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The Classical Obstructions
Number Fields

The local obstruction

X (AK ) = ∅ =⇒ X (K ) = ∅

The Brauer-Manin obstruction
Pairing with elements in the Brauer group

X (AK )× H2
ét(X ,Gm) −→ Q/Z

Left kernel XBr(AK ) ⊆ X (AK ) contains the
rational points (Hasse-Brauer-Noether Theorem)
A finer obstruction set

XBr(AK ) = ∅ =⇒ X (K ) = ∅
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The Classical Obstructions
Number Fields

Descent obstructions (A. Skorobogatov,
D.Harari, J.-L. Colliot-Thélène, J.-J. Sansuc)

Y −→ X - a torsor under an algebraic group G/K
XY (AK ) ⊆ X (AK ) - points which lift to some
K -twist Yα −→ X
Obtain an obstruction set

XY (AK ) = ∅ =⇒ X (K ) = ∅

Intersecting over various families of algebraic
groups gives various obstruction sets -
X desc(AK ),X fin(AK ),X con(AK ),X fin-ab(AK ), etc.
D. Harari (02): for X smooth projective one has
X con(A) = XBr(A)
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The Classical Obstructions
Number Fields

The étale-Brauer obstruction

Defined by A. Skorobogatov in 1999
Uses the Brauer-Manin obstruction applied to
finite torsors. Obtain a finer obstruction set

X fin,Br(AK ) = ∅ =⇒ X (K ) = ∅

Stronger than all previously known obstructions
A. Skorobogatov (09), C. Demarch (09): for X
smooth projective one has

X fin,Br(A) = X desc(A)

Not a complete obstruction - counter example
constructed by B. Poonen in 2008
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The Classical Obstructions
Integral Points

Modification for integral points (D. Harari)

OK ,S - the ring of S-integers of a number field K
X - a scheme defined over Spec(OK ,S) with a
generic fiber X = X ⊗OK ,S

K
Study S-integral points, i.e. sections of the form

X // Spec(OK ,S)
xx

Intersect obstruction sets with S-integral adelic
points:

X Br(AK ,S) = XBr(A) ∩ X (AK ,S)

X desc(AK ,S) = X desc(A) ∩ X (AK ,S)

...
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The Classical Obstructions
General Fields

Grothendieck’s obstruction

k - any field
X - geometrically connected variety over k
One obtains a short exact sequence

1 −→ πét
1 (X ) −→ πét

1 (X ) −→ Gal(k/k) −→ 1

of étale fundamental groups
A k-rational point of X induces a section

πét
1 (X ) // Gal(k/k)

tt
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The Étale Homotopy Type

X - a scheme

Basic idea - use the étale site Xét of X to
capture homotopy theoretic information

Classical Shape theory - Associate to a site C a
pro-object |C | = {Xα} in the homotopy
category of topological spaces

Hn(C ,F ) ∼= limαH
n(|C |,F ) for constant

sheaves F

É t(X ) = |Xét | - known as the étale
homotopy type (Artin and Mazur, 1969)

The comparison theorem: for X/C we have

É t(X ) ∼= the pro-finite completion of X (C)
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The Relative Étale Homotopy Type

A relative situation X −→ S : wish to study
sections

X // S
zz

Can take étale homotopy types on both sides,
but might lose crucial information, e.g.

f : A1
/C −→ A1

/C

with f (x) = x2

Solution: relative étale homotopy type É t/S(X )
- a pro-object in the homotopy category of
“sheaves of spaces” on S
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The Relative Étale Homotopy Type

What is an (étale) sheaf of spaces on S?

S = Spec(k) when k algebraically closed - a space
S = Spec(k) when k is a general field - a space
with an action of Gal(k/k)
General case - formulate via Quillen’s notion of a
model category (Jardin, Joyal and others)
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Section Obstructions in Algebraic
Topology

f : E −→ B - a Serre fibration of topological
spaces with fiber F

Study sections E // B
{{

B is a CW complex ⇒ can study sections
inductively on skeletons

In n’th step face an obstruction in
Hn+1(B , πn(F ))

If all obstruction vanish - a spectral sequence

H s(B , πt(F ))⇒ πt−s(Sec(f ))
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The Relative Homotopy Obstruction
General Base Schemes

