
Basic Notions in Algebraic Topology 1

Yonatan Harpaz

Remark 1. In these notes when we say ”map” we always mean continuous map.

1 The Spaces of Algebraic Topology

One of the main difference in passing from point set topology to algebraic to-
pology is the vast focusing on very ”nice” spaces. In order to understand these
guys it is useful to think of the following 3 principles:

1. All discs Dn are ”nice”.

2. The gluing of two nice spaces along a sub ”nice” space is ”nice”.

3. If X = ∪nXn for an ascending sequence of ”nice” closed subspaces Xn ⊆
X and X has the strong topology with the respect to the inclusions Xn ↪→
X then X is also ”nice”. This principle will allow us to do the gluing
operation above infinitely many times. It will usually not be a crucial
point in this course, but I mention it here nonetheless.

Note that each Dn has as a subspace Sn−1 which is its boundary when conside-
red as a subset Dn ⊆ Rn. We will many times write Sn−1 = ∂Dn even though
we think of Dn as an abstract space and not as a subset of Rn.

Note that Sn can be obtained by gluing two copies of Dn
1 , D

n
2 of the n-

dimensional ball along their common boundaries

∂Dn
1
∼= ∂Dn

2
∼= Sn−1

Hence if Sn−1 is nice then so should be Sn. Since S0 is finite discrete we get
that all spheres are nice.

In order to understand better what kind of spaces we can build by gluing
we should make a more precise definition of the kind of basic gluing step we are
interested in.
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1.1 Pushouts

Let A,X, Y be topological spaces and f : A −→ X, g : A −→ Y two maps. We
describe this information by a diagram of the form

A

g

��

f // X

Y

We define the pushout of this diagram to be the space

P = X
∐

Y/ ∼

where ∼ is the equivalence relation which is generated by the pairs (f(a), g(a)),
i.e. it is the smallest equivalence relation in which f(a) ∼ g(a). Note that if
both f, g are injective then this equivalence relation just identifies f(a) with
g(a) for each a.

The quotient map X
∐
Y −→ P gives us two natural maps ψ : X −→ P

and ϕ : Y −→ P . Further more the map ψ ◦ f from A to P is equal to the map
ϕ ◦ g, because f(a), g(a) ∈ X

∐
Y are mapped by definition to the same point

in P . All this information can be written in a square diagram of the form

A

g

��

f // X

ψ

��
Y

ϕ // P

We say that this diagram commutes (or is commutative) because ψ◦f = ϕ◦g.
In general the notion of commuting square diagram (or more general diagrams)
will be very useful in this course, mostly in the second half. We will sometimes
call the whole diagram above a pushout diagram.

It is worth while to note that P satisfies a very important property, which
actually determines it completely (in this context we usually call such properties
universal properties). This property is the following: suppose we are given
another commutative diagram of the form

A

g

��

f // X

ψ′

��
Y

ϕ′
// Q

Then the maps ψ′ and ϕ′ determine a map T : X
∐
Y −→ Q. From the

commutativity of the diagram we see that for each a ∈ A, T (f(a)) = T (g(a)).
This means that T induces a well defined map

T̃ : P −→ Q
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This whole situation can be described by an even bigger diagram

A

g

��

f // X

ψ

��
ψ′

��

Y
ϕ //

ϕ′

''

P

T̃

��
Q

This diagram is commutative not only in the main square, but also in the two
adjacent triangles, i.e. we have T̃ ◦ϕ = ϕ′ and T̃ ◦ψ = ψ′. In fact it is not hard
to show that T̃ : P −→ Q is the unique such map, i.e. the unique map making
the diagram above commute. This property of P determines it up to a unique
homeomorphism, and can be used to define the notion of a pushout in a general
category.

For example the gluing of discs into spheres discussed above can be described
by the pushout diagram

Sn−1

��

// Dn

��
Dn // Sn

1.2 CW complexes

We can describe more precisely what a very general family of nice spaces:

Definition 2. A CW complex is a space X together with a sequence of
subspaces of X

∅ = X−1 ⊆ X0 ⊆ X1 ⊆ ... ⊆ Xn ⊆ ...

such that X = ∪nXn, and for each k = 0, ..., n a set Ik and a pushout diagram∐
α∈Ik S

k−1

��

// ∐
α∈Ik D

k

��
Xk−1 // Xk

In particular we have for each α ∈ Ik a map ϕkα : Sk−1 −→ Xk and a map
ϕ̃kα : Dk −→ Xk such that the diagram

Sk−1

ϕα

��

// Dk

ϕ̃α

��
Xk−1 // Xk

3



commutes. The maps ϕkα are called the gluing maps, the maps ϕ̃kα are called
the cell maps and their images ϕ̃kα(Dk) are called the cells of X. The subspace
Xk is called the k-skeleton of X.

We say that a CW complex X is finite if it has finitely many cells. We say
that X is n-dimensional if it doesn’t have cells above dimension n. Note that
most CW’s you will encounter in this course will be finite.

Note that CW complexes are always Hausdorf, and the cell maps ϕ̃kα :
Dk −→ Xk satisfy the following properties:

1. Each ϕ̃kα is injective on the interior Int(Dk) ⊆ Dk.

2. The subsets ϕ̃kα(Int(Dk)) ⊆ X are disjoint and their union is all of X.

3. The set ϕ̃kα(Int(Dk)) meets only finitely many cells of dimension less then
k.

4. A subset U ⊆ X is open if and only if (ϕ̃kα)−1(U) is open in Dk for each
k, α ∈ Ik.

Remark 3. Note that the maps ϕ̃kα completely determine the CW structure on
X. In fact given a Hausdorf space X and collections of maps ϕ̃kα : Dk −→ X
they will correspond to a CW structure on a X if and only if they satisfy the 4
properties above.

Examples:

1. 0-dimensional CW complexes are just discrete spaces.

2. 1-dimensional CW complexes are obtained from discrete spaces by atta-
ching segments along their end points. Hence a 1-dimensional CW com-
plex is the underlying space of a graph (in the generalized sense: we allow
multiple edges between each two vertices and edges between a vertex and
itself). The homotopy type of finite 1-dimensional CW complexes depends
only on the difference E−V between the number of edges and the number
of vertices. This will be proven in this course.

3. Let us now sketch two examples of 2-dimensional CW complexes:

(a) Let X be the CW complex whose 1-skeleton X1 ⊆ X is a circle S1

and X is obtained from X1 by attaching a single 2-cell D2 along the
gluing map

ϕ : ∂D2 = S1 −→ S1 = X1

which is defined as follows: consider the embedding of S1 in the
complex plane C as

S1 = {z ∈ C||z| = 1}

and let ϕ : S1 −→ S1 be given by ϕ(z) = z2. Then ϕ is a surjective 2-
to-1 map such that for each z we have ϕ(z) = ϕ(−z). This means that
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X can be identified with the space obtained from D2 by identifying
antipodal points on the boundary.

This space is know as the 2-dimensional real projective space and
is denoted by RP 2. It can also be described as the space obtained
from the 2-sphere S2 by gluing antipodal points or as the space of
lines through the origin in R3. There is an analogous construction of
RPn for every n. We will use this spaces as examples in this course
many times.

(b) Consider the 2-dimensional torus T2. This space can be described as
the product S1×S1 (with the product topology). Another description
is by taking a square and gluing opposite edges as shown in the figure
below:

We would like to describe T2 as a CW complex. Note that after the
gluing of opposite edges all for vertices of the square are identified
to a single point v0 ∈ T2. The two red edges are identified into a
single edge (from v0 to itself) and the two blue edges are identified
into a single edge B (from v0 to itself). The results in a a subspace
X1 ⊆ T2 which is homeomorphic to a bouquet of two circles (i.e. two
circles joined at a point):

We will denote by A ⊆ X1 the red circle and by B ⊆ X1 the blue
circle.

We claim that T2 can be obtained from X1 by attaching a single
2-cell. In order to have a more natural description of the gluing map
let us replace the 2-disc with the square Q = I × I which appears in
the first figure (which is homeomorphic to D2). We denote by ∂Q the
union of the 4-edges of the square. Then the identification Q ∼= D2

identifies ∂S with ∂D2 = S1. Hence we can describe a gluing map
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by describing a map
ϕ : ∂Q −→ X1

Now this map will simply be the map that sends the A-edges to A
and B-edges to B (along the directions indicated by the arrows).
I suggest going over this construction carefully at home until you
understand why this gluing map gives the torus.

We finish this section by adding one last kind of niceness which is new and
important in algebraic topology over topology:

4 If a space if homotopy equivalent to a ”nice” space, then it is ”homotopy-
nice”. For the homotopy theorists, these are just as good as ”nice” spaces.

Remark 4. An important family of interesting spaces that appears in many
areas of topology and geometry are the topological manifolds:

Definition 5. A topological space X will be called an n-dimensional topological
manifold if

1. Every x ∈ X has a neighborhood which is homeomorphic to Rn.

2. X is Hausdorf and satisfies the second axiom of countability, i.e. the
topology on X has a countable basis.

It was first shown by Milnor that every topological manifold is homotopy
equivalent to a CW complex, and so our class of homotopy-nice space includes
these topological manifolds. One can also ask whether a topological manifold
are homeomorphic to a CW complex. In this case the full answer is not
known, but it is known that compact topological manifolds of dimension n 6= 4
are homeomorphic to CW complexes. In dimension 4 this is an open problem.
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Basic Notions in Algebraic Topology 2

Yonatan Harpaz

Remark 1. In these notes when we say ”map” we always mean continuous map.
If we want to say a map that is not necessarily continuous we will say ”function”.
Sometimes we will say explicitly continuous map to emphasis the continuity.

1 Homotopies Between Maps

Let us recall the basic definitions:

Definition 2. Let X,Y be topological spaces and f, g : X −→ Y two maps.
We say that f is homotopic to g (and write f ∼ g) if there exists a map
H : I ×X −→ Y (where I = [0, 1] is the unit interval) such that H(0, x) = f(x)
and H(1, x) = g(x). In this case we call H a homotopy from f to g.

Remark 3. You will show in the next exercise that the homotopy relation f ∼ g
is actually an equivalence relation (it’s very straight-forward). We denote by
[X,Y ] the equivalence classes of maps from X to Y under this relation. We also
call these equivalence classes homotopy classes.

Examples:

1. Let f, g : X −→ Rn be any two maps. Then we can construct a homotopy
between them by setting

H(t, x) = (1− t)f(x) + tg(x)

In particular this means that [X,Rn] = ∗ for every X.

2. Let X = ∗ be the point so that maps from X to Y correspond simply to
points in Y . Then a homotopy between two maps f, g : X −→ Y is simply
a path between the corresponding points. In particular [∗, Y ] is just the
set of path-connected components, which we also denote by π0(Y ).

The way to think of homotopy is a continuous deformation of the function
f into the function g. In fact one can try to make this intuition more precise:
for each t ∈ [0, 1] the composition of the maps

X −→ {t} ×X H−→ Y

gives a map from X to Y . This gives us a ”path” from f to g in the ”space of
continuous maps” from X to Y . But we need to be careful here: in order for
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our intuition to make sense we need this path to be continuous in some sense,
so we need some reasonable topology on the space of maps from X to Y . This
topology is called the compact-open topology:

Definition 4. Let X,Y be two topological spaces and denote by C(X,Y ) the
space of continuous maps from X to Y . The compact-open topology on
C(X,Y ) is the topology generated by the sub-basis

W (K,U) = {f ∈ C(X,Y )|f(K) ⊆ U}

where K ⊆ X is compact and U ⊆ Y is open.

The following theorem is an exercise in point-set topology:

Theorem 5. Let H : Z × X −→ Y a continuous map. Then the function
ϕ : Z −→ C(X,Y ) given by

ϕ(z)(x) = H(z, x)

is continuous with respect to the compact-open topology on C(X,Y ).

Corollary 6. Given a homotopy I ×X −→ Y from f to g we get a continuous
path ϕ : I −→ C(X,Y ) from f to g in the space of continuous maps.

Unfortunately the reverse claim is untrue for general topological spaces, i.e.
a homotopy is something a bit stronger then a continuous path in C(X,Y ).
However if we restrict to ”nice” topological spaces then reverse claim will be
true.

Definition 7. Let X be a topological space. We say that X is compactly
generated if X is Hausdorf and in addition if a set U ⊆ X satisfies that U ∩K
is open in K for any compact K ⊆ X then U is open in X.

Examples:

1. Any compact Hausdorf space is compactly generated.

2. Any CW-complex is compactly generated.

3. Any locally compact Hausdorf space is compactly generated.

The following is an exercise in point-set topology which is slightly harder
than the previous one:

Theorem 8. Let X be a compactly generated space and Z, Y any topological
spaces. Let ϕ : Z −→ C(X,Y ) be a continuous map with respect to the compact-
open topology. Then the map

H(z, x) = ϕ(z)(x) ∈ Y

from Z ×X to Y is continuous.

Corollary 9. If X is a compactly generate space and f, g : X −→ Y are two
maps then homotopies from f to g correspond exactly to continuous paths in the
space C(X,Y ) from f to g.
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1.1 Pointed Spaces, Maps and Homotopies

It is sometimes more convenient to work with pointed space instead of a space.
As the name implies, a pointed space is just a pair (X,x0) together with a
chosen point x0 ∈ X. A pointed map f : (X,x0) −→ (Y, y0) is a map satisfying
f(x0) = y0.

Let f, g : (X,x0) −→ (Y, y0) be two pointed maps. A pointed homotopy
from f to g is a map H : I×X −→ Y such that H(0, x) = f(x), H(1, x) = g(x)
and H(t, x0) = y0 for all t. As the discussion above we can think of a pointed
homotopy as a continuous path between two pointed maps inside the space
of pointed maps.

It is clear that pointed homotopy is also an equivalence relation, and we
denote by [X,Y ]∗ the set of pointed homotopy classes of pointed maps. In class
we have used thses homotopy classes to define interesting invariants of spaces
and pointed spaces. In particular we had the unpointed invariants

H0(X) = [X,Z]

H1(X) = [X,S1]

called the 0’th and 1st cohomology groups of X and the pointed invariants

π0(X,x0) = [S0, X]∗

π1(X,x0) = [S1, X]∗

which are called the 0th and 1st homotopy groups of X. π1(X,x0) is also called
the fundamental group of X.

Note that since Z admits a structure of an abelian group we get an abelian
group structure on H0 and H1 given by point-wise multiplication of maps. On
the other hand π0(X,x0) is just a pointed set and π1(X,x0) carries a (not
necessarily abelian) group structure given by concatenation of paths.

2 The Circle

In this section we are going to compute the set of both pointed and unpointed
homotopy classes of maps from S1 to S1. We identify S1 as the unit circle

S1 = {z ∈ C||z| = 1} ⊆ C

When we want to consider S1 as a pointed space we will always use 1 as our
base point. Hence when we say pointed map S1 −→ S1 we mean a map f
satisfying f(1) = 1. Note that every map f : S1 −→ S1 is homotopic to a
pointed map by simply rotating the circle slowly until the appropriate angle is
achieved.

Remark 10. It will be more convenient for us to thing of a map f : S1 −→ S1 as
a path ϕ : I −→ S1 such that ϕ(0) = ϕ(1). To be precise, the exact connection
between ϕ and f is given by ϕ(x) = f(e2πix).
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Theorem 11. Let ϕ : I −→ S1 be a path such that ϕ(0) = ϕ(1) = 1. Then
there exists a unique path ϕ̃ : I −→ R such that

ϕ(s) = e2πiϕ̃(s)

for every s ∈ I. We call ϕ̃ the kilometrage function of ϕ.

Proof. Consider the open sets U = S1 \ {1} and V = S1 \ {−1} in S1. For an
ordered pair of points x, y ∈ U we define the translation dU (x, y) from x to y
inside U to be the unique s ∈ (−1, 1) such that the path ψ : [0, 1] −→ S1

ψ(t) 7→ xe2πits

is a path from x to y which is contained entirely inside U . Note in particular
that

e2πidU (x,y) = y ∗ x−1 ∈ S1

where the product is product of complex numbers. Similarly we define the
translation dV (x, y) inside V . Note that U ∩ V has two connected components,
one in the upper half plane and one in the lower. It is easy to see that if x, y
are in the same connected component of U ∩ V then

dV (x, y) = dU (x, y)

and if x and y are in different connected components then

|dV (x, y)− dU (x, y)| = 1

Now let s ∈ [0, 1] be a point. We say that a partition 0 = s0 < s1 <
... < sn = s of the segment [0, s] is good if there exist Wi ∈ {U, V } such that
ϕ([si, si+1]) is contained entirely Wi. From Lebesgue’s number theorem and
using the fact that [0, s] is compact we see that there exists a good partition.
Given such a good partition we define:

ϕ̃(s) =

n∑
i=1

dWi
(ϕ(si−1), ϕ(si))

It is not hard to show that this definition does not depend on the good partition
(because any two good partitions have a common refinement). It is also not hard
to show that ϕ̃ is continuous and by definition we get

e2πiϕ̃(s) = e2πi
∑n

j=1 dWj
(ϕ(sj−1),ϕ(sj)) =

n∏
j=1

e2πidWj
(ϕ(sj−1),ϕ(sj)) =

n∏
j=1

ϕ(sj) ∗ ϕ(sj−1)−1 = ϕ(s) ∗ ϕ(0)−1 = ϕ(s)

Definition 12. Let f : S1 −→ S1 be a pointed map associated with a path
ϕ : I −→ R. We call ϕ̃(1) ∈ Z the degree of f and denote it by deg(f). We
will also denote it sometimes by deg(ϕ).
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Theorem 13. Let f, g : S1 −→ S1 be two pointed maps. Then the following
are equivalent:

1. f, g are pointed-homotopic.

2. f, g are homotopic.

3. f, g have the same degree.

1⇒ 2 is trivial. Let us prove 2⇒ 3:
Let ϕ,ψ : I −→ S1 be the paths associated with f, g as above (see Remark

10). Let H : I × I −→ S1 be a homotopy from ϕ to ψ satisfying H(t, 0) =
H(t, 1) for all t. From lebesgue’s number theorem there exist Wi,j ∈ {U, V } and
partitions

0 = t0 < t1 < ... < tn = 1

0 = s0 < s1 < ... < sn = 1

such that H([ti, ti+1], [si, si+1]) is contained entirely in Wi,j. Let γi(s) = H(ti, s).
Then we have

deg(γi) =

n−1∑
j=0

dWi,j (γi(sj), γi(sj+1)) =

n−1∑
j=0

[
dWi,j

(γi(sj), γi+1(sj)) + dWi,j
(γi+1(sj), γi+1(sj+1)) + dWi,j

(γi+1(sj+1), γi(sj+1))
]

=

n−1∑
j=0

dWi,j (γi(sj), γi(sj+1)) = deg(γi+1)

Note that the cancelation occurs because

dWi,j (γi(sj), γi+1(sj)) = −dWi,j (γi+1(sj), γi(sj))

dWi,j (γi(sn), γi+1(sn)) = −dWi,j (γi+1(s0), γi(s0))

Hence by induction we get that deg(ϕ) = deg(γ0) = deg(γn) = deg(ψ) and we
are done.

