The classical obstructions to rational and integral points
Outline

- The classical obstructions to rational and integral points
- The relative étale shape
Outline

- The classical obstructions to rational and integral points
- The relative étale shape
- Sections and obstruction theory in homotopy theory
Outline

- The classical obstructions to rational and integral points
- The relative étale shape
- Sections and obstruction theory in homotopy theory
- Homotopy obstructions to existence of points
The classical obstructions to rational and integral points
The relative étale shape
Sections and obstruction theory in homotopy theory
Homotopy obstructions to existence of points
Examples
Outline

- The classical obstructions to rational and integral points
- The relative étale shape
- Sections and obstruction theory in homotopy theory
- Homotopy obstructions to existence of points
- Examples
- Main results
Outline

- The classical obstructions to rational and integral points
- The relative étale shape
- Sections and obstruction theory in homotopy theory
- Homotopy obstructions to existence of points
- Examples
- Main results
- Applications
Outline

- The classical obstructions to rational and integral points
- The relative étale shape
- Sections and obstruction theory in homotopy theory
- Homotopy obstructions to existence of points
- Examples
- Main results
- Applications
- Future directions
The local obstruction

\[X(\mathbb{A}_K) = \emptyset \implies X(K) = \emptyset \]
The Classical Obstructions

Number Fields

- The local obstruction

\[X(\mathbb{A}_K) = \emptyset \implies X(K) = \emptyset \]

- The Brauer-Manin obstruction

Yonatan Harpaz Tomer Schlank
The Classical Obstructions

Number Fields

- The local obstruction
 \[X(\mathbb{A}_K) = \emptyset \implies X(K) = \emptyset \]

- The Brauer-Manin obstruction
 - Pairing with elements in the Brauer group
 \[X(\mathbb{A}_K) \times H^2_{\text{ét}}(X, \mathbb{G}_m) \to \mathbb{Q}/\mathbb{Z} \]
The Classical Obstructions

Number Fields

- The local obstruction

\[X(\mathbb{A}_K) = \emptyset \implies X(K) = \emptyset \]

- The Brauer-Manin obstruction
 - Pairing with elements in the Brauer group
 \[X(\mathbb{A}_K) \times H^2_{\text{ét}}(X, \mathbb{G}_m) \rightarrow \mathbb{Q}/\mathbb{Z} \]
 - Left kernel \(X^{\text{Br}}(\mathbb{A}_K) \subseteq X(\mathbb{A}_K) \) contains the rational points (Hasse-Brauer-Noether Theorem)
The Classical Obstructions

Number Fields

- The local obstruction

\[X(\mathbb{A}_K) = \emptyset \implies X(K) = \emptyset \]

- The Brauer-Manin obstruction
 - Pairing with elements in the Brauer group

\[X(\mathbb{A}_K) \times H^2_{\text{ét}}(X, \mathbb{G}_m) \longrightarrow \mathbb{Q}/\mathbb{Z} \]

- Left kernel \(X^{\text{Br}}(\mathbb{A}_K) \subseteq X(\mathbb{A}_K) \) contains the rational points (Hasse-Brauer-Noether Theorem)

- A finer obstruction set

\[X^{\text{Br}}(\mathbb{A}_K) = \emptyset \implies X(K) = \emptyset \]
The Classical Obstructions

Number Fields

- $Y \rightarrow X$ - a torsor under an algebraic group G/K

- $Y \to X$ - a torsor under an algebraic group G/K
- $X^Y(\mathbb{A}_K) \subseteq X(\mathbb{A}_K)$ - points which lift to some K-twist $Y_\alpha \to X$
The Classical Obstructions

Number Fields

 - $Y \longrightarrow X$ - a torsor under an algebraic group G/K
 - $X^Y(\mathbb{A}_K) \subseteq X(\mathbb{A}_K)$ - points which lift to some K-twist $Y_\alpha \longrightarrow X$
 - Obtain an obstruction set

$$X^Y(\mathbb{A}_K) = \emptyset \implies X(K) = \emptyset$$

- \(Y \to X \) - a torsor under an algebraic group \(G/K \)
- \(X^Y(\mathbb{A}_K) \subseteq X(\mathbb{A}_K) \) - points which lift to some \(K \)-twist \(Y_\alpha \to X \)
- Obtain an obstruction set

\[
X^Y(\mathbb{A}_K) = \emptyset \implies X(K) = \emptyset
\]

- Intersecting over various families of algebraic groups gives various obstruction sets -
 \(X^{\text{desc}}(\mathbb{A}_K), X^{\text{fin}}(\mathbb{A}_K), X^{\text{con}}(\mathbb{A}_K), X^{\text{fin-ab}}(\mathbb{A}_K), \) etc.

- $Y \to X$ - a torsor under an algebraic group G/K
- $X^Y(\mathbb{A}_K) \subseteq X(\mathbb{A}_K)$ - points which lift to some K-twist $Y_\alpha \to X$
- Obtain an obstruction set

$$X^Y(\mathbb{A}_K) = \emptyset \implies X(K) = \emptyset$$

- Intersecting over various families of algebraic groups gives various obstruction sets - $X^{\text{desc}}(\mathbb{A}_K), X^{\text{fin}}(\mathbb{A}_K), X^{\text{con}}(\mathbb{A}_K), X^{\text{fin-ab}}(\mathbb{A}_K)$, etc.
- D. Harari (02): for X smooth projective one has $X^{\text{con}}(\mathbb{A}) = X^{\text{Br}}(\mathbb{A})$
The Classical Obstructions

Number Fields

- The étale-Brauer obstruction

Defined by A. Skorobogatov in 1999. Uses the Brauer-Manin obstruction applied to finite torsors. Obtain a finer obstruction set $X_{\text{fin}}, Br(A_k) = \emptyset \implies X(K) = \emptyset$. Stronger than all previously known obstructions. A. Skorobogatov (09), C. Demarch (09): for X smooth projective one has $X_{\text{fin}}, Br(A) = X_{\text{desc}}(A)$.

