternative, the following model category
of spectrum objects was developed in [HNP16a], based on ideas of Heller ([Hel97])
and Lurie ([Lur06]):

Definition 2.1.1. Let M be a weakly pointed combinatorial model category. We
will say that a diagram X●● ∶ N×NÐ→M is a pre-spectrum if Xn,m is a weak zero
object for every n ≠m. We will say that it is an Ω-spectrum if it is a pre-spectrum
and the squares

Xn,n
//

��

Xn,n+1

��
Xn+1,n // Xn+1,n+1

(2.1.1)

are homotopy Cartesian for every n ≥ 0. We will say that a map f ∶ X●● Ð→ Y●●
is a stable weak equivalence if Maph(Y●●, Z●●) Ð→ Maph(X●●, Z●●) is a weak

equivalence of simplicial sets for every Ω-spectrum Z●●, where Maph is the derived
mapping space (computed in either the projective or injective model structure on
N ×N-diagrams).

Definition 2.1.2. Let M be a weakly pointed combinatorial model category. We
let Sp(M) denote the left Bousfield localization (when it exists) of the projective
model structure on the category of (N × N)-diagrams in M whose fibrant objects
are the levelwise fibrant Ω-spectra. The weak equivalences of this model structure
are exactly the stable weak equivalences (Definition 2.1.1).
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The existence of this left Bousfield localization requires some assumptions on M,
for example, being combinatorial and left proper. In this case there is a canonical
Quillen adjunction

Σ∞ ∶M Ð→⊥←Ð Sp(M) ∶ Ω∞,
where Ω∞ sends an (N×N)-diagram X●● to X0,0 and Σ∞ sends an object X to the
constant (N×N)-diagram with value X. While Σ∞X may not resemble the classical
notion of a suspension spectrum, it can be replaced by one in an essentially unique
way, up to a stable weak equivalence (see [HNP16a, Remark 2.3.4]).

When M is not pointed one stabilizes M by first forming its pointification
M∗ ∶=M∗/, endowed with its induced model structure, and then forming the above
mentioned model category of spectrum objects in M∗ (see Remark 2.1.4 for when
this construction is homotopically sound). We then denote by Σ∞+ ∶M

Ð→⊥←Ð Sp(M∗) ∶
Ω∞+ the composition of Quillen adjunctions

Σ∞+ ∶M
(−)∐∗//

M∗
U

oo
Σ∞ //

Sp(M∗) ∶ Ω∞+
Ω∞

oo .

When M is a left proper combinatorial model category and A ∈M is an object, the
pointification of M/A is given by the (left proper combinatorial) model category

MA//A ∶= (M/A)idA /
of objects in M over-under A, endowed with its induced model

structure. The stabilization of M/A is then formed by taking the model category
of spectrum objects in MA//A as above.

Definition 2.1.3. Let M be a combinatorial model category. As in [HNP16a], we
will denote the resulting stabilization of M/A, when it exists (e.g., when M is left
proper), by

TAM ∶= Sp(MA//A)
and refer to its as the tangent model category to M at A.

Remark 2.1.4. Even though the slice/coslice categories of a combinatorial model
category M carry an induced model structure, this will in general not be homotopi-
cally sound, in the sense that it yields a model for the corresponding slice/coslice
∞-categories. However, the slice model category M/A will be homotopically sound
if A is fibrant or if M is right proper, and the coslice model category MA/ will
be homotopically sound if A is cofibrant or M is left proper (see [HNP18, Lemma
3.3.1]).

By [HNP16a, Proposition 3.3.2] the∞-category associated to the model category
TAM is equivalent to the tangent ∞-category TA(M∞) in the sense of [Lur14,
§7.3], as soon as the slice-coslice model category MA//A is homotopically sound (see
Remark 2.1.4).

Recall that in the∞-categorical setting, the tangent bundle of an∞-category C

is the coCartesian fibration TC Ð→ C classified by the functor C Ð→ Cat∞ sending
A ∈ C to TAC. Starting from a model category M, it is then useful to have an
associated model category TM whose underlying ∞-category is TM∞ and which
behaves as much as possible like a family of model categories fibered over M, with
fibers the various tangent categories of M.

One of the motivations for using the model of [HNP16a] is that a simple variation
of the construction can be used to give a model for the tangent bundle of M which
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enjoys the type of favorable formal properties one might expect. For this one
considers the following variant of the category N ×N:

Construction 2.1.5. Let (N×N)∗ be the category obtained from N×N by freely
adding a zero object. More precisely, the object set of (N × N)∗ is Ob(N ×
N) ∪ {∗}, and we have Hom(N×N)∗((n,m), (k, l)) ≅ HomN×N((n,m), (k, l)) ∪ {∗} for
every (n,m), (k, l) ∈ N ×N, and Hom(N×N)∗(x,∗) ≅ Hom(N×N)∗(∗, x) ≅ {∗} for every
x ∈ (N ×N)∗.

The poset N × N has a natural Reedy structure in which the degree of (n,m)
is n +m and all morphisms are ascending. The category (N × N)∗ then inherits
a natural Reedy structure where the degree of ∗ is 0 and the degree of (n,m) is
n +m + 1. The ascending maps are those which are either in the image of N ×N or
have ∗ as their domain, while the descending maps are those which have ∗ as their
codomain.

Given a left proper combinatorial model category M, one now defines TM as a

certain left Bousfield localization of the Reedy model category M
(N×N)∗
Reedy , where a

Reedy fibrant object X ∈M(N×N)∗ is fibrant in TM if and only if the map Xn,m Ð→
X∗ is a weak equivalence for every n ≠ m and for every n ≥ 0 the square (2.1.1) is
homotopy Cartesian. We will refer to the model structure on TM as the tangent
bundle model structure. One may then show that the projection TM Ð→ M is
both a left and a right Quillen functor and exhibits TM as a relative model
category over M, in the sense of [HP15], whose fibers over fibrant objects A ∈M
can be identified with the corresponding tangent categories TAM. Furthermore,
the underlying map of ∞-categories TM∞ Ð→ M∞ exhibits TM∞ as the tangent
bundle of M∞.

2.2. Tangent bundles of functor categories. Let M be a left proper combina-
torial model category tensored over a symmetric monoidal tractable model category
S, and let I be a small S-enriched category whose mapping objects are cofibrant.
In this case, the enriched functor category FunS(I,M) carries the associated
projective model structure. Our goal in this section is to describe the tangent cat-
egories and tangent bundle of FunS(I,M). This will be useful in describing the
stabilization of module categories in §4.2.

By [HNP16a, Corollary 3.2.2] the model category TM inherits a natural S-

enrichment, and we may hence consider the category FunS(I,TM) of S-enriched
functors I Ð→ TM. Since M is combinatorial, TM is combinatorial as well and
we may consequently endow FunS(I,TM) with the projective model structure. We
then have the following proposition:

Proposition 2.2.1. The natural equivalence of categories FunS(I,M)(N×N)∗ ≃ FunS(I,M(N×N)∗)
identifies the model structures

T(FunS(I,M)proj) ≃ FunS(I,TM)proj. (2.2.1)

Proof. The tangent bundle model structure on the left hand side of (2.2.1) is a left

Bousfield localization of the Reedy-over-projective model structure on FunS(I,M)(N×N)∗ .
Similarly, the right hand side is a left Bousfield localization of the projective-over-
Reedy model structure on FunS(I,M(N×N)∗). It is not hard to verify that the equiv-

alence FunS(I,M)(N×N)∗ ≃ FunS(I,M(N×N)∗) identifies the Reedy-over-projective
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model structure with the projective-over-Reedy model structure. Under this iden-
tification the two left Bousfield localizations coincide. Indeed, a levelwise fibrant
enriched functor F ∶ I⊗ (N×N)∗ Ð→M (where ⊗ is inherited from the tensoring of
S over sets) is local in either the left or the right hand side of (2.2.1) if and only
if for every i ∈ I the restriction F∣i×(N×N) is an Ω-spectrum object of MF(i,∗)//F(i,∗)
(see Definition 2.1.1). □
Remark 2.2.2. Let F ∶ I Ð→M be a projectively fibrant S-enriched functor. Since
TFunS(I,M) Ð→ FunS(I,M) is a relative model category (see [HNP16a]) the

fiber (TFunS(I,M))F inherits a model structure, which coincides in this case with

TF FunS(I,M). Because (2.2.1) is an equivalence of (co)Cartesian fibrations over

FunS(I,M), we obtain an equivalence of categories

TF FunS(I,M) ≃ Sp(FunS(I,M)F//F)
≃Ð→ FunS/M(I,TM) ≃ (Fun

S(I,TM))F,
(2.2.2)

where FunS/M(I,TM) denotes the category of S-enriched lifts

TM

π��
I

>>|
|

|
F

// M.

By transport of structure one obtains a model structure on FunS/M(I,TM), which
coincides in this case with the corresponding projective model structure (i.e., where
weak equivalences and fibrations are defined objectwise).

When M is furthermore stable the situation becomes even simpler. Indeed, in
this case FunS(I,M) is stable and is Quillen equivalent to both sides of (2.2.2) under
mild assumptions. This follows from [HNP16a, Corollary 3.3.3] and the following
lemma:

Lemma 2.2.3. Let M be a stable model category equipped with a strict zero object
0 ∈ M and let A ∈ M be an object. Assume that either A is cofibrant or M is
left proper and that either A is fibrant or M is right proper. Then the Quillen
adjunction

(−)∐A ∶M Ð→⊥←ÐMA//A ∶ ker (2.2.3)

is a Quillen equivalence. In particular, in this case MA//A is stable.

Proof. The functor ker sends an object A Ð→ C
pÐ→ A over-under A to the object

ker(p) ≅ C ×A 0, while its left adjoint sends an object B to the object A Ð→
B∐A Ð→ A, where the first map is the inclusion of the second factor and the
second map restricts to the identity on A and to the 0-map on B. We then see
that (2.2.3) is indeed a Quillen adjunction.

Let B ∈M be a cofibrant object and A Ð→ C
pÐ→ A a fibrant object of MA//A.

We have to show that a map f ∶ B∐A Ð→ C over-under A is a weak equivalence
if and only if the adjoint map fad ∶ B Ð→ C ×A 0 is a weak equivalence. These two
maps fit into a diagram in M of the form

0

��

// B
fad

//

��

C ×A 0 //

��

0

��
A // B∐A

f // C
p // A,
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where the left square is coCartesian and the right square is Cartesian. Under the
assumption that A is cofibrant or M is left proper the left square is homotopy
coCartesian. Under the assumption that A is fibrant or M is right proper the right
square is homotopy Cartesian. Since the external rectangle is clearly homotopy
Cartesian and coCartesian and since M is stable, it follows from [HNP16a, Remark
2.1.4] and the pasting lemma for homotopy (co)Cartesian squares that all squares
in this diagram are homotopy Cartesian and coCartesian. This means in particular
that the top middle horizontal map is a weak equivalence iff the bottom middle
horizontal map is one. □

Corollary 2.2.4. Let M be a proper combinatorial strictly pointed stable model
category. Then the right Quillen functors

Sp(MA//A)
Ω∞Ð→MA//A

kerÐ→M (2.2.4)

are both right Quillen equivalences, and for every cofibrant object B Ð→ A in M/A
the image of Σ∞+ (B) under the composed Quillen equivalence (2.2.4) is naturally
equivalent to B itself.

Corollary 2.2.5. Let M be a proper combinatorial strictly pointed stable model
category tensored over a tractable SM model category S. Then for every S-enriched
functor F ∶ IÐ→M the tangent model category TF FunS(I,M) is Quillen equivalent

to FunS(I,M).

3. Colored operads

In this section we will recall the notion of a colored symmetric operad and review
some of its basic properties. The main technical tool we will need is a suitable
natural filtration on free algebras (see §3.2) which plays a key role in the proof
of the independence of stabilization on operations of arity ≥ 2, discussed in §4.1.
While this filtration has been studied before by several authors, for our purposes
we need a somewhat more specific formulation in which the filtration is directly
associated to a certain skeletal filtration on the operad in question.

3.1. Preliminaries. Throughout this section, let M be a symmetric monoidal
(SM) locally presentable category in which the tensor product distributes over col-
imits.

Definition 3.1.1. Let Σ be the groupoid of finite sets and bijections between
them. We will use the term n to denote a generic set of size n. In particular,
the automorphism group Aut(n) can be identified with the symmetric group on n
elements. For every n we will denote by n+ ∶= n∐{∗}.

