The Relative Étale Shape and Obstructions to Rational Points

Yonatan Harpaz Tomer Schlank

The Hebrew University Jerusalem

January 2012

・ロト ・ 御 ト ・ 生 ト ・ ・ 生 ト ……

æ

Yonatan Harpaz Tomer Schlank The Relative Étale Shape and Obstructions to Rational Points

・ロン ・四と ・ヨン ・ヨン

Э

The classical obstructions to rational and integral points

(1日) (日) (日)

э

The classical obstructions to rational and integral points

The relative étale shape

回 と く ヨ と く ヨ と

- The classical obstructions to rational and integral points
- The relative étale shape
- Sections and obstruction theory in homotopy theory

- The classical obstructions to rational and integral points
- The relative étale shape
- Sections and obstruction theory in homotopy theory
- Homotopy obstructions to existence of points

- The classical obstructions to rational and integral points
- The relative étale shape
- Sections and obstruction theory in homotopy theory
- Homotopy obstructions to existence of points
- Examples

- The classical obstructions to rational and integral points
- The relative étale shape
- Sections and obstruction theory in homotopy theory
- Homotopy obstructions to existence of points
- Examples
- Main results

- The classical obstructions to rational and integral points
- The relative étale shape
- Sections and obstruction theory in homotopy theory
- Homotopy obstructions to existence of points
- Examples
- Main results
- Applications

- The classical obstructions to rational and integral points
- The relative étale shape
- Sections and obstruction theory in homotopy theory
- Homotopy obstructions to existence of points
- Examples
- Main results
- Applications
- Future directions

Number Fields

The local obstruction

$$X(\mathbb{A}_{K}) = \emptyset \Longrightarrow X(K) = \emptyset$$

伺下 イヨト イヨト

Number Fields

The local obstruction

$$X(\mathbb{A}_{K}) = \emptyset \Longrightarrow X(K) = \emptyset$$

The Brauer-Manin obstruction

Number Fields

The local obstruction

$$X(\mathbb{A}_{K}) = \emptyset \Longrightarrow X(K) = \emptyset$$

The Brauer-Manin obstruction Pairing with elements in the Brauer group X(A_K) × H²_{ét}(X, G_m) → Q/Z

Number Fields

The local obstruction

$$X(\mathbb{A}_{K}) = \emptyset \Longrightarrow X(K) = \emptyset$$

The Brauer-Manin obstruction Pairing with elements in the Brauer group X(A_K) × H²_{ét}(X, G_m) → Q/Z

Left kernel X^{Br}(A_K) ⊆ X(A_K) contains the rational points (Hasse-Brauer-Noether Theorem)

・ 同 ト ・ ヨ ト ・ ヨ ト …

Number Fields

The local obstruction

$$X(\mathbb{A}_{K}) = \emptyset \Longrightarrow X(K) = \emptyset$$

The Brauer-Manin obstruction Pairing with elements in the Brauer group X(A_K) × H²_{ét}(X, G_m) → Q/Z

Left kernel X^{Br}(A_K) ⊆ X(A_K) contains the rational points (Hasse-Brauer-Noether Theorem)
 A finer obstruction set

$$X^{\mathsf{Br}}(\mathbb{A}_{\mathcal{K}}) = \emptyset \Longrightarrow X(\mathcal{K}) = \emptyset$$

Number Fields

 Descent obstructions (A. Skorobogatov, D.Harari, J.-L. Colliot-Thélène, J.-J. Sansuc)

Number Fields

 Descent obstructions (A. Skorobogatov, D.Harari, J.-L. Colliot-Thélène, J.-J. Sansuc)
 Y → X - a torsor under an algebraic group G/K

伺下 イヨト イヨト

Number Fields

 Descent obstructions (A. Skorobogatov, D.Harari, J.-L. Colliot-Thélène, J.-J. Sansuc)
 Y → X - a torsor under an algebraic group G/K
 X^Y(A_K) ⊆ X(A_K) - points which lift to some K-twist Y_α → X