Not a complete obstruction - counter example constructed by B. Poonen in 2008.
The Classical Obstructions

Number Fields

- The étale-Brauer obstruction
 - Defined by A. Skorobogatov in 1999

Stronger than all previously known obstructions

A. Skorobogatov (09), C. Demarch (09): for X smooth projective one has

$$X_{\text{fin}}, \text{Br}(A_K) = \emptyset \Rightarrow X(K) = \emptyset$$

Not a complete obstruction - counter example constructed by B. Poonen in 2008
The Classical Obstructions

Number Fields

- The étale-Brauer obstruction
 - Defined by A. Skorobogatov in 1999
 - Uses the Brauer-Manin obstruction applied to finite torsors. Obtain a finer obstruction set
 \[X^{\text{fin,Br}}(\mathbb{A}_K) = \emptyset \implies X(K) = \emptyset \]

Stronger than all previously known obstructions

A. Skorobogatov (09), C. Demarch (09): for \(X \) smooth projective one has
\[X^{\text{fin}}(\mathbb{A}_K) = X^{\text{desc}}(\mathbb{A}_K) \]

Not a complete obstruction - counter example constructed by B. Poonen in 2008
The Classical Obstructions

Number Fields

- The étale-Brauer obstruction
 - Defined by A. Skorobogatov in 1999
 - Uses the Brauer-Manin obstruction applied to finite torsors. Obtain a finer obstruction set
 \[X_{\text{fin}, \text{Br}}(\mathbb{A}_K) = \emptyset \implies X(K) = \emptyset \]
 - Stronger than all previously known obstructions

Yonatan Harpaz Tomer Schlank
The Relative Étale Shape and Obstructions to Rational Points
The Classical Obstructions

Number Fields

- The étale-Brauer obstruction
 - Defined by A. Skorobogatov in 1999
 - Uses the Brauer-Manin obstruction applied to finite torsors. Obtain a finer obstruction set
 \[X^{\text{fin,Br}}(\mathbb{A}_K) = \emptyset \implies X(K) = \emptyset \]

- Stronger than all previously known obstructions
- A. Skorobogatov (09), C. Demarch (09): for \(X \) smooth projective one has
 \[X^{\text{fin,Br}}(\mathbb{A}) = X^{\text{desc}}(\mathbb{A}) \]
The Classical Obstructions

Number Fields

- **The étale-Brauer obstruction**
 - Defined by A. Skorobogatov in 1999
 - Uses the Brauer-Manin obstruction applied to finite torsors. Obtain a finer obstruction set
 \[\mathcal{X}_{\text{fin}, \text{Br}}(\mathbb{A}_K) = \emptyset \implies \mathcal{X}(K) = \emptyset \]
 - Stronger than all previously known obstructions
 - A. Skorobogatov (09), C. Demarch (09): for \(X \) smooth projective one has
 \[\mathcal{X}_{\text{fin}, \text{Br}}(\mathbb{A}) = \mathcal{X}^{\text{desc}}(\mathbb{A}) \]
 - Not a complete obstruction - counter example constructed by B. Poonen in 2008
The Classical Obstructions

Integral Points

- Modification for integral points (D. Harari)
The Classical Obstructions

Integral Points

- Modification for integral points (D. Harari)
 - \(\mathcal{O}_{K,S} \) - the ring of \(S \)-integers of a number field \(K \)

Study \(S \)-integral points, i.e. sections of the form

\[X \rightarrow \text{Spec}(\mathcal{O}_{K,S}) \]

Intersect obstruction sets with \(S \)-integral adelic points:

\[X_{\text{Br}}(A_K, S) = X_{\text{Br}}(A) \cap X(A_K, S) \]

\[X_{\text{desc}}(A_K, S) = X_{\text{desc}}(A) \cap X(A_K, S) \]

...
The Classical Obstructions

Integral Points

- Modification for integral points (D. Harari)
 - $\mathcal{O}_{K,S}$ - the ring of S-integers of a number field K
 - \mathcal{X} - a scheme defined over $\text{Spec}(\mathcal{O}_{K,S})$ with a generic fiber $\mathcal{X} = \mathcal{X} \otimes_{\mathcal{O}_{K,S}} K$
Modification for integral points (D. Harari)

- \(\mathcal{O}_{K,S} \) - the ring of \(S \)-integers of a number field \(K \)
- \(\mathcal{X} \) - a scheme defined over \(\text{Spec}(\mathcal{O}_{K,S}) \) with a generic fiber \(\mathcal{X} = \mathcal{X} \otimes_{\mathcal{O}_{K,S}} K \)
- Study \(S \)-integral points, i.e. sections of the form
 \[\mathcal{X} \rightarrow \text{Spec}(\mathcal{O}_{K,S}) \]
The Classical Obstructions

Integral Points

- Modification for integral points (D. Harari)
 - $O_{K,S}$ - the ring of S-integers of a number field K
 - X - a scheme defined over $\text{Spec}(O_{K,S})$ with a generic fiber $X = X \otimes_{O_{K,S}} K$
 - Study S-integral points, i.e. sections of the form $X \rightarrow \text{Spec}(O_{K,S})$

