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Let k be a number field, S a finite set of places of k and X, OS the ring of
S-integers in k and X a nice scheme (smooth, separated, finite type) over OS .
A prominent goal of Diophantine geometry is to understand the set X(OS) of
integral points of X. When k = Q, OS = Z and X is affine then we are really
talking about solutions in integer numbers to a set of polynomial equation (most
of the examples appearing in this talk will be of this type).

Assuming S-integral points exist, a natural qualitative question is whether
or not X(OS) is Zariski dense. On the quantitative side, one may use a suitable
height function H : X(Z) −→ R≥0, choose a suitable open subset U ⊆ X, and
ask for the asymptotic growth of the counting function

N(U, B) = {P ∈ X(Z)|H(P ) ≤ B}.

In this context, one often speaks of polynomial growth when N(U, B) is com-
parable to a polynomial in B, and of polylogarithmic growth when N(U, B)
is comparable to a polynomial in log(B). It can also be that for every ε > 0
there exists an open set U ⊆ X such that N(U, B) = O(Bε), in which case one
may talk about subpolynomial growth.

If X is projective the set X(OS) of S-integral points coincides with the set
of rational points of the k-variety X = X ⊗OS

k. In this case a fundamental
paradigm in Diophantine geometry (attributed to Weil) asserts that the behavior
of rational points should be strongly controlled by the geometry of X. More
precisely, if we let Xk = X ⊗k k denote the base change of X to k, then the
canonical class KX ∈ Pic(Xk) is one of the geometric features which effects
the arithmetic very strongly. Roughly speaking, the more positive −KX is
(i.e., effective, nef, big, ample, etc.) the more we expect rational points to be
abundant and their existence to be effectively controlled. On the other hand,
the more positive KX is the more we expect rational points to be scarce, and
the less we expect their existence to be effectively controlled. A conjectural
framework of Manin and Batyrev translates this picture into a quantitative
estimate for the growth of rational points. For example, when KX is big one
expects a polynomial growth. On the other hand, when X is of general type
(i.e., when −KX is sufficiently positive), Lang’s conjecture asserts that rational
points are not Zariski dense, which means that the asymptotic growth (on a
small enough open subset) is trivial.

1



An interesting and subtle case is when the canonical class is trivial. When
X is furthermore simply connected not much is known. In dimension 2 such
varieties are called K3 surfaces. The conjecutral picture of Batyrev and Manin
asserts that in this case the number of rational points (if they exist) should grow
subpolynomially. When X is a K3 surface of Picard number one might even
expect to have a logarithmic growth, see [VL].

When X is not projective, the situation is more subtle. To this end it is
often convenient to consider a smooth compactification X ⊆ X such that the
complement is (geometrically) a simple normal crossing divisor. Having the pair
(X,D) one can access many properties which are relevant to the behavior of
integral points on X. For example, one can study it using the framework of log
geometry. In particular, one has log analogues of the cotangent bundle (sheaf
of 1-forms with logarithmic singularities) and the log canonical class is KX +
[D]. This enables one to find suitable integral counterparts of various geometric
classes of varieties familiar from the projective case. Another source of relevant
information lies in the behavior of real points on D. For example, if D(R) = ∅
then X(R) is compact. If, in addition, X is affine then X(Z) is automatically
finite. In this case we could see this directly from X(R). However, there can
be more subtle behaviors. For example, it could be that some components of D
have real points and some not, and the same can be said for components of the
intersections of components and so on. It turns out that even small differences
in the configuration of real points on D can have an impact on the behavior of
integral points, and hence it is useful to have direct access to D.

The conjectural picture of Batyrev and Manin can be translated to the realm
of integral points, although the situation becomes more complicated, and subtle
features of the pair (X,D) need be taken into account. Results giving explicit
formulas for the growth of integral points were established for toric varieties
(Tschinkel, Chambert-Loir) and partial compatifications of split semi-simple
algebraic groups (Tschinkel, Takloo-Bighash) under suitable conditions. These
constitute instances where the log anti-canonical class is sufficiently positive. In
this talk we wish to focus instead on the intermediate case of log K3 surfaces
and their integral points. As we will see, not much is known in terms of growth
of integral points.

Definition 1. Let X be a smooth geometrically integral surface over a field
k. A log K3 structure on X is a smooth compactification (X,D, ι) such that
D is (geometrically) a smooth normal crossing divisor and [D] = −KX . A log
K3 surface is a smooth, geometrically integral, simply connected surface X
equipped with a log K3 structure (X,D, ι).