X −→ S - a scheme over a base scheme S

É t/S(X ) - an inverse family of sheaves of
spaces {Fα}α∈I on S

For each Fα obtain obstructions to the
existence of a (homotopy) global section that
live in Hn+1

ét (S , πn(Fα))

If all obstructions vanish - a spectral sequence

H s
ét(S , πt(Fα))⇒ πt−s(hSec(S ,Fα))

Yonatan Harpaz Tomer Schlank The Relative Étale Shape and Obstructions to Rational Points



The Relative Homotopy Obstruction
General Base Schemes

X −→ S - a scheme over a base scheme S

É t/S(X ) - an inverse family of sheaves of
spaces {Fα}α∈I on S

For each Fα obtain obstructions to the
existence of a (homotopy) global section that
live in Hn+1

ét (S , πn(Fα))

If all obstructions vanish - a spectral sequence

H s
ét(S , πt(Fα))⇒ πt−s(hSec(S ,Fα))

Yonatan Harpaz Tomer Schlank The Relative Étale Shape and Obstructions to Rational Points



The Relative Homotopy Obstruction
General Base Schemes

X −→ S - a scheme over a base scheme S
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The Relative Homotopy Obstruction
General Base Schemes

A section X // S
zz

gives a compatible choice
of (homotopy) global sections sα ∈ Fα(S)

In particular one obtains a map

X (S) −→ X (hS)
def
= lim

α
π0(hSec(S ,Fα))

Can use the obstructions above to show
X (hS) = ∅ and hence X (S) = ∅
If X (hS) 6= ∅ ⇒ can still use to classify
S-points of X

Yonatan Harpaz Tomer Schlank The Relative Étale Shape and Obstructions to Rational Points



The Relative Homotopy Obstruction
General Base Schemes

A section X // S
zz

gives a compatible choice
of (homotopy) global sections sα ∈ Fα(S)

In particular one obtains a map

X (S) −→ X (hS)
def
= lim

α
π0(hSec(S ,Fα))

Can use the obstructions above to show
X (hS) = ∅ and hence X (S) = ∅
If X (hS) 6= ∅ ⇒ can still use to classify
S-points of X

Yonatan Harpaz Tomer Schlank The Relative Étale Shape and Obstructions to Rational Points



The Relative Homotopy Obstruction
General Base Schemes

A section X // S
zz

gives a compatible choice
of (homotopy) global sections sα ∈ Fα(S)

In particular one obtains a map

X (S) −→ X (hS)
def
= lim

α
π0(hSec(S ,Fα))

Can use the obstructions above to show
X (hS) = ∅ and hence X (S) = ∅

If X (hS) 6= ∅ ⇒ can still use to classify
S-points of X

Yonatan Harpaz Tomer Schlank The Relative Étale Shape and Obstructions to Rational Points



The Relative Homotopy Obstruction
General Base Schemes

A section X // S
zz

gives a compatible choice
of (homotopy) global sections sα ∈ Fα(S)

In particular one obtains a map

X (S) −→ X (hS)
def
= lim

α
π0(hSec(S ,Fα))

Can use the obstructions above to show
X (hS) = ∅ and hence X (S) = ∅
If X (hS) 6= ∅ ⇒ can still use to classify
S-points of X

Yonatan Harpaz Tomer Schlank The Relative Étale Shape and Obstructions to Rational Points



The Relative Homotopy Obstruction
Proper Base Change

Generalized proper base change theorem:

{(Fα)s} ∼= É t/k(Xs)

for each closed point s : Spec(k) ↪→ S

Allows one to predict the homotopy type of the
fibers of É t/S(X )

Example: if S = Spec(k) for a field k then the

underlying pro homotopy type of É t/k(X ) is

É t/k(X ⊗k k) (but we have an additional

structure of a Γk-action)
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The Relative Homotopy Obstruction
For Fields

S = Spec(k) for a field k

First Obstruction to X (hS) 6= ∅ being
non-empty is

o1 ∈ H2
Gal(k , π

ét
1 (X̄ ))

Exactly Grothendieck’s section obstruction

1 // πét1 (X̄ ) // πét1 (X ) // Gal(k/k)
ss

// 1
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The Relative Homotopy Obstruction
Examples