- Intersect obstruction sets with S-integral adelic points:
 \[
 X^{\text{Br}}(\mathbb{A}_K, S) = X^{\text{Br}}(\mathbb{A}) \cap X(\mathbb{A}_K, S)
 \]
 \[
 X^{\text{desc}}(\mathbb{A}_K, S) = X^{\text{desc}}(\mathbb{A}) \cap X(\mathbb{A}_K, S)
 \]
The Classical Obstructions

General Fields

- Grothendieck’s obstruction
The Classical Obstructions

General Fields

- Grothendieck’s obstruction
 - \(k \)-any field
The Classical Obstructions

General Fields

- Grothendieck’s obstruction
 - k - any field
 - X - geometrically connected variety over k
Grothendieck’s obstruction

- k - any field
- X - geometrically connected variety over k
- One obtains a short exact sequence

$$1 \rightarrow \pi_1^{\text{ét}}(\overline{X}) \rightarrow \pi_1^{\text{ét}}(X) \rightarrow \text{Gal}(\overline{k}/k) \rightarrow 1$$

of étale fundamental groups
Grothendieck’s obstruction

- k - any field
- X - geometrically connected variety over k
- One obtains a short exact sequence

$$1 \longrightarrow \pi_1^{\text{ét}}(\overline{X}) \longrightarrow \pi_1^{\text{ét}}(X) \longrightarrow \text{Gal}(\overline{k}/k) \longrightarrow 1$$

of étale fundamental groups

- A k-rational point of X induces a section

$$\pi_1^{\text{ét}}(X) \xrightarrow{\text{section}} \text{Gal}(\overline{k}/k)$$
The Étale Homotopy Type

- X - a scheme

Classical Shape theory - Associate to a site C a pro-object $\vert C \vert = \{ X_\alpha \}$ in the homotopy category of topological spaces $H_n(C, F) \sim \lim_{\alpha} H_n(\vert C \vert, F)$ for constant sheaves F.

The comparison theorem: for X/\mathcal{C} we have $\text{Ét}(X) \sim \text{the pro-finite completion of } X(\mathcal{C})$.

Yonatan Harpaz Tomer Schlank

The Relative Étale Shape and Obstructions to Rational Points
The Étale Homotopy Type

- X - a scheme
- Basic idea - use the étale site $X_{\text{ét}}$ of X to capture homotopy theoretic information

Classical Shape theory - Associate to a site \mathcal{C} a pro-object $|\mathcal{C}| = \{X_\alpha\}$ in the homotopy category of topological spaces $\text{H}_n(\mathcal{C}, F) \sim \lim_{\alpha} \text{H}_n(|\mathcal{C}|, F)$ for constant sheaves F.

$\text{Et}(X) = |X_{\text{ét}}|$ - known as the étale homotopy type (Artin and Mazur, 1969)

The comparison theorem: for X/\mathcal{C} we have $\text{Et}(X) \sim \text{the pro-finite completion of } X(\mathcal{C})$.
The Étale Homotopy Type

- X - a scheme
- Basic idea - use the étale site $X_{ét}$ of X to capture homotopy theoretic information
- Classical Shape theory - Associate to a site \mathcal{C} a pro-object $|\mathcal{C}| = \{X_\alpha\}$ in the homotopy category of topological spaces

\[H^n(\mathcal{C}, F) \cong \lim_\alpha H^n(|\mathcal{C}|, F) \text{ for constant sheaves} \]

$\text{´Et}_X = |X_{ét}|$ - known as the étale homotopy type (Artin and Mazur, 1969)

The comparison theorem: for X/\mathcal{C} we have $\text{´Et}_X \cong$ the pro-finite completion of $X(\mathcal{C})$
The Étale Homotopy Type

- X - a scheme
- Basic idea - use the étale site $X_{\text{ét}}$ of X to capture homotopy theoretic information
- Classical Shape theory - Associate to a site \mathcal{C} a pro-object $|\mathcal{C}| = \{X_\alpha\}$ in the homotopy category of topological spaces
- $H^n(\mathcal{C}, F) \cong \lim_\alpha H^n(|\mathcal{C}|, F)$ for constant sheaves F
The Étale Homotopy Type

- X - a scheme
- Basic idea - use the étale site $X_{ét}$ of X to capture homotopy theoretic information
- Classical Shape theory - Associate to a site C a pro-object $|C| = \{X_\alpha\}$ in the homotopy category of topological spaces
- $H^n(C, F) \cong \lim_\alpha H^n(|C|, F)$ for constant sheaves F
- $Ét(X) = |X_{ét}|$ - known as the étale homotopy type (Artin and Mazur, 1969)
The Étale Homotopy Type

- \mathcal{X} - a scheme
- Basic idea - use the étale site $\mathcal{X}_{\text{ét}}$ of \mathcal{X} to capture homotopy theoretic information
- Classical Shape theory - Associate to a site \mathcal{C} a pro-object $|\mathcal{C}| = \{X_\alpha\}$ in the homotopy category of topological spaces
- $H^n(\mathcal{C}, F) \cong \lim_\alpha H^n(|\mathcal{C}|, F)$ for constant sheaves F
- $\acute{\text{E}}t(\mathcal{X}) = |\mathcal{X}_{\text{ét}}|$ - known as the étale homotopy type (Artin and Mazur, 1969)
- The comparison theorem: for \mathcal{X}/\mathbb{C} we have $\acute{\text{E}}t(\mathcal{X}) \cong$ the pro-finite completion of $\mathcal{X}(\mathbb{C})$
A relative situation $X \to S$: wish to study sections