・吊 ・・ ティー・ テート

Number Fields

- Descent obstructions (A. Skorobogatov, D.Harari, J.-L. Colliot-Thélène, J.-J. Sansuc)
 Y → X - a torsor under an algebraic group G/K
 X^Y(A_K) ⊆ X(A_K) - points which lift to some K-twist Y_α → X
 - Obtain an obstruction set

$$X^{Y}(\mathbb{A}_{K}) = \emptyset \Longrightarrow X(K) = \emptyset$$

・吊 ・・ ティー・ テート

Number Fields

- Descent obstructions (A. Skorobogatov, D.Harari, J.-L. Colliot-Thélène, J.-J. Sansuc)
 - Y → X a torsor under an algebraic group G/K
 X^Y(A_K) ⊆ X(A_K) points which lift to some K-twist Y_α → X

Obtain an obstruction set

$$X^{Y}(\mathbb{A}_{K}) = \emptyset \Longrightarrow X(K) = \emptyset$$

 Intersecting over various families of algebraic groups gives various obstruction sets -X^{desc}(𝒫_K), X^{fin}(𝒫_K), X^{con}(𝒫_K), X^{fin-ab}(𝒫_K), etc.

Number Fields

- Descent obstructions (A. Skorobogatov, D.Harari, J.-L. Colliot-Thélène, J.-J. Sansuc)
 - Y → X a torsor under an algebraic group G/K
 X^Y(A_K) ⊆ X(A_K) points which lift to some K-twist Y_α → X

Obtain an obstruction set

$$X^{Y}(\mathbb{A}_{K}) = \emptyset \Longrightarrow X(K) = \emptyset$$

Intersecting over various families of algebraic groups gives various obstruction sets - X^{desc}(𝔅_K), X^{fin}(𝔅_K), X^{con}(𝔅_K), X^{fin-ab}(𝔅_K), etc.
 D. Harari (02): for X smooth projective one has X^{con}(𝔅) = X^{Br}(𝔅)

Number Fields

The étale-Brauer obstruction

• 3 >

A ■

• 3 > 1

Number Fields

The étale-Brauer obstruction Defined by A. Skorobogatov in 1999

Number Fields

- The étale-Brauer obstruction
 - Defined by A. Skorobogatov in 1999
 - Uses the Brauer-Manin obstruction applied to finite torsors. Obtain a finer obstruction set

$$X^{\mathsf{fin},\mathsf{Br}}(\mathbb{A}_{\mathcal{K}})=\emptyset\Longrightarrow X(\mathcal{K})=\emptyset$$

高 とう ヨン うまと

Number Fields

- The étale-Brauer obstruction
 - Defined by A. Skorobogatov in 1999
 - Uses the Brauer-Manin obstruction applied to finite torsors. Obtain a finer obstruction set

$$X^{\mathsf{fin},\mathsf{Br}}(\mathbb{A}_{\mathcal{K}})=\emptyset\Longrightarrow X(\mathcal{K})=\emptyset$$

Stronger than all previously known obstructions

Number Fields

- The étale-Brauer obstruction
 - Defined by A. Skorobogatov in 1999
 - Uses the Brauer-Manin obstruction applied to finite torsors. Obtain a finer obstruction set

$$X^{\mathsf{fin},\mathsf{Br}}(\mathbb{A}_{\mathcal{K}})=\emptyset\Longrightarrow X(\mathcal{K})=\emptyset$$

Stronger than all previously known obstructions
 A. Skorobogatov (09), C. Demarch (09): for X smooth projective one has

$$X^{\mathsf{fin},\mathsf{Br}}(\mathbb{A}) = X^{\mathsf{desc}}(\mathbb{A})$$

Number Fields

- The étale-Brauer obstruction
 - Defined by A. Skorobogatov in 1999
 - Uses the Brauer-Manin obstruction applied to finite torsors. Obtain a finer obstruction set

$$X^{\operatorname{fin},\operatorname{Br}}(\mathbb{A}_{K})=\emptyset\Longrightarrow X(K)=\emptyset$$

