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Let us start this TA session by recalling the definition of the most funda-
mental object of study in this course:

Definition 0.1. A group is set G together with a binary operation (a, b) −→
a · b ∈ G (called the multiplication) satisfying the following axioms:

1. Associativity: (a · b) · c = a · (b · c).

2. Neutral element: There exists an element e ∈ G such that

a · e = e · a = a

3. Inverse elements: For every g ∈ G there exists an element g−1 (called
its inverse) satisfying

g · g−1 = g−1 · g = e

Examples:

1. The integers Z are a group with respect to addition of numbers. They
do not form a group with respect to multiplication of numbers, because
many elements don’t have inverses with respect to multiplication.

2. For every n the set {0, ..., n−1} is a group with respect to addition modulu
n (i.e. the operation is to take two numbers, add them, and then take the
residue of dividing in n). This group is denoted by Z/n or sometimes Zn.

3. Let F be a field. Then F is a group with respect to addition and F \ {0}
is a group with respect to multiplication. The latter group is also denoted
by F ∗.

4. Every vector space V is a group with respect to addition of vectors (in
fact the axioms above should be familiar to the reader from the definition
of vectors spaces when replacing the · symbol with +).

Recall that addition of vector spaces satisfies one further axiom which
states that a + b = b + a. A group in which the multiplication satisfies
this property is called abelian or commutative.
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5. For every set A we denote by S(A) or perm(A) the set of one-to-one
onto maps from A to itself (called permutations of A). When A is
the set {1, ..., n} we also write Sn for S(A). S(A) forms a group with
respect to composition of permutation. The neutral element is the identity
permutation. If σ ∈ S(A) is a permutation then σ−1 is its inverse as a
map (which exists because τ is one-to-one and onto).

6. Let F be a field and V a vector space over F . We denote by GL(V ) the
set of invertible linear maps from V to V . These form a group under
composition and as in the previous example the neutral element is the
identity map. When V = Fn we can identify GL(V ) with the set of
invertible n×n matrices over F . In this case we denote GL(V ) by GLn(F ).

7. The post stamp machine group (see demonstration in class).

Note that in the last three examples the group was the collection of maps
from a set to itself which preserved some structure. These are sometimes referred
to as symmetries of the structure (for examples, the symmetries of a vector
space are its invertible self maps which preserve its vector space structure -
i.e. linear maps). Many of the groups you will encounter in real life will arise
as symmetries of certain structures. This is one of the reasons groups are so
important in mathematics.

1 Permutations

Let us return now to the example of the permutation group. This is a rather
important example is worth some explicit handling. Let us start with notation.
The most straight forward to write a permutation τ is by specifying for every
i ∈ {1, ...., n} what is τ(i). This can be done, for example, by writing the values
σ(1), ..., σ(n) in a line underneath a line of 1, ..., n. For example if τ ∈ S3 is the
permutation defined by τ(1) = 2, τ(2) = 1 and τ(3) = 3 we will write it as(

1 2 3
2 1 3

)
This notation is a bit cumbersome and it is rather hard to get an ”overall”
picture of the permutation. For example, the permutation

σ0 =
(

1 2 3 4 5
3 5 1 4 2

)
can be described in a more human language as ”switch 3 with 1 and 5 with 2”.
This example generalizes to the observation that we can break a permutation in
cycles. Suppose that σ ∈ Sn is a permutation and a0 ∈ {1, ..., n} is any element.
Start applying σ iteratively to a0 until we end up with a0 again. You will end
up with a sequence a0, ..., ak such that ai = σ(ai−1) and a0 = σ(ak). This is
called the cycle of σ starting with a0 and is usually denoted by (a0 a1 ... ak).
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For example in the permutation σ0 the cycle of 1 is (1 3) and the cycle of 4 is
just (4).

The notational idea is to use the cycle (a0 a1 ... ak) in order to denote
the permutation satisfying σ(ai) = ai+1, σ(ak) = a0 and σ(x) = x for x /∈
{a0, ..., ak}. By abuse of notation we call such a permutation a cycle.

Now every permutation can be written as a product of cycles. In order to
see this do the following: given a permutation σ begin by taking some element
of {1, ..., n} (for example 1) and constructing its cycle. If this cycle includes all
the elements in {1, ..., n} then σ is itself a cycle. If not take some element not in
the cycle and construct its cycle. Continue in this way until no more elements
of {1, ..., n} are left. The product of the resulting cycles forms σ. Note that the
resulting cycles are pairwise disjoint.

For example the permutation σ0 can be written as the product

σ0 = (1 3) · (2 5)

We will usually omit the · sign and just write

σ0 = (1 3)(2 5)

2 Homomorphisms

When studying algebraic objects such as fields, vector spaces or groups, the
maps between them are just as important as the objects them selves. We want to
consider maps between groups which preserve the group structure. Fortunately
this comes down to a very simple property (note the similarity to the definition
of linear maps in linear algebra. It is not accidental):

Definition 2.1. A map ϕ : G −→ H is called a homomorphism if for every
a, b ∈ G one has

ϕ(a · b) = ϕ(a) · ϕ(b)

where the first multiplication is the multiplication in G and the second is the
multiplication in H.

Examples:

1. For every n the map ϕ : Z −→ Z/n given by ϕ(x) = x mod n is a
homomorphism.

2. The map ϕ : (R,+) −→ (R∗, ·) given by

ϕ(x) = ex

is a homomorphism.

3. Let F be a field and recall the group GLn(F ) discussed above. Then the
determinant map det : GLn(F ) −→ F ∗ is a homomorphism (the identity
det(A) det(B) = det(A) · det(B) is proven in linear algebra 1).
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4. Let F be a field. Consider the map ϕ : Sn −→ GLn(F ) which associates
to σ the matrix Aσ defined by

Aσi,j =
{

1 i = σ(j)
0 i 6= σ(j)

We will show that it is a homomorphism. Let σ, τ ∈ Sn be permutations.
Calculating explicitly we get:

(AσAτ )i,j =
n∑
k=1

Aσi,kA
τ
k,j

Now the summand Aσi,kA
τ
k,j is non-zero if and only if i = σ(k) and k =

τ(j). Note that such a k exists if and only if i = σ(τ(i)) = (σ · τ)(i), in
which case it is unique. Hence we get that

(AσAτ )i,j =
{

1 i = (σ · τ)(i)
0 i 6= (σ · τ)(i)

which is equal to Aσ·τ by definition.

5. Recall the notion of a sign of a permutation: given σ ∈ Sn we define

sign(σ) =
∏
i<j

j − i
σ(j)− σ(i)

Note that this expression always gives either 1 or −1. Indeed if one con-
siders the absolute value

| sign(σ)| =
∏
i<j

|j − i|
|σ(j)− σ(i)|

then for each i < j the term |j− i| appears exactly once in the nominator
and exactly once in the denominator. Hence | sign(σ)| = 1 and sign(σ) =
±1.

We want to show that the sign map is a homomorphism from Sn to the
group {1,−1} (with multiplication of numbers as operation). In order to
do this we recall that if A is a matrix then

det(A) =
∑
σ∈Sn

sign(σ)
n∏
j=1

Aσ(j),j

Hence if we take a matrix of the form Aσ as above we get that

det(Aσ) = sign(σ)

Hence the sign map can be viewed as a composition of the homomorphism
σ 7→ Aσ with the homomorphism det.
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A composition of two homomorphisms is in fact always a homomorphism:
if G,H,K are three groups and ϕ : G −→ H,ψ : H −→ K homomorphism
then ψ ◦ ϕ is a homomorphism as well. Indeed:

ψ(ϕ(a · b)) = ψ(ϕ(a) · ϕ(b)) = ψ(ϕ(a)) · ψ(ϕ(b))

5



Algebraic Structures 1 - Tirgul 2

Yonatan Harpaz

October 22, 2010

1 The Cayley Graph

It is sometimes worthwhile to use combinatoric and geometric tools in order to
study groups. In this section we will introduce one such basic tool - the Cayley
graph. First let us recall what a graph is.

Definition 1.1. A (directed) graph is an ordered pair (V,E) where V is a set
(whose elements are called vertices) and E ⊆ V × V is a set of ordered pairs
of elements of V (referred to as edges).

Graphs are used to model many real life structures, such as computer net-
works, etc. Here we will see that we can also use them to describe groups. Let
G be a group and S ⊆ G a subset of elements. We define the Cayley graph
CG,S of G with respect to S to be the graph whose vertex set is G and whose
edge set is the set of all pairs (g, h) ∈ G×G such that hg−1 ∈ S. The set S us
usually taken to be a generator set of G.

Examples (see drawings in class):

1. The Cayley graph of (Z,+) with respect to {1} is an infinite chain. The
Cayley graph of the finite cyclic group of order n is a cycle of length n.
Draw for yourself the Cayley graph of Z2 with respect to the sets {(0, 1)}
and {(0, 1), (1, 0)}.

2. The Cayley graph of D4 (the dihedral group, or the post stamp machine
group) with respect to the generator set {σ, τ} (where τ is 90 degrees
rotation and σ is one of the reflections) looks like the the vertices and
edges of a 3-dimensional cube.

The question of whether S generates G is reflected in a very natural property
of its Cayey graph:

Definition 1.2. Let (V,E) be a directed graph. We say that V is connected
if for every two vertices v, u ∈ V there exists a sequence

v = v0, v1, ..., vn = u

such that for each i = 1, ..., n either (vi−1, vi) ∈ E or (vi, vi−1) ∈ E. Such a
sequence is called an (undirected) path from v to u.
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In human terms this means that one can get from each vertex to each other
vertex.