We now come to proving 3 ⇒ 1: Suppose that f, g have the same degree n
and let ϕ̃, ψ̃ : I −→ R be the respective kilometrage functions. Consider the
homotopy H̃ : I × I −→ R given by

H̃(t, s) = tϕ̃(s) + (1− t)ψ̃(s)

Note that H(t, 0) = 0 for all t and H(t, 1) = n for all t. Hence the map

H(t, s) = e2πiH̃(t,s) gives a homotopy from ϕ to ψ which keeps the end points in
fixed. This gives us a pointed homotopy from f to g, and we are done.
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Basic Notions in Algebraic Topology 3

Yonatan Harpaz

1 Categories and Functors

Let us start by recalling the basic definition:

Definition 1. A category C consists of the following data:

1. A collection of objects Ob(C) (we usually just write C instead of Ob(C)).

2. For each two objectsX,Y ∈ C a set HomC(X,Y ). Elements in HomC(X,Y )
are called morphisms from X to Y and are written like functions f :
X −→ Y .

3. for every 3 objects X,Y, Z ∈ C a map

HomC(X,Y )×HomC(Y, Z) −→ HomC(X,Z)

called composition and denoted by (f, g) 7→ g ◦ f .

4. For each X ∈ C a morphism IdX ∈ HomC(X,X) called the identity
morphism.

This data is required to satisfy the following axioms:

1. The composition is associative, i.e.

f ◦ (g ◦ h) = (f ◦ g) ◦ h

2. The identity elements are neutral, i.e.

IdX ◦ f = f

g ◦ IdX = g

Examples:

1. The most prototypical example of a category is the category Sets whose
objects are sets and morphisms from X to Y are just functions from X to
Y .

2. Let k be a field. Then we have the category Vec/k whose objects are vector
spaces over k and morphisms from V to U are linear transformations from
V to U .
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3. The category whose objects are vector spaces over R with inner product
and morphisms are orthonormal linear transformation.

4. The category Gr whose objects are groups and morphisms are homomor-
phisms.

5. The category Ab whose objects are abelian groups and morphisms are
homomorphisms.

6. The category Top whose objects are topological spaces and morphisms are
continuous maps.

7. The category Top∗ whose objects are pointed topological spaces and mor-
phisms are pointed continuous maps.

8. The category HoTop whose objects are topological spaces and for each
two spaces X,Y we set

HomHoTop(X,Y ) = [X,Y ]

Note that the homotopy relation on maps respects composition so we have
a well defined composition operation

[X,Y ]× [Y,Z] −→ [X,Z]

9. The category HoTop∗ whose objects are pointed topological spaces and
for each two pointed spaces X,Y we set

HomHoTop∗(X,Y ) = [X,Y ]∗

Definition 2. Let C,D be categories. A functor F : C −→ D is a map
Ob(C) −→ Ob(D) together with a collection of maps

HomC(X,Y ) −→ HomD(F (X), F (Y ))

for each X,Y ∈ Ob(C) which respect composition and send the identities to
the identities. Given a morphism f : X −→ Y we sometimes denote by F (f)
the corresponding morphism from F (X) to F (Y ). Another common notation
for F (f) is f∗. The fact that F respects composition and identity can then be
written as

F (f ◦ g) = F (f) ◦ F (g)

F (IdX) = IdF (X)

1. If the objects in our category are sets with extra structure (like groups, to-
pological space, etc.) and the morphisms are just functions which respect
this structure (like in the categories Gr,Top, etc.) then we have a natu-
ral functor to Sets obtained by ”forgetting” the extra structure. These
functors are called forgetful functors. For example the forgetful functor
from Gr to Sets which sends each group G to its set of elements and any
homomorphism to itself considered as a function between sets.
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2. We can also have forgetful functors not into sets by forgetting just part of
the structure, like the functor from pointed spaces to spaces which forgets
the point.

3. We have the functor Gr −→ Ab which sends every group G to it abeliani-
zation G/[G,G]. Note that if T : G −→ H is a homomorphism of groups
then it induces a natural map

T∗ : G/[G,G] −→ H/[H,H]

because a homomorphism of groups sends commutators to commutators.

4. Counterexample: the construction which associates to each group G its
center is not a functor - given a homomorphism of groups T : G −→ H
there isn’t any sensible way to obtain a homomorphism

Z(G) −→ Z(H)

5. We have a functor h : Top −→ HoTop which sends each space X to itself
and every map f : X −→ Y to its homotopy class

f 7→ [f ] ∈ [X,Y ] = HomHopTop(X,Y )

6. Same as a above but from Top∗ to HoTop∗.

7. Let C be a category and X ∈ C an object. We can construct a functor
C −→ Sets as follows: to the object Y ∈ C we will associate the set
HomC(X,Y ) and to each morphism f : Y −→ Z we will associate the
function

f∗ : HomC(X,Y ) −→ HomC(X,Z)

given by
g 7→ f ◦ g

This functor is called the functor represented by X.

8. Let Sets∗ be the category of pointed sets and pointed maps between them.
Then we have the functor π0 : Top∗ −→ Sets∗ given by

π0(X,x0) = [S0, X]∗

This functor is obtained by composing the represented functor of S0 in
HoTop∗ with the functor Top∗ −→ HoTop and then enriching the set
[S0, X]∗ with the structure of a pointed set.

9. The functor π1 : Top∗ −→ Sets∗ given by

π1(X,x0) = [S1, X]∗

This functor is obtained by composing the represented functor of S1 in
HoTop∗ with the functor Top∗ −→ HoTop and then enriching the set
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[S1, X]∗ with the structure of a group (if you are curious to how this
mysterious phenomenon occurs, it’s because the object S1 is a cogroup
object in the category HoTop∗. You are welcome to read more on the
subject).

Remark 3. Let C,D be categories. Sometimes we would like to consider ”op-
posite functors”, i.e. functions F : Ob(C) −→ Ob(D) together with functions
HomC(X,Y ) −→ HomD(F (X), F (Y )) such that

F (f ◦ g) = F (g) ◦ F (f)

(instead of F (f) ◦ F (g) like usual functors). There are 3 ways to describe the
difference between these mathematical objects and regular functors:

1. Call them cofunctors.

2. Call them contravariant functors and call regular functors covariant
functors.

3. Replace C be a category Cop given by

Ob(Cop) = Ob(C)

HomCop(X,Y ) = HomC(Y,X)

and then consider them as functors from Cop to D.

Examples:

1. Let C be a category and X ∈ C and object. Then we have a cofunctor
from C to Sets given by

F (Y ) = HomC(Y,X)

This is called the cofunctor represented by X.

2. Let k be a field and Vec/k the category of vectors spaces over k. Then we
have a cofunctor F : Vec/k −→ Vec/k given by

F (V ) = V ∗

where V ∗ is the dual space of V , i.e. the space of linear maps from V to
k. This cofunctor is obtained by taking the cofunctor represented by k
and enriching the set HomVec/k(V, k) with a structure of a vector space.

3. The cofunctors
H0(X) = [X,Z]

H1(X) = [X,S1]

from the category of topological spaces to the category of abelian groups.
These cofunctors are obtained as a composition of the cofunctors repre-
sented by Z and S1 in HoTop with then functor Top −→ HoTop. As
in the previous examples we have an additional structure of an abelian
group (which comes from the fact that Z and S1 are topological abelian
groups, or in the spirit of a previous remark, group objects in Top) so we
get functors to Ab instead of Sets.
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2 Pushouts

Let C be a category and

A

g

��

f // X

ψ

��
Y

ϕ // P

a commutative diagram in C (i.e. A,X, Y are objects in C, f, g, ϕ, ψ are mor-
phisms and ϕ ◦ g = ψ ◦ f). We say that this diagram is a pushout diagram
(or a pushout square) if for every commutative diagram

A

g

��

f // X

ψ′

��
Y

ϕ′ // P ′

There exists a unique morphism T : P −→ P ′ such that ϕ′ = T ◦ ϕ and
ψ′ = T ◦ ψ.

Remark 4. In a general category C we call a morphism f : X −→ Y an iso-
morphism if there exists a g : Y −→ X such that f ◦ g = IdY and g ◦ f = IdX
(examples: for C = Gr you get isomorphism of groups, for C = Top you get
homeomorphism and for C = HoTop you get homotopy equivalence). Now if

A

g

��

f // X

ψ

��
Y

ϕ // P

and

A

g

��

f // X

ψ′

��
Y

ϕ′ // P ′

are both pushout diagrams then we get maps T : P −→ P ′ and T ′ : P −→ P ′.
From uniqueness their composition has to be the identity, so we get an isomor-
phism P ∼= P ′. Again from uniqueness we see that this is the unique isomor-
phism satisfying ϕ′ = T ◦ϕ and ψ′ = T ◦ψ. This observation is usually phrased
by saying that given A,X, Y, f and g the object P is determined uniquely up
to a unique isomorphism.

Examples:
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1. Let C = Top. Then the diagram

A

g

��

f // X

ψ

��
Y

ϕ // P

is a pushout diagram iff P = X
∐
Y/f(a) ∼ g(a) and the maps ϕ,ψ are

the maps which come from the natural inclusions of X and Y in X
∐
Y .

2. Let C = Ab. Then the diagram

A

g

��

f // X

ψ

��
Y

ϕ // P

is a pushout diagram iff P = X ⊕ Y/ < f(a) − g(a) > and the maps
ϕ,ψ are the maps which come from the natural inclusions of X and Y in
X ⊕ Y .

3. Let C = Gr. Then the diagram

A

g

��

f // X

ψ

��
Y

ϕ // P

is a pushout diagram iff P = X ∗ Y/ < f(a)g(a)−1 >normal and the maps
ϕ,ψ are the maps which come from the natural inclusions of X and Y in
X ∗ Y .

4. Counterexample: in the categories HoTop and HoTop∗ there exist dia-
grams

A

g

��

f // X

Y

which cannot be completed to pushout diagrams. This is one of the reasons
why it is necessary to continue working in Top and Top∗ even though we
are really interested in HoTop and HoTop∗. For example, the diagram

S1

2
��

// D2

S1

doesn’t have a pushout in HoTop∗. It does, of course, have a pushout it
Top∗, which is just RP 2.
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3 Van Kampen’s Theorem

Theorem 5. Let X,x0 be a pointed topological space and U1, U1 ⊆ X open
subsets containing x0 such that X = U1∪U2 and A = U1∩U2 is path connected.
Then the diagram

π1(A, x0)

i2∗

��

i1∗ // π1(U1, x0)

j1∗

��
π1(U2, x0)

j2∗ // π1(X,x0)

is a pushout square (where i1 : A −→ U1, i2 : A −→ U2, j1 : U1 −→ X and
j2 : U2 −→ X are all the natural inclusions).

Remark 6. Note that in the situation of the theorem the following diagram

A

i2

��

i1 // U1

j1

��
U2

j2 // X

is a pushout square in the category Top∗. Hence what Van-Kampen’s theorem
says is that under certain conditions the functor π1 maps pushout squares to
pushout square.

Remark 7. Note that the assumption that A is path connected is essential. For
example if X = S1, U1 = S1 \ {1} and U2 = S1 \ {−1} then U1, U2 and A
are all simply connected but X has a non-trivial π1. Hence it is not true that
π1 sends every pushout square to a pushout square, i.e. it doesn’t preserve
pushouts in general.

Let us now show various applications of Van Kampen’s theorem.

3.1 The Fundamental Group of CW-complexes

The first application of Van Kampen to the computation of CW-complexes. For
simplicity we will prove this for finite CW complexes, but it is true in general.

Theorem 8. Let X be a CW-complex with skeletons Xn. Let x0 ∈ Xn be a
point. Then the natural map

π1(X2, x0) −→ π1(X,x0)

induced by the inclusion X2 ↪→ X is an isomorphism.

Proof. We will show using Van Kampen that adding a cell en of dimension
n ≥ 3 will not change the fundamental group. Then by induction we will
get the desired result for finite CW complexes. The passage to general CW
complexes is through weak topology and compactness arguments (exercise).

7



Let X be a space and f : Sn−1 −→ X with n ≥ 3. Let Y = X ∪f en. Let
p ∈ en be a point which lies in the interior of the cell. Let p ∈ U be a small disc
around p. Then

Y = U ∪ (Y \ {p})

and the intersection
U ∩ (Y \ {p}) = U \ {p}

is a punctured disc. Since n ≥ 3 we get that U \ {p} ' Sn−1 is simply
connected. Let y0 ∈ U \ p be any point. Since U is contractible we get from
Van Kampen’s theorem that

π1(Y \ {p}, y0) ∼= π1(Y, y0)

via the map induced by the inclusion Y \ {p} ↪→ Y . This statement will remain
valid if we change y0 to any x0 which is in the same connected component of
y0. Since Y \ {p} deformation retracts to X (because a punctured closed disc
deformation retracts to its boundary) we can take instead some x0 ∈ X and we
get the the composition

π1(X,x0)
'−→ π1(Y \ {p}, x0)

'−→ π1(Y, x0)

is an isomorphism as we wanted.

Hence in order to understand the fundamental group of a CW-complexes it is
enough to understand the fundamental groups of 2-dimensional CW-complexes.
We begin with 1-dimensional CW complexes:

Theorem 9. Let X be a 1-dimensional connected CW complex. Then X is
homotopy equivalent to a wedge of circles and so its fundamental group is free
(with one generators for each circle).

Proof. Again we prove for finite CW’s but the proof can be extended to the
general case. A finite connected CW complex is just a finite connected graph.
Every connected graph has a spanning tree (i.e. a sub graph containing all the
vertices which is connected and has no non-trivial circles). For finite graphs
there is a simple argument: if the graph is not a tree then it has a non-trivial
circle. Choose one of the edges in that circle and remove it. Clearly the con-
nectivity has not been compromised. Since the graph is finite this process has
to stop, giving us a spanning tree.

Hence we can think of X as a tree T with a bunch of extra 1-cells. Note
that a tree is always pointedly contractible. Adding one cell is taking the cone
of a map from S0 −→ T . Since T is connected each such map is homotopic to a
constant map. Gluing via a constant map is like wedging with a circle. Hence
we get that X is homotopy equivalent to T wedge a bunch of circles, and since
T is pointedly contractible this is homotopy equivalent to a wedge of circles.

Now let’s see what is the effect of adding a 2-cell. Let X1 = S1 ∨ ... ∨ S1

with X0 = {x0} being the joining point of all the circles and let f : S1 −→ X1
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be a gluing map for a new 2-cell. By maybe changing f by a homotopy we
can assume that it is pointed, i.e. that f(1) = x0 (use the homotopy extension
property - see exercise 2 question 2). Hence we can construct an element

[f ] ∈ π1(S1 ∨ ... ∨ S1, x0) =< a1, ..., an >

Let Y = X1 ∪f e2 and let N/ < a1, ..., an > be the minimal normal subgroup
containing [f ]. Then we claim that

π1(Y, x0) =< a1, ..., an > /N

This follows again easily from Van Kampen’s theorem. As before let U be the
interior of the 2-cell of Y and let p be a point in U . Then we can represent Y
as

Y = (Y \ {p}) ∪ U

and the intersection is
U \ {p} ' S1

Let y0 ∈ Y be a base point contained un U \ {p}. Since U is contractible we
get from Van Kampen’s theorem that π1(Y, y0) is isomorphic to the quotient of
π1(Y \ {p}, y0) by the normal subgroup generated by the image of

π1(U \ {p}, y0) −→ π1(Y \ {p}, y0)

Now π1(U \ {p}, y0) ∼= Z and the image of one of the generators is exactly [f ].
Hence we see that when understanding 2-dimensional CW complexes we

need to treat the 1-skeleton as giving generators and each 2-cell is adding a
relation which is given by the gluing map.

Remark 10. Note that we had some freedom in choosing [f ] - we could have
chosen any other element [f ′] such that f ′ ∼ f in an unpointed homotopy.
This would result in [f ], [f ′] being possibly different yet conjugated elements
in π1(X1, x0), so that the minimal normal subgroup they generate is the same.

Corollary 11. All the sphere Sn of dimension n ≥ 2 are simply connected.

3.2 The Fundamental Groups of Surfaces

As an application of the discussion above let us compute the fundamental group
of the surface Mg of genus g (surface with g handles). We will do so by funding
a CW structure for Mg. This CW structure will have a single vertex x0 and 2g
edges, so it’s 1-skeleton is a wedge of 2g circles and in particular

π1((Mg)1, x0) =< a1, b1, ..., ag, bg >

In order to explain how to locate this 1-skeleton inside Mg we refer the reader
to the example of g = 2 showed in the picture below (the 1-skeleton is drawn
on the surface and is a wedge of 4 circles, make sure you see how). Note that
when we remove the 1-skeleton the remaining open set ”unfolds” to an (open)
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polygon with 4g edges. When you glue this polygon back to a surface each edge
is mapped to one of the 1-cells. If you follow the order of the 1-cells and the
direction of the gluing you get a gluing map

[f ] =

g∏
i=1

aibia
−1
i b−1i

Hence by the discussion above we get that π1(Mg, x0) is the quotient of the
free group < a1, b1, ..., ag, bg > modulu the normal subgroup generated by
the element

∏g
i=1 aibia

−1
i b−1i . In other words, it is the group generated by

a1, b1, .., ag, ag modulue the relation that the product of commutators [ai, bi] is
trivial. For example in the case g = 1 (the 2-torus) we get the abelian group on
two generators, i.e. Z⊕ Z.
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1 The Action of the Fundamental Group on the
Fiber

Let (B, b0) be pointed path connected space. Let p : E −→ B be a covering
map and let F = f−1(b0). We call F the fiber of p (since B is pointed we
don’t need to say ”over b0”). In class you saw the most basic two properties of
covering spaces:

1. Given a path γ : I −→ B starting at b0 and a point e ∈ F there exists a
unique path γ̃e : I −→ E starting at e such that p ◦ γ̃e = γ. Note that if γ
happens to be a closed path it doesn’t mean that γ̃e will be a closed path.