Stronger than all previously known obstructions
 A. Skorobogatov (09), C. Demarch (09): for X smooth projective one has

$$X^{\mathsf{fin},\mathsf{Br}}(\mathbb{A}) = X^{\mathsf{desc}}(\mathbb{A})$$

 Not a complete obstruction - counter example constructed by B. Poonen in 2008

Integral Points

Modification for integral points (D. Harari)

Integral Points

Modification for integral points (D. Harari)
 \$\mathcal{O}_{K,S}\$ - the ring of S-integers of a number field K

伺下 イヨト イヨト

Integral Points

■ Modification for integral points (D. Harari)
 ■ O_{K,S} - the ring of S-integers of a number field K
 ■ X - a scheme defined over Spec(O_{K,S}) with a generic fiber X = X ⊗<sub>O_{K,S} K
</sub>

・ 同 ト ・ ヨ ト ・ ヨ ト …

Integral Points

- Modification for integral points (D. Harari)
 - $\mathcal{O}_{K,S}$ the ring of *S*-integers of a number field *K*
 - *X* a scheme defined over Spec(*O_{K,S}*) with a generic fiber *X* = *X* ⊗_{*O_{K,S}} <i>K*</sub>
 - Study S-integral points, i.e. sections of the form

$$\mathcal{X} \xrightarrow{\swarrow} \mathsf{Spec}(\mathcal{O}_{K,S})$$

伺 とう ヨン うちょう

Integral Points

- Modification for integral points (D. Harari)
 - $\mathcal{O}_{K,S}$ the ring of *S*-integers of a number field *K*
 - *X* a scheme defined over Spec(*O_{K,S}*) with a generic fiber *X* = *X* ⊗_{*O_{K,S}} <i>K*</sub>
 - Study S-integral points, i.e. sections of the form

$$\mathcal{X} \xrightarrow{\longleftarrow} \operatorname{Spec}(\mathcal{O}_{K,S})$$

Intersect obstruction sets with S-integral adelic points:

$$\mathcal{X}^{\mathsf{Br}}(\mathbb{A}_{\mathcal{K},\mathcal{S}}) = X^{\mathsf{Br}}(\mathbb{A}) \cap \mathcal{X}(\mathbb{A}_{\mathcal{K},\mathcal{S}})$$

 $\mathcal{X}^{\mathsf{desc}}(\mathbb{A}_{\mathcal{K},\mathcal{S}}) = X^{\mathsf{desc}}(\mathbb{A}) \cap \mathcal{X}(\mathbb{A}_{\mathcal{K},\mathcal{S}})$

General Fields

Grothendieck's obstruction

Yonatan Harpaz Tomer Schlank The Relative Étale Shape and Obstructions to Rational Points

→ ∃ →

General Fields

Grothendieck's obstruction k - any field

・ 同 ト ・ ヨ ト ・ ヨ ト

General Fields

Grothendieck's obstruction

- *k* any field
- X geometrically connected variety over k

General Fields

Grothendieck's obstruction

- *k* any field
- X geometrically connected variety over k
- One obtains a short exact sequence

$$1 \longrightarrow \pi_1^{\acute{e}t}(\overline{X}) \longrightarrow \pi_1^{\acute{e}t}(X) \longrightarrow {\sf Gal}(\overline{k}/k) \longrightarrow 1$$

of étale fundamental groups
The Classical Obstructions

General Fields

Grothendieck's obstruction

- *k* any field
- X geometrically connected variety over k
- One obtains a short exact sequence

$$1 \longrightarrow \pi_1^{\acute{e}t}(\overline{X}) \longrightarrow \pi_1^{\acute{e}t}(X) \longrightarrow {\sf Gal}(\overline{k}/k) \longrightarrow 1$$

of étale fundamental groups

A *k*-rational point of *X* induces a section

$$\pi_1^{\acute{et}}(X) \xrightarrow{\checkmark} \operatorname{Gal}(\overline{k}/k)$$