We consider the association n ↦ n+ as a functor (−)+ ∶ Σ Ð→ Set. For a set W
we will denote by ΣW ∶= Σ×SetSet/W the comma category associated to (−)+. More
explicitly, we may identify objects of ΣW with pairs (n,w) where n is an object of
Σ and w ∶ n+ Ð→ W is a map of sets. We think of w as a vector of elements of
W indexed by n+ and refer to n as the arity of the object w. We will generally
abuse notation and refer to the object (n,w) simply by w, suppressing the explicit
reference to the arity.
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Remark 3.1.2. The category ΣW is a groupoid. If w ∈ ΣW has arity n then the
automorphism group Aut(w) of w in ΣW can be identified with the subgroup of
Aut(n) consisting of those permutations σ ∶ nÐ→ n such that w ○ σ = w.

Note that ΣW is equivalent to the groupoid whose objects are tuples of elements
(w1, . . . ,wn,w∗) in W with n ≥ 0, where every element of the symmetric group
σ ∈ Σn defines a morphism σ ∶ (wσ(1), . . . ,wσ(n),w∗)Ð→ (w1, . . . ,wn,w∗).

Definition 3.1.3. A W -symmetric sequence in M is a functor X ∶ ΣW Ð→
M. We will denote by SymSeqW (M) the category of W -symmetric sequences
in M. When the category M is fixed we will often abuse notation and denote
SymSeqW (M) simply by SymSeqW .

The category SymSeqW (M) admits a (non-symmetric) monoidal product known
as the composition product. Let us recall the details.

Construction 3.1.4. Let Ar be the groupoid whose objects are (not necessarily
bijective) arrows of finite sets ϕ ∶ k Ð→ n and whose morphisms are natural bijec-
tions between such maps. We will denote by DecW ∶= Ar ×Set Set/W the comma
category associated to the functor sum+ ∶ Ar Ð→ Set which sends ϕ ∶ k Ð→ n to
(k∐n)+. Explicitly, the objects of DecW are given by tuples (ϕ, v) consisting of a
map of finite sets ϕ ∶ k Ð→ n and a map v ∶ (k∐n)+ Ð→W .

Remark 3.1.5. An object of (n,w) ∈ ΣW can be thought of as encoding the domain
(w1, . . . ,wn) and codomain w∗ of a potential n-ary operation. Similarly, we think of
an object (ϕ ∶ k Ð→ n, v) of DecW as describing a potential decomposition of a k-
ary operation, in the following sense: the restriction v∣k+ describes a k-ary operation

(vj)j∈k Ð→ v∗, which comes with a decomposition into a collection of operations
(vj)j∈ϕ−1(i) Ð→ vi for each i ∈ n, followed by an n-ary operation (vi)i∈n Ð→ v∗.

Given an object (ϕ ∶ k Ð→ n, v) ∈ DecW , we will denote by ϕ∗ ∶ k∐n Ð→ n the
map which restricts to ϕ on k and to the identity on n. For every i ∈ n we will
consider the inverse image ϕ−1∗ (i) ≅ ϕ−1(i) ∪ {i} as a pointed set with base point
i. We may then consider (ϕ−1∗ (i), v∣ϕ−1∗ (i)) as an object of ΣW (which we will just

refer to as v∣ϕ−1∗ (i), following our convention above).

Definition 3.1.6. For two W -symmetric sequences X and Y we define X ⊠ Y ∶
DecW Ð→M by

(X ⊠ Y )(ϕ ∶ k Ð→ n, v) =X(v∣n+)⊗ (⊗
i∈n
Y (v∣ϕ−1∗ (i))).

We then define the composition product of X and Y to be the left Kan extension
X ○Y ∶= π!(X ⊠Y ) of X ⊠Y along the functor π ∶ DecW Ð→ ΣW given by π(ϕ, v) =
v∣k+ .

Explicitly, for w of arity k, the composition product is given by the formula

(X ○ Y )(w) ≅ ∐
[(ϕ,v)]

[X(v∣n+)⊗ (⊗
i∈n
Y (v∣ϕ−1∗ (i)))]⊗Aut(ϕ,v) Aut(w), (3.1.1)

where the coproduct runs over all isomorphism classes of objects (ϕ ∶ k Ð→ n, v ∶
(k∐n)+ Ð→W ) ∈ DecW such that v∣k+ = w, while Aut(ϕ, v) is the automorphism

group (ϕ, v) in DecW . We refer the reader to [PS18, §3] for more details on the
composition product (which is called the “substitution product” in loc. cit.).
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Remark 3.1.7. The composition product determines a (non-symmetric) monoidal
structure on SymSeqW whose unit is the symmetric sequence 1SymSeqW

such that
1SymSeq(w) is the unit ofM when w is constant and of arity 1 and is initial otherwise.
We note that the composition product preserves colimits in the left entry (see [PS18,
Proposition 3.6]), but generally not in the right. However, as can be seen by
inspecting the formula in (3.1.1), for a fixed X ∈ SymSeqW which is concentrated
in arity 1, the functor X ○ (−) does preserve colimits.

Definition 3.1.8. A W -colored (symmetric) operad P is a monoid object in
SymSeqW (M) with respect to the composition product described above. We will
usually not mention the term “symmetric” explicitly when discussing such operads,
and will omit the term “W -colored” whenever W is clear in the context. We will
denote by OpW (M) the category of W -colored operads in M.

Explicitly, a W -colored operad P consists of objects

P(w) = P((wi)i∈n;w∗)
that parametrize the n-ary operations from (wi)i∈n to w∗. For every ϕ ∶ k Ð→ n
and v ∶ (k∐n)+ Ð→W as above, there is a composition operation

P((vi)i∈n; v∗)⊗ (⊗
i∈n

P((vj)j∈ϕ−1(i); vi))Ð→ P((vj)j∈k; v∗),

subject to the natural equivariance, associativity and unitality conditions.

Definition 3.1.9. Let P be aW -colored operad in M. A left (resp. right) module
over P is a W -symmetric sequence in M which is a left (resp. right) module over
P with respect to the composition product above. A P-algebra is a left P-module
A ∈ SymSeqW (M) which is concentrated in arity 0, i.e., such that A(w) ≅ ∅M

whenever w is of arity n > 0.

Explicitly, a P-algebra is given by an object A ∈MW , together with maps

P(w)⊗A(w1)⊗ ...⊗A(wn)Ð→ A(w∗),
subject to the natural equivariance, associativity and unitality constraints. We
denote by AlgP(M) the category of P-algebras and algebra maps. When there is
no possibility of confusion we will also denote AlgP(M) simply by AlgP.

Examples 3.1.10. We have the following basic examples of operads in sets. For
any SM category M as above, they can also be interpreted as operads in M using
the canonical tensoring of M over sets.

(1) Commutative algebras are algebras over the commutative operad Com. Sim-
ilarly, there is an operad MCom on two colors W = {a,m} whose algebras are
pairs of a commutative algebra and a module over it. The sets of n-ary oper-
ations (wi)i∈n Ð→ w∗ is a singleton if either w∗ = wi = a for all i or if w∗ = m
and wi =m for exactly one i ∈ n, and is empty otherwise.

(2) Let O be a set. Then there is an O × O-colored operad PO whose algebras
are the categories with object set O. Explicitly, PO is the symmetrization of
the non-symmetric operad whose n-ary operations are as follows: for n ≥ 1
the object of n-ary operations from (x1, y1), (x2, y2), ..., (xn, yn) to (x∗, y∗) is
a singleton if x∗ = x1, y∗ = yn and yi = xi+1 for i = 1, ..., n − 1, and is empty
otherwise. For n = 0 the object of 0-ary operations into (x∗, y∗) is a singleton if
x∗ = y∗ and is empty otherwise. For any SM category M, PO-algebras in M are
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M-enriched categories with object set O. In particular, when O = ∗ the operad
PO is the associative operad.

Examples 3.1.11. In additive categories, there a various other types of algebraic
structures that arise as algebras over operads in abelian groups, which need not
come from operads in sets.

(1) Lie algebras are algebras over the Lie operad Lie . This is the smallest sub-
operad Lie ⊆ Ass of the associative operad (in abelian groups) that contains
the commutator element id−(12) ∈ Z[Σ2] = Ass(2).

(2) Poisson algebras (i.e., commutative algebras with a Lie bracket satisfying the
Leibniz rule) are algebras over the Poisson operad.

Similarly, n-shifted Poisson algebras are algebras over the n-shifted Poisson operad
in chain complexes.

Let jn ∶ ΣnW Ð→ ΣW and tn ∶ Σ≤nW Ð→ ΣW be the inclusions of the full sub-
groupoids consisting of objects of arity n and objects of arity ≤ n, respectively.

Definition 3.1.12. Let P be a W -colored symmetric sequence in M. We define
the arity n part of P to be the W -symmetric sequence Pn ∶= (jn)!j∗nP and the
n-skeleton of P to be the W -symmetric sequence P≤n ∶= (tn)!t∗nP, where we use
(−)∗ to indicate restriction and (−)! to denote left Kan extension. When n = 0, we
denote by P+0 the freeW -colored operad generated from theW -symmetric sequence
P0 ≅ P≤0. We will say that P is concentrated in arity n if the natural map
Pn Ð→ P is an isomorphism.

Explicitly, the symmetric sequence Pn (resp. P≤n) is given by Pn(w) ≅ P(w) for
w of arity n (resp. arity ≤ n) and Pn(w) ≅ ∅ for w of arity ≠ n (resp. arity > n). The
operad P+0 has no non-trivial m-ary operations for m > 1 (i.e., the corresponding
objects of m-ary operations are all initial), while P+0(w) ≅ P0(w) for w of arity 0
and its 1-ary operations are only identity maps.

Remark 3.1.13. The skeleton inclusion maps P≤n Ð→ P assemble into a map

colimn P≤n Ð→ P.

This map is an isomorphism: indeed, for every w ∈ ΣW the filtration {P≤n(w)}n∈N
stabilizes after finitely many steps.

Remark 3.1.14. Let P be a W -colored operad. Then P≤1 and P1 inherit from P

a natural operad structure. Furthermore, Pn inherits from P the structure of a
P1-bimodule and P≤n inherits from P the structure of a P≤1-bimodule. Similarly,
P0 ≅ P≤0 inherits from P the structure of a P-bimodule, and is in particular a
P-algebra. As such, it is the initial P-algebra.

Remark 3.1.15. AW -colored operad in M with only 1-ary operations is precisely an
M-enriched category with W as its set of objects. Consequently, if P is an operad
in M then we will often consider P1 as an M-enriched category, and will refer to it
as the underlying category of P. When P is an M-enriched category (i.e., when
P ≅ P1), a P-algebra is simply an enriched functor PÐ→M.

Definition 3.1.16. An augmented P-algebra in M is a P-algebra A equipped
with a map of P-algebras AÐ→ P0, where P0 is considered as the initial P-algebra.
We will denote by Algaug

P
∶= (AlgP)/P0

the category of augmented P-algebras. We
note that by construction the category Algaug

P
is pointed.
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Every morphism ofW -colored operads f ∶ PÐ→ Q induces an extension-restriction
adjunction

f! ∶ AlgP
//
AlgQ ∶ f∗.⊥oo

Let ∫P∈OpW
AlgP Ð→ OpW be the Grothendieck construction of the functor P ↦

AlgP and f ↦ f!. As in [BM09, Definition 1.5], one may consider the section

OpW Ð→ ∫
P∈OpW

AlgP,

sending a W -colored operad P to the pair (P,P0) consisting of P and its initial
P-algebra. This functor admits a left adjoint

Env ∶ ∫
P∈OpW

AlgP Ð→ OpW ,

associating to a pair (P,A) of an operad P and a P-algebra A a new operad PA ∶=
Env(P,A) ∈ OpW . Following [BM09] we will refer to PA as the enveloping operad
of A, and refer to the M-enriched category PA1 as the enveloping category of
A. The category of algebras over PA is equivalent to the category (AlgP)A/ of
P-algebras under A (see [PS18, Proposition 4.4(iv)]). When A ≅ P0 is the initial
P-algebra the natural map PÐ→ PA is an isomorphism ([PS18, Proposition 4.4(i)]).

Definition 3.1.17. Let P be an operad and A a P-algebra. An A-module is an
algebra over PA1 , i.e., an M-enriched functor from the enveloping category of A to

M. We will denote the category of A-modules in M by ModPA(M), or simply by

ModPA when there is no possibility of confusion.