2. Let γ, δ be two paths from b0 to b1. Given an end-point-preserving homo-
topy H from γ to δ and any lift γ̃ : I −→ E of γ there exists a unique
end-point-preserving homotopy H̃ from γ̃ to δ̃ such that p ◦ H̃ = H.

Immediate conclusions:

1. given an element α ∈ π1(B, b0) represented by a closed path γ the value
γ̃e(1) ∈ E is well-defined and does not depend on choice if the represen-
tative γ. We denote it by

γ̃e(1) = α(e)

2. For any e ∈ F the induced map p∗ : π1(E, e) −→ π1(B, p(e)) is injective.
In the rest of the notes we will denote this homomorphism by pe∗ to indicate
that it came from taking e as a base point for E.

Proof. Let γ̃ : I −→ E be a closed path from e to e such that γ = p ◦ γ̃ is
end-point homotopic to the constant path. By property 2 this homotopy
can be lifted to E, resulting in a homotopy from γ̃ to a path δ satisfying
the property that p ◦ δ is constant. This means that the image of δ is
contained in F . Since F is discrete δ is constant. This means that γ̃ is
end-points homotopic to a constant path and we are done.
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Example: When we calculated the fundamental group of S1 we used the
covering map p : R −→ S1 given by p(x) = e2πix. The ”kilometrage” functions
that we’ve defined were nothing but the lifts of paths in S1 to paths starting at
0. The degree of a closed path ϕ based at 1 ∈ S1 is just the value ϕ̃(1) ∈ R,
and we saw that was indeed invariant to homotopy.

Lemma 1. 1. If α, β ∈ π1(B, b0) are two elements then (α∗β)(e) = β(α(e))
for every e ∈ F .

2. If α = 1 ∈ π1(B, b0) is the neutral element then α(e) = e for every e ∈ F .

Proof. Note that in order to prove the two claims with one stone it is enough
to show that

Let α, β ∈ π1(B, b0) be two elements represented by closed paths γ, δ re-
spectively. Then

(α ∗ β)(e) = γ̃ ∗ δe(1) = (γ̃e ∗ δ̃α(e))(1) = δ̃α(e)(1) = β(α(e))

Further more if α = 1 ∈ π1(B, b0) is the neutral element then it can be represen-
ted by a constant path γ. This γ lifts to a constant path γ̃ in E, which means
that α(e) = e.

Corollary 2. Given a element α ∈ π1(B, b0) the map F −→ F given by e 7→
α(e) is a permutation of F (it has an inverse induced by α−1). Further more
these permutations form a right action of π1(B, b0) on F .

This homomorphism is a basic tool in understanding the fundamental group
of a space. In particular one can show that a loop in B is non-trivial by showing
that it induces a non-trivial permutation on F . A natural question now is to
understand how much of the fundamental group is captured by this action.

Definition 3. Given e ∈ E and α ∈ π1(B, b0) we say that α fixes e if α(e) = e.
The set of all elements α ∈ π1(B, p(e)) that fix e is called the stabilizer of e.
This is a subgroup of π1(B, b).

Now the issue of how much information the action remembers is settled in
the following theorem:

Theorem 4. Let α ∈ π1(B, b0) be an element and e ∈ F a point. Then
α(e) = e if and only if there exists a β ∈ π1(E, e) such that pe∗(β) = α. In other
words the stabilzer of e in π1(B, b0) is exactly the image of the monomorphism
pe∗.

Proof. The proof is quite immediate - by definition we see that α(e) = e if
and only if α can be represented by a closed path γ such that γ̃e(1) = e, i.e.
such that γ̃e is a closed path. Since lifts are unique this is the same as saying
that there exists a closed path γ̃ from e to e such that p ◦ γ̃ = γ. But this is
equivalent to α being in the image of

pe∗ : π1(E, e) −→ π1(B, b0)
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Corollary 5. The kernel of the action (i.e. the subgroup of elements that act
as the identity on F ) is the intersection

∪e∈F Im (pe∗)

Corollary 6. If E is simply connected then the action is faithful, i.e. α ∈
π1(B, b0) is completely determined by it’s action on F . Note that the action
might be faithful even when E is not simply connected.

1.1 Example - the Borsuk-Ulam Theorem in dimension 2

Theorem 7. Let f : S2 −→ R2 be a continuous map. Then there exist a point
x ∈ S2 such that f(x) = f(−x).

Proof. Suppose that there was an f : S2 −→ R2 such that f(x) 6= f(−x) for
every x ∈ S2. Consider the map

g : S2 −→ S1

given by

g(x) =
f(x)− f(−x)

|f(x)− f(−x)|
This is a well defined continuous function because we’ve assumed that f(x) −
f(−x) 6= 0 for every x. Now the function g satisfies g(−x) = −g(x) and so
it induces a well-defined map g : RP 2 −→ RP 1 which fits in a commutative
diagram

S2

p2
��

g // S1

p1
��

RP 2 g // RP 1

Let x0 −→ RP 2 be a base point and y0 = g(x0). We claim that g must induce an
injective map g∗ : π1(RP 2, x0) −→ π1(RP 2, y0). This will result in our desired
contradiction because π1(RP 2, x0) ∼= Z/2 and π1(RP 1, y0) ∼= Z and there are
not injective maps from Z/2 to Z. It is left to show the injectivity of g∗.

Let α ∈ π1(RP 2, x0) be a non-trivial element. Since S2 is simply connected
the action of α on the fiber of S2 −→ RP 2 is non-trivial. Hence α = [γ] lifts to an
open path γ̃ in S2 connecting a pair x,−x of antipodal points. This means that
g ◦ γ̃ is an open path connecting the antipodal points g(x) and g(−x) = −g(x),
which implies that p1 ◦ g ◦ γ̃ is a closed path in RP 1 representing a non-trivial
element in π1(RP 1, y0). But

[p1 ◦ g ◦ γ̃] = [g ◦ p2 ◦ γ̃] = [g ◦ γ] = g∗α

so g∗α ∈ π1(RP 1, y0) is non-trivial. This means indeed that the homomorphism

g∗ : π1(RP 2, x0) −→ π1(RP 1, y0)

is injective.
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2 Coverings Obtained by Group Actions

Let G be a group acting from the left on a space E. We say that the action of G
is a covering space action if for every e ∈ E there exists an open neighborhood
e ∈ U such that for every g 6= 1 ∈ G we have

g(U) ∪ U = ∅

In particular a covering space action is always free. It is not hard to show that

if we have a covering space action then the resulting map p : E −→ E/G
def
= B

is a covering map. Let b0 ∈ B be a point. We will want to understand what
will be the connection between π1(B, b0) to G and what is the connection their
actions on the fiber F = p−1(b0).

We start with the following observation:

Lemma 8. The actions of π1(B, b0) and G on F commute, i.e. for each
e ∈ F , α ∈ π1(B, b0) and g ∈ G one has

g(α(e)) = α(g(e))

Proof. Let γ be a closed path in B representing α. Then by definition one has

α(e) = γ̃e(1)

Now consider the path g ◦ γ̃e (in this natation we consider g as a transformation
from E to E). Then we get that

p ◦ g ◦ γ̃e = p ◦ γ̃e = γ

and (g ◦ γ̃e)(0) = g(e). Hence by the uniqueness of path lifts we get that

g ◦ γ̃e = γ̃g(e)

which means that

α(g(e)) = γ̃g(e)(1) = g(γ̃e(1)) = g(α(x))

Now fix a point e ∈ F . For each α ∈ π1(B, b0) there is a unique g ∈ G such
that g(e) = α(e). We denote this g by T eα. From 8 we get that

T eα∗β(e) = (α ∗ β)(e) = β(α(e)) = β(T eα(e)) =

T eα(β(e)) = T eα(T eβ(e))

which means that T eα∗β = T eα · T eβ and so the map α 7→ T eα is a homomorphism.
We will denote this homomorphism simply by T e. By Theorem 4 we see that the
kernel of Te is exactly the image of pe∗. It also not hard to show that the image
of Te is exactly the subgroup of G which preserves the connected component

4



of e (see question 3 in exercise 4). In particular if E is connected we get a
”decomposition”:

π1(E, e)
pe∗
↪→ π1(B, b0)

T e

� G

We now come to the connection between the action of G versus the action
of π1(B, b0) on F . By choosing an e ∈ F we can identify F with G via the
identification ge ↔ g. Under this identification we see that G acts on F by
multiplication on the left. Since

α(g(e)) = g(T eα(e))

We see that under this identification π1(B, b0) acts on F ↔ G by multiplication
on the right, through the homomorphism T e. This gives a full description of
the relationship between π1(B, b0), G and their actions on F .
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Basic Notions in Algebraic Topology - 5

Yonatan Harpaz

1 Classification of Covering Spaces

In this TA class we’ll talk about the classification theory of covering spaces.
What do we mean by a classification? Consider a topological space B. We want
to understand all the covering spaces E −→ B. Note that this is not only a
collection of objects. We have interesting maps between them. If p1 : E1 −→ B
and p2 : E2 −→ B are two covering maps then we would like to consider maps
f : E1 −→ E2 which respect p1 and p2, i.e. which satisfy the property

p2 ◦ f = p1

This can be written diagramically as

E1
f //

p1

  

E2

p2~~
B

such maps will be called maps of covering spaces. Note that the identity
is always a map of covering spaces and that the composition of two maps of
covering spaces is again a map of covering spaces. Hence they form what is
know as a category.

Given a space B we want to understand this category. In this TA class we
will prove that if B is a nice enough space then the category of covering spaces
over B is equivalent, in a sense we shall explain exactly, to a rather ”simple”
category constructed from the fundamental group of B.

1.1 Equivalence of Categories

Let C,D be two categories. Let F : C −→ D be a functor.
We say that F is fully faithful if for every X,Y ∈ C F gives a bijection

HomC(X,Y )
'−→ HomD(F (X), F (Y ))

where HomC(X,Y ) denotes the set of maps (or morphisms) between X and Y
in C.

We say that F is essentially surjective if for every object X ∈ C there
is an object Y ∈ D such that F (Y ) is isomorphic to X. Note that we don’t
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require F (Y ) to be actually equal to X. Since categories are usually very big
(in general one does not require the collection of objects to be set in the set
theoretic sense...) and it is somehow not sensible to ask for two objects to be
equal, only isomorphic.

We say that F is an equivalence of categories if it is fully faithful and
essentially surjective. We say that two categories are equivalent if there is a
functor between them that is an equivalence. Note that we don’t require a
functor in the other direction.

1.2 The Category of G Sets

Let G be a group. We define SetG to be the category whose objects are sets X
with an action of G (a.k.a G-sets) and maps are maps of sets which preserve
the action of G. Let X be a G-set. We define an equivalence relation on X by
saying that x ∼ y if there exists a g ∈ G such that g(x) = y.

The equivalence class of a point x ∈ X is called the orbit of x. A G-set
in which every two points are equivalent is called transitive. Every G-set can
partitioned to a disjoint union of equivalence classes, i.e. to a disjoint union of
transitive G-sets. Hence we can construct all G-sets from the transitive ones
using the operation of disjoint union.

But what are all the transitive G sets? In order to understand the transitive
G-sets we will first understand how do maps out of transitive G-sets look like.
Let X,Y be G-sets with X transitive. Fix a point x ∈ X. Since X is transitive
any G-map f : X −→ Y is determined by the value of x. Further more if
f : X −→ Y is a G-map and s ∈ Stx then s(f(x)) = f(s(x)) = f(x) so
s ∈ Stf(x). This means that Stx ⊆ Sty. Now suppose that y ∈ Y is such that
Stx ⊆ Sty. Is there a G-map f such that f(x) = y. The answer is yes.

Given such y ∈ Y construct f as follows: for every x′ ∈ X there exists some
g ∈ G such that g(x) = x′. We then are forced to define f(x′) = g(f(x)). We
need to show that this is well defined. If g′(x) = g(x) = x′ then (g′−1g)(x) = x
and hence g′−1g ∈ Stx. By assumption g′−1g ∈ Sty and so g′(y) = g(y) as well.
Hence our map is well defined.

To conclude we see the following: the set of G-maps from X to Y is in
one-to-one correspondence with the set of elements y ∈ Y such that Stx ⊆ Sty.

Now consider the following example of a transitive G-set: let H ⊆ G be a
subgroup and let X be the set of right cosets of H, i.e. of subsets of the form
hH for h ∈ G. We denote this subset by G/H.

G acts G/H by multiplication on the left, i.e. the element g ∈ G sends the
coset hH to the coset ghH. This action is clearly transitive: if we have two
cosets h1H,h2H then the element h2h

−1
1 ∈ G sends the first to the second. Note

that the stabilizer of the coset H is H: if gH = H then g ∈ H.
We claim that every transitive G-set is isomorphic to a G-set of this form.

If X is a transitive G-set then choose some x ∈ X. Then we claim that X is
isomorphic to the G-set G/Stx. From the criterion above there exists a map
f : X −→ G/Stx which sends x to the coset Stx ∈ G/Stx. There is also a
map g : G/Stx −→ X which sends the coset Stx to x. Then the composition
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g ◦ f is a map from X to X which sends x to itself. Since G-maps out of X are
determined by the image of x this map has to be the identity. Similarly f ◦ g is
the identity. Hence X is isomorphic to G/Stx.

To conclude, we see that the category of G sets is fairly simple: every object
is a disjoint union of transitive objects and all the transitive objects can be
describe by a simple construction from within the group. For example, if G is
finite then it has only a finite set of isomorphism classes of transitive objects.

1.3 The Classification of Coverings

We now come to the main theorem:

Theorem 1. Let B be a Hausdorff connected, locally connected space which
admits a simply connected covering space. Fix a base point b ∈ B and let
π = π1(B, b). Then the category of covering of X is equivalent to the category
of π-sets.

Proof. For every covering p : E −→ B we know that there is an action of π on
the fiber p−1(b), i.e. p−1(b) has a structure of a π-set. We define a functor F
from the category of coverings of B to the category of π-sets by setting

F (E) = p−1(b)

We also need to associate to every map

E1
f //

p1

  

E2

p2~~
B

of covering spaces a map F (f) of π-sets. Clearly every such f maps p−11 (b) to
p−12 (b). We will show that this maps preserves the action of π. If α ∈ π and
x, y ∈ p−11 (b) are such that α sends x to y then α lifts to a path α̃ from x to y.
Then f ◦ α̃ is a path from f(x) to f(y) which is a lift of α to E2. Hence α sends
f(x) to f(y) and we see that f is a map of π-sets. This means that actually
construct F as a functor.

We need to show that F is fully faithful and essentially surjective.
Fully Faithful:
First note that if F maps connected covering spaces to transitive π-sets.

Further more if E is a covering space which is a disjoint union of the connected
covering space E1, ..., Em then F will map E to the disjoint union of the union
of the transitive π-sets F (E1), ..., F (En). Note that both in the case of covering
spaces and in the case of π-sets, a map out from a disjoint union X ∪Y to some
Z is just a pair of maps from X to Z and from Y to Z. This means that it is
enough to show that fully faithfulness for pairs of coverings E1, E2 where E1 is
connected.

3



Now that F (E1) is transitive we can fix an x ∈ F (E1) and by the above
considerations the maps from F (E1) to F (E2) are in one-to-one correspondence
with elements y ∈ F (E2) such that Stx ⊆ Sty. Hence what we need to show is
the following:

Theorem 2. Let p1 : E1 −→ B, p2 : E2 −→ B be coverings of a locally con-
nected base B and assume E1 is connected and Hausdorf. Let e1 ∈ p−11 (b), e2 ∈
p−12 (b). Then there exists a map of covering spaces f : E1 −→ E2 sending e1 to
e2 if and only if Ste1 ⊆ Ste2 . Further more in that case there is a unique such
f .

Here Ste means the stabilizer of e in π with respect to the action of π on
p−1(b). Since we are very ambitious we will prove an even more general result:

Theorem 3. Let p : E −→ B be a covering space and f : X −→ B a map
from a connected locally connected Hausdorf space X. Let b ∈ B, x ∈ f−1(b)
and e ∈ p−1(b). Then there exists a lift

E

p

��
X

f̃
>>

f // B

sending x to e if and only if the image of

f∗ : π1(X,x) −→ π1(B, b)

is in the stabilizer of e. Further more in that case such a lift is unique.

Proof. Clearly if a lift f̃ exists then we get a commutative diagram

π1(E, e)

p∗

��
π1(X,x)

f̃∗
99

f∗ // π1(B, b)

which means that the image of f∗ is contained in the image of p∗ and so fixes
e. In the other direction assume that the the image of f∗ fixes e. We shall
construct f̃ . In order to define f̃ on a point y ∈ X we choose a path ϕ from x
to y (recall that X is connected). Then ϕ = f ◦ ϕ is a path from b to f(y). Let

ϕ̃ be the lift of ϕ that starts at e and define f̃(y) = ϕ̃(1).
We need to show that this is well defined. First of all from the homotopy

lifting property we see that ϕ̃(1) doesn’t change if change ϕ by an end points
preserving homotopy. Now suppose that we took some non-homotopic ψ from
x to y instead of ϕ and let ψ = f ◦ ψ. Then ψ is end points homotopic to

ψ ∗ ϕ−1 ∗ ϕ

4



So we can use it instead. Note that

f ◦ (ψ ∗ ϕ−1 ∗ ϕ) = (f ◦ (ψ ∗ ϕ−1)) ∗ ϕ

Now ψ ∗ϕ−1 is a closed path from x to itself so it defines an element [ψ ∗ϕ−1] ∈
π1(X,x). The path f ◦ (ψ ∗ ϕ−1) is the closed path defining the elements
f∗[ψ ∗ ϕ−1].

From our assumption f∗[ψ∗ϕ−1] needs to stabilize e. Hence f ◦(ψ∗ϕ−1) lifts
to a path starting and ending at e. This means that if we lift (f ◦ (ψ ∗ϕ−1)) ∗ϕ
to start at e it will end in ϕ̃(1). Hence f̃(y) is well defined.

It is clear that p◦ f̃ = f . We need to show though that f̃ is at all continuous.
Here we will use the fact that X is locally connected. Let y ∈ X be a point and
U be a neighborhood of f(y) such that

p−1(U) =
⋃
i

Vi

with all Vi’s disjoint and p|Vi
a homeomorphism. Let W be a connected neig-

hborhood of y such that f(W ) ⊆ U . Suppose that f̃(y) ∈ Vi. Let q : U −→ Vi
be the inverse of p|Vi . Then we claim that

f̃ |W = q ◦ f |W

This would imply that f̃ is continuous because it will be continuous when re-
stricted to some open covering.