■ X - a scheme

・ロト ・回ト ・ヨト ・ヨト

3

- X a scheme
- Basic idea use the étale site X_{ét} of X to capture homotopy theoretic information

・ 同 ト ・ ヨ ト ・ ヨ ト

- X a scheme
- Basic idea use the étale site X_{ét} of X to capture homotopy theoretic information
- Classical Shape theory Associate to a site C a pro-object |C| = {X_α} in the homotopy category of topological spaces

・ 同 ト ・ ヨ ト ・ ヨ ト …

- X a scheme
- Basic idea use the étale site X_{ét} of X to capture homotopy theoretic information
- Classical Shape theory Associate to a site C a pro-object |C| = {X_α} in the homotopy category of topological spaces
- $H^n(C, F) \cong \lim_{\alpha} H^n(|C|, F)$ for constant sheaves F

・ 同 ト ・ ヨ ト ・ ヨ ト

- X a scheme
- Basic idea use the étale site X_{ét} of X to capture homotopy theoretic information
- Classical Shape theory Associate to a site C a pro-object |C| = {X_α} in the homotopy category of topological spaces
- $H^n(C, F) \cong \lim_{\alpha} H^n(|C|, F)$ for constant sheaves F
- *Ét(X)* = |X_{ét}| known as the **étale** homotopy type (Artin and Mazur, 1969)

▲□→ ▲ 国 → ▲ 国 →

- X a scheme
- Basic idea use the étale site X_{ét} of X to capture homotopy theoretic information
- Classical Shape theory Associate to a site C a pro-object |C| = {X_α} in the homotopy category of topological spaces
- $H^n(C, F) \cong \lim_{\alpha} H^n(|C|, F)$ for constant sheaves F
- Ét(X) = |X_{ét}| known as the étale homotopy type (Artin and Mazur, 1969)
- The comparison theorem: for X/C we have Ét(X) ≅ the pro-finite completion of X(C)

■ A relative situation X → S: wish to study sections

・ 同 ト ・ ヨ ト ・ ヨ ト

■ A relative situation X → S: wish to study sections

 Can take étale homotopy types on both sides, but might lose crucial information

■ A relative situation X → S: wish to study sections

 Can take étale homotopy types on both sides, but might lose crucial information, e.g.

$$f: \mathbb{A}^1_{/\mathbb{C}} \longrightarrow \mathbb{A}^1_{/\mathbb{C}}$$

with $f(x) = x^2$

■ A relative situation X → S: wish to study sections

 Can take étale homotopy types on both sides, but might lose crucial information, e.g.

$$f: \mathbb{A}^1_{/\mathbb{C}} \longrightarrow \mathbb{A}^1_{/\mathbb{C}}$$

with $f(x) = x^2$

Solution: relative étale homotopy type Ét_{/S}(X)
 - a pro-object in the homotopy category of "sheaves of spaces" on S

What is an (étale) sheaf of spaces on S?

What is an (étale) sheaf of spaces on S? S = Spec(k) when k algebraically closed - a space

向下 イヨト イヨト

What is an (étale) sheaf of spaces on S?

- S = Spec(k) when k algebraically closed a space
- S = Spec(k) when k is a general field a space with an action of $\text{Gal}(\overline{k}/k)$

伺 と く き と く き と

What is an (étale) sheaf of spaces on S?