Proposition 1.3. Let G be a group and S ⊆ G a subset of elements. Let C be
the Cayley graph CG,S is connected if and only if S generates G.

Proof. Assume first that S generates G and let g, h ∈ G be two elements. We
need to construct a sequence

g = g0, g1, ..., gn = h

such that gig
−1
i−1 ∈ S or gi−1g

−1
i ∈ S for every i = 1, ..., n. Consider the element

hg−1 ∈ G. Since S generates G there exist elements s1, ..., sn such that

hg−1 = sεn
n s

εn−1
n−1 ...s

ε1
1

where εi ∈ {1,−1}. Now define a sequence g0, ..., gn by setting

gk = sεk

k s
εk−1
k−1 ...s

ε1
1 g

By definition we get
gn = sεn

n s
εn−1
n−1 ...s

ε1
1 g = h

Clearly gi = sεi
i gi−1 and so

gig
−1
i−1 = sεi

i

Note that if εi = 1 then gigi−1 ∈ S and if ε = −1 then gi−1g
−1
i ∈ S. Hence

we’ve constructed a path from g to h.
To prove the other direction we assume that CG,S is connected. Let g ∈ G

be an element. We wish to show that it is a product of elements in S. Since
CG,S is connected there is a path from the neutral element e ∈ G to g, i.e. there
exists a sequence of elements

e = g0, g1, ..., gn = g

with gigi−1 ∈ S or gig
−1
i−1 ∈ S for every i = 1, ..., n, i.e. there exists a sequence

of si’s and εi ∈ {−1, 1} such that gi = sεi
i gi−1. By induction one gets that

gk = sεk

k s
εk−1
k−1 ...s

ε1
1

for k = 1, ..., n and in particular

g = gn = sεn
n s

εn−1
n−1 ...s

ε1
1

This means that g is generated by S and we are done.
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2 Subgroups of Cyclic Groups

Theorem 2.1. Let G be a cyclic group. Then every subgroup of G is cyclic.

Proof. Let H ⊆ G be a subgroup. If H = {e} then it is trivially cyclic and we
are done. If H 6= {e} them there exists a minimal k > 0 such that gk ∈ H. We
claim that H must be generated by gk. Assume otherwise: then there exists an
element h ∈ H such that h 6= (gk)i = gik for every i ∈ Z. Since G itself is cyclic
there exists some j such that h = gj . This j has to satisfy that j 6= ik for every
i, i.e. it is not divisible by k.

Let r ∈ {0, ..., k− 1} be the remainder in the division of j by k. There there
exists an i ∈ Z such that r = j + ik. Since j is not divisible by k we get that
r 6= 0. But

gr = gj+ik = gj(gik) = h(gk)i ∈ H

which contradicts the minimality of k.

Corollary 2.2. Let G be a finite cyclic group of order n. Then G has exactly
one subgroup of order d for each d|n.

Proof. Let g be a generator of G. For each d|n let r = n
d and consider the

subgroup Hd ⊆ G generated by gr. Clearly d is the smallest positive number
such that (gr)d = e and so d is the order of gr. This means that |Hd| = d. We
need to show that these are all the subgroups.

Consider the homomorphism Z −→ G sending m ∈ Z to gm ∈ G. Let H ⊆ G
be any subgroup. From Theorem 2.1 there exists a k such that H =

〈
gk

〉
.

Consider the subset
M = {m ∈ Z|gm ∈ H} =⊆ Z

Clearly M contains 0 and is closed under addition and negation. Hence it is a
subgroup of Z. Since Z is cyclic we get from Theorem 2.1 that there exists an
r ∈ Z such that

M =< r >= {ar|a ∈ Z}

and we can always take r to be positive. Note n ∈M and so r must also divide
n. Hence there exists a positive d|n such that r = n

d .
Since the homomorphism m 7→ gm is surjective we get that

H = {gm|m ∈M} = {gar|a ∈ Z} = 〈gr〉 = Hd

and we are done.

3 The Group SL2(Z)

For the rest of the TA session we will play with the group SL2(Z), which is
a very interesting group. Recall that SL2(Z) is the group of 2 × 2 matrices
with coefficients in Z and the multiplication is the usual matrix multiplication.
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Note that if
(
a b
c d

)
is a matrix with determinant 1 then its inverse is given by(

d −b
−c a

)
(check to verify!).

This group is infinite and not-abelian. However it is finitely generated, and
in fact has a generator set of size 2. This is the content of the following theorem:

Theorem 3.1. The group SL2(Z) is generated by the elements

A =
(

1 1
0 1

)

B =
(

0 1
−1 0

)
Proof. Let M =

(
a b
c d

)
∈ SL2(Z) be any element. We will perform a process

which is analogous to Euclid’s algorithm for finding a greatest common denomi-
nator. This algorithm takes a pair of numbers (a, c) and alternates between two
steps: if |c| is bigger then |a| then it switches a and c and if 0 < |c| ≤ |a| it
replaces a with the remainder of the division of a with c. The algorithm stops
when c equals 0.

We will perform something similar to the left column of M . Formally we will
do the following: define a sequence of matrices M0, ....,Mk ∈ SL2(Z) recursively
as follows: set M0 = M and if

Mi =
(
ai bi
ci di

)
∈ SL2(Z)

define Mi+1 according to the following rules:

1. (move 1) If |ci| > |ai| set Mi+1 = BMi.

2. (move 2) If 0 < |ci| ≤ |ai| find the remainder r of the division of ai by ci.
Then r = ai + kci for some k ∈ Z and |r| < |ci|. Set Mi+1 = AkMi.

3. If ci = 0 stop.

Observe that if |ci| > |ai| then |ci+1| < |ai+1| and if 0 < |ci| ≤ |ai| then
|ci+1| > |ai+1|. Hence until the process stops we alternate between move 1 and
move 2. Note that move 1 strictly decreases ci and move 2 doesn’t change it.
Hence ci must arrive at 0 after a finite number of steps. The final step is a
matrix of the form

Mk =
(
ak bk
0 dk

)
Note that if Mk is a generated by {A,B} then so is M , so it is enough to prove
for Mk. Now the determinant of this matrix is akdk and since it has to equal 1
we see that ak = dk = ±1. Now it is enough to observe that if ak = dk = 1 then

Mk = Abk
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and if ak = dk = −1 then
Mk = B2A−bk
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1 The Diameter of Sn

Recall that you saw in exercise 2 that the pair τ = (1 2), σ = (1 2 ... n)
generates Sn. Recall that this corresponded to the fact that the Cayley graph
of Sn with respect to S = {τ, σ} is connected. This means that one can get
from every vertex of the graph to any other vertex though an undirected path.
We define the length of an undirected path to be the number of edges in it. It
is then natural to define the distance d(v, u) between two vertices to be the
minimal length of an undirected path connecting them.

Definition 1.1. Let V,E be a connected graph. We define the diameter of V
to be the supremum of all distances:

diam(V ) = sup
v,u

d(v, u)

Note that the diameter of a graph might be ∞. However if V is finite then
diam(V ) has to be finite as well. Now given a group G and a generator set S
one can wonder as to the diameter of the Cayley graph CG,S . Note that the
distance between two vertices g, h ∈ G on the Cayley graph of G is the minimal
number k such that

hg−1 =
k∏

i=1

sεi
i

for some si ∈ S, εi ∈ {−1, 1}. In particular one sees that the diameter of a
Cayley graph coincides with the minimal distance between a vertex g and the
vertex e. We will be interested in the diameter dn of Sn with respect to {σ, τ}.

Theorem 1.2.
dn = Θ(n2)

Proof. We need to prove that there are constants C1, C2 > 0 such that for large
enough n

C1n
2 ≤ dn ≤ C2n

2

Let us start with the upper bound. For this we will show the following two
facts:
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1. Every permutation can be written as a product of at most n− 1 swaps.

Proof. It is enough to show that a cycle of size k is a product of k − 1
swaps. But this is clear because

(a1 a2 ... ak) = (a1 a2)(a2 a3) · · · (ak−1 ak)

2. The distance between a swap (i j) and the identity e is at most 8n.

Proof. First observe that

σi−1τσ−(i−1) = (i i+ 1)

which means that

(i i+ 1 ... j) = (i i+ 1)(i+ 1 i+ 2) · · · (j − 1 j) =

σi−1τσ−(i−1)σiτσ−i · · ·σj−2τσ−(j−2) = σi−1(τσ)j−iσ−(j−2)

and so the distance between (i i+ 1 ... j) end e is at most

(i− 1) + 2(j − i) + (j − 2) ≤ 4n

Now since
(i j) = (i i+ 1 ... j)(i i+ 1 ... j − 1)−1

we see that the distance between (i j) and e is at most 8n.

Now from these two facts we see that the distance between any permutation
and e is at most (n− 1)8n ≤ 8n2 so we can choose C2 = 8.

We now need to show that dn is eventually at least a multiple of n2. For
this consider the following concept: we will call a trio i, j, k with i < j < k
good with respect to a permutation ϕ ∈ Sn if either ϕ(i) < ϕ(j) < ϕ(k),
ϕ(j) < ϕ(k) < ϕ(i) or ϕ(k) < ϕ(i) < ϕ(j). For example if ϕ = (1 2 3)(4 5)
then the trio 1, 2, 3 is good but the trio 3, 4, 5 is bad.