Let X −→ S be a Gm-torsor

n - coprime to the characteristics of all closed
points in S

Obtain a sheaf Fn ∈ É t/S(X ) with connected
fibers such that

π1(Fn) ∼= µn

and no higher homotopy groups

Obtain an obstruction element in H2
ét(S , µn)

Can be shown to match the image of the
element c ∈ H1(S ,Gm) classifying X
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The Relative Homotopy Obstruction
Examples

Let char(k) = 0 and X/k given by∑n
i=0 aix

2
i = 1 with 0 6= ai ∈ k

É t/k(X ) ∼= pro-finite completion of n-sphere

(with some ΓK -action) ⇒ É t/k(X ) contains
the space K (Z/2, n)

Obtain an obstruction element in Galois
cohomology Hn+1(Γk ,Z/2)

Can be shown to equal the cup product⋃n
i=0[ai ] where [ai ] ∈ H1(Γk ,Z/2) ∼= k∗/(k∗)2

is the class of ai
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The Relative Homotopy Obstruction
Examples - The Affine Line

A1 −→ Spec(Z)

For every p the fiber (A1)p = Spec(Fp[t]) has
big fundamental group - many Artin-Schrier
extensions

E.g. the extension y p + y = t translates to a
sheaf of spaces Fp ∈ É t/Spec(Z)(A1) with
connected fibers such that

π1(Fp) = (ιp)∗Z/p

and higher homotopy groups vanish
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The Relative Homotopy Obstruction
Examples - The Affine Line (cont.)

π0 (hSec(S ,Fp)) ∼= H1
ét(Spec(Z), π1(Fp)) ∼=

Z/p

The resulting map

Z ∼= A1(Spec(Z)) −→ π0 (hSec(S ,Fp)) ∼= Z/p

is just the mod p map

⇒ the map A1(Spec(Z)) −→ A1(h Spec(Z)) is
injective

⇒ the map X (Spec(Z)) −→ X (h Spec(Z)) is
injective for every affine scheme
X −→ Spec(Z)
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The Relative Homotopy Obstruction
The Local Global Principle

S = Spec(K ) for a number field K with
absolute Galois group ΓK

X - a K -variety

É t/K (X ) - a pro-object in a suitable homotopy
category of ΓK -spaces

K -rational point ⇒ compatible family of
(homotopy) ΓK -fixed points

Kν-rational point ⇒ compatible family of
(homotopy) ΓKν

-fixed points
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The Relative Homotopy Obstruction
The Local Global Principle

Obtain a commutative diagram of sets

X (K ) //

��

X (hK )

��

X (A) // X (hA)

⇒ a new obstruction set

X h(A) ⊆ X (A)

by taking adelic points whose corresponding
homotopy fixed points are rational
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The Relative Homotopy Obstruction
The Local Global Principle

Theorem (H., S. 2010)

For X smooth and geometrically connected one has

X h(A) = X fin,Br(A)
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The Relative Homotopy Obstruction
The Local Global Principle - Variations

Given an augmented functor
F : Ho(Top) −→ Ho(Top) one can construct a
new (weaker) obstruction set X F (A) by

replacing É t/K (X ) with F (É t/K (X ))

Examples (H. S. 2010):
For F = P1 the first Postnikov piece functor
recover finite descent: X F (A) = X fin(A)
For F = Z the free abelian group functor recover
the Brauer-Manin obstruction: X F (A) = XBr(A)
For F = P1 ◦ Z recover finite abelian descent:
X F (A) = X fin-ab(A)
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Applications

Let K be number field and assume all varieties
are smooth and geometrically connected

(X × Y )(A)fin,Br = X (A)fin,Br × Y (A)fin,Br

πét
2 (X ) = 0⇒ X (A)fin = X (A)fin,Br

πét
1 (X ) abelian and πét

2 (X ) = 0 (e.g. abelian
varieties) ⇒

X (A)fin-ab X (A)fin

X (A)Br X fin,Br(A)

H ét
2 (X ) = 0⇒ X (A)Br = X (A)fin-ab
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Future Directions

Local-global obstructions for integral points

Section conjecture for hyperbolic curves over
number rings, e.g. P1\{0, 1,∞} over
Spec (Z[1/2])

The flat homotopy type

Can we mod-out information coming from
Artin-Schrier extensions, e.g. invert
A1 −→ Spec(Z) as in A1-homotopy theory?

Higher dimensional fields
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Thank you for listening!
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