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1 The Brauer group of the generic affine quadric

Let k be an algebraically closed field of characteristic 6= 2 and let F = k(b, c, d)
be the function field over k in three variables. Let U be the affine conic over F
given by the equation

x2 + by2 + cz2 + d = 0 (1)

Our goal is to prove that Br(U)/Br(F ) = 0. Let F be an algebraic closure of F
and U = U ⊗F F the corresponding base change. One may then compute that
Pic(U) ∼= Z and the action of Gal(F/F ) is given by the quadratic character
Gal(F/F ) −→ {−1, 1} associated with the quadratic extension K = F (

√
bcd).

In particular H1(F,Pic(U)) ∼= Z/2.
Now let E = F (

√
−b) and let UE = U ⊗F E be the corresponding base

change. Then H1(E,Pic(UE)) ∼= Z/2 as well and since UE has a point defined
over E one may use the method of [CTX09] to write down an explicit element
in Br(UE) corresponding to the non-trivial element in H1(E,Pic(UE)). This
element is

(x+
√
−by,−cd) ∈ Br(UE)

We may then conclude that

Br(UE)/Br(E) ∼= Z/2

LetG = Gal(E/F ) ∼= Z/2. Let us now use the Hocshield-Serre spectral sequence

Hp(G,Hq(UE ,Gm))⇒ Hp+q(U,Gm)

associated with the field extension E/F to compute the Brauer group of UF .
Since U has no non-constant invertible functions we have H0(UE ,Gm) = E∗

and since the action of Gal(E/E) on Pic(U) is via a non-trivial quadratic char-
acter we have H1(UE ,Gm) = H0(E,Pic(U)) = 0. It follows that the quotient
H2(U,Gm)/H2(G,E∗) injects into H2(UE ,Gm)G. We note that the elements
of H2(U,Gm) that come from H2(G,E∗) are constant, i.e., they come from
H2(F,Gm) (more precisely, they come from the kernel of the mapH2(F,Gm) −→
H2(E,Gm)). It will hence suffice to show that H2(UE ,Gm)G ⊆ H2(E,Gm)G.
Now recall that we have a short exact sequence

0 −→ H2(E,Gm) −→ H2(UE ,Gm) −→ Z/2 −→ 0
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and a corresponding exact sequence

0 −→ H2(E,Gm)G −→ (H2(UE ,Gm))G −→ Z/2 ∂−→ H1(G,H2(E,Gm)).

In order to finish the proof we need to show that the non-trivial element 1 ∈ Z/2
is mapped by ∂ to a non-trivial element in H1(G,H2(E,Gm)). Recall that the
group H1(G,H2(E,Gm)) can be identified with the middle homology of the
complex

H2(E,Gm)
x−σ(x)−→ H2(E,Gm)

x+σ(x)−→ H2(E,Gm)

Now recall that the quaternion algebra A = (x+
√
by,−cd) represents an element

in H2(UE ,Gm) whose image in Z/2 is 1. We can then compute that ∂(1) ∈
H1(G,H2(E,Gm)) is represented by

A− σ(A) = (x2 + by2,−cd) = (−cz2 − d,−cd) = (−c,−d) ∈ H2(E,Gm)

It is left to show that the element (−c,−d) ∈ H2(E,Gm) cannot be written in
the form x − σ(x) for some x ∈ H2(E,Gm). Indeed, suppose that x was such
that

x− σ(x) = (−c,−d) (2)

an element. Let us consider E as the field of functions of spec(k[
√
b, c, d]) ∼= A3.

Let P ⊆ spec(k[
√
b, c, d]) be the plane given by

√
b = 0. By subtracting from x

an Azumaya algebra of the form (
√
b, f(c, d))n (which is invariant under G since

−1 is an n’th power in k for every n) we may assume that x is unramified at P .
Since (−c,−d) is also unramified we may restrict the equation 2 to P . Since P
is G-invariant and the induced action of G on P is trivial we get that

(−c,−d)|P = x|P − σ(x)|P = 0

which is a contradiction, since the element (−c,−d)|P is non-trivial inH2(k(P ),Gm) =
Br(k(c, d)).