Now for each permutation ϕ let c(ϕ) denote the number of good trios of
ϕ. Now the key observation is that c(σϕ) = c(ϕ) (in fact, composing with σ
does not change the set of good trios) and that c(τϕ) is at most c(ϕ) + n − 2.
The reason here is because composing with τ can only change the goodness of
trios of the form i, j, k such that 1, 2 ∈ {ϕ(i), ϕ(j), ϕ(k)} (why?) and there are
exactly n− 2 such ordered trios. This gives us the inequality

c(ϕ) ≤ d(ϕ, e)(n− 2)

Now consider the permutation ω defined by ω(i) = n+ 1− i. Then for every
i < j < k we have

ϕ(k) < ϕ(j) < ϕ(i)

2



and so all the trios are bad. Hence we get that

c(ω) =
(
n
3

)
=
n(n− 1)(n− 2)

6

This means that

d(ω, e) ≥ n(n− 1)(n− 2)
6(n− 2)

=
n(n− 1)

6

and so

dn ≥
n(n− 1)

6
note that for when n ≥ 2 we have

n− 1
6
≥ n

12

so that for n ≥ 2 we have

dn ≥
n2

12
To conclude we get that for all n ≥ 2

n2

12
≤ dn ≤ 8n2
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1 A5 is Simple

Theorem 1.1. The group A5 is simple.

Proof. Let {e} 6= H / A5 be a normal subgroup. We will show that H = A5.
The proof will be divided into three steps:

1. We will show that H has to contain a 3-cycle.

2. We will show that if H contains a 3-cycle then it contains all 3-cycles.

3. We will show the 3-cycles generate all of A5.

We begin with the first part. Since H 6= {e} there exists a permutation
σ ∈ H which is not the identity. Since H ⊆ A5 this permutation has to be even,
so its cycle structure is either a single 5-cycle, a single 3-cycle, or two disjoint
swaps. Assume first that σ is a 5-cycle, i.e. σ = (a b c d e) for mutually
distinct a, b, c, d, e ∈ {1, ..., 5}. Now note that

(a c e)(a b c d e)(a c e)−1 = (c b e d a)

and (a c e) ∈ A5. Since H is normal we have (c b e d a) ∈ H. Now direct
computation verifies that

(a b c d e)(c b e d a) = (b a d)

and so H contains the 3-cycle (b a d).
If σ is composed of two disjoint swaps then σ = (a b)(c d) for some mutually

distinct a, b, c, d ∈ {1, 2, 3, 4, 5}. Let e ∈ {1, 2, 3, 4, 5} be the one that is different
then a, b, c and d. Then

(a e)(c d)σ((a e)(c d))−1 = (b e)(c d)

and (a e)(c d) ∈ A5. Since H is normal we have (e b)(c d) ∈ H. Now since

(a b)(c d)((e b)(c d))−1 = (a b e)

we get that H contains the 3-cycle (a b e).
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We now need to show that ifH contains a 3-cycle (a b c) then it contains any
other 3-cycle (x y z). Note a delicate point: we know that every two 3-cycles
are conjugated in S5, but that does not guarantee that they are conjugates in
A5. However we will show that this is true specifically for 3-cycle. The reason is
as following: let d 6= e ∈ {1, 2, 3, 4, 5} be two elements which are different from
a, b and c. Then we know that

(d e)(a b c)(d e) = (a b c)

now let τ ∈ S5 be such that

τ(a b c)τ−1 = (x y z)

if τ is in A5 then (x y z) ∈ H and we are done. If not then τ · (d e) is in A5

and
τ(d e)(a b c)(d e)τ−1 = (x y z)

so (x y z) ∈ H and we’re good to go.
Now for the final part, we need to show that 3-cycles generate all of A5. So

let σ ∈ A5 be any element. We now that we can write σ is a product of (not
necessarily disjoint) swaps:

n∏
i=1

(ai bi)

Since σ is even n is even as well, so if σ is not the identity n has to be at least
2. Then we get that

(a1 b1)(a2 b2) = (a1 b1)(b1 a2)(b1 a2)(a2 b2)

note that (a1 b1)(b1 a2) is either the identity or a 3-cycle and so is (b1 a2)(a2 b2).
This finishes the proof.
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1 The First Isomorphism Theorem

The first isomorphism theorem is a theorem which lets us compute in practice
quotient groups. What do we mean here by compute? Well, to compute an
abstractly given group, such as a quotient G/N usually means to find a familiar
group H such that G/N ∼= H. The first isomorphism theorem gives us a tool
to do so. It says that all we need to do is to find a homomorphism from G to a
familiar group H whose kernel is exactly N . In this section we are going to do
this very thing with a few examples:

1. Consider the additive group (R,+) and its subgroup Z ⊆ R. Since R is
abelian Z is normal in R and we can wonder as to the quotient group R/Z.
We claim that this group is actually isomorphic to what is known as the
circle group

S1 = {z ∈ C∗|‖z‖ = 1} = {a+ bi ∈ C∗|a2 + b2 = 1}

In order to prove this all we need to do is to find a homomorphism R −→
S1 whose kernel is exactly Z. This homomorphism is the following:

ϕ(x) = e2πx = cos(2πx) + i sin(2πx)

Note that indeed |e2πx| = cos2(2πx)+sin2(2πx) = 1 so ϕ(x) ∈ S1. Further
more ϕ is a homomorphism because e2π(x+y) = e2πxe2πy.

2. Let us do a more complicated example. Recall the group SL2(Z) which
consists of all 2 × 2 matrices with integer coefficients and determinant 1.
We already saw in previous TA session that this is a group with respect to
matrix multiplication (the delicate point is why there are inverses, and the

easiest way to see this is to note that the inverse of
(
a b
c d

)
is

(
d −b
−c a

)
.

Now let p be a prime number and consider the subgroup H < SL2(Z)

given by all matrices
(
a b
c d

)
such that a = 1 (mod p), b = 0 (mod p),

c = 0 (mod p) and d = 1 (mod p). In other words, the subgroup of all

matrices which are equal to
(

1 0
0 1

)
mod p.
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It is not hard to check explicitly (as we have explicit formulas for multipli-
cation and inverses of elements in SL2(Z)) that H is indeed a subgroup.
In order to show that H is a normal subgroup, it is convenient to note
that a matrix A ∈ SL2(Z) is in H if and only if it can be written as a sub
I + pA with A a matrix with integer coefficients. Then if B ∈ SL2(Z) is
any element then

B(I + pA)B−1 = BB−1 + pBAB−1 = I + pBAB−1

and since BAB−1 is a product of matrices with integer coefficients it also
has integer coefficients. Hence H is closed under conjugation and is thus
normal.

We wish to use the first isomorphism theorem in order to compute the
quotient SL2(Z)/H. For that we need to find a homomorphism G −→ H
which is surjective (onto) and which has H as its kernel. Consider the
homomorphism ϕ : SL2(Z) −→ SL2(Zp) given by reducing each of the
components of the matrix modulu p. To be more explicit, if we denote the
mod p homomorphism Z −→ Zp by a 7→ a then ϕ is given by

ϕ

(
a b
c d

)
=

(
a b

c d

)
It is immediate from the definition of ϕ that the kernel of ϕ is exactly
H. It is left to check that ϕ is surjective. For convenience we will denote
elements in Zp by a for a ∈ Z.

Theorem 1.1. For every
(
a b

c d

)
∈ SL2(Zp) there exists an element(

a′ b′

c′ d′

)
∈ SL2(Z) such that

(
a′ b′

c′ d′

)
=

(
a b

c d

)

Proof. Let
(
a b

c d

)
∈ SL2(Zp). Since ad− bc = 1 we see that at least one

of a, c must be non-zero. Assume first that c 6= 0. Then there exists an
r ∈ Zp such that cr = a. Define c′ = c, a′ = c′r + p. Then a′ = a and
c′ = c. Further more c′ and a′ are coprime: indeed if a number q divides
both c′ and c′r + p then q has to divide p which means that q is either 1
or p. But q can’t be p because c′ 6= 0.

Now since c′ and a′ are coprime there exist numbers x, y ∈ Z such that

a′x+ c′y = 1

Let ∆ = a′d− c′b ∈ Z. Then

∆ = a′d− c′b = ad− cb = 1

2



and so ∆ = 1+pz for some z ∈ Z. Define b′ = b+yzp, d′ = d−xzp. Then

a′d′−b′c′ = a′(d−xzp)−c′(b+yzp) = a′d−c′b−a′xzp−c′yzp = ∆−(a′x+c′y)zp = ∆−zp = 1

which means that
(
a′ b′

c′ d′

)
∈ SL2(Z). Clearly

(
a′ b′

c′ d′

)
=

(
a b

c d

)
so we have proven the claim for the case c 6= 0. Then case a 6= 0 is
completely analogous.
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1 Composition Series

Let us recall some of the concepts you’ve learned in the last week.

Definition 1.1. Let G be a group. We say that a sequence of subgroups
G = G0 > G1 > ... > Gn = {e} is a composition series if each Gi is normal
in Gi−1 and the quotient Gi−1/Gi is simple (in other words - Gi is a maximal
normal subgroup of Gi−1).

Note that in a composition series each Gi is assumed to be a proper subgroup
of Gi+1 so the quotient is always non-trivial. Note further that not every group
admits a composition series. Fir example, the group Z cannot contain any
composition series - since all the non-trivial subgroups in Z are infinite cyclic
one would get that Gn−1/Gn

∼= Gn−1 is infinite cyclic and hence can’t be simple.
Finite groups, however, must admit composition series. The reason is that

each finite group contains a maximal normal (proper) subgroup so we can start
with and construct the sequence downwards: G > G1 > G2 > .... Since G is
finite the sequence of orders |G| > |G1| > ... is strictly decreasing and so there
has to be an n ∈ N such that Gn = {e}.