We will now prove that claim. Let y′ ∈ W ′ be any point. Since W is
connected there exists a path ρ from y to y′ inside W . Hence if ϕ was the path
from x to y used to define f̃(y) then we can use ϕ ∗ ρ in order to define f̃(y′).

Let ρ = f ◦ ρ. Then ρ is a path from f(y) to f(y′) inside U . Note that q ◦ ρ
constitutes a lift of ρ to a path in E starting at f̃(y) and so is the unique such
lift. Hence

ϕ̃ ∗ (q ◦ ρ)

is a lift of ϕ ∗ ρ to a path starting at e. Hence

f̃(y′) = (ϕ̃ ∗ (q ◦ ρ))(1) = (q ◦ ρ)(1) = q(ρ(1)) = q(f(y′))

It is left to show uniqueness. Here we will again use the fact that X is
hausdorf and connected. Suppose that f̃ , f̃ ′ are two lifts of f sending x to e.
Let S ⊆ X be the set of elements y ∈ X where f̃(y) = f̃ ′(y). Since X is

Hausdorf S is closed. But from the argument above is f̃ , f̃ ′ agree on y then
they agree on some neighborhood W of y. Hence S is also open. Since X is
connected and S contains x we see that S = X and f̃ = f̃ ′.

Essentially surjective: For this we use the fact that B admits a simply
connected covering p : E −→ B. Note that since F takes disjoint unions to
disjoint unions we only need to show that we can realize in the image of F all
the isomorphism types of transitive π-sets.

5



This is done as follows. For every subgroup H ⊆ π we will construct a
covering EH −→ B such that F (EH) is isomorphic to π/H. Since E is simply
connected it is a normal covering and the group of deck transformations is
isomorphic to π. More explicitly by fixing a point e ∈ p−1(b) we get a specific
identification of π with the group of deck transformation. In this identification
if T is the deck transformations corresponding to α ∈ π then T (e) = α(e).

Now let EH be the quotient of E by the action of H obtained by restricting
the action of π (under that identification). To be more specific quotient E by
the equivalence relation under which x ∼ y if there exists an element h ∈ H
such that h(x) = y. Since H acts by deck transformations we see that if x ∼ y
then p(x) = p(y). Hence p induces a well defined map

p : EH −→ B

Since p was a covering it is relatively easy to show that p is a covering. Also
EH is clearly still connected. Now let e be the image of e ∈ E in EH . Then by
definition we see that the stabilizer of e in π is exactly H. Hence we are done.
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Basic Notions in Algebraic Topology 6

Yonatan Harpaz

1 Pullbacks

We start by reviewing an important concept that appeared in a previous exer-
cise: consider a diagram

Y

g

��
X

f // Z

The pullback of this diagram is the subspace P ⊆ X × Y given by

P = {(x, y) ∈ (X,Y )|f(x) = g(y)}

Note that we have natural maps px : P −→ X, pY : P −→ Y given by projecti-
ons, and these maps fit together into a diagram

P
pX //

pY

��

Y

g

��
X

f // B

In fact it is not hard to show that P together with pX , pY satisfies a universal
property analogous to that of the pushout - for every commutative diagram

Q //

��

Y

g

��
X

f // B

there is a unique map f : Q −→ P making everything commute. In fact this is
exactly the same universal property defining pushout, only that the directions
of all the maps are reversed. In category theory we say that pullback is the dual
notion of pushout.

An important property of pullbacks is that many nice properties of g are
inherited to pX (and the same for f and pY ). For example if Y = B × F for
some space F and g is the projection on the first coordinate then the pullback
would be just X × F with pY being the projection on on the first coordinate.

1



Applying this argument locally one sees that if f : Y −→ B is a covering map
then so is pX . In this case we also denote the pullback P by f∗Y .

Now suppose that (B, b0), (C, c0) are two nice pointed spaces (see exercise 4)
and f : C −→ B a pointed map. Then the construction E 7→ f∗E from covering
spaces of B to covering spaces of C can be extended to a functor: given two
covering spaces E1, E2 over B and a map T : E1 −→ E2 of covering spaces, we
have a natural choice for a map

f∗T : f∗E1 −→ f∗E2

given by
(f∗T )(b, e) = (b, T (e))

Now assume that both B,C are locally simply-connected. And that case we
know that the category of covering spaces over C is equivalent to the category
of sets with an action of π1(B, b0). It is then natural to ask what the functor
f∗ is in the language of sets with actions. The answer is simple - the map f
induces a homomorphism

f∗ : π1(C, c0) −→ π1(B, b0)

Such a homomorphism induced a natural functor from π1(B, b0)-sets to π1(C, c0)-
sets - simply pullback the action through f∗. In more explicit terms - if we have
a set F with an action of π1(B, b0) we can construct an action of π1(C, c0) on
the same set through the homomorphism f∗:

α(x)
def
= f∗(α)(x)

for every x ∈ F, α ∈ π1(C, c0). Indeed in exercise 4 you show that the action of
π1(C, c0) on the fiber F of f∗E is given through the action of π1(B, b0) on F in
exactly this way.

1.1 Exact Sequences of Pointed Sets

Definition 1. We say that a sequence of maps of pointed sets

(A1, a1)
f1−→ (A2, a2)

f2−→ ...
fn−1−→ An

is exact if for each i = 2, ..., n − 1 the image of fi−1 is exactly the pre-image
f−1i (ai+1).

Example: Let (B, b) be a path-connected pointed space and p : (E, e) −→
(B, b) a pointed covering map with fiber F = p−1(b). Then we have an exact
sequence of pointed sets:

1 −→ π1(E, e)
p∗−→ π1(B, b)

ϕ−→ F
ψ−→ π0(E, e) −→ ∗

where the map ϕ sends an element α ∈ π1(B, b) to α(e) ∈ F and the map ψ
sends an f ∈ F to its path-connected component in E. Note that we consider
groups as pointed sets by taking the neutral element as the base point.
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In order to show exactness we need to check the following, all of which we’ve
already proved:

1. The homomorphism π1(E, e)
p∗−→ π1(B, b) is injective.

2. An element α ∈ π1(B, b) satisfies α(e) = e if and only if it is in the image
of p∗.

3. An element f ∈ F is in the same connected component of e if and only if
there exists an α ∈ π1(B, b) such that α(e) = f .

4. Every path-connected components of E contains an element of F .

Now observe that since F is discrete we can identify (F, e) as a pointed set
with π0(F, e). Further more we have π1(F, e) = 1. Hence we see that we can
write the above exact sequence more nicely as:

π1(F, e) −→ π1(E, e)
p∗−→ π1(B, b)

f−→ π0(F, e)
g−→ π0(E, e)

p∗−→ π0(B, b)

You will see later that this exact sequence can be generalized to include more
general maps then covering maps.

Let us now return to the case of pullbacks of covering spaces:

f∗E
pX //

pY

��

E

g

��
X

f // B

Choosing a base point e ∈ E induces a choice of base point (x, e) ∈ f∗E making
the diagram above a diagram of pointed spaces. We claim that we have an exact
sequence of pointed sets connecting the π1’s and π0’s of all these spaces. This
exact sequence looks as follows:

{1} −→ π1(f∗E, (x, e)) −→ π1(X,x)× π1(E, e)
ϕ−→ π1(B, b)

ψ−→

π0(f∗E, (x, e)) −→ π0(X,x)× π0(E, e) −→ ∗

where
ψ(α, β) = p∗(β)−1f∗(α) ∈ π1(B, b)

ψ(γ) = [(x, γ(e))] ∈ π0(f∗E, (x, e))

and the other maps are the obvious maps induced by pX and pE . In order to
show exactness we need to check the following claims:

1. The map

(pX∗, pE∗) : π1(f∗E, (x, e)) −→ π1(X,x)× π1(E, e)

is injective. This just follows from the fact that pX∗ is injective - a fact
that follows from the fact that pX is a covering map.
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2. For α ∈ π1(X,x), β ∈ π1(E, e) we have that f∗(α) = p∗(β) if and only if
there exists a γ ∈ π1(f∗E, (x, e)) such that pX∗(γ) = α and pX∗(γ) = α.
The if part is clear because f∗ ◦ pX∗ = p∗ ◦ pE∗.
In order to show the only if part assume that f∗(α) = p∗(β). This means
that

α(x, e) = (x, f∗α(e)) = (x, p∗β(e)) = (x, e)

and so there exists a γ such that pE∗(γ) = α. Define β′ = pE∗γ. Then

p∗β
′ = p∗pE∗γ = f∗pE∗γ = f∗α = p∗β

But p∗ is injective and so β′ = β. Hence

(pX∗γ, pE∗γ) = (α, β)

which is what we wanted.

3. For γ ∈ π1(B, b) we need to show that [(x, γ(e))] = [(x, e)] if and only if
there exist α ∈ π1(X,x), β ∈ π1(E, e) such that

γ = (p∗β)−1f∗α ∈ π1(B, b)

For this we note that [(x, γ(e))] = [(x, e)] if and only if there exists an
α ∈ π1(X,x) such that

α(x, e) = (x, f∗α(e))

But (x, γ(e)) = (x, f∗α(e)) so this is equivalent to

γ(e) = f∗α(e)

Since the stabilizer of e is exactly the image of p∗ we see that this is
equivalent to there being a β ∈ π1(E, e) such that

γ = (p∗β)−1f∗α

4. The map π0(f∗E, (x, e)) −→ π0(X,x) × π0(E, e) is surjective. This is
equivalent that the fact that every connected components of X × E con-
tains a point of f∗E. Let (x, e) ∈ X × E be a point. Since B is path
connected there is a path in B from f(x) to p(b) lifting this path to E we
can construct a path in X×E from (x, e) to (x, e′) such that p(e′) = f(x),
i.e. such that (x, e′) ∈ f∗E.

Note that if E −→ B is the universal covering then we get an exact sequence

{1} −→ π1(f∗E, (x, e)) −→ π1(X,x)
ϕ−→ π1(B, b)

ψ−→

π0(f∗E, (x, e)) −→ π0(X,x) −→ ∗

Corollary 2. If E −→ B is the universal covering then

4



1. pX∗(π1(f∗E, e)) is the kernel of f∗ (and in particular a normal subgroup).

2. If X is path connected and f∗ is injective then f∗E is just a disjoint union
of fundamental coverings of X.

3. If X is path-connected then by varying the base point e one can also
identify the set of connected components of f∗E with the set of cosets
of f∗(π1(X,x)) in π1(B, b) (something we also refer to as the cokernel of
f∗).

2 The Universal Covering of Mg

Consider the surface with g handles Mg. We want to show that it’s universal
covering is contractible. We will show this for g = 2 but this proof can be easily
generalized. In order to do so we will construct M2 in the following way: we
start with two toruses T1, T2. We then cut out two small discs, one from each
of the Ti’s. We denote the resulting spaces by T ′1, T

′
2. Each of these spaces has

a boundary which is a circle. Hence we can take a small collar S1 × I and glue
it to T ′1

∐
T ′2 along it’s boundary ∂C = S1 × {0, 1}. The resulting space is just

M2. We will use the following notations for the natural inclusions:

ι1 : T ′1 ↪→M2

ι2 : T ′2 ↪→M2

ι3 : C ↪→M2

ι4 : ∂C ↪→M2

Further more we will denote by T ′′1 = M2 \ T ′2 and T ′′2 = M2 \ T ′1. In particular
T ′1, T

′
2 are closed subsets of M2 and T ′′1 and T ′′2 as open neighborhoods of them

which deformation retract to them.
Now let E −→ M2 be the universal covering. Then we can partition the

universal covering according to this construction of M2 as follows:

E =
[
ι∗1E

∐
ι∗2E

]∐
ι∗4E

ι∗3E

Let x ∈ C be a point. Since both T ′′1 ∼ T ′1 and T ′′2 ∼ T ′2 deformation retract to
a wedge of 2 circles we get that

π1(T ′′1 , x) ∼=< a, b >

π1(T ′′2 , x) ∼=< c, d >

π1(C, x) ∼=< e >

The inclusion of C in T ′′1 maps the element e to aba−1b−1 and the inclusion in
T ′′2 maps e to cdc−1d−1. Now from Van-Kampen’s theorem applied to the open
covering

M2 = T ′′1 ∪ T ′′2

5



we get that we can identify π1(M2, x) with

π1(M2, x) ∼=< a, b > ∗<e> < c, d >∼=< a, b, c, d > /aba−1a = cdc−1d−1

In particular since the inclusion < e >↪→< a, b > and < e >↪→< c, d > are
injective we get that all the ιj ’s induce injective homomorphisms on the funda-
mental group.

By Corollary 2 we see that all the ι∗jE’s are (infinite) disjoint unions of
simply connected spaces. In particular ι∗1E and ι∗2E are equivalent to a disjoint
unions of infinite graphs (the fundamental covering of a wedge of 2 circles), ι∗3E
is just a disjoint union of infinite strips R × I and ι∗4E is an infinite union of
R× {0, 1}’s.

Now note that R × I deformation retracts to its subspace A ⊆ R × I given
by

A = R× {0, 1}
⋃

0× I

This means that ι∗3E deformation retracts to a subspace B ⊆ ι∗3E which is a
disjoint union of infinitely many copies of A. Let B′ ⊆ B be the parts coming
from 0 × I ⊆ A. Then B′ is an infinite collection of segments. We denote by
∂B′ ⊆ B′ the points coming from 0× {0, 1} ⊆ A.

Since B contains ι∗4E we can do this deformation retract on all of E and get
that

E '
[
ι∗1E

∐
ι∗2E

]∐
ι∗4E

B ∼=
[
ι∗1E

∐
ι∗2E

]∐
∂B′

B′

Since each component of [ι∗1E
∐
ι∗2E] deformation retracts to a graph we see

that E in it’s entirety is homotopy equivalent to one huge graph. Since E is
the universal covering of M2 it is simply connected (which means in particular
path-connected). But any simply connected graph if contractible and we’re
done.
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Basic Notions in Algebraic Topology 7

Yonatan Harpaz

1 Serre Fibrations and Fiber Bundles

Definition 1. A Serre fibration is a map p : E −→ B such that for every
n ≥ 0 and every diagram

In × {0}
g //

��

E

p

��
In+1 f // B

there exists a lift f̃ : In+1 −→ E making the diagram

In × {0}
g //

��

E

��
In+1

f̃

;;

f // B

commutative.

In this situation we refer to B as the base space and to E as the total
space. Now let p : (E, e) −→ (B, b) be a pointed Serre fibration (i.e. a Serre
fibration which happens to send e to b). We call the subspace F = p−1(B) the
fiber of p and let ι : F ↪→ E be the inclusion. We also like to say that

F
ι−→ E

p−→ B

is a (Serre) fibration sequence.
The important feature of Serre fibrations for us is that in this situation one

can use the lifting property above in order to define homomorphisms

∂n : πn(B, b) −→ πn−1(F, e)

for every n ≥ 1 (for n = 1 this is a map of pointed sets) which fit in a long
(=infinite) exact sequence of pointed sets (most of whom are abelian groups):

... −→ πn(F, e)
ι∗−→ πn(E, e)

p∗−→ πn(B, b)
∂n−→

πn−1(F, e)
ι∗−→ πn−1(E, e)

p∗−→ πn−1(B, b) −→ ...

1



This means in particular that if we can represent a space X as a total space
of some fibration sequence F −→ X −→ B such that the homotopy groups of
both B and F are better understood then we can use this long exact sequence
in order to learn more about the homotopy groups of X.

One way to obtain Serre fibrations is through the notion of fiber bundles.

Definition 2. A fiber bundle with fiber F is a map p : E −→ B such that
for every b ∈ B there is a neighborhood b ∈ U and a homeomorphism

p−1(U)

p

##

' // U × F

||
U

making the diagram above commutative (the left vertical map is the natural
projection U × F −→ U).

Theorem 3. Every fiber bundle p : E −→ B is a Serre fibration.

Proof. Consider a diagram

In × {0}
g //

��

E

p

��
In × I

f // B

Let B =
⋃
α∈I Uα be an open covering of B such that for every α we have a

homeomorphism

p−1(Uα)

p

##

' // Uα × F

{{
U

From Lebesgue’s number theorem we can partition the cube In to very
little cubes Ci for i = 1, ...,m and the segment I to very little segments Sj
for j = 1, ..., k such that f(Ci × Sj) is completely contained in Uαi,j

for some
αi,j ∈ I. Note that it is enough to define a lift on In×S1 because then one can
repeat this process until the lift is defined on all of In × I.

Now let 0 ≤ l ≤ m−1 and suppose that we have defined the lift f̃l on Ci×S1

for i = 1, ..., l. We wish to define the lift on Cl+1 × S1. Let

A = (Cl+1 × S1) ∩
(
∪li=1Ci × S1

)
Then A is a (possibly empty) union of faces of the cube Cl+1×S1 which doesn’t
include the faces C1×{0} and Cl+1×{1}. This means that A′ = A∪(Cl+1×{0}
is a non-empty union of faces of Cl+1 × S1 which is not the entire boundary of
Cl+1 × S1. Note that in that case A′ is a retract of Cl+1 × S1.

2



Now we have the problem of extending a lift f̃l from A′ to all of Cl+1 × S1.
Since

p−1(Uαl+1,1
) = Uαl+1,1

× F

we see that f̃l|A′ is just given by a map Id×ϕ : A′ −→ Uαl+1,1
×F . Since A′ is

a retract of Cl+1 × S1 we can extend ϕ to a map from Cl+1 × S1 −→ F which

gives us an extension of f̃l from A′ to all of Cl+1 × S1. This finishes the proof.

We will apply this theorem to the Hopf map S3 −→ S2. This map is
obtained as follows: First identify S2 with CP 1. Then we have the natural
projection

p : C2 \ {0} −→ CP 1 ∼= S2

Now embed S3 in C2 as all pairs (z, w) such that |z|2 + |w|2 = 1 and let h be
the restriction of p to S3.

The Hopf map is a fiber bundle. The fiber over every point is homeomorphic
to S1. Hence we get a long exact sequence in homotopy groups

... −→ πn(S1) −→ πn(S3) −→ πn(S2) −→ πn−1(S1) −→ ...