Unwinding the definition, one finds that a module over a P-algebra A is given
by an object M ∈MW together with action maps

P(w)⊗ ( ⊗
i∈n∖{j}

A(wi))⊗M(wj) // M(w∗)

for every j ∈ n, subject to natural equivariance, associativity and unitality condi-
tions (cf. [BM09, Definition 1.1] for the 1-colored case).

Example 3.1.18. For a commutative algebra the notion of an operadic module
coincides with that of an ordinary module, while for associative algebras we obtain
the notion of a bimodule. If M is additive and A is an algebra over the Lie operad,
then PA1 is the usual enveloping algebra of a Lie algebra; an operadic A-module is
then a Lie-theoretic module in the classical sense.

Remark 3.1.19. If P is an operad concentrated in arity ≤ 1 then P is naturally
isomorphic to the enveloping operad (P1)P0 of P0 as a P1-algebra. Considering
P1 an an M-enriched category and P0 ∶ P1 Ð→ M as an enriched functor we may
then identify AlgP≤1 with the coslice category Fun(P1,M)P0/. For example, if

A is a P-algebra then the category of PA≤1-algebras is equivalent to the category
of PA1 -algebras under PA0 , i.e. A-modules M equipped with a map of A-modules

A Ð→ M . Similarly, the operad P
A,+
≤0 ∶= (PA)+≤0 is the operad whose algebras are

objects V ∈MW equipped with a map AÐ→ V in MW .

Example 3.1.20. Consider the operad PO from Example 3.1.10(2), whose algebras
in M are M-enriched categories with object set O. If C is such an enriched category,
then the enveloping operad of C is an operad PC ∶= PC

O in M whose algebras are
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M-enriched categories with object set O equipped with a map from C. Note that
PC does not come from an operad in sets in general.

Explicitly, PC can be identified with the symmetrization of the non-symmetric
operad whose object of n-ary operations from (x1, y1), (x2, y2), ..., (xn, yn) to (x∗, y∗)
is the given by

PC((x1, y1), (x2, y2), ..., (xn, yn); (x∗, y∗)) =
MapC(x∗, x1)⊗MapC(y1, x2)⊗ ...⊗MapC(yn−1, xn)⊗MapC(yn, y∗). (3.1.2)

The nullary operations are given by PC(∅; (x∗, y∗)) = C(x∗, y∗) and the composition
of operations uses the compositions in PO and in C. In particular, we have the
following:

- The operad (PC)1 of unary operations corresponds (see Remark 3.1.14) to the M-
enriched category with object setW = O×O and morphism objects (PC)1((x1, y1); (x∗, y∗)) =
MapC(x∗, x1) ⊗ MapC(y1, y∗). In other words, it is the M-enriched category
Cop ⊗ C. In particular, an operadic module over C is the same as a C-bimodule,
i.e., a functor Cop ⊗ CÐ→M.

- (PC)0 is given by (PC)0(x, y) = MapC(x, y). It is an algebra over PC by insert-
ing MapC(xi, yi) at each intermediate step in (3.1.2). In particular, it has the
structure of a C-bimodule MapC(−,−) ∶ Cop ⊗ CÐ→M.

- By Remark 3.1.14, the W -colored symmetric sequence of n-ary operations (PC)n
carries two actions of (PC)1 = Cop⊗C: the action (PC)1○(PC)n Ð→ (PC)n is given
on (3.1.2) by precomposition with arrows from C in x∗ and postcomposition in
y∗. The action (PC)n ○ (PC)1 Ð→ (PC)n is given on (3.1.2) by postcomposition
in x1, . . . , xn and precomposition in y1, . . . yn.

3.2. The filtration on a free algebra. In this section we will recall the natural
filtration on the free algebra over a colored operad P generated by an object X
together with a map P0 Ð→X, i.e. the free P-algebra where the nullary operations
have already been specified. This is a special case of the filtration on a pushout of
P-algebras along a free map P ○Y Ð→ P ○X (see, e.g., [PS18],[BM09] and [Cav14])
in the case where Y = P0 and the pushout is taken along P ○ P0 Ð→ P0. For our
purposes we need a somewhat more specific formulation of these results, in which the
filtration is directly associated to the filtration of P by skeleta (see Definition 3.1.12).

Let M be a closed symmetric monoidal category and let P be a W -colored sym-
metric sequence in M. We will denote by O ∶= P+≤0 the operad freely generated from
P≤0 (see Definition 3.1.12). We now recall that Pn inherits from P the structure of
a P1-bimodule and P≤n inherits from P the structure of a P≤1-bimodule (see Re-
mark 3.1.14). In particular, there is a canonical map Pn Ð→ P≤n of left P1-modules,
which induces a map Pn ○OÐ→ P≤n of P1 −O-bimodules.

Lemma 3.2.1. Let P be a W -colored operad in M. Then for every n ≥ 2 the square
of P1 −O-bimodules

(Pn ○O)
≤n−1

//

��

Pn ○O

��
P≤n−1 // P≤n

(3.2.1)

is a pushout square. Here the left vertical map is obtained by applying the functor
(−)≤n−1 to the right vertical map.
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Proof. The composition product (X,Y ) ↦ X ○ Y preserves colimits in the first
argument, and colimits in the second argument if X is concentrated in arity 1 (see
Remark 3.1.7). This implies that the forgetful functor from P1−O-bimodules toW -
symmetric sequences preserves and detects colimits, and so it suffices to show that
the above square is a pushout square in the category of W -symmetric sequences.
Since all objects are trivial in arities > n and both horizontal maps are isomorphisms
in arities < n, it remains to prove that the square in arity n is a pushout square.
Indeed, in arity n the left vertical map is an isomorphism between initial objects
and the right vertical map is an isomorphism because O coincides with the unit of
SymSeqW (with respect to ○) in arities ≥ 1. □

Let us now consider the natural operad maps O
ψÐ→ P≤1

φÐ→ P. The inclusion
ρ = φ ○ ψ ∶ O Ð→ P induces a free functor ρ! ∶ AlgO Ð→ AlgP. When X is an
O-algebra (i.e. an object of MW equipped with a map from P0), ρ!(X) is given
by the relative composition product P ○O X (which, as a W -colored symmetric
sequence, is concentrated in arity 0). Lemma 3.2.1 together with Remark 3.1.13
and Remark 3.1.7 then imply the following:

Corollary 3.2.2. The underlying left P≤1-module of the free P-algebra P ○OX can
be written as a colimit P ○O X ≅ colim

n≥1
P≤n ○O X, where for n ≥ 2 the n’th step can

be understood in terms of a pushout square of left P1-modules

(Pn ○O)
≤n−1

○OX //

��

Pn ○X

��
P≤n−1 ○OX // P≤n ○OX.

(3.2.2)

Example 3.2.3. Let C be an M-enriched category with object set S and let P ∶= PC

beM-enriched operad from Example 3.1.20. In this case, an O-algebraX is given by
a collection of maps ι ∶MapC(x, y)Ð→X(x, y) in M. The arrows of the M-enriched
category PC ○OX are freely generated by arrows from MapC and X, subject to the
condition that arrows from MapC, as well as their images under ι ∶ MapC Ð→ X,
are composed according to the composition in C.

The 0-th stage of the filtration is simply C itself and the stages PC
≤n ○OX contain

only sequences of arrows x∗
f1Ð→ x1

g1Ð→ y1
f2Ð→ ⋅ ⋅ ⋅ gkÐ→ yk

fk+1Ð→ y∗ where the fi come
from MapC, the gi fromX and where k ≤ n (cf. Equation (3.1.2)). In each stage, one
adds all sequences containing exactly n arrows from X. These are glued along those
sequences with at least one arrow in the image of ι ∶MapC Ð→X; the composition
is then already contained in PC

≤n−1 ○OX.

The filtration of Corollary 3.2.2 is somewhat non-satisfactory: while P ○O X ≅
colimn P≤n ○OX is a filtration of P ○OX as a left P≤1-module (or, equivalently, as a
P≤1-algebra, since P ○O X is concentrated in arity 0), the consecutive steps (3.2.2)
are only pushout squares of left P1-modules. We note that the difference between
the two notions is not big. Since P≤1 ≅ PP0

1 (see Remark 3.1.19) we see that if we
consider P0 as a left P≤1-module then the category of left P≤1-modules is naturally
equivalent to the category of left P1-modules under P0. We may hence fix the
situation by performing a mild “cobase change”.



TANGENT CATEGORIES OF ALGEBRAS OVER OPERADS 17

Definition 3.2.4. Let X be an O-algebra. We define the map R−n(X)Ð→ R+n(X)
by forming the following pushout diagram in the category of left P1-modules

(Pn ○O)0 //

��

(Pn ○O)≤n−1 ○OX

��

// Pn ○X

��
P0

// R−n(X)
_�

// R+n(X).
_� (3.2.3)

As R−n(X) and R+n(X) are left P1-modules which carry a map of left P1-modules
from P0 we may naturally consider both of them as left P≤1-modules. We also
remark that R−n(X) and R+n(X) are concentrated in arity 0 (since all the other
objects in the square are), and we may hence consider them also as P≤1-algebras.

Lemma 3.2.5. Let X be an O-algebra. Then for every n ≥ 2 there is a pushout
square of P≤1-algebras

R−n(X) //

��

R+n(X)

��
P≤n−1 ○OX // P≤n ○OX.

_� (3.2.4)

Proof. We have a commutative diagram of left P1-modules

(Pn ○O)0 //

��

(Pn ○O)≤n−1 ○OX //

��

Pn ○X

��
P0

// P≤n−1 // P≤n.

_� (3.2.5)

Using the universal property of pushouts we may extend (3.2.5) to a commutative
diagram of the form

(Pn ○O)0 //

��

(Pn ○O)≤n−1 ○OX //

��

Pn ○X

��
P0

// R−n(X)
_�

//

��

R+n(X)
_�

����
P≤n−1 // P≤n,

(3.2.6)

where the upper rectangle is the one defining R−n(X)Ð→ R+n(X). The right vertical
rectangle is just (3.2.2), and is hence a pushout rectangle. It then follows that the
bottom right square is a pushout square of left P1-modules, as desired. □

Example 3.2.6. In the situation of Example 3.2.3, PC
n○X contains finite sequences

f1Ð→ g1Ð→ ⋅ ⋅ ⋅ gnÐ→fn+1Ð→ with exactly n arrows from X. This object forms a C-bimodule
by pre- and postcomposing such sequences with arrows from C.

The object R+n(X) is the quotient where we identify sequences for which each
gi = ι(hi) is in the image of ι ∶ MapC Ð→ X, with the single composed arrow
ι(fn+1hn . . . h1f1). These composed arrows are precisely the target of a natural
map of C-bimodules MapC Ð→ R+n(X). Note that this map does not lift to a map
of bimodules MapC Ð→ PC

n ○X.

Our goal is to compute the map of symmetric sequences underlying R−n(X)Ð→
R+n(X). Since this map is the cobase change of the map (Pn○O)≤n−1○OX Ð→ Pn○X
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(Definition 3.2.4), it essentially suffices to identify the latter map. To this end, let
us introduce the following notation:

Notation 3.2.7. For a fixed w0 ∈ W let us denote by Σw0 ⊆ ΣW the full sub-
groupoid spanned by those w ∶ k+ Ð→W such that w∗ = w0.

Notation 3.2.8. For m ≥ 0, recall the subgroupoids ΣmW and Σ≤mW appearing just
above Definition 3.1.12. Given w0 ∈ W we will denote by Σmw0

∶= Σw0 ∩ ΣmW and
Σ≤mw0

∶= Σw0 ∩Σ≤mW .

Recall that for any tuple of morphisms {fi ∶ Ai Ð→ Bi}i∈n in M, the iterated
pushout-product map

2i∈nfi ∶ Q({fi})Ð→⊗
i∈n
Bi

is defined as follows. Let Sub(n) denote the poset of subsets of n and consider the
diagram

F({fi}) ∶ Sub(n) // M; I
� // (⊗i∈I Bi)⊗ (⊗j∈n∖I Aj).

If Sub0(n) ⊆ Sub(n) is the sub-poset of proper subsets of n, then the iterated
pushout-product map 2i∈nfi is defined to be the map

Q({fi}) ∶= colim
I∈Sub0(n)

F({fi})Ð→ colim
I∈Sub(n)

F({fi}) ≅⊗
i∈n
Bi, (3.2.7)

where the isomorphism uses that n is a terminal object of Sub(n).