The sequence of quotients Gi−1/Gi will be referred to as the sequence
ofsimple components or simple factors of the composition series. Note
that a simple group may appear in this sequence more then once. Now al-
though a group may have various different composition series, the sequence of
components will be essentially the same - the only thing that can change is the
order of the components. This is the content of the Jordan-Holder theorem:

Theorem 1.2. Let G be a group and G = G0 > G1 > ... > Gn = {e},
G = H0 > H1 > ... > Hm = {e} two composition series. Then n = m and for
each i ∈ {1, ..., n} there exists a j ∈ {1, ..., n} such that

Gi−1/Gi
∼= Hj−1/Hj

This theorem can be thought of as an analogue of the unique decomposition
theorem in arithmetic which says that every positive number can be written as
a product n =

∏k
i=1 pi of positive prime numbers in an essentially unique way -

if n =
∏m

j=1 qj is any other decomposition then m = n and for each i ∈ {1, ..., n}
there is a j ∈ {1, ..., n} such that pi = qj .
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In fact, the arithmetic unique decomposition theorem can actually be de-
duced from the Jordan-Holder theorem in the following way: Let G be a cyclic
group of order n and let x ∈ G be a generator. We saw in previous TA sessions
that for every positive d|n there exists a unique subgroup of G of order d and it
is the cyclic subgroup generated by x

n
d (and these are all the subgroups of G).

From this description it is easy to see that the subgroup
〈
x

n
d1

〉
contains

〈
x

n
d2

〉

if and only if d2|d1. In this case we saw that the quotient
〈
x

n
d1

〉
/

〈
x

n
d2

〉

is cyclic and its order is simply the quotient of orders d1/d2

This means that decreasing sequences of subgroups G = G0 > G1 > ... >
Gk = {e} correspond to decreasing sequences of numbers n = d0 > d1 > ... >

dk = 0 such that di+1|di. Under this correspondence Gi =
〈
x

n
di

〉
. Now in

order for the relative quotients Gi−1/Gi to be simple we need that their order
be prime (because a cyclic group is simple if and only if its order is prime).
Hence composition series of G are in one-to-one correspondence with sequences
of numbers

n = d0 > d1 > ... > dk = 0

such that di+1|di and the quotient di+1/di is a positive prime number (call it
pi). This corresponds exactly to was of writing n as a product

n =
k∏

i=1

pi

Now applying the Jordan Holder to this case we get that the sequence of simple
components is unique up to permutation and so we get exactly the unique
decomposition theorem of arithmetic.

Let us now see some non-abelian examples: consider the case G = Sn. If
n = 2 then Sn

∼= Z2 is simple. Otherwise one can always start with G1 = An as
the quotient Sn/An

∼= Z2 is simple. Now if n = 3 then An
∼= Z3 is simple and

we are done. For n = 5 we have also proven that An is simple, and the same
will be proven for all n ≥ 5 in the next TA session. What about n = 4?

In the case n = 4 the group A4 has a non-trivial composition series. Let

σ = (1 2)(3 4)

τ = (1 3)(2 4)

Then one can compute directly and see that στ = τσ (the easiest way to see
this is to use our formula for conjugation to see that στσ−1 = τ). Since both
σ and τ are elements of order 2 they for a subgroup V = {e, σ, τ, στ}. This
subgroup is normal because the set

{σ, τ, στ} = {(1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}
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contains all the permutations whose cycle structure is two disjoint swaps and
so is closed under conjugation. Since |A4| = 12 and |V | = 4 we get that
|A4/V | = 3 so it has to be a cyclic group of order 3, i.e. simple. Now V has a
proper subgroup W =< σ >< V which is normal because V is abelian. Since
|W | = |V/W | = 2 we see that they are both cyclic groups of order 2 and hence
simple. Hence we have found a composition series

S4 > A4 > V > W > {e}

and the simple factors are Z2,Z3,Z2,Z2.

2 Direct Product

A composition series is a way to take a group and decompose it into simple
factors. The obvious question now is how can we reconstruct information about
a group from its simple factors. We already know that a group is not deter-
mined by its simple factors. However, given simple factors, there are natural
constructions which give groups with these simple factors.

Let start with the simplest case. Suppose we are given two groups A,B.
Can we construct a group G with a normal series G . B . {e} such that G/B ∼=
A? Well there are many such groups, but there is one which is in some sense
the ”simplest” (using it here in the natural language and not mathematical
meaning). This group is called the direct product of A and B, and is denoted
by A × B. Its elements are ordered pairs (a, b) with a ∈ A, b ∈ B and the
multiplication of two pairs is defined as follows:

(a1, b1) · (a2, b2) = (a1a2, b1b2)

it is very easy to see that this operation is associative. If we denote the neutral
elements of A,B both by e (for simplicity) then (e, e) is the neutral element of
A×B. Then inverse of the element (a, b) is given by (a−1, b−1).

Note that A×B comes with two natural homomorphisms

pA : A×B −→ A

and
pB : A×B −→ B

given by pA(a, b) = a and pB(a, b) = b. Note that both these homomorphisms
are surjective. Now the kernel of pA consists of all pairs (a, b) such that a = e,
i.e.

ker(pA) = {(e, b)|b ∈ B} = {e} ×B

and similarly
ker(pB) = {(a, e)|a ∈ A} = A× {e}

Clearly we have natural isomorphisms ker(pA) ∼= B and ker(pB) ∼= A (given
by (e, b) ↔ b and (a, e) ↔ a). In particular we see that A × B has a normal
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subgroup isomorphic to B with the quotient being isomorphic to A, and vice-
versa.

Now given a group G with a normal series G . B with G/B ∼= A one can
ask whether G happens to be isomorphic to the product A×B. First of all we
know that G must also have a normal subgroup isomorphic to A, so we write
A / G. The natural question now is the following, given a group G with two
normal subgroups A,B / G, when is G isomorphic to A×B?

Note that we don’t want an arbitrary isomorphism. If we construct an
isomorphism from A×B to G then we want it to respect the inclusions of A,B,
i.e. we want it to send (e, b) to b and (a, e) to a. This means in particular that
the intersection of A and B in G must be trivial, i.e. A ∩B = {e}. Further we
must have AB = G, i.e. every element in G would admit a presentation as a
product a · b. It turns out that these conditions are also sufficient:

Theorem 2.1. Let G be a group and A,B / G two normal subgroups such that
A∩ = {e} and AB = G. Then there exists an isomorphism ϕ : A × B −→ G
such that ϕ((e, b)) = b and ϕ((a, e)) = a.

Proof. Define ϕ : A×B −→ G by

ϕ((a, b)) = a · b ∈ G

We want to show that ϕ is a homomorphism. For this we need to show that for
every (a1, b1), (a2, b2) ∈ A×B we have

ϕ((a1, b1))ϕ((a2, b2))
?= ϕ((a1a2, b1b2))

substituting the definition of ϕ on both sides we get that we need to prove

a1b1a2b2 = a1a2b1b2

or simply that
b1a2 = a2b1

which is equivalent to
b1a2b

−1
1 a−1

2 = 1

Now this is true because this commutator has to belong to both A and B (why?),
and A ∩B = {e}. So we’ve obtained that ϕ is a homomorphism. We now need
to show that it is one-to-one and onto. The onto part is easy - it is a direct
consequence of the fact that AB = G. So we will concentrate on showing that
the kernel of ϕ is trivial. If (a, b) ∈ ker(ϕ) then ab = e ∈ G. Hence b = a−1 ∈ A.
Since b is also in B we get that b ∈ A∩B = {e} so b = e. Since b = a−1 we get
that a = e as well. Hence (a, b) = (e, e) which is the neutral element of A × B
and we are done.
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1 Solvable Groups

Let G be a group. We say that G is solvable if it has a normal series G =
G0 > G1 > G2 > ...Gn = {e} such that the quotient Gi−1/Gi is abelian. This
class of groups is a natural extension of the class of abelian groups, and it is
characterized by the following property:

Definition 1.1. Let A be a class of groups. We say that A is closed under
extensions if whenever we have a group G with a normal subgroup N /G such
that N, G/N ∈ A then G is also in A.

In exercise 8 you will prove that the class of all solvable groups is closed under
extensions. Now by induction it follows that every class of groups containing the
abelian groups and closed under extensions contains all solvable groups. Hence
we see that the class of solvable groups is the smallest class of groups containing
the abelian groups and closed under extensions.

There exists also an alternative description for solvable groups. Recall that
the derived subgroup G′ < G (also denoted by [G, G] < G) is the subgroup
generated by elements of the form aba−1b−1 (called commutators). In this TA
session we will use the notation [G, G] (for reasons that will be clear later).

Now as you saw in class and in exercise 5 the quotient G/[G, G] is abelian
and in fact [G, G] is the smallest normal subgroup with that property, in the
sense that it is contained in any other normal subgroup H / G such that G/H
is abelian.

Definition 1.2. Let G be a group. Define the derived series to be the de-
scending sequence of subgroups G = G(0) > G(1) > G(2) > ... defined induc-
tively by

G(i) = [Gi−1, Gi−1]

for i ≥ 1.

Proposition 1.3. Let G be a group. Then G is solvable if and only if there
exists an n such that G(n) = {e}.