For n ≥ 3 we get that πn(S1) = πn−1(S1) = 0 (because it’s higher homotopy
groups are like those of its universal cover R). Hence for n ≥ 3 we have πn(S2) =
πn(S3). In particular

π3(S2) ∼= Z

and is generated by the Hopf map.
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Yonatan Harpaz

1 Simplicial Sets and their Homology Groups

Recall the standard simplex ∆n defined by

∆n =

{∑
i

aiei ∈ Rn+1

∣∣∣∣∣∑
i

ai = 0

}

where {ei} ∈ Rn+1 is the standard basis. We will denote by [n] the set {0, ..., n}.
We say that a map ϕ : ∆n −→ ∆k is simplicial if there exists an order
preserving map f : [n] −→ [k] (i.e. i ≤ j =⇒ f(i) ≤ f(j)) such that

ϕ

(∑
i

aiei

)
=
∑
i

aief(i)

Note that the composition of two simplicial maps is again a simplicial map
(because the composition of two weak order preserving maps is weak order
preserving). Let ∆ be the subcategory of the category of topological spaces
whose objects are the standard simplices and morphisms simplicial maps. Since
every simplicial map comes from a unique order preserving map, we can identify
∆ with the category whose objects are the sets [n] for n = 0, 1, ... and morphisms
weak order preserving maps.

Definition 1. A simplicial set is a functor from ∆op to the category Sets of
sets. Given a simplicial set S we will denote the object S(∆n) simply by Sn.
We will also sometimes denote a simplicial set S by S•. We refer to elements in
Sn as the set of n-simplices of S.

Recall that a functor from ∆op to any category C is the same as a con-
travariant functor from ∆ to C. A map of simplicial sets is just a natural
transformation of functors. We denote by Sets∆ the category of simplicial sets
and maps of simplicial sets.

We will now define the homology group of a simplicial set S•. For each n
and 0 ≤ i ≤ n let lni : [n− 1] −→ [n] denote the order preserving map

lni (x) =

{
x x < i

x+ 1 x ≥ i

1



Since S is a functor from ∆op to Sets we get maps

dni
def
= S(lni ) : Sn −→ Sn−1

which we denote by dni . We now compose S with the functor A 7→ ZA from sets
to abelian groups (which takes a set A to the abelian group freely generated
from the elements of A). We denote ZSn by Cn. We then get homomorphisms

(dni )∗ : CSn −→ Cn−1

Note the homomorphisms of abelian groups can be summed. We use this to
define

∂n =

n∑
i=0

(−1)n(dni )∗

We get a sequence of groups and homomorphisms:

... −→ Cn
∂n−→ Cn−1

∂n−1−→ Cn−2 −→ ...

it can be shown that ∂n−1 ◦ ∂n = 0. Hence the image of ∂n is contained in the
kernel of ∂n−1. We define

Hn(S•) = ker(∂n−1)/Im (∂n)

we call elements of ker(∂n) n-cycles and elements in Im (∂n+1) n-boundaries.
Note that for every n the homology group Hn(S•) is functorial in S•, i.e. we

can extend it to a functor which for every map of simplicial set f : T• −→ S•
gives a homomorphism of groups f∗ : Hn(S•) −→ Hn(T•).

Given a topological space X one can create a simplicial set Sing(X) in the
following way: define Sing(X)n to be the set of all continuous map f : ∆n −→ X
(as a set, without any topology). For every simplicial map l : ∆n −→ ∆n define
the map Sing(X)k −→ Sing(X)n by

f 7→ f ◦ l

We define the homology groups

Hn(X)
def
= Hn(Sing(X))

1.1 Realization of Simplicial Sets

Given a simplicial set S• we define the realization of S• to be the topological
space given by

|S•| =
∐
n

Sn ×∆n/ ∼

where the equivalence relation ∼ on the set
∐

n Sn ×∆n is defined as follows:
we say that (α, y) ∈ Sk ×∆k is equivalent to (β, x) ∈ Sn ×∆n if there exists a
simplicial map f : ∆n −→ ∆k such that f(x) = y and f∗(α) = β (recall that S
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is a functor on ∆op). We then take the equivalence relation generated by this
relation.

In order to compute this realization we need some additional terminology:
for i ∈ {0, ..., n} let mn

i : [n+ 1] −→ [n] be given by

mn
i (x) =

{
x x ≤ i

x− 1 x > i

and for each simplicial set S• let sni : Sn −→ Sn+1 be the maps induced by
the mn

i ’s. We then note that the equivalence relation above is generated by the
following identifications: for each α ∈ Sn, x ∈ ∆n−1 we identify

(∗) (α, lni (x)) ∼ (dni (α), x),∀α ∈ Sn, x ∈ ∆n−1

(∗∗) (sni (β), x) ∼ (β,mn
i (x)),∀β ∈ Sn−1, x ∈ ∆n

We say that an element α ∈ Sn is degenerate if there exists a β ∈ Sn−1

and an i ∈ {0, ..., n− 1} such that α = sni (β).

Theorem 2. The realization |S•| has a structure of a CW complex.

Proof. Let |S|n be the image of
∐n

i=0 Sn × ∆n in |S|. Clearly S0 is discrete
(i.e. a bunch of points). We claim that Sn+1 is obtained from Sn by attaching
n-cells. Let α ∈ Sn+1 be an element and P ⊆ |S|n+1 be the union of |S|n and
the image of {α}×∆n+1. For each i we have a map {dni (α)}×∆n−1 −→ |S|n−1.
Going over all i ∈ {0, ..., n} we get a map ϕ : ∂∆n+1 −→ |S|n.

Since we have the identifications (∗) in |S| we see that we get a surjective
map from the pushout

|S|n ∪ϕ ∆n+1 −→ P

If α is not degenerate then these are all the identifications involving α and lower
simplices. Hence in that case P is homeomorphic to the pushout |S|n ∪ϕ ∆n+1

and we are done.
If α is degenerate then there exists a β and an i ∈ {0, ..., n} such that

α = sni (β). Then P is obtained from |S|n ∪ϕ ∆n+1 by collapsing ∆n+1 onto one
of it’s faces. It is not hard to show that if two points on the boundary of ∆n+1

are identified by this collapsing, then they are already identified in |S|n. This
means that the new cell didn’t change anything, so we are good as well.

This motivates the following definition:

Definition 3. Let S• be a simplicial set. The dimension of S• is the smallest
number n such that for all m > n all the elements of Sm are degenerate. If no
such n exists we say that the dimension is ∞.

Corollary 4. Let S• be a simplicial set of dimension n. Then

|S•| =
n∐

i=0

Si ×∆i/ ∼

where the equivalence relation is restricted only the the simplices of dimension
≤ n. In particular |S| carries a structure of an n-dimensional CW complex.

3



Given a map of simplicial sets f : S• −→ T• we have a natural map f∗ :
|S•| −→ |T•|. This observation leads to the fact that the realization procedure
is in fact a functor from simplicial sets to spaces. Note that if we compose the
Sing functor after the realization functor we get a functor from simplicial sets
to simplicial sets

S• 7→ Sing(|S•|)

For each simplicial set we have a natural map from S• to Sing(|S•|) (because
every element of Sn gives a map form ∆n to |S•|, or an element of Sing(|S•|)n).
Formally these maps are really a natural transformation from the identity
functor to the functor S• 7→ Sing(|S•|). This natural transformation induces
homomorphisms

Hn(S•) −→ Hn(Sing(|S•|))

Theorem 5. This homomorphism is an isomorphism.

We will prove this theorem later in the course. In particular we get

Corollary 6. Let S be a simplicial sets. Then the homologies of S are isomor-
phic to the homologies of |S|.

Hence we will be able to compute the homology groups of a space by repre-
senting it as a realization of a relatively small and simple simplicial set.

2 Computing homologies of simplicial sets

Let S be a simplicial set and Tn ⊆ Sn the subsets of degenerate simplices. Note
that the Tn’s don’t form a sub simplicial set. However, if we define

Dn = ZTn ⊆ ZSn = Cn

and ∂n : Cn −→ Cn−1 we do have the following result:

Lemma 7. If σ ∈ Dn is an element then ∂σ ∈ Dn−1.

Proof. It is enough to show that for every α ∈ Tn we have ∂α ∈ Dn−1. Since
α is degenerate there exists a β ∈ Sn−1 and a k ∈ {0, ..., n − 1} such that
α = sn−1

k (β). Then we note the following relations:

1. If 0 ≤ j ≤ k − 1 then

dnj (sn−1
k (β)) = sn−2

k−1(dnj (β))

2. If k ≤ j ≤ k + 1 we have

dnj (sn−1
k (β)) = β

3. if k + 2 ≤ j ≤ n+ 1 we have

dnj (sn−1
k (α)) = sn−2

k (dn−1
j−1 (β))

4



This means that

∂α =

n∑
j=0

(−1)jdnj (α) =

n∑
j=0

(−1)jdnj (sn−1
k (β)) =

k−1∑
j=0

(−1)jsn−2
k−1(dn−1

j (β) + (−1)kβ + (−1)k+1β +

n∑
j=k+2

sn−2
k (dn−1

j−1 (β) =

k−1∑
j=0

(−1)jsn−2
k−1(dn−1

j (β) +

n∑
j=k+2

sn−2
k (dn−1

j−1 (β) ∈ Dn−1

and we are done.

Let Cn = Cn/Dn. By the above lemma we get that ∂n induces a well defined
map

∂n : Cn −→ Cn−1

It is immediate that ∂n ◦ ∂n+1 = 0. We define the non-degenerate homology
groups of S to be

Hnd
n (S) = ker(∂n)/Im (∂n+1)

The following lemma will be proven in later classes:

Lemma 8. The quotient map Cn −→ Cn induces an isomorphism:

Hn(S)
'−→ Hnd

n (S)

This lemma means that if we have a simplicial set with only finitely many
non-degenerate simplices then we can compute it’s homologies by hand.

Examples

1. For each n we can construct a simplicial set S• whose realization if home-
omorphic to the n-sphere. This is done as follows: identify the n-sphere
with the space X obtained by taking the n-simplex ∆n and collapsing all
its boundary ∂∆n to a point. Let x0 = [∂∆n] ∈ X be the collapse point.

Consider the quotient map q : ∆n −→ X. We will now construct a
simplicial set S• whose realization is X. We define Sk to be the set of all
maps ϕ : ∆k −→ X which are either constant with image x0 or of the
form q ◦ f where f : ∆k −→ ∆n is a simplicial map. For each simplicial
map g : ∆m −→ ∆k we define g∗ : Sk −→ Sm by

g∗ϕ = ϕ ◦ g

Note that if ϕ satisfies the condition above then so does ϕ◦g, so everything
is well defined. We need to show that the realization of S is homeomorphic
to X. In order to do that we go back to the proof of Theorem 2 and see
that we can realize |S| as a CW complex by looking only at the non-
degenerate simplices. Note that S has only two non-degenerate simplices:
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one 0-simplex α ∈ S0 and one n-simplex β ∈ Sn. The faces of β all
degenerate to α so we get that the gluing map of {α} × ∆n is constant.
Hence we get exactly the sphere X.

Let us now use this in order to compute the homologies of the sphere: the
groups Cn look like this:

... −→ 0 −→ 0 −→ ... −→ 0 −→ Z ∂n−→ 0 −→ ...0
∂1−→ Z

where the Z’s sit at the n’th and 0’th place. Hence for all n > 1 we
immediately get

Hk(Sn) =

{
Z k = 0, n
0 k 6= 0, n

for n = 1 we get that the two Z’s are consecutive:

... −→ 0 −→ 0 −→ ... −→ 0 −→ Z ∂1−→ Z

so we need to compute ∂1 : C1 −→ C0. Since the two vertices of the non-
degenerate 1-simplex β ∈ S1 are glued to the same (and only) 0-simplex
in S0 we get that

∂1(β) = d1
0(β)− d1

1(β) = 0

and so the kernel of ∂1 is everything and it’s image is trivial. This means
that for n = 1 we have (similarly to the higher n’s):

Hk(S1) =

{
Z k = 0, 1
0 k 6= 0, 1

It is not hard to complete the picture and see that for S0 we have

Hk(S0) =

{
Z⊕ Z k = 0

0 k 6= 0

2. Let us now compute the homologies of the 2-torus T2. The the standard
CW structure of T2 and divide the 2-cell into two triangles by adding an
extra diagonal 1-simplex. We get a structure with three 1-cells and two
2-cells:
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These 2-cells happen to look like triangles. This observation can be trans-
lated to there being maps f1, f2 : ∆2 −→ T2 such that the restriction
of fi to the interior of ∆2 gives a homeomorphism to the interior of the
i’th 2-cell. Further more for each of the three one cells we have maps
e1, e2, e3 : ∆1 −→ T2 and the restriction of fi to any of the edges of the
triangle gives one of the ei’s. Of course there is also a map v : ∆0 −→ T2

whose image of the vertex in (T2)0.

We then define a simplicial set S• by defining Sk to be the set of all
maps ϕ : ∆k −→ T2 which are of the form fi ◦ g, ei ◦ g or v ◦ g for some
simplicial map g. As in the previous example it is not hard to show that
the realization |S| is homeomorphic to T2.

Looking at the groups Cn we get the following chain:

...
∂4−→ 0

∂3−→ Z2 ∂2−→ Z3 ∂1−→ Z ∂0−→ 0

There is a unique 0-simplex all the 1-simplices start and end with it. Hence
∂1 is the 0-map. It is left to compute ∂2. Call the 1-simplices a, b, c where
a, b are the familiar ones and c is the one we added when partitioning the
2-cell. Let U and L denote the two 2-simplices (U for upper and L for
lower). Then we see that

∂2(U) = a+ b− c

∂2(L) = a+ b− c

Hence the kernel of ∂2 is generated by U −L and is isomorphic to Z. The
cokernel of ∂2 is the abelian group generated by a, b, c modulu the relation
a+ b− c = 0, or c = a+ b. Clearly this group is isomorphic to Z⊕ Z. To
conclude we get that

H2(T2) ∼= Z

H1(T2) ∼= Z⊕ Z

7



Basic Notions in Algebraic Topology 9

Yonatan Harpaz

1 Barycentric Subdivision

Consider the standard simplex

∆n =

{
(a0, ..., an) ∈ Rn+1

∣∣∣∣∣ai ≥ 0,
∑
i

ai = 1

}

Let Σn+1 be the permutation group on the set {0, ..., n}. For every permutation
ρ ∈ Σn+1 consider the subset

∆ρ =
{

(a0, ..., an) ∈ ∆n
∣∣aρ(0) ≤ aρ(1) ≤ ... ≤ aρ(n)

}
⊆ ∆n

We claim that each one of the ∆ρ’s is actually homeomorphic to ∆n. In order to
construct the homeomorphism let us define for every vector (x0, ..., xn) ∈ Rn+1

and permutation ρ ∈ Σn+1 the vector

ρ(x0, ..., xn) = (xρ−1(0), xρ−1(1), ..., xρ−1(n))

Then the homeomorphism τρ : ∆n −→ ∆ρ is given by

τρ(b0, ...., bn) = ρ

(
b0

n+ 1
,
b0

n+ 1
+
b1
n
,
b0

n+ 1
+
b1
n

+
b2

n− 1
, ...,

n∑
i=0

bi
n+ 1− i

)

In particular the volume of each ∆ρ is exactly 1
(n+1)! times the volume of the

standard simplex.
Each two of the ∆ρ’s intersect along a common face (of some dimension)

and their union is all of ∆n. In fact they form a triangulation of ∆n. It is
called the barycentric triangulation of ∆n.

For example when n = 0 it is the trivial triangulation. When n = 1 the ba-
rycentric triangulation corresponds to partitioning the segment into two halves.
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For n = 2 and n = 3 the barycentric triangulation are shown in the illustrations
above.

We package the data of this triangulation by an element Bn ∈ Cn(∆n)
(where Cn(∆n) denotes the singular chain complex of ∆n) given by:

Bn =
∑

ρ∈Σn+1

sign(ρ)τρ ∈ Cn(∆n)

There is an inductive way to describe this triangulation. Let A ⊆ Rn be a
convex set and b ∈ A a point. Let Cn(A) be the singular chain complex of A.
For every ϕ : ∆k −→ A let ϕ+ : ∆k+1 −→ ∆n be the map given by

ϕ+(b0, ..., bk+1) = (1− b0)ϕ

(
b1

1− b0
, ...,

bk+1

1− b0

)
+ b0p

for b0 < 1 and completed by ϕ+(1, 0, ..., 0) = p. This is the singular chain
analogue of the construction given in question 2 of exercise 8.

Now the construction ϕ 7→ ϕ+ induces a map of sets Sn(A) −→ Sn+1(A)
which induces a homomorphism of groups

hpn : Cn(A) −→ Cn+1(A)

These maps give a chain homotopy from the identity to the chain version of the
constant map at p.

Recalling that each ∆n has a standard embedding as a convex set in Rn+1

we can use the map hp on the singular chain complex of A = ∆n. In particular
it is not hard to see that if p ∈ ∆n is the center of mass point

p =

(
1

n+ 1
, ...,

1

n+ 1

)
∈ ∆n

and lnj : ∆n−1 ↪→ ∆n is the embedding of the j’th face (i.e. the simplicial
map corresponding to the order preserving map [n − 1] ↪→ [n] whose image is
[n] \ {j}) then you will show in the exercise that:

Bn =

n∑
j=0

(−1)jhpn−1(lnj ∗(Bn−1))

Note that this recursion rule completely determines the element Bn provided we
define B0 ∈ C0(∆0) to be the element corresponding to the identity ∆0 −→ ∆0.

Now let X be any topological space. Then we define a map of chain com-
plexes BX : C•(X) −→ C•(X) by setting

BXn (σ) = σ∗(Bn) ∈ Cn(X)

for every σ ∈ Sn(X) and extending linearly to all of Cn(X). It is not hard to
see that the maps BXn respect the differential and so fit together to form a map
of chain complexes.
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Basic Notions in Algebraic Topology 10

Yonatan Harpaz

1 The Homologies of a CW complex

Let us see what the process of adding the n-cells to the (n−1)-skeleton of a CW
complex does to its homologies. Let X be a connected finite CW complex. Then
its 1-skeleton X1 is homotopy equivalent to a wedge of circles X1 =

∨n
i=1 S

1.
Note that for each i there exists a Ui ⊆ X1 which deformation retracts to the
i’th circle and such that Ui ∩ Uj ' ∗ for i 6= j. Hence from the Mayer-Vietors
sequence we get that

Hk(X1) ∼= ⊕ni=1Hi(S
1)

for every i > 0. Since Hi(S
1) = Z for i = 1 and Hi(S

1) = 0 for i > 1 we know
all homologies of X1 (note that X1 is connected so H0(X1) ∼= Z).

Now let n ≥ 2 and consider the passage from Xn−1 to Xn. Suppose Xn is
obtained from Xn−1 be adding a single n-cell.