Remark 3.2.9. For any i ∈ n, the map 2j∈nfj and (2j∈n∖ifj)2fi are naturally

isomorphic; this can be seen by writing Sub0(n) as a union of the sub-posets Sub(n∖
i) and Sub0(n)∖{n∖i}, so that that a colimit over Sub0(n) decomposes as a pushout
of colimits over these subposets and their intersection. In particular, 2j∈nfj can
indeed be obtained by inductively taking binary pushout-products.

Definition 3.2.10. Let X be an O-algebra, i.e. a sequence of objects {X(w)}w∈W
in M, together with maps O(w) ≅ P0(w)Ð→X(w). For every w ∈ ΣW , let us write

FX(w,−) ∶= F({P0(wi)Ð→X(wi)}i∈n) ∶ Sub(n)Ð→M

and

Q(X,w) ∶= Q({P0(wi)→X(wi)}i∈n))Ð→⊗
i∈n
X(i) (3.2.8)

for the iterated pushout-product map.

Proposition 3.2.11. For each w0 ∈ W , considered as an object in ΣW of arity
zero, the map

((Pn ○O)≤n−1 ○OX)(w0)Ð→ (Pn ○X)(w0)
can be identified with the map

colim
w∈Σn

w0

[Pn(w)⊗Q(X,w)]Ð→ colim
w∈Σn

w0

[Pn(w)⊗ (⊗
i∈n
X(wi))] (3.2.9)

induced by the pushout-product map (3.2.8).
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Corollary 3.2.12. For any w0 ∈W , Diagram (3.2.3) evaluated at w0 is isomorphic
to

colim
w∈Σn

w0

[Pn(w)⊗ (⊗
i∈n

P0(wi))] //

��

colim
w∈Σn

w0

[Pn(w)⊗Q(X,w)] //

��

colim
w∈Σn

w0

[Pn(w)⊗ (⊗
i∈n
X(wi))]

��
P0(w0) // R−n(X)(w0)

_�

// R+n(X)(w0).
_�

In particular, the map φw0 ∶ R−n(X)(w0) Ð→ R+n(X)(w0) is a cobase change of the
map

colim
w∈Σn

w0

[Pn(w)⊗Q(X,w)]Ð→ colim
w∈Σn

w0

[Pn(w)⊗ (⊗
i∈n
X(wi))].

The remainder of this section is devoted to the proof of Proposition 3.2.11.

Notation 3.2.13. Recall the decomposition groupoid DecW of Construction 3.1.4
which is endowed with the functor π ∶ DecW Ð→ ΣW sending (k Ð→ n, v) to
(k, v∣k+). For m ≥ 0 we will denote by

DecmW ∶= π−1ΣmW and Dec≤mW ∶= π−1Σ≤mW
the corresponding preimage subgroupoids. Similarly, for a w0 ∈ W we will denote
by

Decw0 ∶= π−1Σw0 , Decmw0
∶= π−1Σmw0

and Dec≤mw0
∶= π−1Σ≤mw0

the corresponding preimage subgroupoids.

Let us start with some preliminary observations about the composition product:

Lemma 3.2.14. Let X,Y,Z ∈ SymSeqW (M) be symmetric sequences such that X
is concentrated in arity 0. Then the following assertions hold:

(1) Y ○X is concentrated in arity 0 and for every w0 ∈W (considered as a 0-arity

object of ΣW ) the inclusion Σw0 ≅ Dec0w0
⊆ DecW induces an isomorphism

(Y ○X)(w0) ≅ colim
[w∶k+Ð→W ]∈Σw0

Y (w)⊗ (⊗
i∈k
X(wi)).

(2) For m ≥ 0 we have

(Y ○Z)≤m ≅ π≤m! (Y ⊠Z)∣Dec≤m
W
,

where we denote by π≤m ∶ Dec≤mW ↪ DecW Ð→ ΣW is the composed functor.
(3) For every w0 ∈W , ((Y ○Z)≤m ○X)(w0) is naturally isomorphic to

colim
(ϕ∶kÐ→n,v)∈

Dec≤mw0

[Y (v∣n+)⊗ (⊗
j∈n

Z(v∣ϕ−1∗ (j)))⊗ (⊗
i∈k
X(vi))]. (3.2.10)

Proof. For (1), if X is concentrated in arity 0 then X then Y ⊠X ∶ DecW Ð→ M

takes initial values outside Dec0W and is hence a left Kan extension of (Y ⊠X)∣Dec0W
.

It then follows that Y ○X is given by the left Kan extension of (Y ⊠X)∣Dec0W
along

the composed functor π0 ∶ Dec0W Ð→ DecW Ð→ ΣW . For a given w0 ∈ Σ0
W ⊆ ΣW the

fiber inclusion (π0)−1(w0) ⊆ Dec0W identifies with the full inclusion Σw0 ≅ Dec0w0
⊆

Dec0W , hence the result follows.
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Assertion (2) follows immediately from the Beck-Chevalley property of left Kan
extensions (see [Joy, Proposition 11.6]) associated to the homotopy Cartesian square
of groupoids

Dec≤mW
//

��

DecW

��
Σ≤mW

// ΣW .

For (3), we can use (1), (2) and the projection formula (which holds in this case
since M is closed monoidal, see [FHM03]) to compute

((Y ○Z)≤m ○X)(w0) ≅ colim
[w∶k+Ð→W ]∈Σw0

[(π≤m! (Y ⊠Z))(w)⊗ (⊗
i∈k
X(wi))]

≅ colim
(ϕ∶kÐ→n,v)∈

Dec≤mw0

[(Y ⊠Z)(k ϕÐ→ n, v)⊗ (⊗
i∈k
X(vi))].

Inserting the formula for Y ⊠Z (see Definition 3.1.6) yields the desired result. □
Proof of Proposition 3.2.11. The formula for (Pn ○ X)(w0) follows immediately
from part (1) of Lemma 3.2.14; indeed, since Pn is concentrated in arity n the

diagram w ↦ Y (w)⊗ (⊗i∈kX(wi)) takes initial values outside the essential image

of Σnw0
⊆ Σw0 , and is hence a left Kan extension of its restriction to Σnw0

.
Let us now establish the formula for (Pn ○O)≤n−1 ○OX. By definition it is given

as the coequalizer of the diagram

(Pn ○O)
≤n−1

○O ○X //// (Pn ○O)
≤n−1

○X, (3.2.11)

where the top arrow is induced from the left O-module structure of X and the

bottom arrow from the right O-module structure of (Pn ○O)
≤n−1

.

We can use part (3) of Lemma 3.2.14 to describe the symmetric sequences in
this diagram, which are all concentrated in arity 0. To describe their value at w0,
let us consider the following:

(⋆) Let Xw0 ⊆ Dec≤n−1w0
⊆ DecW be the full subgroupoid spanned by the objects

(ϕ ∶ k Ð→ m,v ∶ (k∐m)+ Ð→ W ) with k ≤ n − 1 satisfying the following
conditions: m = n (i.e.,m has n elements), ϕ is injective and v ∶ (k∐m)+ Ð→W
factors as (k∐m)+ Ð→m+ Ð→W and v∗ = w0.

Since Pn is concentrated in arity n and O contains only identities and 0-ary opera-
tions, the diagram Dec≤n−1w0

Ð→M given by

(k ϕÐ→m,v)↦ Pn(v∣m+)⊗ (⊗
j∈m

O(v∣ϕ−1∗ (j)))⊗ (⊗
i∈k
X(vi))

takes initial values outside (the essential image of) the full subgroupoid Xw0 ⊆
Dec≤n−1w0

of (⋆). We may therefore replace the colimit in part (3) of Lemma 3.2.14
by a colimit over Xw0 to obtain

((Pn ○O)≤n−1 ○X)(w0) ≅ colim
(ϕ∶kÐ→n,v)∈

Xw0

[Pn(v∣n+)⊗ (⊗
j∈n

O(v∣ϕ−1∗ (i)))⊗ (⊗
i∈k
X(vi))].

Consider the functor

q ∶ Xw0 Ð→ Σnw0
; (ϕ ∶ k Ð→ n, v)↦ (n, v∣n+).
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The functor q is fibered in sets, where the fiber over w ∈ Σnw0
is equivalent to the set

of proper subsets I ⊊ n. An automorphism of w acts on this fiber via the inclusion
Aut(w) ⊆ Aut(n) (see Remark 3.1.2). Breaking the colimit along the fibration
q ∶ Xw0 Ð→ Σnw0

of (⋆), we find that

((Pn ○O)≤n−1 ○X)(w0) ≅ colim
w∈Σn

w0

∐
I⊊n
[Pn(w)⊗ (⊗

n∖I
O(wj))⊗ (⊗

i∈k
X(wi))] (3.2.12)

≅ colim
w∈Σn

w0

[Pn(w)⊗∐
I⊊n
[( ⊗

j∈n∖I
P0(wj))⊗ (⊗

i∈I
X(wi))]].

The second isomorphism is due to the commutativity of tensor products with co-
products in each variable separately and the fact that the 0-ary operations of O are
those of P.

Similarly, note that O ○X is the free O-algebra on X, which is naturally isomor-
phic to P0∐X. We may therefore compute

((Pn ○O)≤n−1 ○O ○X)(w0) ≅ (3.2.13)

colim
w∈Σn

w0

[Pn(w)⊗∐
I⊊n
[( ⊗

j∈n∖I
P0(wj))⊗ (⊗

i∈I
(P0(wi)∐X(wi)))]] ≅

colim
w∈Σn

w0

[Pn(w)⊗ ∐
I′⊆I⊊n

[( ⊗
j∈n∖I

P0(wj))⊗ ( ⊗
i∈I∖I′

P0(wi))⊗ (⊗
i′∈I′

X(wi′))]] ≅

colim
w∈Σn

w0

[Pn(w)⊗ ∐
I′⊆I⊊n

[( ⊗
j∈n∖I′

P0(wj))⊗ (⊗
i′∈I′

X(wi′))]],

where the second isomorphism is due to the commutativity of tensor products with
coproducts in each variable separately. Combining (3.2.12) and (3.2.13) we may
now identify (Pn ○O)≤n−1 ○OX)(w0) with the coequalizer

colim
w∈Σn

w0

[Pn(w)⊗ ∐
I′⊆I⊊n

[( ⊗
j∈n∖I′

P0(wj))⊗ (⊗
i′∈I′

X(wi′))]] ////

colim
w∈Σn

w0

[Pn(w)⊗∐
I⊊n
[( ⊗

j∈n∖I
P0(wj))⊗ (⊗

i∈I
X(wi))]].

Using now the notation FX(w, I) ∶= (⊗j∈n∖I P0(wj))⊗(⊗i∈I X(wi)) of Definition

3.2.10) and the commutativity of tensor products with colimits in each variable
separately we may write the coequalizer above as

colim
w∈Σn

w0

[Pn(w)⊗ coeq [ ∐
I′⊆I⊊n

FX(w, I ′) //// ∐
I⊊n

FX(w, I) ]]. (3.2.14)

Here the bottom map sends the component FX(w, I ′) to the same component on
the right hand side, while the top map sends it to the component FX(w, I) using
the structure maps P0(wi) Ð→ X(wi) for i ∈ I ∖ I ′. We now observe that the
coequalizer appearing in the inner brackets of (3.2.14) is exactly the degree ≤ 1

part of the bar construction computing the colimit of F on Sub0(n) (see [Mac13,
§V.2]). We may finally conclude that

((Pn ○O)≤n−1 ○OX)(w0) ≅ colim
w∈Σn

W
(w0)

Pn(w)⊗Q(X,w)
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and that ((Pn ○O)≤n−1 ○OX)(w0)Ð→ (Pn ○X)(w0) identifies with the map

colim
w∈Σn

W
(w0)
[Pn(w)⊗Q(X,w)]Ð→ colim

w∈Σn
W
(w0)
[Pn(w)⊗ (⊗

i∈n
X(wi))],

as desired. □

4. Stabilization of algebras over operads

In this section we will establish the main results of this paper, following the
outline given in the introduction. In §4.1, we will establish that stabilization is
insensitive to algebraic operations of arity ≥ 2, by giving an equivalence between
the stabilization of the category of augmented algebras over an operad P and the
stabilization of the category of algebras over its 1-skeleton P≤1.

We then show in §4.2 how this comparison result can be used to equate tangent
categories of algebras with tangent categories of modules. The latter can then be
described explicitly as suitable categories of enriched lifts, using §2.2. In the last
section §4.3 we show how to harness the results of §4.1 to obtain analogous results
in the ∞-categorical setting.