Proof. One direction is obvious - if the derived series stops after a finite number
of steps then it constitute a normal series in which the consecutive quotients

1



Gi−1/Gi = Gi−1/[Gi−1, Gi−1] are abelian. In the other direction if G admits a
normal series G = G0 > G1 > ...Gn = {e} such that Gi−1/Gi are abelian then
we claim that

G(i) ⊆ Gi

and so in particular G(n) = {e}. We prove this by a simple induction. Clearly
this is true for i = 0 because then G(0) = G = G0. Now assume that G(i) ⊆
Gi for some i ≥ 0. Then since the quotient Gi/Gi+1 is abelian we get that
[Gi, Gi] ⊆ Gi+1. Then

G(i+1) = [G(i), G(i)] ⊆ [Gi, Gi] ⊆ Gi+1

and we are done.

Corollary 1.4. If G is solvable then it has a normal series with abelian quo-
tients in which all the subgroups are normal in G.

We can think of the derived series as follows: among all the normal series
with abelian quotients, the derived series is the one in which the subgroups are
the smallest, or alternatively the quotients are maximal.

Examples:

1. If G is finite then you can refine the derived series and get a composition
series with abelian quotients, i.e. a composition series whose quotients are
all isomorphic to some Zp. Hence we see that a finite group is solvable if
and only if all of its simple factors are Zp’s. For example: S3, S4, D4, Q.

2. Let F be a field and consider the subgroup G < GLn(F ) composed of
all upper triangular matrices. Then we claim that G is solvable. For
simplicity we will prove this just for the case of n = 2 but the principle
can be extended to the case of general n. Consider the map GL2(F ) −→
F ∗ × F ∗ given by (

a b
0 c

)
= (a, b)

It is easy to verify that this is indeed a homomorphism. Its kernel is
the subgroup composed of all upper triangular matrices with 1’s on the
diagonal. This subgroup is isomorphic to the additive group (F, +) and
so is abelian. Hence we have a normal series with abelian quotients.

We can do a similar thing with Z instead of F , but we need to define GLn(Z)
properly: it is the group of all matrices with integers coefficients whose inverses
are also with integer coefficients. This is equivalent to the determinant of a
matrix being ±1.

2 Nilpotent Groups

There is another important class of groups which contains all abelian groups
and is contained in the class of solvable groups (this class of groups is hence not
closed under extensions). This is the class of nilpotent groups.
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Definition 2.1. Let G be a group. We say that G is nilpotent if it has a
normal series G = G0 > G1 > ... > Gn such that all the Gi’s are normal in G
and such that each quotient Gi−1/Gi is contained in the center of G/Gi.

Since the center of any group is abelian it follows that in a normal series such
as in the definition the quotients Gi−1/Gi are abelian. Hence every nilpotent
group is solvable. Further more it’s clear that every abelian group is nilpotent.

This class of groups is defined as follows. First of all for a normal subgroup
H / G we define [G, H] < H to be the subgroup generated by all elements of
the form ghg−1h−1 with g ∈ G, h ∈ H. It is not hard to show that [G, H] is
actually normal in both H and G. This construction has the following important
property:

Proposition 2.2. The subgroup H/[G, H] < G/[G, H] is contained in the cen-
ter of G/[G, H]. Further more [G, H] is the smallest group with that property,
i.e. if N < H is subgroup which is normal in G such that H/N is contained in
the center of G/N then [G, H] ⊆ N .

Proof. Let g[G, H] ∈ G/[G, H], h[G, H] ∈ H/[G, H] be two elements. Their
commutator is the coset ghg−1h−1[G, H]. We want to show that this is the
trivial coset, i.e. that ghg−1h−1 ∈ [G, H]. But [G, H] contains exactly all these
elements by definition.

Now let N < H be a subgroup which is normal in G such that H/N is
contained in the center of G/N . Let g ∈ G, h ∈ H be two elements. Then the
commutator of the cosets gN and hN in G/N is the coset of ghg−1h−1. Since
H/N is contained in the center of G/N this coset is trivial, so ghg−1h−1 ∈ N .
This implies that [G, H] ⊆ N and we are done.

Note that if G = H that the claim of this proposition is the familiar claim
that G/[G, G] is abelian (contained in its own center) and is contained in any
other normal subgroup with that property.

Definition 2.3. Let G be a group. The descending central series is the
series G = C0 > C1 > C2 > ... defined inductively by

Ci = [G, Ci−1]

for i ≥ 1.

Proposition 2.4. Let G be a group. Then G is nilpotent if and only if there
exists an n such that Cn = {e}.

Proof. First suppose that the descending central series stops after a finite num-
ber of steps. Then by induction we get that each Ci is normal in G. Further
more by Proposition 2.2 we get that Ci−1/Ci is contained in the center of G/Ci.

In the other direction if G admits a normal series G = G0 > G1 > ...Gn =
{e} such that each Gi is normal in G and such that Gi−1/Gi is contained in the
center of G/Gi then we claim that

Ci ⊆ Gi
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and so in particular Cn = {e}. We prove this by a simple induction. Clearly
this is true for i = 0 because then C0 = G = G0. Now assume that Ci ⊆ Gi

for some i ≥ 0. Then since the quotient Gi/Gi+1 is contained in the center of
G/Gi+1 we get that [G, Gi] ⊆ Gi+1. Then

Ci+1 = [G, Ci] ⊆ [G, Gi] ⊆ Gi+1

and we are done.

There is also a third equivalent definition for nilpotent groups. Let G be a
group and H / G a normal subgroup. We define the relative center Z(G, H) as

Z(G, H) = {g ∈ G|gH ∈ Z(G/H)}

i.e. the group of all elements whose image in G/H lies in the center of G/H.
Since Z(G/H) is normal in G/H we get that Z(G, H) is a normal subgroup of
G.

Proposition 2.5. The quotient Z(G, H)/H is contained in the center of G/H
(it is actually equal to it) and further more if N ⊇ H is any subgroup such that
N/H is contained in the center of G/H then N ⊇ Z(G, H).

Proof. Immediate from the definition.

Definition 2.6. Let G be a group. The ascending central series is the
ascending sequence of groups

{e} = C0 < C1 < C2 < ...

defined inductively as
Ci = Z(G, Ci−1)

Proposition 2.7. Let G be a group. Then G is nilpotent if and only if there
exists an n such that Cn = G.

Proof. First suppose that Cn = G. Then by defining Gi = Cn−i we get a normal
series in which all groups ae normal in G and such that Gi−1/Gi = Cn−i+1/Cn−i

is actually equal (and hence in particular contained) in the center of G/Gi =
G/Cn−i.

In the other direction suppose that G is nilpotent. Then descending central
series stops after a finite number of steps so there exists an n such that Cn = {e}.
We claim that Ci ⊇ Cn−i and so in particular Cn = G. We prove this by
induction. For i = 0 we have C0 = {e} = Cn. Now suppose that

Ci ⊇ Cn−i

for some i ≥ 0. Then

Ci+1 = Z(G, Ci) ⊇ Z(G, Cn−i) ⊇ Cn−i−1

and we are done.
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1 Group Actions

1.1 Classification of Group Actions

In this section we will fix a group G and study sets X together with an action
of G on them. A set X together with such an action is simply called a G-set.
A map f : X −→ Y between two G-sets is called equivariant if it respects the
action of G, i.e. if

f(gx) = gf(x)

for every x ∈ X, g ∈ G. An equivariant map f : X −→ Y between two G-sets
is called an isomorphism if it is both one-to-one and onto, or equivalently if
there exists an equivariant map g : Y −→ X such that both f ◦ g and g ◦ f are
the identity maps.

In this section we will classify all possible G-sets up to an isomorphism. The
first step in such a classification is two break a G-set X to its orbits. We use
the following notion

Definition 1.1. A G-set X is called transitive if for every x, y ∈ X there
exists a g ∈ G such that

gx = y

Note that X is transitive if and only if all the elements are in the same orbit.
If this is not the case, we can still divide X to the different orbits. Each one of
the orbits is a sub G-set (i.e. it is a subset which is preserved by G) which is
transitive. This means that every G-set is a disjoint union of transitive G-sets.
It is left to classify transitive G-sets.

Recall the following familiar example for a G-set: let H < G be a subgroup
and let X = G/H be the set of left cosets of H in G. Then G acts on X by
multiplication on the left, i.e.

g(xH) = gxH

Note that this makes X into a transitive G-set, because for each xH, yH ∈ X
the element g = yx−1 sends xH to yH. It is also not hard to check that the
stabilizer of the element H ∈ X is the subgroup H itself. It turns out that this
covers all the transitive G-sets up to isomorphism.
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Theorem 1.2. Let X be a transitive G-set and x ∈ X an element. Then X is
isomorphic to G/H where H = StG(x) is the stabilizer of x in G.

Proof. We need to construct an equivariant map ϕ : G/H −→ X and show that
it is an isomorphism. We will define ϕ is follows:

ϕ(gH) = gx

We need to show that this map is well defined, i.e. we need to show that if
g′H = gH then gx = g′x. But just note that if g′H = gH then there exists an
h ∈ H such that g′ = gh. Then g′x = ghx = gx because H is the stabilizer of
x. We now need to show that ϕ is equivariant. This is real easy too:

ϕ(g(g′H)) = ϕ(gg′H) = gg′x = gϕ(g′H)

We will now show that ϕ is surjective. Let y ∈ X be any element. Since X is
transitive there exists a g ∈ G such that gx = y. Then ϕ(gH) = gx = y so y is
in the image of ϕ.

It is hence left to show that ϕ is injective. Let g1H, g2H ∈ G/H be two
elements such

ϕ(g1H) = ϕ(g2H)

Then g1x = g2x so g−1
2 g1x = x. This means that g−1

2 g2 is in the stabilizer of
x which is H. Hence g1, g2 are in the same left coset of H, which means that
g1H = g2H. This finishes the proof.