2 Brauer-Manin obstruction for rational points
on singular cubic 3-folds

Let k be a number field. Let K/k,L/k be two linearly disjoint cubic cyclic
extensions of k and let G = Gal(KL/k) ∼= Gal(K/k) × Gal(L/k). We fix
generators σ ∈ Gal(K/k) and τ ∈ Gal(L/k). By abuse of notation we will
also denote by σ the element (σ, 1) of Gal(LK/k) and similarly for τ . Let
V = RK/k A1

K × RL/k A1
L be the product of the corresponding restriction of

scalars. We will use x as a coordinate on RK/k A1
K and y as a coordinates on

RL/k A1
L. Let a ∈ K, b ∈ L be two non-zero elements. Consider the cubic 3-fold

X ⊆ P(V ) given by the pair of equations

NK/k(x) = NL/k(y)

Tr(ax) = Tr(by)
(3)
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Note that X has exactly nine singular points (over k) and G acts simply tran-
sitively on them (in particular, no singular point is rational). Let X0 ⊆ X be
the smooth locus. We will now calculate the Brauer group of X0 and show that
the Brauer-Manin obstruction may indeed cause a non-trivial obstruction to the
Hasse principle on X.

The coordinate x can be considered as a regular function RK/k A1
K −→ A1

K

defined over K and similarly for y. We hence have six rational functions on
X defined over the field KL, given by x, σ(x), σ2(x), y, τ(y), τ2(y). Let Di,j be
the 0-locus of σi(x) = τ j(y) = 0. Then each Di,j is a 2-plane lying inside X,
defined over KL, and the group G acts on the Di,j ’s simply and transitively. Let
H ⊆ X be a hyperplane section defined over k. According to [?] the geometric
Picard group Pic(X0) is generated by the classes of H and Di,j modulu the
relations

2∑
j=0

Di,j = H

2∑
i=0

Di,j = H

We observe that Pic(X0) is a free abelian group of rank 5. Let N ⊆ G be the
cyclic subgroup generated by the element στ ∈ G and let PN ⊆ Pic(X0) be the
subgroup fixed by N .

Lemma 2.1. PN is a subgroup of rank 3 generated freely by [H], L,M where
L = [D0,1]− [D1,0] and M = [D0,0] + [D0,1] + [D1,1].

Proof. It is straightforward to verify that [H], L,M ⊆ PN . Let L,M and
[Di,j ] denote the images of L,M and [Di,j ] respectively in the quotient group

Pic(X0)/H. We observe that Pic(X0)/H has rank 4 and is freely generated by
[D0,0], [D0,1], [D1,0], [D1,1]. To finish the proof it will be enough to show that

L,M freely generate
(

Pic(X0)/H
)N

. Now the action of στ on Pic(X0)/H is

given by
στ([D0,0]) = [D1,1]

στ([D0,1]) = −[D1,0]− [D1,1]

στ([D1,0]) = −[D0,1]− [D1,1]

στ([D1,1]) = [D0,0] + [D0,1] + [D1,0] + [D1,1]

Let x =
∑
i,j∈{0,1} ai,j [Di,j ] be an element which is fixed by στ . Then a0,0 = a1,1

and so by subtracting a multiple of M we may assume that x is of the form
x = a1,0[D1,0] + a0,1[D0,1]. But then a1,0 = −a0,1 and so x is a multiple of L.

It is hence clear that L,M freely generate (Pic(X0)/H)N .
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Lemma 2.2. Let C be a cyclic subgroup of order 3 and let V be a C-module
which, as an abelian group, is freely generated by two elements v, u ∈ V . Suppose
that a generator g ∈ C acts on V by g(v) = u and g(u) = −v − u. Then
H1(C, V ) ∼= Z/3 and a generating 1-cocycle sends g to v.

Proof. We may equivariantly embed V inside ZC be sending v to g − 1 and u
to g2 − g and obtain a short exact sequence

0 −→ V −→ ZC d−→ Z −→ 0.

where d(a + bg + cg2) = a + b + c. Since H1(C,ZC) = 0 we may identify
H1(C, V ) with the cokernel of the induced map d∗ : H0(C,ZC) −→ Z. This
cokernel is clearly cyclic of order 3. Direct examination verifies the assertion on
the generating 1-cocycle.