Throughout this section, we will assume that M is a combinatorial SM model
category which is differentiable in the following sense (cf. [Lur14, Definition
6.1.1.6]): for every homotopy finite category I (i.e., a category whose nerve is a
finite simplicial set), the right derived limit functor R limMI Ð→ M preserves N-
indexed homotopy colimits. A Quillen pair F ∶M Ð→⊥←Ð N ∶ G is differentiable if M and
N are differentiable and RG preserves N-indexed homotopy colimits.

Recall that an operad P is called Σ-cofibrant if the underlying symmetric se-
quence of P is projectively cofibrant, and admissible if the model structure on M

transfers to the category AlgP of P-algebras. When P is admissible we will also
consider the category Algaug

P
of augmented algebras as a model category with its

slice model structure.

Definition 4.0.1. We will say that P is stably admissible if it is admissible and
in addition the stable model structure on Sp(Algaug

P
) exists.

Remark 4.0.2. One case where stable admissibility can often be established is when
P is 1-skeletal, i.e., P ≅ P≤1. Indeed, recall from Remark 3.1.19 that a 1-skeletal
operad P is simply an M-enriched category P1 together with an enriched functor
P0 ∶ P1 Ð→ M. The category of P-algebras is then equivalent to the category
Fun(P1,M)P0/ of enriched functors P1 Ð→ M under P0. When P is Σ-cofibrant
we can endow Fun(P1,M)P0/ with the coslice model structure associated to the
projective model structure on Fun(P1,M). Under the equivalence of categories
AlgP ≃ Fun(P1,M)P0/ this model structure is the one transferred from MW . In
particular, any 1-skeletal Σ-cofibrant operad in M is admissible. Furthermore, in
this case the forgetful functor Algaug

P
Ð→MW

P0//P0
is a left Quillen functor. It then

follows that Algaug
P

is left proper (and hence that P is stably admissible) as soon as
P is Σ-cofibrant and M is left proper.

4.1. The comparison theorem. Our goal in this section is to prove the core
result of this paper, which relates the stabilization of Algaug

P
to the stabilization

of the simpler category Algaug
P≤1

, obtained by forgetting the operations of arity ≥ 2.
First recall that the map φ ∶ P≤1 Ð→ P induces an adjunction

φaug
! ∶ Algaug

P≤1

//
Algaug

P
⊥oo ∶ φ∗aug
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on augmented algebras and hence an adjunction

φSp
! ∶= Sp(φ

aug
! ) ∶ Sp(Algaug

P≤1
)

//
Sp(Algaug

P
)⊥oo ∶ Sp(φ∗aug) =∶ φ∗Sp

on spectrum objects. Our main theorem can then be formulated as follows:

Theorem 4.1.1. Let M be a differentiable, left proper, combinatorial SM model
category and let P be a Σ-cofibrant stably admissible operad in M. Assume either
that M is right proper or that P0 is fibrant. Then the induced Quillen adjunction

φSp
! ∶ Sp(Alg

aug
P≤1
)

//
Sp(Algaug

P
)⊥oo ∶ φ∗Sp

is a Quillen equivalence.

Remark 4.1.2. If every object in M is cofibrant and P is a cofibrant single-colored
operad (with respect to the transferred model structure on operads in M) then
P is admissible ([Spi01, Theorem 4]) and the association A ↦ PA preserves weak
equivalences ([Fre09, Theorem 17.4.B(b)]). This implies that AlgP (as well as Algaug

P

) is left proper and hence that P is stably admissible. Work of Rezk ([Rez02]) gives
the same conclusion for a colored cofibrant operad when M is the category of
simplicial sets. It seems very likely that this statement holds for every cofibrant
colored operad and every combinatorial model category M in which every object is
cofibrant.

Example 4.1.3. Suppose that M is as in Theorem 4.1.1 and that C is a fibrant
M-enriched category with set of objects O. Recall the M-enriched operad PC of Ex-
ample 3.1.20, whose algebras are M-enriched categories with object set O, equipped
with a functor from C. Algebras over PC

≤1 are bimodules F ∶ Cop⊗CÐ→M equipped
with a bimodule map MapC Ð→ F.

The operad PC is Σ-cofibrant, since it is induced from a non-symmetric operad.
When M is sufficiently nice (e.g., if every object is cofibrant and weak equiva-
lences are stable under filtered colimits [HNP16b, Remark 3.1.7], [Lur09, Theorem
A.3.2.4]), PC is also stably admissible. For example, one could take M to be sim-
plicial sets (with the Joyal or the Kan-Quillen model structure) or chain complexes
over a field. In this case, Theorem 4.1.1 identifies the stabilization of M-enriched
categories over-under C with object set O with the stabilization of bimodules over-
under MapC. In [HNP16b], we will develop this idea further in order to study the
tangent categories and Quillen cohomology of enriched categories where the object
set is not fixed.

The key ingredient in the proof of Theorem 4.1.1 is the following statement:

Proposition 4.1.4. Let M be a differentiable, combinatorial SM model category
and let P be an admissible Σ-cofibrant operad in M (which implies the same for
P≤1, see Remark 4.0.2). Assume either that M is right proper or that P0 is fibrant.
Consider the induced adjunction on N ×N-diagrams

φN×N
! ∶ (Algaug

P≤1
)N×N

//
(Algaug

P
)N×N ∶ φ∗N×N⊥oo .

Then the following two statements hold:

(1) the functor φ∗N×N preserves and detects stable weak equivalences between pre-
spectra (see Definition 2.1.1).
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(2) for any levelwise cofibrant pre-spectrum object X●● in Algaug
P≤1

, the unit map

uX ∶X●● Ð→ φ∗N×Nφ
N×N
! X●● is a stable weak equivalence.

Proof of Theorem 4.1.1 assuming Proposition 4.1.4. Since every Ω-spectrum is in
particular a pre-spectrum we see that every object is stably equivalent to a levelwise
cofibrant pre-spectrum object. Combining (1) and (2) of Proposition 4.1.4 we may

then deduce that the derived unit of the Quillen adjunction φSp
! ⊣ φ

∗
Sp is a natural

equivalence. On the other hand, since φ∗aug preserves and detects weak equivalences
it follows that φ∗Sp detects stable weak equivalences between Ω-spectra, and hence
induces a conservative functor on the level of ∞-categories. This means that the

adjunction φSp
! ⊣ φ

∗
Sp induces an equivalence on the level of ∞-categories and is

hence a Quillen equivalence. □

In fact, Proposition 4.1.4 also yields an analogue of Theorem 4.1.1 when P is not
assumed to be stably admissible (see Corollary 4.1.6). For this let us recall some
notation from [HNP16a].

Definition 4.1.5. For a weakly pointed, differentiable, combinatorial model cat-
egory N, let Sp′(N) ⊆ NN×N denote the full subcategory spanned by Ω-spectra,
considered as a relative category with respect to levelwise weak equivalences,
and Sp′′(M) ⊆ NN×N the full subcategory spanned by pre-spectra, considered as a
relative category with respect to stable weak equivalences.

We observe that the inclusion Sp′(N) ⊆ Sp′′(N) is an equivalence of relative
categories. This follows from the fact that one can functorially replace a levelwise
cofibrant pre-spectrumX by an Ω-spectrumXΩ equipped with a stable weak equiv-
alence X Ð→ XΩ (see [HNP16a, Remark 2.1.9]) and the fact that a stable weak
equivalence between Ω-spectra is a levelwise weak equivalence. Of course, when the
stable model structure exists this is just a direct corollary of the fact that every ob-
ject in Sp(M) is stably equivalent to a pre-spectrum (see [HNP16a, Remark 2.3.6]).
It now follows from [HNP16a, Remarks 3.3.4] that the underlying ∞-categories of
both Sp′(N) and Sp′′(N) model the ∞-categorical stabilization Sp(N∞).

Corollary 4.1.6. Let M be a differentiable, combinatorial SM model category and
let P be an admissible Σ-cofibrant operad in M (which implies the same for P≤1, see
Remark 4.0.2). Assume either that M is right proper or that P0 is fibrant. Then
φ∗aug induces an equivalence of relative categories

Sp′(Algaug
P
)Ð→ Sp′(Algaug

P≤1
).

In particular, Sp(Algaug
P≤1
) is a model for the stabilization of (Algaug

P
)∞.

Proof. Let Q ∶ (Algaug
P≤1
)N×N Ð→ (Algaug

P≤1
)N×N be a levelwise cofibrant replace-

ment functor. Since the functor φ∗N×N ∶ (Algaug
P
)N×N Ð→ (Algaug

P≤1
)N×N preserves

Ω-spectra, it follows that φN×N
! ○Q preserves stable weak equivalences between pre-

spectra. By Proposition 4.1.4(1), φ∗N×N also preserves stable weak equivalences
between pre-spectra. It follows that φN×N

! ○Q and φ∗N×N induce relative functors be-
tween Sp′′(Algaug

P
) and Sp′′(Algaug

P≤1
). Combining (1) and (2) of Proposition 4.1.4,

we conclude that the compositions φ∗N×N ○ φN×N
! ○Q and φN×N

! ○Q ○ φ∗N×N are both
related to the identity functors by chains of natural weak equivalences. In particu-
lar, φ∗N×N ∶ Sp

′′(Algaug
P
)Ð→ Sp′′(Algaug

P≤1
) is an equivalence of relative categories and
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hence φ∗N×N ∶ Sp
′(Algaug

P
)Ð→ Sp′(Algaug

P≤1
) is an equivalence of relative categories as

well. □

The rest of this section is devoted to the proof of Proposition 4.1.4. We begin
with some preliminary lemmas. We will say that a map f ∶ X Ð→ Y in a weakly
pointed model categoryM is null-homotopic if its image in Ho(M) factors through
the zero object 0.

Definition 4.1.7. Let M1, ...,Mn,N be weakly pointed model categories and let
F ∶ ∏iMi Ð→ N be a functor (of ordinary categories). We will say that F is
multi-reduced if F(X1, ...,Xn) is a weak zero object of N whenever all the Xi are
cofibrant and at least one of them is a weak zero object.

Lemma 4.1.8 (cf. [Lur14, Proposition 6.1.3.10]). For n ≥ 2, let M1, ...,Mn and N

be combinatorial differentiable weakly pointed model categories and let F ∶∏iMi Ð→
N be a multi-reduced functor. For every collection {Zi●● ∈ MN×N

i }1≤i≤n of levelwise
cofibrant pre-spectrum objects, the object F(Z1

●●, ..., Z
n
●●) ∈ NN×N is stably equivalent

to a weak zero object.

Proof. For simplicity we will prove the claim for n = 2. The proof in the general
case is similar. Consider the following commutative diagram

F(Z1
n,n, Z

2
n,n) //

��

F(Z1
n,n+1, Z

2
n,n)

∼ //

��

F(Z1
n,n+1, Z

2
n,n+1)

∼
��

F(Z1
n+1,n, Z

2
n,n) //

∼
��

F(Z1
n+1,n+1, Z

2
n,n) //

��

F(Z1
n+1,n+1, Z

2
n,n+1)

��
F (Z1

n+1,n, Z
2
n+1,n)

∼ // F(Z1
n+1,n+1, Z

2
n+1,n) // F(Z1

n+1,n+1, Z
2
n+1,n+1).

Since F is multi-reduced we have that F(X,Z2
k,m) and F(Z1

m,k,X) are weak zero
objects for every k ≠ m and any cofibrant X ∈ M, so that all off-diagonal items
in this diagram are weak zero objects. The external square induces a map fn ∶
ΣF(Z1

n,n, Z
2
n,n) Ð→ F(Z1

n+1,n+1, Z
2
n+1,n+1) in the homotopy category Ho(N), which

factors as

ΣF(Z1
n,n, Z

2
n,n)Ð→ F(Z1

n+1,n+1, Z
2
n,n)Ð→ F(Z1

n+1,n+1, Z
2
n+1,n+1),

where the first map is induced from the top left square. Since the second map is
null-homotopic, it follows that the map fn is null-homotopic as well. By [HNP16a,
Corollary 2.4.6] the N×N-diagram F(Z1

●●, Z
2
●●) is stably equivalent to an Ω-spectrum

whose value at the place (m,m) can be computed as a homotopy colimit of the
form

F(Z1
m,m, Z2

m,m)
gmÐ→ ΩF(Z1

m+1,m+1, Z
2
m+1,m+1)

gm+1Ð→ Ω2
F(Z1

m+2,m+2, Z
2
m+2,m+1)→ . . . ,

where the image of gi in Ho(N) is adjoint to fi and hence null-homotopic for every
i ≥ m. Since a homotopy colimit of a sequence of null-homotopic maps is a weak
zero object the desired result follows. □

Recall that for any map f ∶ X Ð→ Y in a category with a zero object 0, the
cofiber of f , denoted cof(f), is the pushout 0∐X Y .
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Lemma 4.1.9. Let M be a strictly pointed combinatorial model category and sup-
pose that f ∶ X Ð→ Y is a levelwise cofibration between levelwise cofibrant pre-
spectra in M. Then f is a stable weak equivalence if and only if the map 0Ð→ cof(f)
is a stable weak equivalence.