1.2 Burnside’s Lemma and Counting Problems

Burnside’s lemma is a lemma which is useful for counting objects up to symme-
tries. Let X be a G-set. Suppose we want to count the objects of X but if two
objects are in the same orbit we think of them as identical. Hence we just want
to count the number of orbits. The set of orbits is usually denoted by X/G.
Burnside’s lemma is the following calculation:

|X/G| =
∑
x∈X

1
|O(x)|

=
∑
x∈X

|StG(x)|
|G|

=
1
|G|

∑
x∈X

|StG(x)| =

|{(x, g) ∈ X ×G|gx = x}|
|G|

=
1
|G|

∑
g∈G

|Xg|

where Xg = {x ∈ X|gx = x} is the set of fixed points of g. A nice way to state
this lemma is that number of orbits is the average size of the fixed points sets.
Let us demonstrate the usefulness of this lemma by an example. Suppose we
are joule makes and we have n different kinds of diamonds. Suppose we live in a
culture where it is customary to marry many spouses, but in order for them not
to be jealous of each other we need to make each of them a different wedding
ring.
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Now according to the strict rules of our culture a wedding ring must contain
exactly 25 diamonds in equal distances. A natural question then arises, how
many different spouses can I marry (as a function of n). Note that a-priori
there are n25 different ways to put the diamonds on the ring. However if two
diamond configurations become the same after I rotate the ring or turn it upside
down then the rings are actually the same (and your possible romantic interests
will see if you try anything funny).

So we are left with a set X of size n25 of all diamond configurations. We
have a natural action of D25 on it, and we want to count the number of orbits.
Using Burnside’s lemma we get

|X/G| = 1
50

∑
g∈D25

|Xg|

So we are left to calculate the sizes of the fixed points sets Xg. Let a ∈ D25 be
rotation by 1/25 a circle and b a reflection. What is the size of Xg when g = an?
well if n = 0 then g = 1 and |Xg| = n25. If n = 5, 10, 15 or 20 then we see that
|Xg| = n5 (because a configuration fixed by g in this case is freely determined
by the values of the first consecutive 5 diamonds). Finally if n is not divisible by
5 then an has exactly n fixed points, and those are the configurations in which
all the diamonds are the same.

As for reflections anb it is not hard to see that since 25 is odd each reflection
preserves exactly one of the diamonds, and the swaps the other 24 diamonds in
pairs. Hence |Xg| = n13 in this case. We conclude that

|X/G| = 1
50

∑
g∈D25

|Xg| = 1
50
(
n25 + 4n5 + 20n+ 25n13

)

2 Classification of Groups of size pq

Let p < q be prime numbers. In this section we will use Silow theorem in order
to classify all groups of size |pq|. We will show that if q is not equal to 1 mod p
then the only group size pq is the cyclic group Zpq, and if q is equal to 1 mod p
then there is a unique non-cyclic group of size pq (up to isomorphism). In the
case p = 2 these are the familiar dihedral groups Dq. The generalization for all
p goes as follows.

Let Fq be the field with q elements (its additive group is isomorphic to
Zq). Recall that Dp can be identified with the subgroup of S(Fq) consisting of
permutations of the form

x 7→ ±x+ b

We will generalize this construction to an arbitrary p which divides q − 1 (this
is equivalent to q being 1 mod p). The key idea is the theorem which says that
the multiplicative group F∗q is cyclic. Since its order is q − 1 is has a unique
subgroup of order p.

Let G be a group of size pq. Let P,Q < G be a p-Silow and a q-Silow
subgroups respectively. The fundamental step is to use the last section of Silow’s
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theorem, which states that the number of q-Silow subgroups of G is 1 mod q.
Since this number has to divide pq it is one of the numbers 1, p, q, pq, but since
p < q the only one of them which is 1 mod q is 1. Hence Q is normal in G. If q
is not equal to 1 mod p then the same argument shows that P is normal in G.
Note that P ∩ Q = {1} because their sizes are coprime and PQ = G because
PQ is a subgroup of size pq. Hence in this case G ∼= P ×Q. Since P,Q are of
prime orders they are cyclic and so

G ∼= Zp × Zq
∼= Zpq

We are left with the more complicated case when q is equal to 1 mod p. Let
a ∈ P, b ∈ Q be generators. Since Q is normal we get that aba−1 ∈ Q so there
exists an m such that

aba−1 = bm

Note that m 6= 0 (because aba−1 = 1 implies b = 1) and we can always take m
to be in {1, ..., q − 1}. Now recall that the order of a is p and so

b = apba−p = ap−1bma−(p−1) = ap−2bm
2
a−(p−2) = ... = bm

p

Hence bm
p

= b which means that mp = 1 mod q. Now we can think of m as an
element in the multiplicative group F∗q , and the condition mp = 1 is just saying
that m is element of order p in F∗q . Now F∗q is a cyclic group of order q − 1 and
q−1 is divisible by p. Hence F∗q has a unique subgroup of size p, Hp ≤ F∗q which
is composed of all elements s ∈ F∗q such that sp = 1. Hence we interpret m as
an element of Hp.

Now if m = 1 (i.e. the trivial element of Hp) then aba−1 = b which means
that a and b commute and so P is normal as well and we return to the previous
case

G ∼= P ×Q ∼= Zp × Zq

We claim that the cases with m 6= 1 all give isomorphic groups. In order to do
so we will show that they are all isomorphic to a certain generalization of the
dihedral group.

Let s ∈ F∗q , t ∈ Fq be elements and let σs,t ∈ S(Fq) be defined by the formula

σs,t(x) = sx+ t

Note that

(σs,t ◦ σr,u)(x) = s(rx+ u) + t = srx+ su+ t = σsr,su+t(x)

Let Dp,q ⊆ S(Fq) be the subgroup consisting of all permutations σs,t such
that s ∈ Hp. From the computation above and since Hp is a subgroup we see
that Dp,q is indeed a subgroup. For example, if p = 2 then Hp = {−1, 1} and so
D2,q is just the dihedral group Dq. Clearly the size of Dp,q is pq (the product
of the size of Hp and the size Fq).

Now return to our G of size pq as above with its elements a, b ∈ G satisfying

ap = 1
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bq = 1

aba−1 = bm

We want to construct an isomorphism T from G to Dp,q. Since G = QP and
P = 〈a〉 , Q = 〈b〉 we get that every element g ∈ G can be written uniquely as a
product

g = biaj

for i ∈ {0, ..., q − 1}, j ∈ {0, ..., p − 1}. In particular we can interpret i as an
element in Fq. We also interpret m as an element of Hp. This leads to the
following definition of T :

T (biaj) = σmj ,i

We need to start by showing that this is even a homomorphism. By applying
the relation ab = bma many times we get that ajbk = bm

jkaj . Hence

T (biajbkal) = T (bibm
jkajal) = T (bm

jk+iaj+l) =

σmj+l,mjk+i = σmj ,i ◦ σml,k = T (biaj) ◦ T (bkal)

So T is indeed a homomorphism. Since G and Dq,p have the same size we only
need to show that T is injective. Let i, j be such that σmj ,i is the identify
permutation. Then in particular

σmj ,i(0) = 0

which means that
mj · 0 + i = 0

or simply i = 0 (because i ∈ {0, ..., q − 1}). Similarly since now

σmj ,0(1) = 1

we get that
mj · 1 = 1

or mj = 1. But we assumed that m 6= 1 and since Hp is a cyclic group of order
p it has no proper subgroups. Hence m must be a generator of Hp. This means
that the equation mj = 1 (together with the range j ∈ {0, ..., p−1} implies that
j = 0. Hence the kernel is trivial and T is an isomorphism.
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1 Finite Abelian Groups

Theorem 1.1. Let G be a finite abelian group. Then G is a product of cyclic
groups.

Proof. Since all the p-Silow subgroup in G are normal we get that G is a product
of its p-Silow subgroups. Hence it is enough to prove the theorem for abelian
p-groups. For this we will use the following concept:

Definition 1.2. A finite set {x1, ..., xn} ⊆ G is called independent if whenever∑
i

aixi = 0

then aixi = 0 for all i = 1, ..., n.

It is easy to see (using our generalized criterion for direct product) that
{x1, ..., xn} is independent if and only if

〈x1, ..., xn〉 ∼= 〈x1〉 × 〈x2〉 × ...× 〈xn〉

For each independent set A = {x1, ..., xn} we call the size of 〈A〉 the order of
A. In order to prove the question we need to show that there is an independent
set of order |G|.

Clearly independent sets exists (for example every set with on element is
independent). Let A = {x1, ..., xn} be an independent set of maximal order.
We will show that 〈A〉 = G.

Suppose that 〈A〉 6= G. Then there exists an y ∈ G which is not in 〈A〉. In
particular there exists a y which is not in 〈A〉 but such that py ∈ A. Note that
in this case p is the minimal number k such that ky ∈ 〈A〉. Let a1, ..., an such
that

py =
∑

i

aixi

Let S ⊆ {1, ..., n} be the subset of all the i’s such that p|ai. Define

z = y −
∑
i∈S

ai

p
xi

1



note that z /∈ 〈A〉 but
pz =

∑
i/∈S

aixi ∈ 〈A〉

so we can work with z instead of y. We now separate into two cases: the first
case is when S = {1, ..., n}. In that case pz = 0 and it is not hard to see that
A ∪ {z} is an independent set with larger order then A - a contradiction.