Then we can construct Xn from Xn−1 via a pushout of the form

Sn−1 //

��

Dn

��
Xn−1

// Xn

If Xn−1 was connected then so it Xn so we don’t bother much with H0.
Now for the higher homologies we need to replace the above pushout diagram

with a pushout diagram of open sets. Let U ⊆ Xn be the interior of Dn and
p ∈ U a point. Let V = Xn \ {p}. Then the above pushout square is equivalent
to the pushout square with

V ∩ U //

��

U

��
V // Xn

and so we can apply to it the Mayer Vietoris sequence. Recall that we assume
n ≥ 2 and so the map H0(Sn−1) −→ H0(Dn) is an isomorphism. This means
that the map H0(Sn−1) −→ H0(Xn−1)⊕H0(Dn) is in particular injective and
so we can ”cut” our Mayer Vietoris sequence at k = 1. Noting further more
that Hi(D

n) = 0 for i > 0 we get the segment

... −→ Hk+1(Xn−1) −→ Hk+1(Xn) −→ Hk

(
Sn−1

)
−→

1



Hk(Xn−1) −→ Hk(Xn) −→ ... −→ H1(Xn) −→ 0

Now first of all for k > 0 and k 6= n, n− 1 we get from the segments

... −→ Hk

(
Sn−1

)
−→ Hk(Xn−1) −→ Hk(Xn) −→ Hk−1

(
Sn−1

)
−→ ...

or
... −→ H1

(
Sn−1

)
−→ H1(Xn−1) −→ H1(Xn) −→ 0

that Hk(Xn) ∼= Hk(Xn−1) (because Hi(S
n−1) = 0 for i 6= 0, n − 1). From this

we already draw far reaching conclusions:

Corollary 1. If X is a connected n-dimensional CW complex then Hk(X) = 0
for k > n and Hk(X) ∼= Hk(Xk+1) for k < n.

Proof. The first skeleton X1 is equivalent to a wedge of circles and so doesn’t
have homologies beyond dimension 1. Adding k-cells doesn’t change the ho-
mologies above dimension k. Hence an n-dimensional connected CW complex
doesn’t have homologies above dimension n. The second conclusion is also an
immediate consequence of the same observation.

In order to understand the behavior of Hn and Hn−1 we observe the segment

0 −→ Hn(Xn−1) −→ Hn(Xn) −→ Hn−1

(
Sn−1

)
−→ Hn−1(Xn−1) −→ Hn−1(Xn) −→ 0

Since Hn−1(Sn−1) ∼= Z we can write this as

0 −→ Hn(Xn−1) −→ Hn(Xn) −→ Z −→ Hn−1(Xn−1) −→ Hn−1(Xn) −→ 0

Hence we see that the n − 1 homology of Xn is a quotient of the n − 1
homology of Xn−1 obtained by killing the image of the map

Hn−1(Sn−1) −→ Hn−1(Xn−1)

The n-homology of Xn is simply the kernel of that map.
Examples:

1. Let us calculate the homologies of the surface of genus g ≥ 1. The 1-
skeleton of this surface is a wedge of 2g circles

(Mg)1 = S1
a1 ∨ S1

b1 ∨ S1
a2 ∨ S1

b2 ∨ ... ∨ S1
ag ∨ S1

bg

and we have one 2-cell. Hence the sequence above becomes

0 −→ H2(Mg) −→ H1(S1) −→ H1((Mg)1)) −→ H1(Mg) −→ 0

So all we need to do is to understand what the gluing map

S1 −→ S1
a1 ∨ S1

b1 ∨ S1
a2 ∨ S1

b2 ∨ ... ∨ S1
ag ∨ S1

bg

2



induces on H1.

The gluing map is given by the word∏
i

aibia
−1
i b−1

i

whose Hurewitz image is∑
i

ai + bi − ai − bi = 0

Hence the gluing map sends the generator of H1(S1) to 0. Hence from the
sequence above we get

0 −→ H2(Mg) ∼= H1(S1) ∼= Z

H1(Mg) ∼=−→ H1((Mg)1))

2. Let us do the same for RP 2. The 1-skeleton is (RP 2)1
∼= S1 and we have

one 2-cell. Hence the sequence above becomes

0 −→ H2(RP 2) −→ H1(S1) −→ H1((RP 2)1)) −→ H1(RP 2) −→ 0

The gluing map
S1 −→ (RP 2)1

∼= S1

is just the multiplication by 2 map. This map induces multiplication by
2 on H1 and so we get the sequence

0 −→ H2(RP 2) −→ Z 2−→ Z −→ H1(RP 2) −→ 0

and so
H2(RP 2) = 0

H1(RP 2) = Z/2

The fact that H2(RP 2) = 0, while H2(Mg) ∼= Z is connected to a geometric
difference: the surface Mg is orientable and RP 2 isn’t. We will learn about
orientability later in the course.

2 Pushouts in the Category of Simplicial Sets

Consider a diagram

S•
ϕ //

ψ

��

T•

R•

3



of simplicial sets. We claim that there exists a pushout P for this diagram which
is given by

Pn = Tn
∐

ϕn(σ)∼ψn(σ),σ∈Sn

Rn

Note that for every simplicial map f : ∆n −→ ∆k we have a commutative
diagram

Rk

f∗

��

Sk
ψk

oo ϕk //

f∗

��

Tk

f∗

��
Rn Sn

ψn

oo ϕn // Tk

which induces a map
Pk −→ Pn

Hence P• admits a structure of a simplicial set. It is not hard to see that P• is
indeed the pushout because it realizes the pushout of sets at each level.

Now consider our standard functor from simplicial sets to chain complexes
which associates to a simplicial set S• the chain complex C•(S•) given by

Cn(S•) = ZS•

∂n =
∑
i

(−1)idni

Now the natural map

C•(T•)⊕C•(S) C•(R•) −→ C•(P )

is easily seen to be an isomorphism of chain complexes, i.e. the functor C•
respects pushouts.

Hence we get a short exact sequence of chain complexes

0 −→ C•(S•) −→ C•(T•)⊕ C•(R•) −→ C•(P ) −→ 0

Applying the snake lemma we get a long exact sequence

... −→ Hn(S•) −→ Hn(T•)⊕Hn(R•) −→ Hn(P•) −→

−→ Hn−1(S•) −→ Hn−1(T•)⊕Hn−1(R•) −→ Hn−1(P•) −→ ... −→ H0(P•) −→ 0

We call this the simplicial Mayer-Vietoris sequence.
The following lemma is an easy exercise:

Lemma 2. The realization functor S• −→ |S•| respects pushouts, i.e. the
natural map

|T•|
∐
|S•|

|R•| −→ |P•|

is a homeomorphism.
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3 The Equivalence of Simplicial and Singular
Homology

Theorem 3. Let S• be a simplicial set with finitely many non-degenerate sim-
plices. Then the natural map

Hi(S•) −→ Hi(|S•|)

is an isomorphism for every i.

Proof. We will prove by induction on the dimension of S (i.e. the maximal
dimension of a non-degenerate simplex appearing in S). For 0-dimensional
simplicial sets. Such simplicial sets look like this, there exists a set A such that
Sn = A for every n and every simplicial map g : ∆n −→ ∆k induces the identity
A −→ A. In this case the realization |S| is just A as a discrete space. In this
case we get that

H0(S•)
'−→ H0(|S•|) ∼= ZA

and
Hn(S•) ∼= Hn(|S•|) ∼= 0

Now let n ≥ 1 and suppose we have proved the theorem for all finite simplicial
sets of dimension < n. Every finite n-dimensional simplicial set is obtained from
its (n − 1)-dimensional skeleton by a sequence of gluings of ∆n’s along ∂∆n.
This means that the induction step will be complete once we prove the following
lemma:

Lemma 4. Suppose that S is an n-dimensional simplicial set for which theorem
3 is true. Suppose that S′ is obtained from S by adding a single n-simplex. Then
the theorem is true for S′ as well.

Proof. Let Tn• be the simplicial set represented by ∆n, i.e.

Tnk = Hom∆(∆k,∆n)

We saw in exercise 8 that |Tn• | ∼= ∆n. Let Rn• ⊆ Tn• be the simplicial subset
corresponding to the boundary ∂∆n, i.e. Rnk is the set of all simplicial maps
∆k −→ ∆n whose image is contained in ∂∆n ⊆ ∆n. Then |Rn• | ∼= ∂∆n.

We have a pushout square of simplicial sets

R•

��

// S

��
T• // S′

From the hypothesis of the lemma we know that the natural maps

Hi(S•) −→ Hi(|S•|)
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are isomorphisms for every i. Since Rn• is (n−1)-dimensional we know from the
induction hypothesis that

Hi(R
n
• ) −→ Hi(|Rn• |) = Hi(∂∆n)

For every i. From question 2 in exercise 8 we have that

Hi(T
n
• ) −→ Hi(|Tn• |) = Hi(∆

n)

is also an isomorphism for every i.
We now want to use the Mayer Vietoris sequences. Note that the images

of the maps |S| −→ |S′| and |Tn• | −→ |S′| are two sub CW complexes, whose
intersection is the image of |Rn• |. Then there exists open subsets U, V ⊆ |S′|
such that U deformation retracts to the image of |S•|, V deformation retracts
to the image of |Tn• | and U ∩V deformation retracts to the intersection of |Rn• |.

Then we have two short exact sequence of chain complexes and compatible
maps between them (i.e. everything commutes):

0 // C•(R•) //

��

C•(S•)⊕ C•(T
n
• ) //

��

C•(S
′
•) //

��

0

0 // C•(∂∆n) // C•(|S|)⊕ C•(∆
n) // C•(V )⊕C•(V ∩U) C•(U) // 0

This gives us a sequence of compatible maps between the two long exact se-
quences:

... // Hi(R
n
• ) //

'
��

Hi(S•)⊕Hi(T
n
• )

'
��

// Hi(S
′
•) //

��

Hi−1(Rn• ) //

'
��

Hi−1(S•)⊕Hi−1(Tn• ) //

'
��

...

... // Hi(∂∆n) // Hi(|S•|)⊕Hi(∆n) // Hi(|S′•|) // Hi−1(∂∆n) // Hi−1(|S•|)⊕Hi−1(∆n) // ...

All the vertical maps besides those going from Hi(S
′
•) to Hi(|S′•|) are isomor-

phisms. Hence we get for every i a map between one exact sequence of 5 groups
to another exact sequence of 5 groups which is an isomorphism everywhere ex-
cept for the middle group. We claim that in this situation it has to be an
isomorphism for the middle group as well. This is called the five lemma :

Lemma 5. Let

A
fA //

gA
��

B
fB //

gB
��

C
fC //

gC
��

D
fD //

gD
��

E

gE
��

A′
f ′A // B′

f ′B // C ′
f ′C // D′

f ′D // E′

be a commutative diagram of abelian groups such that the rows are exact and
the maps gA, gB , gD, gE are isomorphisms. Then gC is an isomorphism.
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Proof. Suppose that c ∈ ker(gC). Then gD(fC(c)) = f ′C(gC(c)) = 0 and since
gD is injective fC(c) = 0. This means that there exists a b ∈ B such that
fB(b) = c. Let b′ = gB(b). Then f ′B(b′) = gC(fB(b)) = gC(c) = 0 so there exists
an a′ ∈ A such that f ′A(a′) = b′. Since gA is surjective there exists an a ∈ A
such that gA(a) = a′.

We claim that fA(a) = b. The reason is that gB(fA(a)) = f ′A(gA(a)) =
f ′A(a′) = b′ = gB(b) and gB is injective. Hence c = fB(fA(a)) = 0. This shows
that gC is injective.

Let us now show that gC is surjective. Let c′ ∈ C ′ be an element and
d′ = f ′C(c′). Since gD is surjective there exists a d ∈ D such that gD(d) = d′.
Then gE(fD(d)) = f ′D(gD(d)) = f ′D(d′) = 0 (because d′ is the image of c′) and
since gE is injective we get that fD(d) = 0. This means that there exists a c ∈ C
such that fC(c) = d.

Comparing gC(c) with c′ we see that both of them satisfy

f ′C(gC(c)) = gD(fC(c)) = d′ = f ′C(c′)

and so gC(c) − c′ is in the kernel of f ′C , i.e. in the image of f ′B . Hence there
exists a b′ ∈ B′ such that f ′B(b′) = gC(c)− c′ or c′ = gC(c) + f ′B(b′).

Since gB is surjective there exists a b ∈ B such that gB(b) = b′. Then
gC(fB(b)) = f ′B(gB(b)) = f ′B(b′) and so

gC(c + fB(b)) = gC(c) + f ′B(b′) = c′

Hence c′ has a pre-image in C and we are done.

This finishes the proof of the lemma.

This finishes the proof of the theorem.

This finishes the notes.
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1 Cellular Homology

In the last TA session we saw that we can use the Mayer-Vietoris sequence in
order to analyze the homology of a CW complex. Our approach applied the
Mayer-Vietoris sequence to each cell we glued separately. Hence it might be
a bit cumbersome to apply it to a CW complex with more than 2-3 cells. It
turns out that our approach has a more sophisticated version, called cellular
homology.

Recall the relative homology groups defined in exercise 10: Let X be a
topological space and A ⊆ X a subspace. Let C•(X,A) be the chain complex
given by

C(X,A)• = Cn(X)/Cn(A)

with the boundary maps ∂n : Cn(X,A) −→ Cn−1(X,A) induced from the boun-
dary maps of C•(X). The homology groups Hn(C•(X,A)) of this complex are
called the relative homology groups of the pair (X,A) and are denoted by
Hn(X,A). Since we have a short exact sequence

0 −→ C•(A) −→ C•(X) −→ C•(X,A) −→ 0

of chain complexes and so from the snake lemma a long exact sequence:

... −→ Hn(A) −→ Hn(X) −→ Hn(X,A) −→ Hn−1(A) −→ Hn−1(X) −→ Hn−1(X,A) −→ ...

In exercise 10 you will show that

Hn(X,A) ∼= H̃0(X ∪A CA)

Lemma 1. Let (X,A) be a pair satisfying the homotopy extension property.
Then the cone C ∪A CA is homotopy equivalent to the quotient space X/A.

Proof. Exercise.

Now let X be a CW complex with a finite number of cells in each dimension
and let Xk be the k’th skeleton. Consider the long exact sequence

... −→ Hn(Xk−1)
ik∗−→ Hn(Xk)

pk∗−→ Hn(Xk, Xk−1)
δk∗−→
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Hn−1(Xk−1)
ik∗−→ Hn−1(Xk)

pk∗−→ Hn−1(Xk, Xk−1) −→ ...

Let Ik be the set indexing the k-cells of X, i.e. we have a pushout square∐
α∈Ik S

k−1 //

��

∐
α∈Ik D

k

��
Xk−1 // Xk

This means that Xk/Xk−1 ∼=
∨
α S

k. Since (Xk, Xk−1) satisfy the homotopy
extension property we have that

Hn(Xk, Xk−1) ∼= H̃n(Xk/Xk−1) ∼= ⊕α∈IH̃n(Sk)

and in particular Hn(Xn, Xn−1) ∼= ZIn.
Let us try to make this isomorphism more explicit: for each α ∈ In we have

a gluing map ϕα : Sn−1 −→ Xn−1 and a corresponding extension

ϕ̃α : Dn −→ Xn

Choose some homeomorphism T : ∆n −→ Dn which sends ∂∆n to ∂Dn. Then
for each n-cell α ∈ In consider the singular n-simplex σ : ∆n −→ Xn given by
σα = ϕ̃α◦T . The corresponding element in Cn(Xn) is not a cycle, but it’s boun-
dary is contained in Xn−1. This means that its image p(σα) ∈ Cn(Xn, Xn−1) is
a cycle. The element

[p(σα)] ∈ Hn(Xn, Xn−1)

corresponds to the generator α in ZIn.
Now let

∂n : Hn(Xn, Xn−1) −→ Hn−1(Xn−1, Xn−2)

be the composition of the maps

Hn(Xn, Xn−1)
δnn−→ Hn−1(Xn−1)

pn−1
∗−→ Hn−1(Xn−1, Xn−2)

where the first one is taken from the long exact sequence of the pair (Xn, Xn−1)
and the second from the long exact sequence of the pair (Xn−1, Xn−2). Define

Ccel
n (X) = Hn(Xn, Xn−1)

∂n = pn−1∗ ◦ δnn : Ccel
n (X) −→ Ccel

n−1(X)

Lemma 2. The composition ∂n−1 ◦ ∂n equals the 0 map.

Proof.

∂n−1 ◦ ∂n = (pn−2∗ ◦ δn−1n−1) ◦ (pn−1∗ ◦ δnn) = pn−2 ◦ (δn−1n−1 ◦ pn−1∗ ) ◦ δnn

but δn−1n−1 ◦ pn−1∗ = 0 because these are two consecutive maps in the long exact
sequence of the pair (Xn−1, Xn−2) so get that

∂n−1 ◦ ∂n = 0
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This means that the groups Ccel
n (X) fit together to form a chain complex.

This chain complex is called the cellular chain complex of X. It’s homology
groups of called the cellular homology groups of X and are denoted by
Hcel
n (X). Our main result is the following:

Theorem 3. We have a canonical isomorphism

Hcel
n (X) ∼= Hn(X)

for every n and every CW complex X.

Proof.

Lemma 4. The kernel of the map ∂n : Ccel
n (X) −→ Ccel

n−1(X) is naturally
isomorphic to Hn(Xn).

Proof. In the previous TA session we saw that adding an n-cell doesn’t change
the homology groups below dimension n − 1. Let n ≥ 1. Then in particular
Hn−1(Xn−2) = 0 and so the map pn∗ : Hn−1(Xn−1) −→ Hn−1(Xn−1, Xn−2) is
injective. This means that the kernel of ∂n : Ccel

n (X) −→ Ccel
n−1(X) is equal to

the kernel of
δn : Hn(Xn, Xn−1) −→ Hn−1(Xn−1)

This kernel is equal to the cokernel of the map

Hn(Xn−1) −→ Hn(Xn)

but since Hn(Xn−1) = 0 this kernel is just Hn(Xn).

The natural map Hn(Xn) −→ Hn(X) gives us a map

T : ker(∂n) −→ Hn(X)

In the last TA session we also saw that the map Hn(Xn) −→ Hn(Xn+1) is
surjective. Since Hn(X) ∼= Hn(Xn+1) our map T is surjective.