Proof. Under our assumptions the pushout 0∐X Y is also a homotopy pushout
in MN×N. It follows that if f is a stable weak equivalence then 0 Ð→ cof(f) is a
stable weak equivalence. We shall now show that if 0 Ð→ cof(f) is a stable weak
equivalence then f is a stable weak equivalence. Consider the diagram

X
f //

��

Y

��

// Z1

��
0 // cof(f) //

��

X ′
_�

��
Z2

// Y ′,

_�

in which all the squares are homotopy coCartesian and Z1, Z2 are weak zero objects.
If 0Ð→ cof(f) is a stable weak equivalence then the map cof(f)Ð→ Z2 is a stable
weak equivalence and hence the map X ′ Ð→ Y ′ is a stable weak equivalence. On
the other hand, since the external rectangles are homotopy coCartesian it follows
that the map X ′ Ð→ Y ′ is a model for the induced map ΣX Ð→ ΣY on suspen-
sions. Now for every Ω-spectra W we have Maph(X ′,W [1]) ≃Maph(X,ΩW [1]) ≃
Maph(X,W ) and the same for Y ′. Since X ′ Ð→ Y ′ is a stable weak equivalence it
now follows that f ∶X Ð→ Y is a stable weak equivalence. □

Corollary 4.1.10. Let M be a combinatorial differentiable SM model category and
let A1, ...,An ∈M be a collection of cofibrant objects (with n ≥ 2). For each i = 1, ..., n

let Ai
fi
●●Ð→Xi

●● Ð→ Ai be a levelwise cofibrant pre-spectrum object in MAi//Ai . Then
the levelwise pushout-product

f1●●2...2f
n
●● ∶ Q(f1●●, ..., fn●,●)Ð→

n

⊗
i=1
Xi
●●

is a stable weak equivalence and levelwise cofibration between levelwise cofibrant
pre-spectrum objects in MA1⊗...⊗An//A1⊗...⊗An .

Proof. The pushout-product axiom in M implies that f1●●2...2f
n
●● is a levelwise

cofibration between levelwise cofibrant objects. By Lemma 4.1.9 it will now suffice
to show that the cofiber of this map is stably equivalent to the zero pre-spectrum
in MA1⊗...⊗An//A1⊗...⊗An .

Consider the functor G ∶∏ni=1MAi//Ai Ð→MA1⊗...⊗An//A1⊗...⊗An given by

G(A1 f1

Ð→X1 Ð→ A1, ...,An
fn

Ð→Xn Ð→ An) ∶= cof(f12...2fn).
This functor is multi-reduced: indeed, the cofiber cof(f12...2fn) is a levelwise
weak zero object if at least one of the f i is a trivial cofibration in M, by the
pushout-product axiom. Lemma 4.1.8 now implies that the cofiber of the map
f1●●2...2f

n
●● is stably equivalent to a zero object, as desired. □

Let us now fix a combinatorial SM model category M, a set of colors W and
a W -colored operad P in M. We will be interested in the maps of operads O ∶=
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P+≤0
ψÐ→ P≤1

φÐ→ P, whose composition we denote by ρ. Here φ is the skeleton
inclusion and ψ is induced from P≤0 Ð→ P≤1. Upon passing to operadic algebras,
this sequence yields a sequence of adjunctions:

ρ! ∶ AlgO
ψ! //

AlgP≤1⊥

ψ∗
oo

φ! //
AlgP ∶ ρ∗.⊥

φ∗
oo (4.1.1)

The functors ψ!, ρ! and φ∗ preserve initial objects, and consequently augmented
objects. In particular, the unit map determines a natural map

u ∶ ψ!(X) ≅ P≤1 ○OX Ð→ P ○OX ≅ φ∗ρ!(X),

of augmented P≤1-algebras.

Proposition 4.1.11. Let X●● ∈ (AlgaugO
)N×N be a levelwise cofibrant pre-spectrum

object in augmented O-algebras. If P is Σ-cofibrant then the induced map

u ∶ P≤1 ○OX●● Ð→ P ○OX●●
is a stable weak equivalence in (Algaug

P≤1
)N×N.

Proof. Note that P≤1 ○OX●● is a levelwise cofibrant pre-spectrum object in Algaug
P≤1

,

since X●● is a levelwise cofibrant pre-spectrum object in Algaug
O

. Similarly, P○OX●●
is a levelwise cofibrant pre-spectrum object in Algaug

P
, and hence also defines a pre-

spectrum object in Algaug
P≤1

. In particular, the map u is a map between pre-spectrum

objects.
The forgetful functor ψ∗aug ∶ Algaug

P≤1
Ð→ Algaug

O
is both a left and a right Quillen

functor (see Remark 4.0.2) and so the Quillen pair ψaug
! ⊣ ψ∗aug is in particular differ-

entiable. Since ψ∗aug preserves and detects weak equivalences, [HNP16a, Corollary

2.4.8] implies that ψ∗N×N ∶ (Alg
aug
P≤1
)N×N Ð→ (Algaug

O
)N×N preserves and detects stable

weak equivalences between pre-spectra. It will hence suffice to show that

ψ∗N×N(u) ∶ ψ∗N×N(P≤1 ○OX●●)Ð→ ψ∗N×N(P ○OX●●)

is a stable weak equivalence. Now by Corollary 3.2.2 the map ψ∗N×N(u) is a transfi-
nite composition

ψ∗N×N(P≤1 ○OX●●)Ð→ ψ∗N×N(P≤2 ○OX●●)Ð→ ψ∗N×N(P≤3 ○OX●●)Ð→ ... (4.1.2)

of maps of N ×N-diagrams of augmented O-algebras. It suffices to prove that each
map

ψ∗N×N(P≤n−1 ○OX●●)Ð→ ψ∗N×N(P≤n ○OX●●)
is a stable weak equivalence and a levelwise cofibration. Indeed, ψ∗N×N(u) can then
be identified with the canonical map from the levelwise cofibrant object ψ∗N×N(P≤1○O
X●●) to the levelwise homotopy colimit of the sequence of stable weak equivalences
(4.1.2). It is hence a stable weak equivalence.

Now since ψ∗aug is left Quillen, it preserves the pushout square (3.2.4) of Lemma
3.2.5. By [HNP16a, Remark 2.1.10] it then suffices to show that for every w0 ∈W
and every n ≥ 2 the map

ψ∗N×N(R−n(X●●))(w0)Ð→ ψ∗N×N(R+n(X●●))(w0) (4.1.3)

is a stable weak equivalence and a levelwise cofibration between levelwise cofibrant
N ×N-diagrams in MP0(w0)//P0(w0).
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Let us now fix a color w0 ∈W and a number n ≥ 1. As in §3.2, let us denote by
Σnw0

⊆ ΣnW the full subgroupoid spanned by those w ∈ ΣnW such that w∗ = w0 (see
Notation 3.2.8). We have the injectively cofibrant functor P⊗n0 ∶ Σnw0

Ð→ M given
by P⊗n0 (w) ∶=⊗i∈n P0(wi). For k,m ∈ N consider the functors X⊗nk,m,Qk,m ∶ Σ

n
w0
Ð→

M with X⊗nk,m(w) ∶= ⊗i∈nXk,m(wi) and such that Qk,m(w) is the domain of the

pushout-product of the maps P0(wi)Ð→Xk,m(wi) for i = 1, ..., n. Corollary 4.1.10
now implies that the natural map

Q●● Ð→X⊗n●● (4.1.4)

is a stable weak equivalence and a levelwise cofibration between levelwise cofibrant

pre-spectrum objects in (M
Σn

w0

inj )P⊗n0 //P
⊗n
0
.

Now recall that the coend operation M
Σn

w0

proj ×M
Σn

w0

inj Ð→M, which we will denote

by F,G↦ F ⊗Σn
w0
G, is a left Quillen bifunctor (see, e.g., [Lur09, Remark A.2.9.27]).

Let Pnw0
∶ Σnw0

Ð→ M be the functor w ↦ P(w). Since P is Σ-cofibrant we have
that Pnw0

is projectively cofibrant, and so we may consider the left Quillen functor
L given by the composition

L ∶ (M
Σn

w0

inj )P⊗n
0 /

Pn
w0
⊗Σn

w0
(−)

// MPn
w0
⊗Σn

w0
P⊗n

0 /
// MP0(w0)/,

where the second functor is the cobase change along the map Pnw0
⊗Σn

w0
P⊗n0 Ð→

P0(w0) induced by the P-algebra structure of P0. Proposition 3.2.11 now tells
us that the map (4.1.3) is obtained by levelwise applying (the augmented version
of) L to the map (4.1.4), and is hence a stable weak equivalence and a levelwise
cofibration, as desired. □

To deduce Proposition 4.1.4 from Proposition 4.1.11 we will need the following
result:

Proposition 4.1.12. Let M be a differentiable, combinatorial, SM model category
and let f ∶ P Ð→ Q be a map of Σ-cofibrant admissible W -colored operads in M

which is an isomorphism on 0-ary operations. Suppose that either M is right proper
or that P0 ≅ Q0 is fibrant. Then f∗aug ∶ Alg

aug
Q
Ð→ Algaug

P
preserves and detects

weak equivalences as well as sifted homotopy colimits. Furthermore, the Quillen
adjunction faug! ⊣ f∗aug is differentiable and induces a monadic adjunction of ∞-
categories

(faug! )∞ ∶ (AlgaugP
)∞

//
(Algaug

Q
)∞⊥oo ∶ (f∗aug)∞. (4.1.5)

Proof. Since the model structures on both AlgP and AlgQ are transferred from
MW and since f∗P0 ≅ Q0 by assumption we see that f∗aug preserves and detects

weak equivalences. By Proposition A.0.1 both forgetful functors AlgP Ð→ MW

and AlgQ Ð→MW preserve (and hence also detect, since they detect weak equiva-
lences) sifted homotopy colimits. Since the forgetful functors Algaug

P
Ð→ AlgP and

Algaug
Q
Ð→ AlgQ are left Quillen functors which detect weak equivalences they pre-

serve and detect homotopy colimits. We may hence conclude that f∗aug preserves
and detects sifted homotopy colimits. By the ∞-categorical Barr-Beck theorem
(see [Lur14, Theorem 4.7.4.5]), and using the fact that ∞-categorical sifted colim-
its can be computed as sifted homotopy colimits (see the Conventions and Notations
at the end of §1) we may conclude that (4.1.5) is monadic.
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Since sequential diagrams are in particular sifted we have by the same argument
that sequential homotopy colimits in Algaug

P
and Algaug

Q
are preserved and detected

in M. In addition, since we assume that either M is right proper or that P0 ≅ Q0

is fibrant we have that homotopy pullbacks in Algaug
P

and Algaug
Q

are preserved
and detected in M. Since M is differentiable it then follows that sequential homo-
topy colimits in Algaug

P
and Algaug

Q
commute with homotopy pullbacks. In addition,

since the poset N is weakly contractible it follows that sequential homotopy colimits
always preserve final objects. It then follows that Algaug

P
and Algaug

Q
are differen-

tiable. Furthermore, since sequential diagrams are in particular sifted we get from
the above that faug! ⊣ f∗aug is a differentiable Quillen adjunction, as desired. □

Proof of Proposition 4.1.4. By Proposition 4.1.12 the Quillen adjunction

φaug
! ∶ Algaug

P≤1

Ð→⊥←Ð Algaug
P
∶ φ∗aug

is differentiable. Since φ∗aug preserves weak equivalences [HNP16a, Corollary 2.4.8]

now implies that φ∗N×N ∶ (Alg
aug
P
)N×N Ð→ (Algaug

P≤1
)N×N preserves stable weak equiv-

alences between pre-spectra. This proves Claim (1).
To prove (2), note that the collection of pre-spectra and the collection of stable

weak equivalences are both closed under levelwise homotopy colimits of (N × N)-
diagrams. Note that φ∗N×N preserves levelwise weak equivalences and by Proposi-
tion 4.1.12 also sifted levelwise homotopy colimits. This means that the collection

of levelwise cofibrant pre-spectra X●● ∈ (Algaug
P≤1
)
N×N

for which the unit

uX ∶X●● Ð→ φ∗N×Nφ
N×N
! X●●

is a stable weak equivalence is closed under sifted levelwise homotopy colimits in

(Algaug
P≤1
)
N×N

.