$X \hookrightarrow S$
A relative situation $X \to S$: wish to study sections

Can take étale homotopy types on both sides, but might lose crucial information
A relative situation $X \rightarrow S$: wish to study sections

Can take étale homotopy types on both sides, but might lose crucial information, e.g.

$$f : \mathbb{A}^1_{/\mathbb{C}} \rightarrow \mathbb{A}^1_{/\mathbb{C}}$$

with $f(x) = x^2$
The Relative Étale Homotopy Type

- A relative situation $X \longrightarrow S$: wish to study sections

\[
\begin{array}{ccc}
X & \longrightarrow & S \\
\downarrow & & \downarrow \\
\end{array}
\]

- Can take étale homotopy types on both sides, but might lose crucial information, e.g.

\[f : \mathbb{A}^1_{/\mathbb{C}} \longrightarrow \mathbb{A}^1_{/\mathbb{C}} \]

with $f(x) = x^2$

- Solution: relative étale homotopy type $\hat{\text{Et}}_{/S}(X)$ - a pro-object in the homotopy category of “sheaves of spaces” on S
What is an (étale) sheaf of spaces on S?
The Relative Étale Homotopy Type

What is an (étale) sheaf of spaces on S?

- $S = \text{Spec}(k)$ when k algebraically closed - a space
What is an (étale) sheaf of spaces on S?

- $S = \text{Spec}(k)$ when k algebraically closed - a space
- $S = \text{Spec}(k)$ when k is a general field - a space with an action of $\text{Gal}(\overline{k}/k)$
The Relative Étale Homotopy Type

What is an (étale) sheaf of spaces on S?

- $S = \text{Spec}(k)$ when k algebraically closed - a space
- $S = \text{Spec}(k)$ when k is a general field - a space with an action of $\text{Gal}(\overline{k}/k)$
- General case - formulate via Quillen’s notion of a model category (Jardin, Joyal and others)
Section Obstructions in Algebraic Topology

$E \to B$ - a Serre fibration of topological spaces with fiber F

B is a CW complex \Rightarrow can study sections inductively on skeletons.

In n'th step face an obstruction in $H_{n+1}(B, \pi_n(F))$.

If all obstructions vanish - a spectral sequence $H_s(B, \pi_t(F)) \Rightarrow \pi_{t-s}(\text{Sec}(f))$.
Section Obstructions in Algebraic Topology

\[f : E \rightarrow B \] - a Serre fibration of topological spaces with fiber \(F \)
Section Obstructions in Algebraic Topology

- $f : E \to B$ - a Serre fibration of topological spaces with fiber F
- Study sections $E \to B$

B is a CW complex \Rightarrow can study sections inductively on skeletons

In n'th step face an obstruction in $H^{n+1}(B, \pi_n(F))$

If all obstruction vanish - a spectral sequence $H_s(B, \pi_t(F)) \Rightarrow \pi_{t-s}(\text{Sec}(f))$

Yonatan Harpaz Tomer Schlank
The Relative Étale Shape and Obstructions to Rational Points
Section Obstructions in Algebraic Topology

- $f : E \to B$ - a Serre fibration of topological spaces with fiber F
- Study sections $E \to B$
- B is a CW complex \Rightarrow can study sections inductively on skeletons

$H_n(B, \pi_t(F)) \Rightarrow \pi_t - s(\text{Sec}(f))$
Section Obstructions in Algebraic Topology

- $f : E \to B$ - a Serre fibration of topological spaces with fiber F
- Study sections $E \to B$
- B is a CW complex \Rightarrow can study sections inductively on skeletons
- In n'th step face an obstruction in $H^{n+1}(B, \pi_n(F))$
Section Obstructions in Algebraic Topology

- $f : E \rightarrow B$ - a Serre fibration of topological spaces with fiber F
- Study sections $E \rightarrow B$
- B is a CW complex \Rightarrow can study sections inductively on skeletons
- In n'th step face an obstruction in $H^{n+1}(B, \pi_n(F))$
- If all obstruction vanish $- a$ spectral sequence

$$H^s(B, \pi_t(F)) \Rightarrow \pi_{t-s}(\text{Sec}(f))$$
The Relative Homotopy Obstruction

General Base Schemes

$\xrightarrow{} X \rightarrow S$ - a scheme over a base scheme S
The Relative Homotopy Obstruction

General Base Schemes

- $X \rightarrow S$ - a scheme over a base scheme S
- $\mathcal{E}t/\mathcal{S}(X)$ - an inverse family of sheaves of spaces $\{\mathcal{F}_\alpha\}_{\alpha \in I}$ on S
The Relative Homotopy Obstruction

General Base Schemes

- $X \longrightarrow S$ - a scheme over a base scheme S
- $\hat{\text{Et}}/S(X)$ - an inverse family of sheaves of spaces $\{F_\alpha\}_{\alpha \in I}$ on S
- For each F_α obtain obstructions to the existence of a (homotopy) global section that live in $H^{n+1}_{\text{ét}}(S, \pi_n(F_\alpha))$
The Relative Homotopy Obstruction
General Base Schemes