Lemma 2.3. H1(N,Pic(X0)) = 0 and H1(G,Pic(X0)) ∼= H1(G/N,PN ) ∼=
Z/3. A generator for H1(G/N,PN ) is given by a 1-cocycle which sends a gen-
erator of G/N to L.

Proof. Consider the short exact sequence

0 −→ PN −→ Pic(X0) −→ Pic(X0)/PN −→ 0

Then PN is torsion free with trivial N -action and so H1(N,PN ) = 0, which
means thatH1(N,Pic(X0)) injects intoH1(N,Pic(X0)/PN ). LetA,B ∈ Pic(X0)/PN
be the images of [D0,0] and [D1,0] respectively. Then it is straightforward to

verify that Pic(X0)/PN is freely generated by A,B. Let θ ∈ G/N be the image
of σ (or τ−1). Then θ sends A to B and B to −A − B. By Lemma 2.2 we
get that H1(N,Pic(X0)/PN ) ∼= Z/3 and a generating 1-cocycle u sends θ to
A. Let α ∈ H1(N,Pic(X0)/PN ) be the generating class. Then the image of
α in H2(N,PN ) ∼= PN/3PN is given by the class [H] ∈ PN/3PN . Since H is
not divisible by 3 in PN this class is non-trivial and hence α does not lift to
H1(N,Pic(X0). This implies that H1(N,Pic(X0)) = 0. By the Hocshield-Serre
spectral sequence we now have H1(G,Pic(X0)) ∼= H1(G/N,PN ). It is left to
compute H1(G/N,PN ).

Let 〈[H]〉 ⊆ PN denote the cyclic subgroup generated by H. Consider the
short exact sequence

0 −→ 〈[H]〉 −→ PN −→ PN/ 〈[H]〉 −→ 0

SinceH0(G/N,PN/ 〈[H]〉) = 0 we see thatH1(G/N,PN ) injects intoH1(G/N,PN/ 〈[H]〉).
Let L,M ∈ PN/ 〈[H]〉 denote the images of L and M respectively. Then
PN/ 〈[H]〉 is freely generated by L,M and the generator θ ∈ G/N acts on
them by

θ(L) = M

θ(M) = −L−M
and so by Lemma 2.2 we get that H1(G/N,PN/ 〈[H]〉) ∼= Z/3 and a generating
1-cocycle sends θ to L. Since L + θ(L) + θ2(L) = 0 we see that this 1-cocycle
lifts to H1(G/N,PN ).
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Our next goal is to find an explicit Azumaya algebra corresponding to a non-
trivial element in H1(G,Pic(X0)). Let E ⊆ KL be the fixed field of N ⊆ G.
Recall the element L ∈ Pic(X0) which is fixed by N . Then L is defined over E
as a divisor class. Let α ∈ H1(G/N,PN ) be the class whose 1-cocycle sends
θ ∈ G/N to L. As we saw above α is a genrator for H1(G/N,PN ) ∼= H1(G,PN ).
However, in order to produce an Azumaya algebra from α and L we must first
represent L by a divisor which is itself defined over E. Note that the divisor
D1,0 −D0,1 used to define L is not invariant, as a divisor, under the action of
N . In general not every Galois invariant divisor class can be represented by
an invariant divisor. However, we will show that in this case the obstruction
to do so vanishes. Instead of following the abstract root let us take a concrete
approach. Consider the rational function

f =
σ(x)

τ(y)

on X. Then

div(f) =
∑
i

Di,1−
∑
j

D1,j = [D0,1 −D1,0]−[D1,2 −D2,1] = [D0,1 −D1,0]−στ [D0,1 −D1,0]

Since

fστ(f)(στ)2(f) =
NK/k(x)

NL/k(y)
= 1

we get from Hilbert 90 that there exists a rational function g on X, defined over
KL, such that

στ(g)

g
= f (4)

To be even more explicit, one may choose the function

g =
τ(y)τ2(y)