The second case is when S 6= {1, ..., n}. In that case Let r be the minimal
number such that prxi = 0 for all i /∈ S. Since A is independent the order of

pz =
∑
i/∈S

aixi ∈ 〈A〉

is pr and hence the order of z is pr+1. Let j ∈ {1, ..., n} \ S be such that the
order of xj is in fact pr. Assume for simplicity that j = 1. Then we claim that
the set A′ = {z, x2, ..., xn} is an independent set of order greater then that of
A. First we need to show that A′ is independent. Suppose that

b1z +
n∑

i=2

bixi = 0

Since b1z ∈ 〈A〉 we get that b1 = pb′1 for some b′1. Then

0 = b1z +
n∑

i=2

bixi = b′1

[∑
i/∈S

aixi

]
+

n∑
i=2

bixi =

b′1a1x1 +
∑

i∈{2,...n} \ S

b′1aixi +
n∑

i=2

bixi

Since A is independent we get that

b′1a1x1 = 0

and so pr|b′1a1. Since p does not divide a1 we get that pr|b′1 and so pr+1|b1.
This means that

b1y = 0

and since {x2, ..., xn} is independent bixi = 0 for all i = 2, ..., n. This shows
that A′ is independent. Since we’ve replaced the element x1 ∈ A of order pr

with an element z of order pr+1 we got an independent set of larger order -
contradiction.

Hence 〈A〉 = G and we are done.
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1 Rings and Ideals

In this TA session we give and compute examples of rings, ideals, and quotient
rings.

1.1 Non Commutative Rings

1. Let F be a field and consider the ring R = Mn(F ) of n× n matrices over
F . What are the ideals in this ring? note that R is not commutative,
so we need to distinguish between left ideals, right ideals and two-sided
ideals. Left ideals I ⊆ R are subsets of matrices which are closed under
addition and multiplication from the left. We will now classify all of them:

Theorem 1.1. If I ⊆ R is a left ideal then there exists a sub vector space
V ⊆ Fn such that

A ∈ I ⇔ Av = 0,∀v ∈ V

Proof. There is a natural way to ”guess” what V should be: we define

V = {v ∈ Rn|Av = 0,∀A ∈ R} = ∩A∈R ker(A)

and consider
IV = {A ∈ R|Av = 0,∀v ∈ V }

Since Av = 0 implies BAv = 0 for all B we see that IV is a left ideal.
Further more from the definitions it is clear that I ⊆ IV . We need to show
that this inclusion is actually an equality.

First we will show that there exists an A ∈ I such that

ker(A) = V

Let A1, A2 ∈ I be two matrices. By definition V ⊆ ker(A1) ∩ ker(A2).
We claim that there exists a matrix C ∈ I such that ker(C) = ker(A1) ∩
ker(A2). Let {v1, ..., vn} be a basis for Rn such that B = {v1, ..., vk}
are a basis for ker(A1) ∩ ker(A2), {vk+1, ..., vm} complete B to a basis of
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ker(A1) and {vm+1, ..., vl} complete V to a basis for ker(A2) (this is all
just standard linear algebra).

Now the set {A1vm+1, ..., A1vn} is linearly independent so there exists a
B1 such that

B1A1vi = ei

for i ∈ {m+1, ..., n}. Similarly the set {A2vk+1, ..., A2vm, A2vl+1, ..., A2vn}
is linearly independent so there exists a matrix B2 such that

B2A2vi = ei

for i ∈ {k + 1, ...,m, l + 1, ..., n}. Let C = B1A1 + B2A2 ∈ I. Then we see
that

Cvi = B1A1vi + B2A2vi =

 0 i = 1, ..., k
ei i = k + 1, ..., l

2e1 i = l + 1, ..., n

and so ker(C) = ker(A1)∩ker(A2). By induction we see that for any finite
subset {A1, ..., An} ∈ I there exists a C ∈ I such that ker(C) = ∩n

i=1Ai.
Since there can’t be a strictly decreasing infinite sequences of vector spaces
(because this will result in a strictly decreasing infinite sequences of di-
mensions) we get that there exists an A ∈ I such that

ker(A) = ∩A∈I ker(A) = V

Now let B ∈ IV be any matrix. We need to show that B ∈ I. From the
definition of IV we get that

ker(A) ⊆ ker(B)

We will show that there exists a matrix C such that B = CA, and this
will imply B ∈ I. Let {v1, ..., vn} ⊆ Rn be a basis such that {v1, ..., vk}
are a basis for ker(A1). Then the space spanned by {vk+1, ..., vn} has
a trivial intersection with ker(A1) and so {A1vk+1, ..., A1vn} are linearly
independent. Hence there exists a matrix C such that

CAvi = Bvi

for i ∈ {k + 1, ..., n}. Since

CAvi = 0 = Bvi

automatically for i = 1, ..., k we get that

CA = B

and we are done.

Corollary 1.2. Let I ∈ R be a left ideal. Then there exists an A ∈ R
such that

I = {BA|B ∈ R}

2



Such ideals are called principal left ideals. We also say that they are
generated by 1 element and in some contexts that they are cyclic (like
groups which are generated by one element).

What about right ideals? well note that we have the transpose operation
A 7→ At which satisfies

(A + B)t = At + Bt

and
(AB)t = BtAt

Hence if I is a right ideal then

It = {At|A ∈ I}

is a left ideal. Hence we get that every right ideal I is principal as well,
i.e. there exists an A ∈ R such that

I = {AB|B ∈ R}

we can also describe I as

I = {A ∈ R|vtA = 0,∀v ∈ V }

for some sub vector space V ⊆ Rn.

What about two sided ideals? well it turns out that there aren’t two many
of those:

Theorem 1.3. Let I ⊆ R be a two sided ideal. Then I = 0 or I = R.
Comment: we call such rings simple rings. This is the ring analogy of
simple groups.

Proof. Let I ∈ R be a two sided ideal and let A ∈ I be a non-zero element.
We need to show that I = R. Let Ei,j ∈ R be the matrix whose (i, j)-
entry is 1 and all the rest are 0. Since every matrix is a linear combination
of Ei,j ’s it is enough to show that Ei,j ∈ I. Since A 6= 0 there exists an
entry (k, m) such that Ak,m 6= 0. Then direct computation verifies that

Ei,kAEm,j = Ei,j

Note that a two sided ideal is closed to multiplication from both left and
right, and so this implies Ei,j ∈ I and we are done.

2. The second important example of a non-commutative ring is the quater-
nion ring. Let F be a field. The Hamiltonian quaternion ring H(F ) is
the ring whose elements are formal combinations

a + bi + cj + dk
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The addition is defined in the obvious way and the multiplication is done
according to the rules

i2 = j2 = k2 = −1

ij = −ji = k

jk = −kj = i

ki = −ik = j

For example let us compute the multiplication of 1 + i + j and 1− 2k:

(1+i+j)(1−2k) = 1+i+j−2k−2ik−2jk = 1+i+j−2k+2j−2i = 1−i+3j−2k

Note that the coefficients (which can be though of as the sub ring of
elements of the form a + 0i + 0j + 0k) commute with everything.

We define the conjugate of an element x = a + bi + cj + dk ∈ H(F ) to be

x = a− bi− cj − dk

It is a direct computation to verify that

xx = xx = a2 + b2 + c2 + d2

We call this the norm of x and denote it by |x|. Note that this means in
particular that

x · x

|x|
=

x

|x|
· x = 1

and so if |x| 6= 0 then x is invertible in the ring H(F ).

It turns out (although this exceeds the scope of this course) that if there
exists an element such hat |x| = 0 then H(F ) is actually isomorphic to
M2(F ). If, on the other hand |x| 6= 0 for every x ∈ H(F ) then every
element is invertible. In this case H(F ) is what’s called a division ring.
It is clear that in such a case every two-sided ideal is trivial, so in particular
H(F ) is always simple.

Comment: for the case F = C the element 1 +
√
−1i has norm 0 and we

can show an explicit isomorphism ϕ : H(C) −→M2(C). It is given by

ϕ(1) = I

ϕ(i) =
(√
−1 0
0 −

√
−1

)
ϕ(j) =

(
0 −1
1 0

)
ϕ(k) =

(
0

√
−1√

−1 0

)
One can formally check that the defining relations between i, j and k are
satisfied by these matrices.
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3. Let F be a field and consider the subfield R ⊆ Mn(F ) consisting of
upper triangular matrices. Consider the direct product ring Fn =

n︷ ︸︸ ︷
F × F × ...× F where we add and multiply vectors coordinate wise. We
have a homomorphism ϕ : R −→ Fn given by

ϕ(A) = (A1,1, ..., An,n)

It is a direct computation to verify that this is indeed a homomorphism.
Let I = ker(ϕ). Then I consists of all matrices A ∈ R which have only
zeros on their diagonal (such matrices are sometimes called strictly up-
per triangular). Since this I is a kernel it is automatically a tow-sided
ideal. Since ϕ is surjective we get from the first isomorphism theorem that
R/I ∼= Fn.

4. Let F e a fiend and V and infinite dimensional vector space over F . Let
L(V ) be the set of all linear transformation T : V −→ V . Then L(V ) has
a natural ring structure - addition is addition of linear transformations
and multiplication is composition. Note that if V was finite dimensional
we would get something isomorphic to some Mn(F ).

Let I ⊆ L(V ) be the subset of all linear transformations whose image is
finite dimensional. IT is easy to check that I is closed under addition and
multiplication from left and right. Hence I is a two-sided ideal.