Let X be a log K3 surface. Since Xk is simply connected it follows that
k∗[X] = k∗ and that Pic(Xk) is torsion free, hence isomorphic to Zr for some
r. We shall call the integer r = rank(Pic(Xk)) the geometric Picard rank
of X. Furthermore, if (X,D, ι) is a log K3 structure on X then there exists a
short exact sequence

0 −→ Z|D| −→ Pic(Xk) −→ Pic(Xk) −→ 0
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where Z|D| is the free abelian group generated by the geometric components of
D. In particular, the geometric Picard rank of X is given by rank(Pic(Xk))−]D.
It can be showed that if X be a log K3 surface and (X,D, ι) a log K3 structure
on X then either D = ∅ and X = X is a (proper) K3 surface or D 6= ∅ and Xk

is a rational surface. Furthermore, if D is non-empty then D is either a smooth
projective genus 1 curve or a cycle of genus 0 curves.

Example 2. Let X ⊆ P3 be a cubic surface and D ⊆ X a hyperplane section
which is a simple normal crossing divisor. Then X is a del Pezzo surface of
degree 3 and [D] = KX . Since we assumed D to have simple normal crossings
there are three possibilities: either D is a smooth curve of genus 1 or a cycle
of genus 0 curves whose length is either 2 or 3. In all cases one can show that
X is simply connected and hence a log K3 surface. Since the geometric Picard
number of X is 7 we get that the geometric Picard number of X is then either
6, 5 or 4, accordingly. Such log K3 surfaces always admit an affine cubic equation
in three variable. The much studied surfaces

x3 + y3 + z3 = a (1)

are examples of such log K3 surfaces with D a smooth genus 1 curve. An
example with D a cycle of three genus 0 curves is given by the (modified)
Markoff-Rosenberger equation

ax2 + by2 + cz2 = Dxyz + e (2)

which is smooth as soon as a, b, c, d, e 6= 0 and D2

abc 6=
4
e .

Our current understanding of the behaviour of integral points in these cases
is rather preliminary. For example, it is not known if there exists an a ∈ Z
such that the set of integral points on 2 is Zariski dense, and it is not known if
there exists an a ∈ Z such that this set is not Zariski dense. The circle method
heuristic (see [HB92]) predicts that integral points should grow as log(B). A
result of Colliot-Thélène and Wittenberg ([CTW12]) gives sufficient conditions
for the vanishing of the integral Brauer-Manin obstruction. For example when
a = 33 the integral Brauer-Manin obstruction vanishes, but it is not known if
integral points exist or not.

For the modified Markoff-Rosenberger equation, if one assumes that a, b, c|D
then the variety 2 is acted upon (over OS) by Z/2 ∗ Z/2 ∗ Z/2. Yuan and
Schmidt (see [YS01]) considered the case where k = Q, OS = Z and a, b, c, d
are all positive and e = 1. They found that there are only six choices of such

a, b, c,D ∈ Z with a, b, c|D and D2

abc 6= 4 for which the set of integral points is
not empty. These cases were later analysed by Baragar and Umeda ([BU04]),
where it was shown that in each case there are finitely many orbits, and the
asymptotic growth of integral points inside each orbit grows as log2(B).

Example 3. Let X −→ P1 be a conic bundle of the form

f(t, s)x2 + g(t, s)y2 = z2
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where f(t, s), g(t, s) are separable homogeneous polynomials of degree 2 without
common factors, and (t : s) are homogeneous coordinates on P1. Then X is a
del Pezzo surface of degree 4 and the bisection D ⊆ P1 given by z = 0 is a
smooth curve of genus 1 whose class is the canonical class. One can then show
that X = X \ D is simply connected, and hence a log K3 surface of geometric
Picard rank 5. We may write X as a bundle of affine conics of the form

f(t, s)x2 + g(t, s)y2 = 1 (3)

where this equation should be interpreted as defining X inside the vector bundle
O(−1)⊕O(−1) over P1. As affine conics can be considered as analogues of elliptic
curves, we may say that X is a conic log K3 surface, in analogy with the
terminology of elliptic K3 surfaces in the projective case.

Let S be a finite set of places of Q. Conic log K3 surfaces such as 3 can be
attacked using an integral point adapation of a metohd invented by Swinnerton-
Dyer. Suppose that f(t, s) = a(c1t + d1s)(c2t + d2s) and g(t, s) = b(c1t +
d1s)(c2t + d2s), where each ci, di is a coprime pair of S-integers. Denote by
∆i,j = cjdi − cidj the respective resultants, which one assumes to be non-zero
for 3 to be smooth. The following theorem is one of the main results of [Ha15b].