σ(x)
+ τ(y) + x

Let Dg = D0,1 −D1,0 + div(g). Then Dg is a divisor which is invariant under
στ and is linearly equivalent to D0,1 − D1,0. We may now use Dg to produce
an explicit Azumaya algebra. By 4 we have

σ(g) = τ2(g)τ2(f)

σ2(g) =
τ(g)

σ2(f)

and so

NLK/L(g) = NLK/K(g)
τ2(f)

σ2(f)
= NLK/K(g)

σ(x)

y

τ(y)

x

which means that

F
def
=

y

τ(y)
NLK/L(g) =

σ(x)

x
NLK/K(g)
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is a function which is invariant under both σ and τ , i.e., F is a rational function
on X defined over k. Considering Dg as a divisor defined over E we have

div (F ) = Dg + θ(Dg) + θ2(Dg)

where θ ∈ G/N is the image of σ (or τ−1). We may hence form the unramified
Azumaya algebra

A = (E/k, F ) ∈ Br(X)

This is the element corresponding to the generator of H1(G,Pic(X0)).

Warning 2.4. In general one may apply the above procedure to any N -invariant
divisor D′ (in place of Dg), and obtain some element in Br(X). In [SB12,
Proposition 4.2] the author claims that a generator for Br(X) is obtained by
applying the above procedure to the N -invariant divisor D0,0 +D1,1 +D2,2−H.
However, when applied to this element the procedure produces the trivial element
0 ∈ Br(X).

The following lemmas will help to compute the evaluation of A on adelic
points. Given a place v of k we will denote Kv = K ⊗k kv, Lv = L ⊗k kv,
E = E ⊗k kv and (LK)v = LK ⊗k kv.

Lemma 2.5. The restriction of A to L can be identified with the quaternion
algebra (

KL/L,
y

τ(y)

)
Proof. This follows from the fact that EL ∼= KL and so NKL/L(g) becomes a
norm from EL.

Corollary 2.6. Let v be a place of k which splits in L but not in K. Let
y 7→ (y0, y1, y2) be an isomorphism of étale algebras Lv ∼= kv × kv × kv such
that the Galois group of L/k acts by cyclic permutations on the right hand side.
Then for any point (x, (y0, y1, y2)) ∈ X(kv) at least two of the yi’s are non-zero
and the restriction of the quaternion algebra A to kv can be identified, up to a
sign, with the gluing of the quaternion algebras(

Kv2/kv2 ,
y1

y0

)
=

(
Kv2/kv2 ,

y2

y1

)
=

(
Kv2/kv2 ,

y0

y2

)
Proof. Let (x, (y0, y1, y2)) ∈ X(kv) be a point such that at least one of the yi’s
is 0. Then we have NKv/kv (x) NLv/kv (y) = 0 and since K/k is non-trivial it
follows that x = 0. This means that at least one of the yi’s must be non-zero.
Let (b0, b1, b2) ∈ kv×kv×kv be the components of b. Since b 6= 0 it follows that
each bi is non-zero. The equation

0 = Tr(ax) = Tr(by) =
∑

biyi

implies that at most one of the yi’s can vanish, as desired. The explicit descrip-
tion of A now follows from Lemma 2.5.
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Lemma 2.7. Let v be a place in k and let (xv, yv) ∈ X(kv) be a local point. If
there exists a zv ∈ (KL)v such that N(KL)v/Kv

(zv) = xv and N(KL)v/Lv
(zv) =

yv. Then A(xv, yv) = 0.

Proof. Let wv = σ(zv)
τ(zv)

g(xv, yv). We claim that wv belongs to E. Indeed, using 4

we obtain

στ(wv) =
σ2(τ(zv))

τ2(σ(zv))

σ(xv)

τ(yv)
g(xv, yv) =

τ(σ(zv))σ(zv)

σ(τ(zv))τ(zv)
g(xv, yv) = wv

On the other hand

NEv/kv (wv) = N(LK)v/Lv

(
σ(zv)

τ(zv)
g(xv, yv)

)
=

yv
τ(yv)

N(LK)v/Lv
(g(xv, yv)) = F (xv, yv)

and so A(xv, yv) = (Ev/kv, F (xv, yv))v = 0.