1.2 Commutative Rings

1. Let R = Z be the ring of integers. What are the ideals in Z? Since every
ideal is in particular a subgroup we know that if I / Z is an ideal then
there exists an n ∈ Z such that

I = {na|a ∈ Z} = 〈n〉

Now it is clear that such for each n ∈ Z then the subgroup generated by n
is in fact the ideal generated by n, so we get that these are actually all the
ideals. How does the quotient ring look like? Well as an additive group
it is just Z/nZ ∼= Zn and it is not hard to see that the multiplication is
actually multiplication mod n: if a, b ∈ {0, ..., n − 1} and we denote by
a ·n b ∈ {0, ..., n− 1} their multiplication mod n then

(a + 〈n〉)(b + 〈n〉) = ab + 〈n〉 = a ·n b + 〈n〉

2. Let R be a ring. We denote by R[x1, ..., xn] the ring of polynomials in n
variables with coefficients in R.

Theorem 1.4. If R is a field then R[x] is a Euclidian domain.
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Proof. The Euclidian norm here is just the degree |f | = deg(f). The first
axiom that a Euclidian norm needs to satisfy is that

deg(fg) ≥ deg(f)

This is satisfied because when R is a field we have deg(fg) = deg(f) +
deg(g). This is a familiar property of polynomials but let’s see exactly why
this is so. If f = axd + f1 and g = bxe + g1 where a, b 6= 0. deg(f1) < d
and deg(g1) < e then

fg = abxd+e + h

where deg(h) < de. Since R is a field we get that a, b 6= 0 implies ab 6= 0
and so deg(fg) = deg(f) + deg(g). Note that if R is not a field then it
might be that 0 6= a, b ∈ R but ab = 0 so this argument would fail.

The second thing we need to show that for every f, g ∈ R[x] we can write
f = qg+r with either r = 0 or deg(r) < deg(g). We start by showing that
if deg(f) ≥ deg(g) there exists a q ∈ R[x] such that deg(f − qg) < deg(f).
Let deg(f) = d, deg(g) = e ≤ d and write f = axd + f1 and g = bxe + g1

with deg(f1) < d, deg(g1) < e and a, b 6= 0. Then

f − a

b
xd−eg = axd − axd + f1 −

a

b
g1 = f1 −

a

b
g1

so in particular deg(f − a
b xd−eg) < d.

From the above observation we see that we can construct a finite sequence
f = f0, f1, f2, ..., fn such there exist qi with fi = fi−1−qig and fn is either
0 or of degree < n. Define r = fn and q =

∑n−1
i=0 qi and you will get

f = qg + r

You will see later in the course that when R is a field, every ideal of R[x]
is generated by a single element. This is not true when R is not a field,
even if R is an integral domain (”thum shlemut”). For example if R = Z
then the elements 2, x ∈ R[x] generate a non-trivial ideal (it contains only
polynomials whose free coefficient is even) but the only polynomials which
divide both 2 and x are ±1, which generate the ideal which is all of R[x].

Let us return now to the case that R is a field. The this division with
remainder process can be used to find a concrete description of quotient
rings R[x]/ 〈g〉. In every coset f + 〈g〉 we can find a representative of
degree < n by simply writing f = qg + r and noting that r and f are in
the same 〈g〉-coset. Further more note that a coset cannot contain two
different elements of degree < n because their difference would be a non-
zero polynomial of degree < n and such a polynomial cannot be divisible
by g. Hence we see that we have a one-to-one correspondence between
elements of R[x]/ 〈g〉 and polynomials of degree < n. In order multiply
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two elements in this representation we multiply them as polynomial and
then take the remainder when dividing by g.

Example: Let R = R be the field of real numbers and f = x2 + 1. Then
we can represent each element in R/

〈
x2 + 1

〉
by a polynomial of degree

1, i.e. by an element a + bx. How do you multiply two such elements?
let a + bx, c + dx be two elements. You start by multiplying them as
polynomials, getting

(a + bx)(c + dx) = ac + (ad + bc)x + bdx2

we now need to take the remainder obtained when dividing f = ac +
(ad + bc)x + bdx2 by x2 + 1. For this we subtract from f the polynomial
bd(x2 + 1) in order to cancel the coefficient of x2 this results in

ac + (ad + bc)x + bdx2 − bd(x2 + 1) = (ac− bd) + (ad + bc)x

Note that we have obtained that the ring R[x]/
〈
x2 + 1

〉
is isomorphic to

the field C of complex numbers by the isomorphism

ϕ(a + bx) = a + bi

This should not surprise us, because the ring R[x]/
〈
x2 + 1

〉
can be thought

of as obtained from R by adding an element x which satisfying the equa-
tion x2 + 1 = 0, i.e. by adding a square root to −1.
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0.1 Quotients of Polynomial Rings and Finite Fields

Let F be a field and R = F [x] the polynomial ring in one variable over F . By
now you already know that R is a Euclidian domain with the norm function
being the degree |f | = deg(f). The following theorem will appear in class but
since the proof is short we include here for completeness:

Theorem 0.1. Let R be a Euclidian domain and I / R and ideal. Then I is
generated by an element of minimal norm in I. In particular I is principal.

Proof. Let x ∈ I be an element of minimal norm in I (there is always such an
element because the norm takes values in non-negative integers). We need to
show that 〈x〉 = I. Let y ∈ R be an element. Since R is Euclidian we can write
y = qx+ r such that either r = 0 or |r| < |x|. The second option is not possible
because x has the minimal norm of all elements in I. Hence we conclude that
r = 0 which means that y = qx and in particular y ∈ 〈x〉. This shows that
〈x〉 = I.

Going back to our polynomial ring R = F [x] we see that if I / R is an ideal
than it is generated by an element of minimal degree in I. We are interested in
the question when R/I is a field. As you saw in the lectures this is equivalent
to I being maximal. Hence we need to figure out for which f ∈ R the ideal 〈f〉
is maximal. Since 〈0〉 = 0 is clearly not maximal we can assume that f 6= 0.

Now 〈f〉 is maximal if whenever 〈f〉 is contained in another ideal 〈g〉 then
either 〈f〉 = 〈g〉 or 〈g〉 = R. It is easy to see that 〈f〉 ⊆ 〈g〉 if and only if f ∈ 〈g〉,
i.e. if and only if g divides f . Now the situation 〈f〉 = 〈g〉 means that f |g as
well, which means that f, g have the same degree and f = ag with 0 6= a ∈ F .
The second allowed situation is that 〈g〉 = R. In this situation 1 ∈ 〈g〉 so g
must be of degree 0 (but it can’t be the zero polynomial) so we see that g is a
non-zero scalar polynomial. Note that non-zero scalar polynomials are exactly
the units (invertible elements) of the ring R.

The conclusion from the following discussion is this: The quotient ring R/ 〈f〉
is a field if and only if whenever f = gh then either g is unit or h is a unit. In this
situation we say that f is irreducible. Otherwise we say that f is reducible.

Let us use this observation in order to construct some small finite fields. Let
p be a prime number and suppose that F = Fp is the field with p elements. Let
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f ∈ F [x] be an irreducible polynomial of degree n. As we saw in the previous
tirgul, for each coset g+ 〈f〉 we can find a unique representative whose degree is
smaller than n, and each two different polynomials of degree < n lie in different
cosets. Hence we will get that the number of elements in F [x]/ 〈f〉 is exactly
pn.

Let us try to construct a field of size 4. For this we will take p = 2 and n = 2
so we need to find an irreducible polynomial of degree 2 in F2[x]. Polynomials
of degree 2 in F2[x] look like this: f = x2 + ax+ b for some a, b ∈ F2.

Note that a polynomial of degree 2 is reducible if and only if it is divisible
by a polynomial of degree 1. As you saw in a previous exercise, f is divisible
by x − a if and only if f(a) = 0. Hence all we need to make sure here is that
f(0) = 1 and f(1) = 1. These conditions translate to

b = 1

a+ b+ 1 = 1

so we see that the only solution is b = 1, a = 1. To conclude, we have found
that there is exactly one irreducible polynomial of degree 2 in F2[x], and that
is the polynomial

f = x2 + x+ 1

We can now use this polynomial in order to construct a field of size 4. This field
will be the quotient ring F2[x]/ 〈f〉, and we will denote it by F4. As we saw we
can work with the following representatives:

0, 1, x, x+ 1

Addition and multiplication is now performed modulu x2 + x + 1, i.e. we first
add or multiply as polynomial and then if the result has degree > 1 we take the
remainder obtained when dividing by x2 + x + 1. Note that when adding two
polynomials of degree 1 the result is still of degree 1, so we don’t need to take
the remainder. In particular we see that the additive group of F4 is isomorphic
to the direct product Z2 × Z2. The multiplcation is a bit more tricky, so let
us write explicitly what one gets. Note that 0 · α = 0 and 1 · α = α for every
α ∈ F4, so all we need to calculate are the products:

x · x = x2 = x+ 1 + (x2 + x+ 1) = x+ 1

x · (x+ 1) = x2 + x = 1 + (x2 + x+ 1) = 1

(x+ 1) · (x+ 1) = x2 + 2x+ 1 = x+ (x2 + x+ 1) = x

In particular we see that the two elements which are not 0, 1 are the inverses of
each other.

Remark 0.2. Here is some guidance on how to solve the first question in exercise
13. You need to find an irreducible polynomial of degree 3 in F3[x]. The key
point is that for degree 3 it is still true that a polynomial is irreducible if and
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only if it is not divisible by a polynomial of degree 1 (why?) and so all we need
is to find a polynomial f of degree 3 such that

f(a) 6= 0

for every a ∈ F3. The second observation is that for every three values a0, a1, a2 ∈
F3 there exists a polynomial of degree 3 such that

f(0) = a0

f(1) = a1

f(2) = a2

and this f can found by solving linear equations.
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