- $X \longrightarrow S$ - a scheme over a base scheme S
- $\mathcal{E}t_S(X)$ - an inverse family of sheaves of spaces $\{\mathcal{F}_\alpha\}_{\alpha \in I}$ on S
- For each \mathcal{F}_α obtain obstructions to the existence of a (homotopy) global section that live in $H^{n+1}_{\text{ét}}(S, \pi_n(\mathcal{F}_\alpha))$
- If all obstructions vanish - a spectral sequence

$$H^s_{\text{ét}}(S, \pi_t(\mathcal{F}_\alpha)) \Rightarrow \pi_{t-s}(h\text{Sec}(S, \mathcal{F}_\alpha))$$
A section $X \to S$ gives a compatible choice of (homotopy) global sections $s_\alpha \in \mathcal{F}_\alpha(S)$. In particular one obtains a map $X(S) \to X(hS)$ defined as $\lim_\alpha \pi_0(hSec(S, F_\alpha))$. Can use the obstructions above to show $X(hS) = \emptyset$ and hence $X(S) = \emptyset$. If $X(hS) \neq \emptyset$ still use to classify S-points of X.
A section $X \hookrightarrow S$ gives a compatible choice of (homotopy) global sections $s_\alpha \in \mathcal{F}_\alpha(S)$.

In particular, one obtains a map

$$X(S) \longrightarrow X(hS) \overset{\text{def}}{=} \lim_{\alpha} \pi_0(h\text{Sec}(S, F_\alpha))$$
A section $X \to S$ gives a compatible choice of (homotopy) global sections $s_\alpha \in \mathcal{F}_\alpha(S)$.

In particular one obtains a map

$$X(S) \longrightarrow X(hS) \overset{\text{def}}{=} \lim_{\alpha} \pi_0(h\text{Sec}(S, F_\alpha))$$

Can use the obstructions above to show $X(hS) = \emptyset$ and hence $X(S) = \emptyset$.
A section \(X \rightarrow S \) gives a compatible choice of (homotopy) global sections \(s_\alpha \in \mathcal{F}_\alpha(S) \).

In particular one obtains a map

\[
X(S) \longrightarrow X(hS) \overset{\text{def}}{=} \lim_{\alpha} \pi_0(h\text{Sec}(S, F_\alpha))
\]

Can use the obstructions above to show \(X(hS) = \emptyset \) and hence \(X(S) = \emptyset \).

If \(X(hS) \neq \emptyset \Rightarrow \) can still use to classify \(S \)-points of \(X \).
Generalized proper base change theorem:

\[\{(\mathcal{F}_\alpha)_s\} \cong \mathbf{Et}_k(X_s) \]

for each closed point \(s : \text{Spec}(k) \hookrightarrow S \).
The Relative Homotopy Obstruction

Proper Base Change

- Generalized proper base change theorem:

\[\{ (F_\alpha)_s \} \cong \hat{\text{Et}}/k(X_s) \]

for each closed point \(s : \text{Spec}(k) \hookrightarrow S \)

- Allows one to predict the homotopy type of the fibers of \(\hat{\text{Et}}/S(X) \)
Generalized proper base change theorem:

\[\{(F_\alpha)_s\} \cong \acute{\text{E}}t_{/k}(X_s) \]

for each closed point \(s : \text{Spec}(k) \hookrightarrow S \).

- Allows one to predict the homotopy type of the fibers of \(\acute{\text{E}}t_{/S}(X) \).

- Example: if \(S = \text{Spec}(k) \) for a field \(k \) then the underlying pro homotopy type of \(\acute{\text{E}}t_{/k}(X) \) is \(\acute{\text{E}}t_{/\overline{k}}(X \otimes_k \overline{k}) \) (but we have an additional structure of a \(\Gamma_k \)-action).
The Relative Homotopy Obstruction
For Fields

- $S = \text{Spec}(k)$ for a field k
The Relative Homotopy Obstruction

For Fields

- $S = \text{Spec}(k)$ for a field k
- First Obstruction to $X(hS) \neq \emptyset$ being non-empty is

\[o_1 \in H^2_{\text{Gal}}(k, \pi^\text{ét}_1(\bar{X})) \]
The Relative Homotopy Obstruction
For Fields

- $S = \text{Spec}(k)$ for a field k
- First Obstruction to $X(hS) \neq \emptyset$ being non-empty is

 $$o_1 \in H^2_{\text{Gal}(k, \pi_1^{\text{ét}}(\bar{X}))}$$

- Exactly Grothendieck’s section obstruction

 $$1 \longrightarrow \pi_1^{\text{ét}}(\bar{X}) \longrightarrow \pi_1^{\text{ét}}(X) \longrightarrow \text{Gal}(\bar{k}/k) \longrightarrow 1$$
Let $X \rightarrow S$ be a \mathbb{G}_m-torsor
The Relative Homotopy Obstruction

Examples

- Let $X \rightarrow S$ be a \mathbb{G}_m-torsor
- n - coprime to the characteristics of all closed points in S
Let $X \rightarrow S$ be a \mathbb{G}_m-torsor

- n - coprime to the characteristics of all closed points in S

- Obtain a sheaf $\mathcal{F}_n \in \hat{\text{Et}}_S(X)$ with connected fibers such that

$$\pi_1(\mathcal{F}_n) \cong \mu_n$$

and no higher homotopy groups
The Relative Homotopy Obstruction

Examples

- Let $X \rightarrow S$ be a \mathbb{G}_m-torsor
- n - coprime to the characteristics of all closed points in S
- Obtain a sheaf $\mathcal{F}_n \in \acute{E}t_S(X)$ with connected fibers such that
 \[\pi_1(\mathcal{F}_n) \cong \mu_n \]
 and no higher homotopy groups
- Obtain an obstruction element in $H^2_{\acute{E}t}(S, \mu_n)$
The Relative Homotopy Obstruction