Corollary 2.8. Let v be a place of k such that K⊗k kv is isomorphic (over kv)
to L⊗k kv. Then X(kv) 6= ∅ and for any (xv, yv) ∈ X one has A(xv, yv) = 0.

Proof. Choosing an isomorphism Kv −→ Lv we may assume that Kv = Lv. To
see that X(kv) 6= ∅ it is enough to take any x 6= 0 ∈ Kv such that Tr(ax) =
Tr(bx) and then (x, x) is a kv-point on X. We will prove that the assumption
of Lemma 2.7 is satisfies for any point (x, y) ∈ X(kv). If v splits in K (and
hence also in L) then the claim is immediate. Otherwise, we may assume that

x, y 6= 0. Let T : Kv ⊗kv Kv

∼=−→ Kv ×Kv ×Kv be an isomorphism such that
the Galois group of the first component acts by cyclic shifts and the Galois
group of the second component acts by cyclic shifts follows by its coordinate-
wise action. Unwinding the definitions, what we need to do is to find three
elements a, b, c ∈ Kv such that abc = x and aσ(b)σ2(c) = y. Since x

y ∈ Kv is an
element of norm 1 we know by Hilbert 90 that there exists a z ∈ Kv such that
z

σ(z) = x
y . We may then set a = x

z , b = z and c = 1.

Lemma 2.9. Let v be a place of residue characteristic 6= 3 such that both K
and L are unramified and such that a, b are units at any place over v. Then for
any (xv, yv) ∈ X one has A(xv, yv) = 0.

Proof. If Kv is isomorphic to Lv over kv than the claim follows from Corol-
lary 2.8. If Kv is not isomorphic to Lv then our assumptions imply that at
least one of Kv, Lv splits then we may assume without loss of generality that
Lv splits, and so we are in the situation of Corollary 2.6. If Kv splits as well the
desired result follows. Otherwise, let (xv, (y

0
v , y

1
v , y

2
v)) ∈ X(kv) be a point. We

may assume that xv is integral in Kv and each yiv is integral in kv, and that at
least one of xv, y

0
v , y

1
v , y

2
v is a unit. Let (b0, b1, b2) ∈ kv × kv × kv be the element

corresponding to b. Since b is a unit at v it follows that each bi is a unit. The
same argument as in the proof of Corollary 2.6 now shows that at most one of
the yi’s has a positive valuation. Let i 6= j be such that yiv, y

j
v are units. Then

by Corollary 2.6

A
(
xv, y

0
v , y

1
v , y

2
v

)
= ±

(
Kv/kv,

yiv

yjv

)
= 0
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We now come to out explicit example where the element A ∈ Br(X) yields
a non-trivial obstruction to the Hasse principal.

Example 2.10. Let ω ∈ Q be a primitive cubic root of unity and set k = Q(w).

Let p ∈ Z be an odd prime which is equal to 5 mod 9. Set K = k( 3
√

2p2) and
L = k( 3

√
p) and let a = 1, b = 3

√
p. Let X be the associated cubic 3-fold given

by 3. Then X(k) = ∅ but X(Ak) 6= ∅.

Proof. Let v2, v3, vp be the unique places of k which lie above 2, 3 and p respec-
tively. To see that X has a local point at v2 observe that p is a cube in kv2
and the split étale algebra Lv2

∼= kv2 × kv2 × kv2 must have a non-zero element
y ∈ Lv2 such that NLv2/kv2

(y) = 0 and Tr(by) = 0. Then (0, y) determines a

kv2-point of X. Now since p = 5 mod 9 it follows that kv3( 3
√

2p2) ∼= kv3( 3
√
p)

and so by Corollary 2.8 it follows that X has a local point at v3. Finally, since
p− 1 is not divisible by 3 it follows that 2 (as any other integer coprime to p) is

a cube at Qp and hence kvp( 3
√

2p2) ∼= kvp( 3
√
p2) ∼= kvp( 3

√
p2). By Corollary 2.8

it follows that X has a local point at vp. To show that X has local points at all
other places consider the subvariety Y ⊆ X given by the additional equation

Tr(x) = Tr(by) = 0

Then Y is a smooth cubic surface and has good reduction at every place w 6=
v2, v3, vp. By the Hasse-Weil bounds this implies that Y has a local point at
w 6= v2, v3, vp as soon as the residue field of w 6= v2, v3 has at least 7 elements.
Since 5 is inert in k this holds for all places w 6= v2, v3, vp.