- S = Spec(k) when k algebraically closed a space
- S = Spec(k) when k is a general field a space with an action of Gal(k/k)
- General case formulate via Quillen's notion of a model category (Jardin, Joyal and others)

向下 イヨト イヨト

3

f : *E* → *B* - a Serre fibration of topological spaces with fiber *F*

・ 同 ト ・ ヨ ト ・ ヨ ト

- *f* : *E* → *B* a Serre fibration of topological spaces with fiber *F*
- Study sections $E \xrightarrow{\longleftarrow} B$

・ 同 ト ・ ヨ ト ・ ヨ ト

- *f* : *E* → *B* a Serre fibration of topological spaces with fiber *F*
- Study sections $E \xrightarrow{\frown} B$
- *B* is a CW complex ⇒ can study sections inductively on skeletons

- *f* : *E* → *B* a Serre fibration of topological spaces with fiber *F*
- Study sections $E \xrightarrow{\longleftarrow} B$
- *B* is a CW complex ⇒ can study sections inductively on skeletons
- In n'th step face an obstruction in Hⁿ⁺¹(B, π_n(F))

・ 同 ト ・ ヨ ト ・ ヨ ト …

- *f* : *E* → *B* a Serre fibration of topological spaces with fiber *F*
- Study sections $E \xrightarrow{\longleftarrow} B$
- *B* is a CW complex ⇒ can study sections inductively on skeletons
- In *n*'th step face an obstruction in $H^{n+1}(B, \pi_n(F))$
- If all obstruction vanish a spectral sequence

$$H^{s}(B,\pi_{t}(F)) \Rightarrow \pi_{t-s}(\operatorname{Sec}(f))$$

▲□→ ▲注→ ▲注→

General Base Schemes

• $X \longrightarrow S$ - a scheme over a base scheme S

Yonatan Harpaz Tomer Schlank The Relative Étale Shape and Obstructions to Rational Points

(4月) (4日) (4日)

3

X → S - a scheme over a base scheme S
 Ét_{/S}(X) - an inverse family of sheaves of spaces {F_α}_{α∈I} on S

・吊り ・ヨト ・ヨト ・ヨ

- X → S a scheme over a base scheme S
 Ét_{/S}(X) an inverse family of sheaves of spaces {F_α}_{α∈I} on S
- For each *F_α* obtain obstructions to the existence of a (homotopy) global section that live in *Hⁿ⁺¹_{ét}(S*, π_n(*F_α*))

・吊 トイヨト イヨト 二日

- X → S a scheme over a base scheme S
 Ét_{/S}(X) an inverse family of sheaves of spaces {F_α}_{α∈I} on S
- For each *F_α* obtain obstructions to the existence of a (homotopy) global section that live in *Hⁿ⁺¹_{ét}(S*, π_n(*F_α*))
- If all obstructions vanish a spectral sequence

$$H^{s}_{\acute{e}t}(S, \pi_{t}(\mathcal{F}_{\alpha})) \Rightarrow \pi_{t-s}(\mathsf{hSec}(S, \mathcal{F}_{\alpha}))$$

・吊 トイヨト イヨト 二日

General Base Schemes

• A section $X \xrightarrow{\longleftarrow} S$ gives a compatible choice of (homotopy) global sections $s_{\alpha} \in \mathcal{F}_{\alpha}(S)$

伺 とう ヨン うちょう

General Base Schemes

A section X → S gives a compatible choice of (homotopy) global sections s_α ∈ F_α(S)
 In particular one obtains a map

$$X(S) \longrightarrow X(hS) \stackrel{def}{=} \lim_{\alpha} \pi_0(hSec(S, F_{\alpha}))$$

伺い イヨト イヨト

General Base Schemes

A section X → S gives a compatible choice of (homotopy) global sections s_α ∈ F_α(S)
 In particular one obtains a map

$$X(S) \longrightarrow X(hS) \stackrel{def}{=} \lim_{\alpha} \pi_0(hSec(S, F_{\alpha}))$$

■ Can use the obstructions above to show X(hS) = Ø and hence X(S) = Ø

・ 同 ト ・ ヨ ト ・ ヨ ト …

General Base Schemes

A section X → S gives a compatible choice of (homotopy) global sections s_α ∈ F_α(S)
 In particular one obtains a map

$$X(S) \longrightarrow X(hS) \stackrel{def}{=} \lim_{\alpha} \pi_0(hSec(S, F_{\alpha}))$$