Now Proposition 4.1.12 implies that the free-forgetful adjunction

(Algaug
O
)N×N∞

//
(Algaug

P≤1
)
N×N

∞
⊥oo (4.1.6)

is a monadic adjunction of∞-categories. We note that both functors in this adjunc-
tion preserves pre-spectrum objects. Since the collection of pre-spectrum objects is
closed under homotopy colimits it follows that (4.1.6) induces a monadic adjunc-
tion on the corresponding full subcategories spanned by pre-spectra. Consequently,

every pre-spectrum in (Algaug
P≤1
)N×N∞ can be obtained as the ∞-categorical colimit

of a sifted diagram in the image of the pre-spectra in (Algaug
O
)N×N∞ . By rectifying

these diagrams (see the Conventions and Notations at the end of §1), we obtain
the following result at the model-categorical level: every pre-spectrum object of

(Algaug
P≤1
)N×N can be written as a sifted levelwise homotopy colimit of pre-spectra

weakly equivalent to P≤1 ○O Y●● for Y●● ∶ N×NÐ→ Algaug
O

a pre-spectrum object. It
will hence suffice to show that

uP≤1○OY●● ∶ P≤1 ○O Y●● Ð→ φ∗N×Nφ
N×N
! (P≤1 ○O Y●●) ≅ P ○P≤1 P≤1 ○O Y●● ≅ P ○O Y●●

is a stable weak equivalence for every levelwise cofibrant pre-spectrum Y●● ∶ N×NÐ→
Algaug

O
. But this is exactly the content of Proposition 4.1.11, and so the proof is

complete. □
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4.2. Tangent categories of algebras and modules. Our goal in this section is
to explain how, under suitable conditions, Theorem 4.1.1 can be used to identify the
tangent category TAAlgP at a P-algebra A with the stabilization of a certain module
category, or alternatively, as a suitable category of enriched lifts. To this end, we
will follow the outline described in the introduction. Recall that associated to a
P-algebra A is its enveloping operad PA (see §3.1), whose characteristic property
is a natural equivalence of categories AlgPA ≃ (AlgP)A/. Under this equivalence,

the identity map A Ð→ A exhibits A as the initial PA-algebra, so that Algaug
PA ≃

(AlgP)A//A. We may hence write the tangent model category at A as TAAlgP ≃
Sp(Algaug

PA ). Under the conditions of Theorem 4.1.1 we now obtain a right Quillen

equivalence TAAlgP
∼Ð→ Sp(Algaug

PA
≤1
). The category AlgPA

≤1
is just the category

(ModPA)A/ of A-modules in M under A (see Remark 3.1.19). This leads to the
following corollary:

Corollary 4.2.1. Let M be a differentiable, left proper, combinatorial SM model
category and let P be an admissible Σ-cofibrant operad. Let A be a P-algebra and
assume either that A is fibrant or that M is right proper. In addition, assume that
at least one of the following conditions holds:

(1) AlgP is left proper and PA is Σ-cofibrant.
(2) A is cofibrant and the stable model structure Sp((AlgP)A//A) exists.
Then restriction along φ ∶ PA≤1 Ð→ PA yields a right Quillen equivalence

φ∗Sp ∶ TAAlgP ≃ Sp(Alg
aug
PA )

∼ // Sp(Algaug(PA)≤1
) ≃ TAModPA . (4.2.1)

Proof. We apply Theorem 4.1.1 to the operad PA. For this we need to check that in
both cases (1) and (2) the operad PA is stably admissible and Σ-cofibrant. In case
(1) the stable model structure Sp((AlgP)A//A) exists because AlgP is left proper

and in case (2) it is simply assumed. Similarly, in case (1) we assume that PA is
Σ-cofibrant. It will hence suffice to check that PA is also Σ-cofibrant under the
conditions of (2), which holds by [BM09, Proposition 2.3]. □

We may remove the conditions that M is left proper and that the stable model
structure Sp((AlgP)A//A) exists and instead consider the relative category T′AAlgP =
Sp′((AlgP)A//A) from Definition 4.1.5 (see [HNP16a, Remark 3.3.4]). Replacing
Theorem 4.1.1 by Corollary 4.1.6, we then obtain the following:

Corollary 4.2.2. Let M be a differentiable, combinatorial SM model category and
let P be an admissible Σ-cofibrant operad. Let A be a P-algebra and assume either
that A is fibrant or that M is right proper. In addition, assume that at least one of
the following conditions holds:

(1) PA is Σ-cofibrant.
(2) A is cofibrant.

Then restriction along φ ∶ PA≤1 Ð→ PA yields an equivalence of relative categories

φ∗Sp ∶ T′AAlgP = Sp
′(Algaug

PA )
∼ // Sp′(Algaug(PA)≤1

) = T′AModPA .

Remark 4.2.3. When every object in M is cofibrant and P is a cofibrant single
colored operad (with respect to the transferred model structure on operads in M),
then AlgP is left proper and PA is Σ-cofibrant for every P-algebra A [Fre09] (see
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also Remark 4.1.2). This is also true when P is a cofibrant colored operad and M

is the model category of simplicial sets by [Rez02].

We may use Remark 2.2.2 to rewrite the right hand side of (4.2.1) as the full

subcategory FunM/M(PA1 ,TM) ⊆ Fun
M(PA1 ,TM) consisting of those enriched functors

F ∶ PA1 Ð→ TM which lie above the functor PA0 ∶ PA1 Ð→M.

Corollary 4.2.4. Let M,P and A be as in Corollary 4.2.1 and assume in addition
that M is tractable. Then we have a natural right Quillen equivalence

TAAlgP
∼Ð→ FunM/M(P

A
1 ,TM).

When M is stable and strictly pointed the situation simplifies.

Corollary 4.2.5. Let M,P and A be as in Corollary 4.2.1 and assume in addition

that M is stable and strictly pointed. Let K ∶ AlgPA//A Ð→ (ModPA)A//A
kerÐ→ ModPA

be the composition of the forgetful functor and the kernel functor appearing in
Lemma 2.2.3. Then the functors

TAAlgP
KSp

∼
// Sp(ModPA)

Ω∞

∼
// ModPA

are right Quillen equivalences.

Proof. The category ModPA(M) ≃ Fun
M(PA1 ,M), endowed with the projective model

structure, is stable, strictly pointed and left proper, because M has these proper-
ties and A is cofibrant in M (by either Condition (1) or (2) of Corollary 4.2.1). In

particular, Ω∞ ∶ Sp(ModPA)Ð→ModPA is a right Quillen equivalence (see [HNP16a,

Corollary 3.3.3]). If M is right proper then ModPA(M) is right proper and if A is
fibrant as an algebra then A is fibrant as an A-module. Lemma 2.2.3 then implies

that ker ∶ ModPA(M)A//A
∼Ð→ ModPA(M) is a right Quillen equivalence. Combin-

ing this with Corollary 4.2.1 we may now conclude that KSp is a right Quillen
equivalence. □
4.3. The ∞-categorical comparison. Our goal in this section is to formulate
and prove an ∞-categorical counterpart of Corollary 4.2.1. For this it will be useful
to consider another approach for the theory of modules, where one considers the
collection of pairs (A,M) of a P-algebra A and an A-module M as algebras over
another operad MP. We shall henceforth follow the approach of [Hin15]. Let
Com be the commutative operad and let MCom be the operad for commutative
algebras and modules over them (see Example 3.1.10(1)). There are natural maps
Com Ð→ MCom Ð→ Com where the first one sends the only object of Com to a
and the second is the terminal map. Restriction along Com Ð→ MCom induces
the projection (A,M)↦ A which forgets the module.

Given a simplicial operad P we will denote by

MP ∶=MCom×ComP

the associated fiber product in the category of simplicial operads. If C is a simplicial
model category, then an MP-algebra in C is the same as a pair (A,M) where A is
a P-algebra in C and M is an A-module.

We will denote by MCom⊗ ∶= N⊗(MCom) the operadic nerve of MCom. Given
an ∞-operad O⊗ we will denote by

MO⊗ ∶=MCom⊗ ×Com⊗O
⊗
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the associated (homotopy) fiber product in the model category of pre-operads.
Since the operadic nerve preserves fiber products we have that if P is a simplicial
operad then N⊗(MP) ≅MN⊗(P).

Definition 4.3.1 ([Hin15, Def. 5.2.1]). Let O⊗ be an∞-operad and C⊗ a symmetric
monoidal ∞-category. Let A ∈ AlgO(C) be an O-algebra object in C. The ∞-

category ModOA(C) is defined as the fiber product

ModOA(C) ∶= AlgMO(C) ×AlgO(C) {A}.

We will refer to ModOA(C) as the ∞-category of A-modules in C. When the ∞-
operad O is unital and coherent, Proposition B.1.2 in [Hin15] establishes a natural

equivalence of ∞-categories from ModOA(C) to the underlying ∞-category of the

O-monoidal ∞-category ModOA(C)⊗ of A-modules of [Lur14, §3.3.3]. Furthermore,
the following variation on the arguments of [Hin15] shows how such A-modules in
the ∞-categorical sense can be strictified.

Proposition 4.3.2. Let M be a combinatorial simplicial SM model category and
let P be a Σ-cofibrant admissible simplicial operad such that MP is admissible as
well. For any cofibrant A in AlgP(M), there is an equivalence of ∞-categories

ModPA(M)∞
∼ // Mod

N(P)
A (M∞).

Proof. If P is Σ-cofibrant and admissible, then the associated simplicial operad
MP is Σ-cofibrant and admissible as well. By [PS18, Theorem 7.11], the map of
operads P Ð→ MP, obtained as the base change of the map Com Ð→ MCom,
induces a commuting square of ∞-categories

AlgMP(M)∞
∼ //

p
��

AlgMN(P)(M∞)
q
��

AlgP(M)∞ ∼
// AlgN(P)(M∞),

(4.3.1)

in which the horizontal maps are equivalences of ∞-categories. Now observe that
the left vertical map p of ∞-categories is obtained by localization from the functor
of relative categories

π ∶ AlgMP(M)′ Ð→ AlgP(M)cof ,

whose domain AlgMP(M)′ is the relative subcategory of AlgMP(M) on those pairs
(A,M) of algebras and modules whose algebra A is cofibrant. To see that the
∞-category AlgMP(M)′∞ is equivalent to AlgMP(M)∞, note that AlgMP(M)cof
is a relative subcategory of AlgMP(M)′ and that the inclusion AlgMP(M)cof Ð→
AlgMP(M)′ is part of a left homotopy deformation retract, with retraction given
by a cofibrant replacement functor in AlgMP(M).

We may now identify AlgMP(M)′ with the Grothendieck construction of the

functor ModP ∶ (AlgP(M)cof)
op Ð→ RelCat sending a cofibrant P-algebra A to the

relative category ModPA(M) of A-modules and a map f ∶ A Ð→ B of cofibrant P-

algebras to the restriction functor f∗ ∶ ModPB(M) Ð→ ModPA(M) between module

categories. We note that the functor ModP sends weak equivalences of cofibrant
algebras to equivalences of relative categories by [BM09, Theorem 2.6]. We may
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hence apply [Hin13, Proposition 2.1.4] to the map πop and deduce that for every
cofibrant P-algebra A we have a chain of equivalences of ∞-categories

ModPA(M)∞ ≃ π−1(A)∞
≃Ð→ p−1(A) ≃Ð→ q−1(A) ≃Mod

N(P)
A (M∞),

where the second map is the induced map on fibers arising from (4.3.1), and thus
an equivalence. □

Theorem 4.3.3. Let C be a closed SM, differentiable presentable∞-category and let
O⊗ ∶= N⊗(P) be the operadic nerve of a fibrant simplicial operad and let A ∈ AlgO(C)
be an O-algebra. Then the forgetful functor induces an equivalence of ∞-categories

TAAlgO(C)
≃Ð→ TAModOA(C).