It is left to show that X(k) = ∅. By Corollary 2.6, Corollary 2.8 and
Lemma 2.9 it will be enough to show that A(x, y) 6= 0 for every (x, y) ∈ X(kv2).

Let ω be the reduction of ω mod 2 so that we can identify the residue field
Fv2 with F2[ω]. Let α ∈ kv2 be a cube root of p. Then we have an isomorphism
of étale algebras

Lv2
∼= kv2 × kv2 × kv2

sending b = 3
√
p to (α, ωα, ω2α). Under this isomorphism we may identify a

point (x, y) ∈ X(kv2) with a tuple (x, (y0, y1, y2)) such that x ∈ Kv2 , yi ∈ kv2
and the equations

NKv2
/kv2

(x) = y0y1y2

Tr(x) = Tr(b) = αy0 + ωαy1 + ω2αy2
(5)

hold. Furthermore, by Corollary 2.8 the restriction of the quaternion algebra A
to kv2 may be identified, up to a sign, with the gluing of(

Kv2/kv2 ,
y1

y0

)
=

(
Kv2/kv2 ,

y2

y1

)
=

(
Kv2/kv2 ,

y0

y2

)
Now let (x, (y0, y1, y2)) be a kv2 -point. Let w2 be the unique place of Kv2 lying
above v2. We may assume without loss of generality that valw2

(x) ≥ 0 and
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valv2(yi) ≥ 0 for every i. Furthermore, at least one of x, y0, y1, y2 must be a
unit. We now distinguish between two cases. If valv2(y0y1y2) > 0 then by 5 it
follows that valw2

(x) > 0 and so valv2(Tr(x)) = 0. Since valw2
(x) > 0 we see

that at least one of the yi must be a unit, and from the second equation of 5 we
get that exactly one of the yi is a non-unit. Furthermore, if i 6= j are such that
yi, yj are units the the second equation of 5 implies that

yi

yj
= ω±1

We then get that

A(x, (y0, y1, y2)) = ±
(
Kv2/kv2 ,

yi

yj

)
= ± (Kv2/kv2 , ω) 6= 0

since ω ∈ Fv2 is not a cube. Let us now consider the case where all the yi’s

are units. Let yi ∈ Fv2 be the reduction of yi. Let us assume by contradiction

that A(x, (y0, y1, y2)) = 0. Then we would get that yi

yj
is a cube root in Fv2

and hence equal to 1 ∈ Fv2 . Let z ∈ Fv2 be such that yi = z for every i, let
α ∈ Fv2 be the reduction of α and let x ∈ Fw2 = Fv2 be the reduction of x.
Since Kv2/kv2 is purely ramified the reduction of Tr(x) mod v2 can be identified
with 3x = x. We then get that

x = αy0 + ωαy1 + ω2αy2 = zα(1 + ω + ω2) = 0

and so valw2
(x) > 0, yielding a contradiction. It hence follows thatA(x, (y0, y1, y2)) 6=

0 for every kv2-point of X and so X(k) = ∅ as desired

Remark 2.11. The equations describing Example 2.10 can be written more ex-
plicitly as

x30 + 2p2x31 + 4p4x32 − 6p2x0x1x2 = y30 + py31 + p2y32 − 3py0y1y2

x0 = y2

By restricting to the subvariety Y ⊆ X given by x0 = y2 = 0 we obtain a
smooth cubic surface given by the equation

2p2x31 + 4p4x32 = y30 + py31

which after a simple variable change becomes the surface

2px3 + 4y3 + p2z3 + w3 = 0.

This surface is actually defined over Q, and it is straightforward to check that it
has points everywhere locally. We hence obtain a family of cubic surfaces over
Q which are counter-examples to the Hasse principle. This family is a particular
subfamiliy of the family [CTKS87, §III.2].
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