Examples

- Let $X \rightarrow S$ be a \mathbb{G}_m-torsor
- n - coprime to the characteristics of all closed points in S
- Obtain a sheaf $\mathcal{F}_n \in \mathcal{E}t/S(X)$ with connected fibers such that
 \[\pi_1(\mathcal{F}_n) \cong \mu_n \]
 and no higher homotopy groups
- Obtain an obstruction element in $H^2_{\text{ét}}(S, \mu_n)$
- Can be shown to match the image of the element $c \in H^1(S, \mathbb{G}_m)$ classifying X
Let \(\text{char}(k) = 0 \) and \(X/k \) given by
\[
\sum_{i=0}^{n} a_i x_i^2 = 1 \quad \text{with} \quad 0 \neq a_i \in k
\]
Let \(\text{char}(k) = 0 \) and \(X/k \) given by
\[
\sum_{i=0}^{n} a_i x_i^2 = 1 \text{ with } 0 \neq a_i \in k
\]

\(\hat{\text{Et}}_k(X) \cong \) pro-finite completion of \(n \)-sphere
(with some \(\Gamma_K \)-action) \(\Rightarrow \hat{\text{Et}}_k(X) \) contains
the space \(K(\mathbb{Z}/2, n) \)
The Relative Homotopy Obstruction

Examples

- Let $\text{char}(k) = 0$ and X/k given by
 $\sum_{i=0}^{n} a_i x_i^2 = 1$ with $0 \neq a_i \in k$

- $\mathcal{E}t_{/k}(X) \cong$ pro-finite completion of n-sphere
 (with some Γ_K-action) $\Rightarrow \mathcal{E}t_{/k}(X)$ contains
 the space $K(\mathbb{Z}/2, n)$

- Obtain an obstruction element in Galois cohomology $H^{n+1}(\Gamma_k, \mathbb{Z}/2)$
The Relative Homotopy Obstruction

Examples

- Let $\text{char}(k) = 0$ and X/k given by $\sum_{i=0}^{n} a_i x_i^2 = 1$ with $0 \neq a_i \in k$
- $\hat{\text{Et}}_k(X) \cong \text{pro-finite completion of } n\text{-sphere (with some } \Gamma_K\text{-action)} \Rightarrow \hat{\text{Et}}_k(X)$ contains the space $K(\mathbb{Z}/2, n)$
- Obtain an obstruction element in Galois cohomology $H^{n+1}(\Gamma_k, \mathbb{Z}/2)$
- Can be shown to equal the cup product $\bigcup_{i=0}^{n} [a_i]$ where $[a_i] \in H^1(\Gamma_k, \mathbb{Z}/2) \cong k^*/(k^*)^2$ is the class of a_i
The Relative Homotopy Obstruction

Examples - The Affine Line

\[
\mathbb{A}^1 \longrightarrow \text{Spec}(\mathbb{Z})
\]
The Relative Homotopy Obstruction

Examples - The Affine Line

- $\mathbb{A}^1 \to \text{Spec}(\mathbb{Z})$

- For every p the fiber $(\mathbb{A}_1)_p = \text{Spec}(\mathbb{F}_p[t])$ has big fundamental group - many Artin-Schrier extensions
The Relative Homotopy Obstruction
Examples - The Affine Line

- $\mathbb{A}^1 \to \text{Spec}(\mathbb{Z})$
- For every p the fiber $(\mathbb{A}_1)_p = \text{Spec}(\mathbb{F}_p[t])$ has big fundamental group - many Artin-Schrier extensions
- E.g. the extension $y^p + y = t$ translates to a sheaf of spaces $\mathcal{F}_p \in \check{\text{Et}}_{/\text{Spec}(\mathbb{Z})}(\mathbb{A}^1)$ with connected fibers such that

$$\pi_1(\mathcal{F}_p) = (\iota_p)_*\mathbb{Z}/p$$

and higher homotopy groups vanish
The Relative Homotopy Obstruction

Examples - The Affine Line (cont.)

\[\pi_0 \left(\text{hSec}(S, \mathcal{F}_p) \right) \cong H^1_{\text{ét}}(\text{Spec}(\mathbb{Z}), \pi_1(\mathcal{F}_p)) \cong \mathbb{Z}/p \]
\(\pi_0(\text{hSec}(S, \mathcal{F}_p)) \cong H_1^{\text{ét}}(\text{Spec}(\mathbb{Z}), \pi_1(\mathcal{F}_p)) \cong \mathbb{Z}/p \)

- The resulting map

\[\mathbb{Z} \cong \mathbb{A}^1(\text{Spec}(\mathbb{Z})) \longrightarrow \pi_0(\text{hSec}(S, \mathcal{F}_p)) \cong \mathbb{Z}/p \]

is just the mod \(p \) map
The Relative Homotopy Obstruction

Examples - The Affine Line (cont.)