Theorem 4. Let S be a finite set of places of Q containing 2,∞. Let f, g ∈
ZS [t, s] be homogeneous polynomials of the above form with a, b and ∆i,j defined
as above. Assume that the S-integers a, b are square-free and not divisible by
3 or 5, and that the classes of the elements {−1, a, b} ∪ {∆i,j}i>j are linearly
independent in Q∗/(Q∗)2.

Let Y −→ P1
S be the pencil of affine conics 3. If Y has an S-integral adelic

point then Y has a Zariski dense set of S-integral points.

Remark 5. More examples of log K3 surfaces which are embedded in del Pezzo
surfaces of degree 4 (without assuming a conic bundle structure) are described
in a recent paper [JS16] Janel and Damaris, which also contains computations
of Brauer groups and Brauer Manin obstructions for various such surfaces.

Definition 6. Let X be a log K3 surface. We shall say that X is ample if it
admits a log K3 structure (X,D, ι) such that KX is ample (i.e., such that X is
a del Pezzo surface).

Arguably, the simplest type of log K3 surface is an ample log K3 surface
whose Picard number is 0. It turns out that these can be completely classified.

Theorem 7 ([Ha15a]). Any ample log K3 surface of Picard rank 0 over a field
k of characteristic 0 admits a log K3 structure of the form (X,D, ι) where X is
a del Pezzo surface of degree 5 and D is a cycle of five (−1)-curve.

Let us say a few words about the proof of Theorem 7. One begins by
observing that log K3 surfaces of Picard rank 0 can only admit ample log K3
structures (X,D, ι) in which D is a cycle of rational curves. The choice of
such a compactification is not unique. However, two different compactifications
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of this kind can always be related by a sequence of corner blow-ups and
corner blow-downs. These consist of blowing up and intersection point of D,
or blowup-down a component of D of self-intersection −1. Let a1, ..., an denote
the self intersections of the components of D. The adjunction formula then
implies that ∑

i

ai = 3d+ 2r − 20

where d = [D] · [D] is the degree of [D] = KX and r is the geometric Picard rank
of X. In particular, if r = 0 then

∑
i ai = 3d − 20. Since we are looking only

at compactifications with X ample we also have ai ≥ −1 for every i. This gives
enough combinatorial rigidity to show that when r = 0 one can always arrive
at d = 5 and ai = −1 for every i by performing a sequence of corner blow-ups
and corner blow-downs.

Given a log K3 structure (X,D, ι) of degree 5 such that D is a cycle of
five (−1)-curves we may consider the Galois action on the dual graph of D,
yielding an invariant α ∈ H1(k,D5), where D5 is the dehidral group of order 10,
considered here as the automorphism group of a cyclic graph of length 5. We
then obtain the following classification theorem:

Theorem 8 ([Ha15a]). Let k be a field of characteristic 0. The association
X 7→ αX determines a bijection between the set of k-isomorphism classes of
ample log K3 surfaces of Picard rank 0 and the Galois cohomology set H1(k,D5).

Theorem 9 ([Ha15a]). Let k be a field of characteristic 0. An ample log K3
surface X over k of Picard rank 0 whose invariant αX is trivial is k-isomorphic
the affine surface

(xy − 1)t = x− 1 (4)

Theorem 10 ([Ha15a]). Let k be a field of characteristic 0. An ample log K3
surface X over k of Picard rank 0 whose invariant αX is the image of [a] ∈
H1(k,Z/2) under the map induced y an inclusion Z/2 ⊆ D5 is k-isomorphic to
the affine surface

(x2 − ay2)t = y − 1. (5)

Proposition 11 ([Ha15a]). Let X/Z be such that X = X⊗ZQ is Q-isomorphic
to the log K3 surface appearing in Theorem 9. Then the set of integral points
X(Z) is not Zariski dense.

Sketch. Applying a suitable coordinate change we have that X is isomorphic
over Q (though not over Z) to the affine surface 4. It is then not hard to find a
constant C such that any real solutions (x, y, t) of 4 will satisfy min(|x|, |y|, |t|) ≤
C. This can then be used to find a finite collection of curves containing all
integral points.

The proof of Theorem 11 has lead Jahnel and Schindler to define the follow-
ing notion:
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Definition 12 ([JS16]). Let X be a smooth algebraic variety over Q and let
C ⊆ X(R) be a connected component. We will say that C is strongly unob-
structed at ∞ if for every finite collection of non-constant regular functions
f1, ..., f1 ∈ Q[X] the real function min(|f1|, ..., |fn|) : C −→ R is unbounded.