Proof. Since weakly equivalent fibrant simplicial operads have equivalent associated
∞-operads, we may assume that P is Σ-cofibrant. By [NS15, Theorem 1.1] there
exists a left proper, combinatorial simplicial SM model category M together with a
symmetric monoidal equivalence of∞-categories (M⊗)∞ ≃ C⊗. Furthermore, M has
the property that any simplicial operad is admissible [NS15, Theorem 2.5]. Since
C is assumed to be differentiable, the model category M is differentiable as well.
By the rectification result of [PS18, Theorem 7.11] the model category AlgP(M)
presents the ∞-category AlgO(C). Let A be a fibrant-cofibrant P-algebra in M

representing A. Then the slice-coslice model structure (AlgP(M))A//A presents the

∞-category (AlgO(C))A//A and by Proposition 4.3.2 the transferred model struc-

ture on ModP
A
(M) presents the ∞-category ModOA(C). We note that since P is

Σ-cofibrant and A is cofibrant, PA and PA1 are Σ-cofibrant by [BM09, Proposition

2.3]. This means, in particular, that the forgetful functor ModP
A
Ð→ M is a left

Quillen functor and so ModP
A

inherits from M the property of being left proper

(see Remark 4.0.2). In particular, the slice-coslice model structure (ModP
A
M)A//A

presents the ∞-category (ModOA(C))A//A. Consider the commutative diagram of
∞-categories

Sp′ (AlgP(M)A//A)∞
≃ //

��

Sp ((AlgP(M)∞)A//A)
≃ //

��

Sp (AlgO(C)A//A)

��
Sp′ (ModP

A
(M)A//A)∞

≃ // Sp ((ModP
A
(M)∞)A//A)

≃ // Sp (ModOA(C)A//A) ,

where for a model category N we denote by Sp′(N) ⊆ NN×N the full relative subcat-
egory spanned by the Ω-spectra (Definition 4.1.5). Now the horizontal maps in the
right square are equivalences of ∞-categories by construction and the horizontal
maps in the left square are equivalences by [HNP16a, Remark 3.3.4]. Finally, the
left vertical map is an equivalence by Corollary 4.2.2. It then follows that the right
vertical map is an equivalence, as desired. □

When C is stable, the ∞-category ModOA(C) is stable and the kernel functor (cf.

Lemma 2.2.3) yields an equivalence of ∞-categories TAModOA(C) ≃ ModOA(C) for
every A. In this case the conclusion of Theorem 4.3.3 reduces to the following
generalization of [Lur14, Theorem 7.3.4.13] to the case of ∞-operads which are not
necessarily unital or coherent (but which do arise as nerves of simplicial operads):
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Corollary 4.3.4. Let C be a closed SM, stable presentable ∞-category and let
O⊗ ∶= N⊗(P) be the operadic nerve of a fibrant simplicial operad. Then the functor

ker ∶ AlgO(C)A//A Ð→ModOA(C) induces an equivalence of ∞-categories

TAAlgO(C)
≃Ð→ModOA(C).

Note that a stable presentable ∞-category C is always differentiable since colim ∶
CN Ð→ C is an exact functor [Lur14, Example 6.1.1.7].

Remark 4.3.5. It seems likely that Theorem 4.3.3 admits a generalization to the
case of enriched∞-operads, whose theory has been developed in [CH17]. By [CH17,
Corollary 5.1.9], the ∞-category of W -colored ∞-operads enriched in a SM ∞-
category C is equivalent to the ∞-category of algebras in C over a certain operad
OpW (in sets!). In particular, if M is a SM model category, then every W -colored
M-enriched operad determines aW -colored∞-operad enriched in M∞. Conversely,
every M∞-enriched ∞-operad can be rectified to an M-enriched operad when M is
sufficiently nice [CH17, Corollary 5.2.7].

To generalize Theorem 4.3.3 to this enriched setting, one needs to generalize
these results to algebras over operads as well. This can likely be done using an
argument analogous to that of Proposition 4.3.2: there is an operad Q (in sets)
for W -colored operads together with an algebra over them. One can then use the
rectification machinery of [PS18] to compare the fibers of the forgetful functors
AlgQ(M)Ð→ AlgOpW

(M) and AlgQ(M∞)Ð→ AlgOpW
(M∞).

Appendix A. Sifted homotopy colimits of algebras

The purpose of this appendix is to prove the following result:

Proposition A.0.1. Let M be a combinatorial SM model category and let P be
a Σ-cofibrant admissible W -colored operad in M. Then the forgetful functor U ∶
AlgP(M)Ð→MW preserves sifted homotopy colimits.

A close variant of Proposition A.0.1 appears in [PS18, Proposition 7.9]. We
emphasize that by sifted homotopy colimits we mean homotopy colimits of diagrams
indexed by a category whose nerve is sifted as an ∞-category (see [Lur09, §5.5.8]).
We shall refer to such categories as homotopy sifted. This condition can also be
phrased as saying that the diagonal map IÐ→ I× I is cofinal (in the ∞-categorical
sense). A typical example of a homotopy sifted category is a category which admits
finite coproducts. In fact, to prove Proposition A.0.1 it will be convenient to first
reduce to this special case.

For a small category I, let us denote by I∐ the category obtained from I by freely
adding finite coproducts. Explicitly, we may identify I∐ with the full subcategory
of Fun(Iop,Set) spanned by those presheaves which are finite coproducts of repre-
sentables. There is a canonical fully-faithful inclusion I ↪ I∐ given by the Yoneda
embedding. We note that I∐ is always sifted since it admits finite coproducts. In
addition, we have the following observation:

Lemma A.0.2. If I is homotopy sifted then I↪ I∐ is cofinal (in the ∞-categorical
sense).

Proof. We need to show that if F = Ri1∐ ...∐Rin ∶ Iop Ð→ Set is a coproduct of
representables then the comma category IF/ is weakly contractible. We note that
the projection IF/ Ð→ I is a left fibration classified by the Cartesian product of
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functors hi1 × ... × hin ∶ I Ð→ Set, where hik denotes the functor copresented by
ik. Recall that the classifying space of the domain of a left fibration is a model
for the homotopy colimit of the associated functor; this follows immediately from
the Bousfield-Kan formula for homotopy colimits. Since I is homotopy sifted, this
homotopy colimit commutes with finite products ([Lur09, Lemma 5.5.8.11]). We
may hence conclude that

∣IF/∣ ≃ hocolimI (∏
k

hik) ≃∏
k

hocolimI hik ≃ ∗

as desired. □

Proof of Proposition A.0.1. Let I be a homotopy sifted category. We wish to show
that the forgetful functor U ∶ AlgP Ð→MW preserves I-indexed homotopy colimits.
Since I↪ I∐ is fully-faithful, every I-diagram is isomorphic to a diagram restricted
from I∐. By Lemma A.0.2 the map I ↪ I∐ is cofinal, and hence restriction along
I▷ ↪ (I∐)▷ preserves and detects homotopy colimit diagrams. To show that U
preserves I-indexed homotopy colimits it will hence suffice to show that U preserves
I∐-indexed homotopy colimits. In other words, we may assume without loss of
generality that I has finite coproducts.

When I has finite coproducts the projective model structure on MI is monoidal
with respect to levelwise tensor product. Indeed, since weak equivalences are lev-
elwise and M is a monoidal model category it suffices to check that projective
cofibrations satisfy the pushout-product axiom. This can be checked on generating
projective cofibrations, which are of the form hi⊗f for some generating cofibration
f in M. One can then check that (hi ⊗ f)2(hj ⊗ g) = hi∐ j ⊗ (f2g) is indeed a
projective cofibration.

We now proceed as in the proof of [PS18, Proposition 7.9]. Identifying the un-
derlying categories (AlgP)I ≃ AlgP(MI) we see that the projective model structure
on the former coincides with the one transferred from MI

proj on the latter. Since

P is Σ-cofibrant, [WY18, Proposition 6.1.5] implies that U preserves projectively
cofibrant I-diagrams. Since U preserves strict I-colimits (being the forgetful func-
tor from a category of algebras) we may now conclude that U preserves I-indexed
homotopy colimits, as desired. □

References

[BM05] M. Basterra and M. A. Mandell, Homology and cohomology of E∞ ring spectra, Math-
ematische Zeitschrift 249(4), pp. 903–944 (2005).

[Bec67] J. Beck, Triples, algebras and cohomology, Ph.D. thesis, Columbia University, 1967,
Reprints in Theory and Applications of Categories, 2, 2003, p. 1–59.

[BM09] C. Berger, I. Moerdijk. On the derived category of an algebra over an operad, Georgian
Mathematical Journal, 16(1), p. 13–28 (2009).

[Cav14] G. Caviglia, A model structure for enriched coloured operads, preprint
arXiv:1401.6983, 2014.

[CH17] H. Chu, R. Haugseng, Enriched ∞-operads, preprint arXiv:1707.08049, 2017.
[CHH16] H. Chu, R. Haugseng, G. Heuts, Two models for the homotopy theory of ∞-operads,

preprint arXiv:1606.03826, 2016.
[FHM03] H. Fausk, P. Hu, and J.P. May, Isomorphisms between left and right adjoints, Theory

and Applications of Categories, 11.4, 2003, p. 107–131.
[Fre09] B. Fresse, Modules over operads and functors, Springer, 2009.
[HNP16a] Y. Harpaz, J. Nuiten, M. Prasma, The tangent bundle of a model category, preprint.

[HNP16b] Y. Harpaz, J. Nuiten, M. Prasma, The abstract cotangent complex and Quillen coho-
mology of enriched categories, to appear in Journal of Topology.



36 YONATAN HARPAZ, JOOST NUITEN, AND MATAN PRASMA

[HNP18] Y. Harpaz, J. Nuiten, M. Prasma, Quillen cohomology of (∞,2)-categories, preprint,
arXiv:1802.08046, 2018.

[HP15] Y. Harpaz and M. Prasma, The Grothendieck construction for model categories, Ad-
vances in Mathematics, 2015.

[Hel97] A. Heller, Stable homotopy theories and stabilization, Journal of Pure and Applied

Algebra, 115.2, 1997, p. 113–130.
[HHM15] G. Heuts, V. Hinich, I. Moerdijk, On the equivalence between Lurie’s model and the

dendroidal model for infinity-operads, preprint arXiv:1305.3658, 2013.
[Hin13] V. Hinich, Dwyer-Kan localization revisited, preprint arXiv:1311.4128 (2013).

[Hin15] V. Hinich, Rectification of algebras and modules, Documenta Mathematica 20, 2015,
p. 879–926.

[Hov01] M. Hovey, Spectra and symmetric spectra in general model categories, Journal of Pure
and Applied Algebra, 165.1, 2001, p. 63–127.

[Joy] A. Joyal, The Theory of Quasi-Categories and its Applications.
[Lur06] J. Lurie, Stable infinity categories, arXiv preprint math/0608228 (2006).
[Lur09] J. Lurie, Higher topos theory, No. 170. Princeton University Press, (2009).
[Lur14] J. Lurie, Higher Algebra, preprint, available at Author’s Homepage (2011).

[Mac13] S. MacLane, Categories for the working mathematician, Vol. 5. Springer Science &
Business Media, 2013.

[MG16] A. Mazel-Gee, Quillen adjunctions induce adjunctions of quasicategories, New York

Journal of Mathematics, 22, 2016, p. 57–93.
[NS15] T. Nikolaus, S. Sagave, Presentably symmetric monoidal infinity-categories are repre-

sented by symmetric monoidal model categories, preprint arXiv:1506.01475, 2015.
[PS18] D. Pavlov, J. Scholbach, Admissibility and rectification of colored symmetric operads,

Journal of Topology, 11, 2018, p. 559–601.
[Qui70] D. Quillen, On the (co-)homology of commutative rings, Proc. Symp. Pure Math. Vol.

17. No. 2. 1970.
[Rez02] C. Rezk, Every homotopy theory of simplicial algebras admits a proper model, Topol-

ogy and its Applications, 119.1, 2002, p. 65–94.
[Sch97] S. Schwede, Spectra in model categories and applications to the algebraic cotangent

complex, Journal of Pure and Applied Algebra, 120.1, 1997, p. 77–104.
[Spi01] M. Spitzweck, Operads, algebras and modules in general model categories, arXiv

preprint math/0101102, 2001.
[WY18] D. White, D. Yau, Bousfield localization and algebras over colored operads, Applied

Categorical Structures, 26.1, 2018, p. 153–203.

E-mail address: harpaz@math.univ-paris13.fr
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