- \(\pi_0 \left(\text{hSec}(S, \mathcal{F}_p) \right) \cong H^1_\text{ét}(\text{Spec}(\mathbb{Z}), \pi_1(\mathcal{F}_p)) \cong \mathbb{Z}/p \)

- The resulting map

\[
\mathbb{Z} \cong \mathbb{A}^1(\text{Spec}(\mathbb{Z})) \longrightarrow \pi_0 \left(\text{hSec}(S, \mathcal{F}_p) \right) \cong \mathbb{Z}/p
\]

is just the mod \(p \) map

- \(\Rightarrow \) the map \(\mathbb{A}^1(\text{Spec}(\mathbb{Z})) \longrightarrow \mathbb{A}^1(\text{hSpec}(\mathbb{Z})) \) is injective
The Relative Homotopy Obstruction

Examples - The Affine Line (cont.)

\[\pi_0 (h\text{Sec}(S, \mathcal{F}_p)) \cong H^1_{\text{ét}}(\text{Spec}(\mathbb{Z}), \pi_1(\mathcal{F}_p)) \cong \mathbb{Z}/p \]

The resulting map

\[\mathbb{Z} \cong \mathbb{A}^1(\text{Spec}(\mathbb{Z})) \longrightarrow \pi_0 (h\text{Sec}(S, \mathcal{F}_p)) \cong \mathbb{Z}/p \]

is just the mod \(p \) map

\[\Rightarrow \text{ the map } \mathbb{A}^1(\text{Spec}(\mathbb{Z})) \longrightarrow \mathbb{A}^1(h\text{Spec}(\mathbb{Z})) \text{ is injective} \]

\[\Rightarrow \text{ the map } X(\text{Spec}(\mathbb{Z})) \longrightarrow X(h\text{Spec}(\mathbb{Z})) \text{ is injective for every affine scheme} \]

\[X \longrightarrow \text{Spec}(\mathbb{Z}) \]
The Relative Homotopy Obstruction
The Local Global Principle

- $S = \text{Spec}(K)$ for a number field K with absolute Galois group Γ_K
The Relative Homotopy Obstruction

The Local Global Principle

- $S = \text{Spec}(K)$ for a number field K with absolute Galois group Γ_K
- X - a K-variety
The Relative Homotopy Obstruction

The Local Global Principle

- $S = \text{Spec}(K)$ for a number field K with absolute Galois group Γ_K
- X - a K-variety
- $\acute{E}t_K(X)$ - a pro-object in a suitable homotopy category of Γ_K-spaces
The Relative Homotopy Obstruction

The Local Global Principle

- $S = \text{Spec}(K)$ for a number field K with absolute Galois group Γ_K
- X - a K-variety
- $\acute{E}t_K(X)$ - a pro-object in a suitable homotopy category of Γ_K-spaces
- K-rational point \Rightarrow compatible family of (homotopy) Γ_K-fixed points
The Relative Homotopy Obstruction
The Local Global Principle

- $S = \text{Spec}(K)$ for a number field K with absolute Galois group Γ_K
- X - a K-variety
- $\acute{E}t/K(X)$ - a pro-object in a suitable homotopy category of Γ_K-spaces
- K-rational point \Rightarrow compatible family of (homotopy) Γ_K-fixed points
- K_ν-rational point \Rightarrow compatible family of (homotopy) Γ_{K_ν}-fixed points
Obtain a commutative diagram of sets

\[
\begin{array}{c}
X(K) \rightarrow X(hK) \\
\downarrow \quad \downarrow \\
X(\mathbb{A}) \rightarrow X(h\mathbb{A})
\end{array}
\]

Rightarrow a new obstruction set

\[
X(h(\mathbb{A})) \subseteq X(\mathbb{A})
\]
Obtain a commutative diagram of sets

\[
\begin{array}{ccc}
X(K) & \longrightarrow & X(hK) \\
\downarrow & & \downarrow \\
X(\mathbb{A}) & \longrightarrow & X(h\mathbb{A})
\end{array}
\]

⇒ a new obstruction set

\[X^h(\mathbb{A}) \subseteq X(\mathbb{A})\]

by taking adelic points whose corresponding homotopy fixed points are rational.
Theorem (H., S. 2010)

For X smooth and geometrically connected one has

$$X^h(\mathbb{A}) = X^{\text{fin}, \text{Br}}(\mathbb{A})$$
Given an augmented functor $F : \text{Ho}(\text{Top}) \longrightarrow \text{Ho}(\text{Top})$ one can construct a new (weaker) obstruction set $X^F(\mathbb{A})$ by replacing $\acute{\text{E}}t_K(X)$ with $F(\acute{\text{E}}t_K(X))$.

Examples (H. S. 2010):

- For $F = P_1$ the first Postnikov piece functor recover finite descent: $X^F(A) = X^{\text{fin}}(A)$
- For $F = \mathbb{Z}$ the free abelian group functor recover the Brauer-Manin obstruction: $X^F(A) = X^{\text{Br}}(A)$
- For $F = P_1 \circ \mathbb{Z}$ recover finite abelian descent: $X^F(A) = X^{\text{fin-ab}}(A)$
Given an augmented functor $F : \text{Ho}(\text{Top}) \to \text{Ho}(\text{Top})$ one can construct a new (weaker) obstruction set $X^F(\mathbb{A})$ by replacing $\hat{\text{Et}}/K(X)$ with $F(\hat{\text{Et}}/K(X))$.

Examples (H. S. 2010):

- For $F = P_1$ the first Postnikov piece functor recover finite descent: $X^F(\mathbb{A}) = X^{\text{fin}}(\mathbb{A})$.
Given an augmented functor
\(F : \text{Ho}(\text{Top}) \to \text{Ho}(\text{Top}) \) one can construct a new (weaker) obstruction set \(X^F(\mathbb{A}) \) by replacing \(\hat{\text{Et}}_{/K}(X) \) with \(F(\hat{\text{Et}}_{/K}(X)) \).

Examples (H. S. 2010):

- For \(F = P_1 \) the first Postnikov piece functor recover finite descent: \(X^F(\mathbb{A}) = X^{\text{fin}}(\mathbb{A}) \)
- For \(F = \mathbb{Z} \) the free abelian group functor recover the Brauer-Manin obstruction: \(X^F(\mathbb{A}) = X^{\text{Br}}(\mathbb{A}) \)
Given an augmented functor $F : \text{Ho}(\text{Top}) \to \text{Ho}(\text{Top})$ one can construct a new (weaker) obstruction set $X^F(\mathbb{A})$ by replacing $\mathcal{E}t_{/K}(X)$ with $F(\mathcal{E}t_{/K}(X))$.