Now the kernel of T consists of exactly those α ∈ Hn(Xn) which maps to 0
in Hn(Xn+1). Then kernel of this map is equal to the image of the map

Hn+1(Xn+1, Xn) −→ Hn(Xn)

which is exactly the image of ∂n. Hence T induces an isomorphism

Hcel
n (X) −→ Hn(X)

In order to use this tool in computations we need an idea of how to compute
the boundary map ∂n : Hn(Xn, Xn−1) −→ Hn−1(Xn−1, Xn−2). It is enough to
understand what are the images under ∂n of the generators [p(σα)] described
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above. Now the boundary of ∆n is mapped under σα to Xn−1 and so we can
consider ∂nσα as an (n− 1)-cycle of Cn−1(Xn−1). By definition we then have

δn([p(σα)]) = [∂nσα] ∈ Hn−1(Xn−1)

But note that
[∂nσα] = ϕα∗(g)

where g ∈ Hn−1(Sn−1) is given by the class of the cycle ∂T considered as a
cycle in ∂Dn = Sn−1. This element is a generator of Hn−1(Sn−1) ∼= Z, so this
gives a nice description of δn([p(σα)]). Then

∂n([p(σα)]) = p∗(ϕα∗(g))

where p∗ : Hn−1(Xn−1) −→ Hn−1(Xn−1, Xn−2).
Example:
Identify S3 with the subset

S3 = {(z, w) ∈ C2||z|2 + |w|2 = 1}

Let n ≥ 3 and let ω ∈ C be a primitive n’th root of unity. Let X be the quotient
space of S3 under the action of Z/n where the generator g ∈ Z/n acts as

g(z, w) = (ωz, ωw)

and let q : S3 −→ X be the quotient map.
We wish to compute the homology groups of X. We can find a CW structure

on X as follows: Let D ⊆ S3 be the subset given by

K =

{(
z,
√

1− |z|2 cis (θ)
) ∣∣∣∣|z| ≤ 1, |θ| ≤ πi

n

}
Note that K is homeomorphic to the 3-ball D3 = {a, b, c|a2 + b2 + c2 ≤ 1} via
the homeomorphism

ϕ(a, b, c) =

(
a+ bi,

√
1− a2 − b2 · cis

(
πi

n

c√
1− a2 − b2

))
(by this definition of ϕ we mean implicitly that when a2+b2 = 1 then ϕ(a, b, c) =
(a+ bi, 0)).

Now the interior of K is given by

Int(K) =

{(
z,
√

1− |z|2 cis(θ)
)
∈ K

∣∣∣ |z| < 1, θ ∈
(
−2πi

n
,

2πi

n

)}
Note that no two distinct points of Int(K) are identified by the action of Z/n.
Further more every point in S3 is equivalent under the action to a point in K.
In this case we say that K is a fundamental domain for the action of Z/n on
S3. What this gives us is that we can compute X by taking K and identifying
points on the boundary ∂K which are identified by Z/n.
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The boundary of K is given by

∂K =

{(
z,
√

1− |z|2 cis

(
2πi

n

))∣∣∣∣ |z| ≤ 1

}
∪
{(

z,
√

1− |z|2 cis

(
−2πi

n

))∣∣∣∣ |z| ≤ 1

}
def
= K+ ∪K−

Our identification of K with D3 identifies K+ and K− with the two hemispheres
of ∂D3 = S2. The action of Z/n on ∂K identifies the point(

z,
√

1− |z|2 cis

(
−2πi

n

))
∈ K−

with the point (
ωz,

√
1− |ωz|2 cis

(
2πi

n

))
∈ K+

Let E = K+ ∩ K− be the equator. It is given by points of the form (z, 0)
such that |z| = 1. Note that each such point (z, 0) ∈ E is identified with
(wiz, 0) ∈ K+ ∩K− for every i = 0, ..., n− 1. Note that E is a circle and E/ ∼
is also a circle. The map E −→ E/ ∼ is an n-fold cover, and in particular a
map of degree n.

Hence we see that ∂K/ ∼ is a 2-dimensional CW complex whose 1-skeleton
is E/ ∼ and with a single two cell K+ attached via the gluing map

∂K+ = E −→ E/ ∼

which is an n-fold map S1 −→ S1. Finally the space K/ ∼ is obtained from
∂K/ ∼ by gluing a single 3-cell K attached via the gluing map

∂K −→ ∂K/ ∼= K+/ ∼

Now according to cellular homology we can compute the homologies of X
from the chain complex

... −→ 0
∂4−→ Z ∂3−→ Z ∂2−→ Z ∂1−→ Z −→ 0

The map ∂1 is 0 (both edges of the 1-cell are glued to the same vertex). From
our construction it is clear that ∂2 is multiplication by n (because an n-fold
cover of S1 by S1 is a map of degree n and so induces multiplication by n on
H1).

The only slight mystery is ∂3. However it is completely constrained - since
ker(∂2) = 0 the image of ∂3 must be 0. Hence we get that

H1(X) ∼= Z/n

H2(X) ∼= Z

and
H3(X) = 0
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In this TA session we are going to talk about the functors Tor(−,−) and
Ext(−,−) in the category of abelian groups. These notions are useful in ana-
lyzing the behavior of homology with coefficients. The theory we are going to
discuss is part of a field called homological algebra which is an indispensable
tool in the algebraic topologist toolkit.

1 The Functors Tensor and Hom

Let Ab denote the category of abelian groups. The starting point of this dis-
cussion are the the tensor product operation (A,B) 7→ A ⊗ B and the Hom
operation (A,B) 7→ Hom(A,B). Let us recall the definition of tensor product:

Definition 1. Let A,B be abelian group. We define A ⊗ B to be the abelian
group generated by expressions of the form a ⊗ b for a ∈ A, b ∈ B modulu the
relations

a1 ⊗ b+ a2 ⊗ b = a3 ⊗ b

whenever a1 + a2 = a3 and

a⊗ b1 + a⊗ b2 = a⊗ b2

whenever b1 + b2 = b3.

Examples:

1. A⊗ Z is isomorphic to A. The map a 7→ a⊗ 1 is an isomorphism.

2. A⊗ Z/n is isomorphic to the group A/nA.

Proof. We have a homomorphism

A −→ A⊗ Z/n

sending a to a⊗ 1. Now

(na)⊗ 1 = n(a⊗ 1) = a⊗ n = a⊗ 0 = 0

so this homomorphism induces a well defined homomorphism A/nA −→
A⊗ Z/n. This homomorphism has an inverse sending a⊗ r to the image
of ra in A/nA. Hence it is an isomorphism.
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3.
(A⊕B)⊗ C ∼= (A⊗ C)⊕ (B ⊗ C)

The obvious map (A⊗C)⊕ (B⊗C) −→ (A⊕B)⊗C is clearly surjective.
It is a simple exercise to show that it is also injective.

Note that these operations take two abelian groups and return a single abe-
lian group. Formally we can think of ⊗ as a functor from Ab×Ab to Ab where
Ab×Ab is the category whose objects are pairs of groups (A,B) and morphisms
from (A,B) to (C,D) are pairs of homomorphisms T : A −→ C, S : B −→ D.
We also say that ⊗ is a bi-functor or that ⊗ is functorial in both coordinates.

As for Hom(−,−) we can think of it as a functor from Abop×Ab to Ab where
Abop is the opposite category of abelian groups. An alternative terminology is
to say that Hom(A,B) is contra-variant in the first coordinate and covariant in
the second.

We will not worry to much about these formalities because we are going to
fix a group D and consider the functors

A 7→ A⊗D

and
A 7→ Hom(A,D)

The first is a covariant functors (or just a functor from Ab to Ab) and the
second is contra-variant (or a functor from Abop to Ab). We are going to be
concerned with the behavior of these functor under short exact sequences, i.e.
we will want to know what happens if we take a short exact sequence of abelian
groups and hit it with it.

1.1 The Functor −⊗D

We will start by analyzing the functor −⊗D. Surprisingly, it will be useful to
start our discussion by generalizing this functor from abelian groups to chain
complexes (which also plays an important role in defining the product structure
on cohomology):

Definition 2. Let C•, D• be two chain complexes. We define their tensor
product chain complex C• ⊗D• by

(C ⊗D)n = ⊕i+j=nCi ⊗Dj

The boundary map is given as follows: if x ∈ Ci, y ∈ Dj such that i + j = n
then

∂n(x⊗ y) = (∂ix)⊗ y + (−1)ix⊗ (∂jy)

It is immediate to compute that ∂n+1 ◦∂n = 0 so this is indeed a chain complex.

We will also need the following notion:

2



Definition 3. Let A be an abelian group. We say that a chain complex A• is
a free resolution of A if A• is free and

Hi(A•) =

{
A i = 0
0 i > 0

Note that every abelian group A has a free resolution: choose some set of
generators and take A0 to be the free group on these generators. Then we have a
surjective map A0 � A whose kernel is some (free) subgroup A1 ↪→ A0 (because
any subgroup of a free abelian group is free. For a proof of this claim see the
wikipedia entry ”free abelian group”). Hence

... −→ 0 −→ A1 −→ A0

is a complex whose 0’th homology is A and all the other homologies vanish.
Note that in fact every abelian group has a free resolution of length 2. Now in
question 1 in exercise 12 you prove that every two free chain complexes with
isomorphic homologies are chain homotopy equivalent. In particular this implies
that every two free resolutions are homotopy equivalent.

Now let A,D be two abelian groups and A•, D• two respective free resoluti-
ons. Consider the chain complexA•⊗D•. Note that ifA′•, D

′
• were two other free

resolutions then A• ' A′• and D• ' D′• which implies that A• ⊗D• ' A′• ⊗D′•
(exercise). Hence the chain homotopy type of A•⊗D• depends only on A and D.
This makes it interesting to wonder about the homology groups of the complex
A• ⊗D•. These homology groups are denoted by

Tori(A,D)
def
= Hi(A• ⊗D•)

They are called the Tor groups of A and D.

Remark 4. If f : A −→ B is a homomorphism and A•, B• are two respective free
resolutions then there exists a (unique up to chain homotopy) map f̃ : A• −→ B•
which induces f on H0. This makes it possible to define Tori(A,B) as functors
from Ab×Ab to Ab.

For a fixed D, the functors Tori(−, D) are called the left derived functors of
−⊗D.

Remark 5. Since A•⊗D• ∼= D•⊗A• we see that Tori(A,D) is symmetric in A
and D.

Theorem 6.
Tor0(A,D) ∼= A⊗D

and
Tori(A,D) = 0

for i ≥ 2.

Proof. Since we can compute this using any free resolution we want why not
take the standard free resolution: we let A0 = ⊕a∈AZ < a > be the free abelian
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group generated by the elements of A (considered as a set) and A1 ⊆ A0 the
(free) subgroup generated by relations of the form a1 + a2 − a3 when ever
a1 + a2 = a3. It is clear that A0/A1

∼= A so A1 −→ A0 is free resolution of
length 2 of A. Similarly we take D1 −→ D0 be the standard free resolution of
D.

We obtain the complex:

... −→ 0 −→ A1 ⊗D1
∂2−→ [A0 ⊗D1]⊕ [A1 ⊗D0] −→ A0 ⊗D0 −→ 0

Note that ∂2 is injective and so the homologies of this complex vanish in dimen-
sion 2 and up.

We can identify A0 ⊗D0 with the free abelian group generated by symbols
of the form a⊗d for a ∈ A, d ∈ D. Then the elements coming from [A0 ⊗D1]⊕
[A1 ⊗D0] are exactly the standard relations defining A⊗D. Hence we get that
the 0’th homology of this complex is isomorphic to A ⊗ D. This finishes the
proof of the theorem.

What is the role of the Tor groups? They will help us study the behavior of
the functor −×D under short exact sequence. Consider a short exact sequence

0 −→ A
i−→ B

p−→ C −→ 0

when we tensor with D we get the sequence

0 −→ A⊗D −→ B ⊗D −→ C ⊗D −→ 0

and we ask our selves if this sequence is exact. Clearly there are some easy
situations in which it is exact:

1. If D = ZI is free with generator set I then it is easy to see that

0 −→ ⊕i∈IA −→ ⊕i∈IB −→ ⊕i∈IC −→ 0

is exact. We can generalize this observation quite easily to chain com-
plexes: if

0 −→ A• −→ B• −→ C• −→ 0

is a short exact sequence of chain complexes and D• is free then

0 −→ A• ⊗D• −→ B• ⊗D• −→ C• ⊗D• −→ 0

is exact.

2. If B ∼= C⊕A and i, p are the natural inclusion and projections respectively
then

B ⊗D ∼= (C ⊗D)⊕ (A⊗D)

so the sequence remains exact after applying to it the functor − ⊗D for
any D. In this situation we say that the short exact sequence splits.
Note that if C is free then any short exact sequence ending with C splits
(exercise).
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Now let us analyze the general case. We first use the observation above in
order to show that one can compute Tori(A,D) by resolving just one of A,D:

Lemma 7. Let A•, D• be free resolutions of A,D respectively. Let A be the
complex which is A at the 0’th place and 0 elsewhere, and similarly D. Then
the natural maps

A• ⊗D• −→ A• ⊗D•
A• ⊗D• −→ A• ⊗D

induce isomorphism on homology groups.

Proof. The claims are symmetric so we just prove the first. Let D be the kernel
of the map D• −→ D•. Then D• is given by

... −→ 0 −→ D1 −→ D1

We have a short exact sequence of chain complexes

0 −→ D −→ D• −→ D• −→ 0

Let us now tensor this short exact sequence with the free complex A•. We will
get a short exact sequence

0 −→ D ⊗A• −→ D• ⊗A• −→ D• ⊗A• −→ 0

From the snake lemma we see that in order to show that the map D• ⊗A• −→
D•⊗A• induces an isomorphism on homology groups it is enough to show that
all the homologies of D ⊗ A• vanish. But D is free without homologies and
so chain homotopic to the 0 complex. Hence D ⊗ A• is chain homotopic to
the 0 complex and it’s homologies vanish. It is also possible to verify that the
homologies of D⊗A vanish directly (just write it down and you will see). This
finishes the proof of the lemma.

Let us now return to analyzing the behavior of − ⊗ D under short exact
sequences. Let

0 −→ A −→ B −→ C −→ 0

be a short exact sequence of abelian groups and D• a free resolution of D. Since
D is free the sequence

0 −→ A• ⊗D• −→ B• ⊗D• −→ C• ⊗D• −→ 0

of chain complexes is exact. Using Lemma 7 and the snake lemma we get a
long exact sequence

... −→ Tor2(C,D) −→ Tor1(A,D) −→ Tor1(B,D) −→ Tor1(C,D) −→

A⊗D −→ B ⊗D −→ C ⊗D −→ 0

Since all Tori(−,−) = 0 for i ≥ 2 we can write this as

0 −→ Tor1(A,D) −→ Tor1(B,D) −→ Tor1(C,D) −→

A⊗D −→ B ⊗D −→ C ⊗D −→ 0

We can summarize this analysis as follows:
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1. If
0 −→ A −→ B −→ C −→ 0

is a short exact sequence then

A⊗D −→ B ⊗D −→ C ⊗D −→ 0

is exact. We say that −⊗D is exact from right.

2. One can use the functor Tor1(−,−) in order to measure the non-exactness
of −⊗D from the left. This is manifested in the fact that the map

Tor1(C,D) −→ ker(A⊗D −→ B ⊗D)

is surjective.

3. The functor − ⊗D will preserve short exact sequences (a.k.a - − ⊗D is
exact) if and only if Tor(A,D) = 0 for any group A. We know that this
happens for example when D is free so we conclude that Tori(A,D) = 0
when D is free and A is any group.

By a Zorn lemma argument one can show that if Tor1(Z/n,D) = 0 for
every n then Tor1(A,D) = 0 for every A. We will calculate in a minute
that Tor1(Z/n,D) = D[n], and so −⊗D is exact if and only if D is torsion
free. This is one of the reasons that Tor is called Tor.

Let us calculate indeed that Tor(Z/n,D) = 0. Consider the short exact sequence

0 −→ Z n−→ Z −→ Z/n −→ 0

Tensoring with D we get an exact sequence

0 −→ Tor1(Z, D) −→ Tor1(Z, D) −→ Tor1(Z/n,D) −→

Z⊗D −→ Z⊗D −→ Z/n⊗D −→ 0

which since Tori(Z, D) = Tori(D,Z) = 0 becomes

Tor1(Z/n,D) −→ D
n−→ D −→ Z/n⊗D −→ 0

and so Tor1(Z/n,D) ∼= D[n].

1.2 The functor Exti(−,−)
Let D be an abelian group. Suppose we take a short exact sequence

0 −→ A
i−→ B

p−→ C −→ 0

and hit it with the functor Hom(−, D). We get a sequence

0 −→ Hom(C,D)
p∗−→ Hom(B,D)

i∗−→ Hom(A,D) −→ 0
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and we ask whether it is still exact. Clearly since the map B −→ C is injective
we see that p∗ is injective: if T : C −→ D is a homomorphism such that
T (p(b)) = 0 for every b then T (c) = 0 for every c ∈ C so T = 0. It is also not
hard to see that this sequence is also exact in the middle: if a homomorphism
T : B −→ D becomes the zero homomorphism when restricted to A then it
induces a well defined homomorphism T̃ : C −→ D. Then T = T̃ ◦ p = p∗T̃ so
T is in the image of p∗.

On the end, however, we will see that our sequence is not exact, because
the map

Hom(B,D) −→ Hom(A,D)

will in general not be surjective. For example, suppose that D = A. Then the
identity I ∈ Hom(A,A) extends to a homomorphism B −→ A if and only if the
sequence splits. Hence if the sequence doesn’t split (for exampleA ∼= B ∼= Z and
i is multiplication by 2) then Hom(B,A) −→ Hom(A,A) will not be surjective.
Note that if the sequence splits then it will remain exact after applying the
functor Hom(−, D) for any D.

We say that the contravariant functor Hom(−, D) is exact from the left, or
left exact.

Now suppose we hit a short exact sequence

0 −→ B −→ C −→ D −→ 0

with the functor Hom(A,−). It is not hard to see that we get an exact sequence

0 −→ Hom(A,B) −→ Hom(A,C) −→ Hom(A,D)

but that the homomorphism Hom(A,C) → Hom(A,D) will not be surjective.
We say that the functor Hom(A,−) is exact from the left.

Now in order to understand both the functors Hom(A,−) and Hom(−, D)
and in particular the understand their gap from being exact, we will generalize
the Hom(−,−) functor to complexes. This time, however, we’re going to need
to work with cochain complexes as well.

Definition 8. Let A• be a chain complex and D• a cochain complex. We define
a cochain complex Hom(A•, D

•) as follows:

Hom(A•, D
•)n =

∏
i+j=n

Hom(Ai, D
j)

with the differential given by

∂f = ∂D ◦ f + (−1)nf ◦ ∂A
Now let A,D be two abelian groups. We would like to apply this generaliza-

tion of the Hom functor to some resolutions of A and D. However it turns out
that the concept of free resolution we have encountered before will not suffice.
We need to add to it the concept of an injective resolution, which is a dual
notion to the notion of free resolution.