Can use the obstructions above to show X(hS) = Ø and hence X(S) = Ø
If X(hS) ≠ Ø ⇒ can still use to classify S-points of X

伺 とう きょう とう とう

The Relative Homotopy Obstruction Proper Base Change

Generalized proper base change theorem:

$$\{(\mathcal{F}_{\alpha})_{s}\}\cong \acute{E}t_{/k}(X_{s})$$

for each closed point $s : \operatorname{Spec}(k) \hookrightarrow S$

周 ト イモト イモト

The Relative Homotopy Obstruction Proper Base Change

Generalized proper base change theorem:

$$\{(\mathcal{F}_{\alpha})_s\}\cong \acute{E}t_{/k}(X_s)$$

for each closed point $s: \operatorname{Spec}(k) \hookrightarrow S$

Allows one to predict the homotopy type of the fibers of Ét_{/S}(X)

The Relative Homotopy Obstruction Proper Base Change

• Generalized proper base change theorem:

$$\{(\mathcal{F}_{\alpha})_{s}\}\cong \acute{E}t_{/k}(X_{s})$$

for each closed point $s: \operatorname{Spec}(k) \hookrightarrow S$

- Allows one to predict the homotopy type of the fibers of Ét_{/S}(X)
- Example: if S = Spec(k) for a field k then the underlying pro homotopy type of Ét_{/k}(X) is Ét_{/k}(X ⊗_k k) (but we have an additional structure of a Γ_k-action)

•
$$S = \operatorname{Spec}(k)$$
 for a field k

- 4 回 ト 4 ヨ ト 4 ヨ ト

э

The Relative Homotopy Obstruction For Fields

•
$$S = \operatorname{Spec}(k)$$
 for a field k

■ First Obstruction to X(hS) ≠ Ø being non-empty is

$$o_1 \in H^2_{\mathsf{Gal}}(k,\pi_1^{\acute{et}}(ar{X}))$$

- 4 回 ト 4 ヨ ト 4 ヨ ト

The Relative Homotopy Obstruction For Fields

•
$$S = \operatorname{Spec}(k)$$
 for a field k

■ First Obstruction to X(hS) ≠ Ø being non-empty is

$$o_1 \in H^2_{\mathsf{Gal}}(k,\pi_1^{\acute{et}}(ar{X}))$$

Exactly Grothendieck's section obstruction

$$1 \longrightarrow \pi_1^{\acute{e}t}(\bar{X}) \longrightarrow \pi_1^{\acute{e}t}(X) \xrightarrow{\checkmark} \operatorname{Gal}(\bar{k}/k) \longrightarrow 1$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Examples

• Let
$$X \longrightarrow S$$
 be a \mathbb{G}_m -torsor

Yonatan Harpaz Tomer Schlank The Relative Étale Shape and Obstructions to Rational Points

(1日) (日) (日)

3
Examples

- Let $X \longrightarrow S$ be a \mathbb{G}_m -torsor
- n coprime to the characteristics of all closed points in S

伺下 イヨト イヨト

Examples

- Let $X \longrightarrow S$ be a \mathbb{G}_m -torsor
- n coprime to the characteristics of all closed points in S
- Obtain a sheaf $\mathcal{F}_n \in \acute{E}t_{/S}(X)$ with connected fibers such that

$$\pi_1(\mathcal{F}_n)\cong\mu_n$$

and no higher homotopy groups

Examples

- Let $X \longrightarrow S$ be a \mathbb{G}_m -torsor
- n coprime to the characteristics of all closed points in S
- Obtain a sheaf $\mathcal{F}_n \in \acute{E}t_{/S}(X)$ with connected fibers such that

$$\pi_1(\mathcal{F}_n)\cong\mu_n$$

and no higher homotopy groups

• Obtain an obstruction element in $H^2_{\acute{e}t}(S, \mu_n)$

Examples

- Let $X \longrightarrow S$ be a \mathbb{G}_m -torsor
- n coprime to the characteristics of all closed points in S
- Obtain a sheaf $\mathcal{F}_n \in \acute{E}t_{/S}(X)$ with connected fibers such that

$$\pi_1(\mathcal{F}_n)\cong\mu_n$$

and no higher homotopy groups

Obtain an obstruction element in H²_{ét}(S, μ_n)
 Can be shown to match the image of the element c ∈ H¹(S, G_m) classifying X