Examples (H. S. 2010):

- For $F = P_1$ the first Postnikov piece functor recover finite descent: $X^F(\mathbb{A}) = X^{\text{fin}}(\mathbb{A})$
- For $F = \mathbb{Z}$ the free abelian group functor recover the Brauer-Manin obstruction: $X^F(\mathbb{A}) = X^{\text{Br}}(\mathbb{A})$
- For $F = P_1 \circ \mathbb{Z}$ recover finite abelian descent: $X^F(\mathbb{A}) = X^{\text{fin-ab}}(\mathbb{A})$
Applications

- Let K be number field and assume all varieties are smooth and geometrically connected.
Let K be a number field and assume all varieties are smooth and geometrically connected.

$$(X \times Y)(\mathbb{A})^{\text{fin,Br}} = X(\mathbb{A})^{\text{fin,Br}} \times Y(\mathbb{A})^{\text{fin,Br}}$$
Applications

Let K be a number field and assume all varieties are smooth and geometrically connected.

1. $(X \times Y)(\mathbb{A})^{\text{fin,Br}} = X(\mathbb{A})^{\text{fin,Br}} \times Y(\mathbb{A})^{\text{fin,Br}}$
2. $\pi_2^\text{ét}(\overline{X}) = 0 \Rightarrow X(\mathbb{A})^{\text{fin}} = X(\mathbb{A})^{\text{fin,Br}}$
Applications

- Let K be a number field and assume all varieties are smooth and geometrically connected.

 - $(X \times Y)(\mathbb{A})^\text{fin,Br} = X(\mathbb{A})^\text{fin,Br} \times Y(\mathbb{A})^\text{fin,Br}$
 - $\pi_2^\text{ét}(X) = 0 \Rightarrow X(\mathbb{A})^\text{fin} = X(\mathbb{A})^\text{fin,Br}$
 - $\pi_1^\text{ét}(X)$ abelian and $\pi_2^\text{ét}(X) = 0$ (e.g. abelian varieties) \Rightarrow

\[
\begin{array}{ccc}
X(\mathbb{A})^\text{fin-ab} & \longrightarrow & X(\mathbb{A})^\text{fin} \\
\downarrow & & \downarrow \\
X(\mathbb{A})^\text{Br} & \longrightarrow & X^\text{fin,Br}(\mathbb{A})
\end{array}
\]
Let K be number field and assume all varieties are smooth and geometrically connected

- $$(X \times Y)(\mathbb{A})^{\text{fin,Br}} = X(\mathbb{A})^{\text{fin,Br}} \times Y(\mathbb{A})^{\text{fin,Br}}$$
- $\pi_2^{\text{ét}}(X) = 0 \Rightarrow X(\mathbb{A})^{\text{fin}} = X(\mathbb{A})^{\text{fin,Br}}$
- $\pi_1^{\text{ét}}(X)$ abelian and $\pi_2^{\text{ét}}(X) = 0$ (e.g. abelian varieties) \Rightarrow

 \[
 \begin{array}{ccc}
 X(\mathbb{A})^{\text{fin-ab}} & \longrightarrow & X(\mathbb{A})^{\text{fin}} \\
 \uparrow & & \uparrow \\
 X(\mathbb{A})^{\text{Br}} & \longrightarrow & X^{\text{fin,Br}}(\mathbb{A})
 \end{array}
 \]

- $H_2^{\text{ét}}(X) = 0 \Rightarrow X(\mathbb{A})^{\text{Br}} = X(\mathbb{A})^{\text{fin-ab}}$
Future Directions

- Local-global obstructions for integral points
Future Directions

- Local-global obstructions for integral points
- Section conjecture for hyperbolic curves over number rings, e.g. \(\mathbb{P}_1 \setminus \{0, 1, \infty\} \) over \(\text{Spec}(\mathbb{Z}[1/2]) \)
Future Directions

- Local-global obstructions for integral points
- Section conjecture for hyperbolic curves over number rings, e.g. $\mathbb{P}_1 \setminus \{0, 1, \infty\}$ over $\text{Spec}(\mathbb{Z}[1/2])$
- The flat homotopy type
Future Directions

- Local-global obstructions for integral points
- Section conjecture for hyperbolic curves over
 number rings, e.g. \(\mathbb{P}_1 \setminus \{0, 1, \infty\} \) over
 \(\text{Spec}(\mathbb{Z}[1/2]) \)
- The flat homotopy type
- Can we mod-out information coming from
 Artin-Schrier extensions, e.g. invert
 \(\mathbb{A}^1 \to \text{Spec}(\mathbb{Z}) \) as in \(\mathbb{A}^1 \)-homotopy theory?
Future Directions

- Local-global obstructions for integral points
- Section conjecture for hyperbolic curves over number rings, e.g. \(\mathbb{P}_1 \setminus \{0, 1, \infty\} \) over \(\text{Spec}(\mathbb{Z}[1/2]) \)
- The flat homotopy type
- Can we mod-out information coming from Artin-Schrier extensions, e.g. invert \(\mathbb{A}^1 \to \text{Spec}(\mathbb{Z}) \) as in \(\mathbb{A}^1 \)-homotopy theory?
- Higher dimensional fields
Thank you for listening!