Arguing as in the proof of 11 Jahnel and Schindler show that if C ⊆ X(R)
is a component that is not strongly unobstructed then integral points which lie
on C are not Zariski dense. An example in which every component is strongly
unobstructed at ∞ is given by the log K3 surface X appearing in Theorem 10
when a ∈ Z is positive. We shall now show that this class of surfaces contains
cases where integral points are Zariski dense. Theorem I of [Na88] implies, in
particular, that there exists a real quadratic number field L = Q(

√
a), ramified

at 2 and with trivial class group, such that the reduction map O∗L −→ (OL/p)∗ is
surjective for infinitely many prime ideals p ⊆ OL of degree 1 over Q. Given such
an L, we may find a square-free positive integer a ∈ Q such that L = Q(

√
a).

Now let X be the ample log K3 surface over Z given by the equation 5. We now
claim the following:

Proposition 13 ([Ha15a]). The set X(Z) of integral points is Zariski dense.

Sketch. Let p = (π) ⊆ OL be an odd unramified prime ideal of degree 1 such that
ρp : O∗L −→ (OL/p)∗ is surjective and let p = NL/Q(π). Using the surjectivity of
ρp one may then construct a point on the curve Cp ⊆ X given by the additional
equation x2 − ay2 = ±p. By multiplying with units whose image in OL/p is
1 we may produce in this way infinitely many integral points on Cp, and this
can be done for infinitely many values of p’s. This implies that X(Z) is Zariski
dense.

Question 14. Let X be a smooth, separated scheme over Z such that X = X⊗ZQ
is a log K3 surface with Pic(X ⊗Q Q) = 0. Should we expect integral points on
a small enough open subset to grow as log(B)b for some b > 0? If so, what is
the correct value of b?

We may try to use circle method heuristics in order to “guess” the constant b.
This was explained to the author by Tim Browning in personal communication.
Given a log K3 surface (X,X,D, ι) over Q, let us define s to be equal to 1 plus
the dimension of the analytic Clemens complex of D over R (where we agree
then the empty complex has dimension −1). More explicitly s is 0 if D(R) = ∅,
s is 2 if D contains a component defined over R which contains an intersection
point defined over R, and s is 1 otherwise. In cases which admit suitably simple
equations (such as the cases in Theorems 10 and 9), the circle method heuristic
will predict that N(U, B) should grow as logb(B), where b = rank(Pic(Xk)) + s.
This means that both Example 9 and Example 10 should exhibit a growth of
N(X,B) ∼ log2(B). However, Theorem 9 asserts that we actually have a trivial
growth in this case, i.e., b = 0. Preliminary simulations for the case considered
in Theorem 10 show that N(X,B) seems to grow slower than log(B)2 in this case
as well, but not enough data has been gathered to reach a definitive conclusion.
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Question 15. Is there a natural modification of the formula b = rank(Pic(Xk))+
s which would account for the phenomenon of “obstruction at∞” (in its various
incarnations)?

Let us consider the notion of a strongly unobstructed component C ⊆ X(R)
suggested by Jahnel and Schindler. When C is such a component then, in
particular, for every finite collection f1, ..., fn ∈ k[X] of non-constant regular
functions there exists a sequence of points {Pi} ⊆ C such that limi |fj(Pi)| =∞
for every j = 1, ..., n. Since X(R) is compact, we may assume that the sequence
{Pi} has a limit Q ∈ X(R), which consequently must lie in D(R). Then all
the |fj | are unbounded functions on W ∩ C for every neighborhood W of Q in
X(R). This leads to the following definition:

Definition 16. Let C ⊆ X(R) be a connected component and let Q ∈ D(R) be
a point. We will say that Q is a universal pole for C if for every non-constant
regular function f ∈ Q[X] and every neighborhood Q ∈ W ⊆ X(R), the real
function |f | is unbounded on W ∩ C.We will say that a geometric component
D0 of D defined over R is a universal pole for C if every point in D0(R) is a
universal pole for C.

We may now attempt to use Definition 16 in order to modify the circle
method formula b = rank(Pic(Xk))+s, or more precisely the quantity s. Let us
fix a connected component C ⊆ X(R) on which we would like to count points.
Instead of considering all the real Clemens complex of D let us only take into
account intersection points and components which are universal poles for C. In
particular, let us set s′ to be 0 if D has not universal poles for C, to be 2 if D has
a geometric component which is a universal pole and contains an intersection
point which is a universal pole, and set s′ = 1 otherwise.

Question 17. Let X be a log K3 surface of Picard rank 0. Should we expect
that integral points on a small enough open subset to grow as log(B)s

′
where s′

is defined as above?
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