Examples

• Let char(k) = 0 and
$$X/k$$
 given by $\sum_{i=0}^{n} a_i x_i^2 = 1$ with $0 \neq a_i \in k$

伺下 イヨト イヨト

э

The Relative Homotopy Obstruction Examples

Let char(k) = 0 and X/k given by ∑ⁿ_{i=0} a_ix²_i = 1 with 0 ≠ a_i ∈ k
Ét_{/k}(X) ≅ pro-finite completion of *n*-sphere (with some Γ_K-action) ⇒ Ét_{/k}(X) contains the space K(ℤ/2, n)

The Relative Homotopy Obstruction Examples

- Let char(k) = 0 and X/k given by ∑ⁿ_{i=0} a_ix²_i = 1 with 0 ≠ a_i ∈ k
 Ét_{/k}(X) ≅ pro-finite completion of *n*-sphere (with some Γ_K-action) ⇒ Ét_{/k}(X) contains the space K(ℤ/2, n)
- Obtain an obstruction element in Galois cohomology Hⁿ⁺¹(Γ_k, Z/2)

- Let char(k) = 0 and X/k given by ∑ⁿ_{i=0} a_ix²_i = 1 with 0 ≠ a_i ∈ k
 Ét_{/k}(X) ≅ pro-finite completion of *n*-sphere (with some Γ_K-action) ⇒ Ét_{/k}(X) contains the space K(ℤ/2, n)
- Obtain an obstruction element in Galois cohomology Hⁿ⁺¹(Γ_k, Z/2)
- Can be shown to equal the cup product ⋃_{i=0}ⁿ[a_i] where [a_i] ∈ H¹(Γ_k, ℤ/2) ≅ k^{*}/(k^{*})² is the class of a_i

Examples - The Affine Line

• $\mathbb{A}^1 \longrightarrow \operatorname{Spec}(\mathbb{Z})$

- 4 周 ト 4 日 ト 4 日 ト - 日

Examples - The Affine Line

• $\mathbb{A}^1 \longrightarrow \operatorname{Spec}(\mathbb{Z})$

■ For every p the fiber (A₁)_p = Spec(𝔽_p[t]) has big fundamental group - many Artin-Schrier extensions

- 本部 とくき とくき とうき

Examples - The Affine Line

• $\mathbb{A}^1 \longrightarrow \operatorname{Spec}(\mathbb{Z})$

- For every p the fiber (A₁)_p = Spec(𝔽_p[t]) has big fundamental group - many Artin-Schrier extensions
- E.g. the extension y^p + y = t translates to a sheaf of spaces *F_p* ∈ Ét_{/Spec(ℤ)}(A¹) with connected fibers such that

$$\pi_1(\mathcal{F}_p) = (\iota_p)_*\mathbb{Z}/p$$

and higher homotopy groups vanish

- 사례가 사용가 사용가 구용

• $\pi_0(\operatorname{hSec}(S, \mathcal{F}_p)) \cong H^1_{\acute{e}t}(\operatorname{Spec}(\mathbb{Z}), \pi_1(\mathcal{F}_p)) \cong \mathbb{Z}/p$

マボン イラン イラン 一日

- $\pi_0(\operatorname{hSec}(S, \mathcal{F}_p)) \cong H^1_{\acute{e}t}(\operatorname{Spec}(\mathbb{Z}), \pi_1(\mathcal{F}_p)) \cong \mathbb{Z}/p$
- The resulting map

$$\mathbb{Z}\cong \mathbb{A}^1(\operatorname{Spec}(\mathbb{Z}))\longrightarrow \pi_0\left(\operatorname{hSec}(\mathcal{S},\mathcal{F}_p)
ight)\cong \mathbb{Z}/p$$

is just the mod p map

- $\pi_0(\operatorname{hSec}(S, \mathcal{F}_p)) \cong H^1_{\acute{e}t}(\operatorname{Spec}(\mathbb{Z}), \pi_1(\mathcal{F}_p)) \cong \mathbb{Z}/p$
- The resulting map