In order to understand how to dualize the notion of free resolution we first
need to formulate it in a different way.
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Definition 9. We say that a group A is projective if for every diagram

C

g

��
A

f // D

such that g is surjective there exists a lift f̃ : A −→ C.

Remark 10. Another way to formulate the same property is to say that if g :
C −→ D is surjective then the induced map Hom(A,C) −→ Hom(A,D) is
surjective. This is equivalent to saying that the functor Hom(A,−) is exact.

Lemma 11. An abelian group is projective if and only if it is free.

Proof. It is clear that if A is free then it is projective (construct f̃ on each
generator independently). Now if A is projective and A0 is a free group which
admits a surjective homomorphism g : A0 −→ A then from projectivity one can
lift the identity If : A −→ A to a map s : A −→ A0. Since g ◦ s = Id we
get that s is injective and so A can be embedded in a free group. Since every
subgroup of a free group is free we get the desired result.

Now the definition of projectivity has a natural dual notion:

Definition 12. We say that an abelian groupD is injective if for every diagram

A

g

��

f // D

B

such that g is injective there exists an extension f : B −→ D.

Remark 13. Another way to formulate the same property is to say that if
g : A −→ B is injective then the induced map Hom(B,D) −→ Hom(A,D)
is surjective. This is equivalent to saying that the functor Hom(−, D) is exact.

Theorem 14. An abelian group D is injective if and only if it is a divisible
group, i.e. if for each x ∈ D and 0 6= n ∈ Z there exists a y ∈ D such that
ny = x.

Proof. Sketch of proof: first one shows that D is divisible if and only if for every
diagram

A

g

��

f // D

B
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such that g is injective and B/g(A) is cyclic there exists an extension f :
B −→ D.

This already gives that injectivity implies divisibilty. Now letD be a divisible
group and consider a general diagram of the form

A

g

��

f // D

B

such that g is injective. By Zorm’s lemma there exists a maximal subgroup
g(A) ⊆ Amax ⊆ B such that f extends to f : Amax −→ D. We need to show
that Amax = B. Otherwise there would exists an element x ∈ B which is not in
Amax. Let A′ ⊆ B be the subgroup generated by Amax and x. Then A′/Amax

is cyclic (generated by the image of x) and and so f extends to A′ (because D
is divisible) in contradiction to the maximality of Amax.

Definition 15. We say that a cochain complex D• is an injective resolution
if a group D if all the groups Dn are injective and

Hi =

{
D i = 0
0 i > 0

Lemma 16. Every group D has an injective resolution.

Proof. Sketch of proof: by formally adding solutions to equations of the form
ny = x we can embed D in a divisible group D0. The quotient D1 = D0/D is
then divisible as well, and we get an injective resolution

D0 −→ D1 −→ 0 −→ 0 −→ ...

Lemma 17. Every two injective resolutions of D are homotopy equivalent.

Proof. Left for the reader. Just dualize the proof you gave for question 1 in
exercise 12.

Now let A,D be two groups. Let A• be a projective (i.e. free) resolution of
A and D• an injective resolution of D. We define

Exti(A,D) = Hi(Hom(A•, D
•))

Remark 18. 1. As before this definition does not depends on the choice of re-
solutions A•, D

•. Further more one can show that Exti(A,D) is functorial
in D and contraviariantly functorial in A.
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2. As in the definition of Tori one can show that

Hi(Hom(A•, D
•)) ∼= Hi(Hom(A•, D)) ∼= Hi(Hom(A,D•))

so it is enough to resolve just one of the groups (although for A we must use
a projective resolution and for D an injective one). The proof still works
because in this case Hom(A•,−) and Hom(−, D•) are exact functors.

3. Since we can choose A• to be a resolution of length 2 we get that

Exti(A,D) = 0

if i ≥ 2.

4. Since Hom(−, D) is exact from the left it preserves kernels and so

Ext0(A,D) = H0(Hom(A•, D)) = ker(Hom(A0, D) −→ Hom(A1, D)) =

Hom(A,D)

Theorem 19. Let D be a fixed abelian group and

0 −→ A −→ B −→ C −→ 0

a short exact sequence of abelian groups. Then we have an exact sequence

0 −→ Hom(C,D) −→ Hom(B,D) −→ Hom(A,D) −→

Ext1(C,D) −→ Ext1(B,D) −→ Ext1(A,D) −→ 0

Proof. Choose an injective resolution D• of D. Then the sequence

0 −→ Hom(C,D•) −→ Hom(B,D•) −→ Hom(A,D•) −→ 0

is exact (because each Dn is injective) and so we can apply the snake lemma
(in its cohomological version) and get the long exact sequence

0 −→ Hom(C,D) −→ Hom(B,D) −→ Hom(A,D) −→ Ext1(C,D) −→

Ext1(B,D) −→ Ext1(A,D) −→ Ext2(C,D) −→ ...

Since Exti(−,−) = 0 for i ≥ 2 we get the desired result.

Theorem 20. Let A be a fixed abelian group and

0 −→ B −→ C −→ D −→ 0

a short exact sequence of abelian groups. Then we have an exact sequence

0 −→ Hom(A,B) −→ Hom(A,C) −→ Hom(A,D) −→

Ext1(A,B) −→ Ext1(A,C) −→ Ext1(A,D) −→ 0
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Proof. Choose a projective (i.e. free) resolution A• of A. Then the sequence

0 −→ Hom(A•, B) −→ Hom(A•, C) −→ Hom(A•, D) −→ 0

is exact (because each An is projective) and so we can apply the snake lemma
and get the long exact sequence

0 −→ Hom(A,B) −→ Hom(A,C) −→ Hom(A,D) −→ Ext1(A,B) −→

Ext1(A,C) −→ Ext1(A,D) −→ Ext2(A,B) −→ ...

Since Exti(−,−) = 0 for i ≥ 2 we get the desired result.

2 Universal Coefficients Theorems

Theorem 21 (The universal coefficients theorem for homology). Let C• be a
free chain complex and A an abelian group. Then there exists a natural short
exact sequence

0 −→ Hn(C•)⊗A −→ Hn(C• ⊗A) −→ Tor1(Hn−1(C•), A) −→ 0

which splits (though not naturally).
In particular if X is a topological space and A an abelian group then we have

a natural exact sequence

0 −→ Hn(X)⊗A −→ Hn(X,A) −→ Tor1(Hn−1(X), A) −→ 0

which splits (though not naturally).

Proof. In question 1 of exercise 12 you prove that if C• is a free chain com-
plex with boundary maps ∂n : Cn −→ Cn−1 then there exists a (non-unique)
isomorphism

C• ∼= ⊕nAn•
where An• is the 2-fold complex

... −→ 0 −→ Im(∂n+1)
ι
↪→ ker(∂n) −→ 0 −→ ... −→ 0

so that Hn(An• )
∼= Hn(C•) and Hk(An• ) = 0 for k 6= n. Let us write this a bit

differently as follows: define the suspension ΣD• of a chain complex D• by
ΣDn = Dn−1. Note that Hn(ΣD•) ∼= Hn−1(D•) for every n. Then one can
write

C• ∼= ⊕nΣnBn•

where Bn• is the complex

... −→ 0 −→ 0 −→ Im(∂n+1)
ι
↪→ ker(∂n)

This means that

Hk(C• ⊗A) ∼= ⊕nHk(ΣnBn• ⊗A) = ⊕nHk−n(Bn• ⊗A)
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Note that Bn• is a free resolution of H0(Bn• ) ∼= Hn(C•) and so

H0(Bn• ⊗A) ∼= Hn(C)⊗A

H1(Bn• ⊗A) ∼= Tor1(Hn(C), A)

and
Hi(B

n
• ⊗A) = 0

for i > 1. This means that

Hk(C•⊗A) ∼= H0(Bk• ⊗A)⊕H1(Bk−1• , A) ∼= [Hk(C)⊗A]⊕Tor1(Hk−1(C•), A)

Now this isomorphism is not unique because we could have chosen many different
isomorphisms

C• ∼= ⊕nAn•
Note however that for the inclusions ιk : Ank ↪→ Ck there is a natural candidate
for ιn (the natural inclusion ker(∂k) ⊆ Ck) but not for ιk+1. On the other hand if
we are considering projections pk : Ck −→ Ank then there is a natural candidate
for pk+1 but not for pk. This results in the fact that out of the isomorphism
above, the short exact sequence

0 −→ Hn(C•)⊗A −→ Hn(C• ⊗A) −→ Tor1(Hn−1(C•), A) −→ 0

is natural, but the choice of splitting is not natural.

Theorem 22 (The universal coefficients theorem for cohomology). Let C• be
a free chain complex and A an abelian group. Then there exists a natural short
exact sequence

0 −→ Ext1(Hn−1(C•), A) −→ Hn(Hom(C,A)) −→ Hom(Hn(C•), A) −→ 0

which splits unnaturally.
In particular if X is a topological space and A an abelian group then there

exists a natural exact sequence

0 −→ Ext1(Hn−1(X), A) −→ Hn(X,A) −→ Hom(Hn(X), A) −→ 0

which splits unnaturally.

Proof. Let C• be a free chain complex. As in the proof of the universal coeffi-
cients theorem for homology we write

C• ∼= ⊕nΣnBn•

where Bn• is the complex

... −→ 0 −→ 0 −→ Im(∂n+1)
ι
↪→ ker(∂n)
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This means that

Hk(Hom(C•, A)) ∼=
∏
n

Hk(Hom(ΣnBn• , A)) =
∏
n

Hk−n(Hom(Bn• , A))

As Bn• are free resolutions of the groups H0(Bn• ) ∼= Hn(C•) we get that

H0(Hom(Bn• , A)) ∼= Hom(Hn(C), A)

H1(Hom(Bn• , A)) ∼= Ext1(Hn(C), A)

and
Hi(Hom(Bn• , A)) = 0

for i > 1. This means that

Hk(Hom(C•, A)) ∼= H0(Hom(Bk• , A))×H1(Hom(Bk−1• , A)) ∼= Hom(Hk(C), A)×Ext1(Hk−1(C•), A)

Now this isomorphism is not unique because we could have chosen many different
isomorphisms

C• ∼= ⊕nAn•
However from the same considerations as above we get that the short exact
sequence

0 −→ Ext1(Hn−1(C•), A) −→ Hn(Hom(C,A)) −→ Hom(Hn(C•), A) −→ 0

is natural, but the choice of splitting is not natural.
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Basic Notions in Algebraic Topology 13

Yonatan Harpaz

1 Alexander’s Duality

In this section we will show a simplicial version of Alexander’s Duality. It is less
general then the one you’ve learned in class, but it gives a rather concrete and
combinatorial way of understanding the concept.

1.1 Posets and Barycentric Subdivision

Let us recall the concept of barycenric subdivision. Let X be a simplicial com-
plex with vertex set V = {v0, ..., vn} and simplices F ⊆ P (V ). In the barycentric
subdivision B(X) of X we put a vertex in the middle of each simplex. Hence
the vertices of B(X) are in bijection with the set F of simplices of X.

What are the simplices of B(X)? By identifying the vertex set with F we
see that the simplices of B(X) correspond to sets {σn1 , σn2 , ..., σnk} ⊆ F such
that each σni is a face of (i.e. contained in) σni+1 .

To make this more convenient recall the notion of a poset. A poset (initials
for partially ordered set) is a set X of elements together with a relation a < b
which is transitive and non-reflexive. The strict inclusion relation on F is a
partial order making F into a poset. Hence we will denote it from now on by <.

Let X be a poset. We call a subset S ⊆ X a chain if every two elements
x, y ∈ S are comparable, i.e. either x < y or y < x. Note that the set of chains
in X is closed to taking subsets and contains the empty set. Hence we almost
have a structure of a simplicial complex. Note that we don’t have a natural
numbering on our vertices so we need to ask how we choose the orientations on
all the simplices.

Note that each chain has a natural order to its vertices induced from <.
In fact we have two choices we can make here. We can think of a chain as a
descending sequence

x1 > x2 > ...xk

or an ascending sequence
y1 < y2 < ...yk

This we give us two possible simplicial complex structures on X. The realizati-
ons of these two structures are homeomorphic but differ as abstract simplicial
complexes).

Note that this means that whenever we come across a poset in mathematics
we have a natural topological space in the background, which is quite cool.
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To conclude, the simplicial complex B(X) is just the simplicial complex
associated to the poset F with respect to the inclusion order. With B(X) we

will work with option one (descending sequences). We will denote by B̂(X) the
simplicial complex obtained by working with ascending sequences.

We have a natural inclusion of complexes C∆
• (X) ↪→ C∆

• (B(X)) which sends

σk 7→
∑
±(σk > σk−1 > ... > σ0)

where the sum is taken over all chains σk > σk−1 > ... > σ0 which start with
σk and descend one dimension at a time until they reach a vertex (hence they
are chains of length k + 1 which are k-simplices of B(X)).

The sign represents the possible gap between the orientation of σk > σk−1 >
... > σ0 and the orientation of σk itself. This gap can be measured as follows.
Recall the original vertex set V . Each σi in this sequence has a vertex vji ∈ V
which σi−1 doesn’t have (in the end σ0 has a single vertex vj0). Hence we get
an order

vjk , vjk−1
, ..., vj0

on the vertex set of σk. The sign is just the sign of this permutation (measuring
with respect to the natural order on these vertices coming from the values of
jk, ..., j0).

The inclusion C∆
• (X) ↪→ C∆

• (B(X)) induces isomorphisms on homologies.

1.2 Simplicial Alexander’s Duality

Let X be a simplicial complex on the vertex set V = {v0, ..., vn} and simplices
set F ⊆ P (V ) such that V /∈ F. Hence X can be considered as a subcomplex
of ∂∆n which is the simplicial complex on V whose simplices G are all the
non-empty subsets besides V itself.

Define the dual complex X̂ to be the simplicial complex on V with simplices
set F̂ defined by the rule that S ⊆ V is in F̂ if the complement V \ S is not in

F. Note that F̂ is closed under takingk subsets and so defines some simplicial
complex on V . Also note that V itself is not in F̂ so we can consider X̂ as a
subcomplex of Sn−1.

We claim that X̂ is actually homotopy equivalent to the complement of X in
Sn−1. We saw in previous exercises that if we take the full subcomplex on some
subset of the vertexes A ⊆ V then we could obtain a model for the complement
by considering the full subcomplex on the complement vertex set V \ A.

In order to use this result we first switch to the barycentric subdivision. Let
B(Sn−1), B(X), B(X̂) denote the barycentric subdivisions of Sn−1, X and X̂

respectively and B̂(Sn−1) the dual barycentric subdivision of Sn−1.
B(Sn−1) has G as a vertex set (and chains on G as simplices) and B(X)

becomes the full subcomplex of B(Sn−1) on the set F ⊂ G. Similarly B̂(X̂) ⊆
B(X̂) becomes the full subcomplex on F̂ ⊆ G.

Let Xc ⊆ B̂(Sn−1) denote the full subcomplex on the vertex set G \ F. By
the exercise we know that the realization of Xc is homotopy equivalent to the
complement of X in Sn−1.
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There is a bijection between the set F̂ and G \ F which is obtained by
sending S ⊆ V to V \ S. This bijection is order reversing and so induces an
isomorphism of simplicial complexes

B̂(X̂)
'−→ Xc

Hence we get that the realization of B(X̂) is homotopy equivalent to the
complement of X in Sn−1.

We now want to prove Alexander’s duality in this case. Consider the chain
complex C∆

• (Sn−1). We have a natural bilinear map (also called pairing):

(−,−) : C∆
k (Sn−1)× C∆

n−1−k(Sn−1) −→ Z

given by

(σk, σn−1−k) =

{
±1 σk ∪ σn−1−k = V
0 σk ∪ σn−1−k 6= V

where the sign ±1 is determined as follows. If σk = {vi0 , ..., vik} and σn−1−k =
{vik+1

, ..., vin} (where i0, ..., ik and ik+1, ..., in are well ordered) then we take the
sign above to be the sign of the permutation corresponding to the (somewhat
weird looking) ordering

vin , ..., vk+1, v0, ..., vik

For example, if V = {v0, v1, v2} then ({v0, v1}, {v2}) = sign(v2, v0, v1) = 1,
({v0}, {v1, v2}) = sign(v2, v1, v0) = −1 and ({v0, v1}, {v1}) = 0.

This pairing respects the differentials ∂k in the sense that if σk ∈ C∆
k , σ

n−k ∈
C∆

n−k then

(∂kσ
k, σn−k) = (σk, ∂n−kσ

n−k)

This is a rather simple sign chasing argument. Now this pairing is clearly non-
degenerate (in the appropriate basis it is represented by the identity matrix).
Hence if we introduce some subgroup C∆

k (X) ⊆ C∆
k (Sn−1) we will get a non-

degenerate pairing between the quotient C∆
k (Sn−1)/C∆

k (X) and the subgroup
of C∆

n−1−k(Sn−1) which is orthogonal to C∆
k (X) (under this pairing).

This subgroup is just the subgroup generated by all simplices σn−1−k ∈
C∆

n−1−k(Sn−1) whose complement is not in X, i.e. this is exactly the subgroup

C∆
n−1−k(X̂) ⊆ C∆

n−1−k(Sn−1)

Hence we get a non-degenerate pairing

(−,−) : C∆
k (Sn−1, X)× C∆

n−1−k(X̂) −→ Z

satisfying the same property

(∂kσ
k, σn−k) = (−1)k(σk, ∂n−kσ

n−k)

with respect to the differentials.
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Hence it induces an isomorphism

ϕ : C∆
k (Sn−1, X) −→ Cn−1−k

∆ (X̂)

From the property above we see that this isomorphism identifies ∂k with ∂∗n−k.
Hence for each k = 0, ..., n− 1 it induces an isomorphism

H∆
k (Sn−1, X) ∼= Hn−1−k

∆ (X̂)

from the long exact homology sequence for the pair (Sn−1, X) we get that for
0 ≤ k < n− 2 we have an isomorphism

H̃∆
k (X) ∼= Hn−2−k

∆ (X̂)

As for k = n − 2 we it can be shown that we can form map of short exact
sequences

0 // H∆
n−1(Sn−1) //

��

H∆
n−1(Sn−1, X) //

��

H∆
n−2(X) //

��

0

0 // Z // H0
∆(X̂) // H̃0

∆(X̂) // 0

where the first two vertical rows are isomorphisms, and hence also the third.
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