 $\mathbb{Z} \cong \mathbb{A}^1(\operatorname{Spec}(\mathbb{Z})) \longrightarrow \pi_0\left(\operatorname{hSec}(\mathcal{S},\mathcal{F}_p)\right) \cong \mathbb{Z}/p$

is just the mod p map \Rightarrow the map $\mathbb{A}^1(\operatorname{Spec}(\mathbb{Z})) \longrightarrow \mathbb{A}^1(h\operatorname{Spec}(\mathbb{Z}))$ is injective

- 4 周 ト 4 日 ト 4 日 ト - 日

- $\pi_0(\operatorname{hSec}(S, \mathcal{F}_p)) \cong H^1_{\acute{e}t}(\operatorname{Spec}(\mathbb{Z}), \pi_1(\mathcal{F}_p)) \cong \mathbb{Z}/p$
- The resulting map

 $\mathbb{Z} \cong \mathbb{A}^1(\operatorname{Spec}(\mathbb{Z})) \longrightarrow \pi_0\left(\operatorname{hSec}(\mathcal{S},\mathcal{F}_p)\right) \cong \mathbb{Z}/p$

is just the mod *p* map

- \Rightarrow the map $\mathbb{A}^1(\operatorname{Spec}(\mathbb{Z})) \longrightarrow \mathbb{A}^1(h\operatorname{Spec}(\mathbb{Z}))$ is injective
- ⇒ the map X(Spec(Z)) → X(hSpec(Z)) is injective for every affine scheme X → Spec(Z)

The Local Global Principle

• S = Spec(K) for a number field K with absolute Galois group Γ_K

The Local Global Principle

- S = Spec(K) for a number field K with absolute Galois group Γ_K
- X a K-variety

The Local Global Principle

• S = Spec(K) for a number field K with absolute Galois group Γ_K

Ét_{/K}(X) - a pro-object in a suitable homotopy category of Γ_K-spaces

The Local Global Principle

 S = Spec(K) for a number field K with absolute Galois group Γ_K

- Ét_{/K}(X) a pro-object in a suitable homotopy category of Γ_K-spaces
- K-rational point \Rightarrow compatible family of (homotopy) Γ_{κ} -fixed points

The Local Global Principle

 S = Spec(K) for a number field K with absolute Galois group Γ_K

- Ét_{/K}(X) a pro-object in a suitable homotopy category of Γ_K-spaces
- K-rational point ⇒ compatible family of (homotopy) Γ_K-fixed points
- K_{ν} -rational point \Rightarrow compatible family of (homotopy) $\Gamma_{K_{\nu}}$ -fixed points

The Relative Homotopy Obstruction The Local Global Principle

Obtain a commutative diagram of sets

$$\begin{array}{c} X(K) \longrightarrow X(hK) \\ \downarrow \qquad \qquad \downarrow \\ X(\mathbb{A}) \longrightarrow X(h\mathbb{A}) \end{array}$$

向下 イヨト イヨト

The Relative Homotopy Obstruction The Local Global Principle

Obtain a commutative diagram of sets

$$\begin{array}{c} X(K) \longrightarrow X(hK) \\ \downarrow \qquad \qquad \downarrow \\ X(\mathbb{A}) \longrightarrow X(h\mathbb{A}) \end{array}$$

 $\blacksquare \Rightarrow$ a new obstruction set

$$X^h(\mathbb{A})\subseteq X(\mathbb{A})$$

by taking adelic points whose corresponding homotopy fixed points are rational

The Local Global Principle

Theorem (H., S. 2010)

For X smooth and geometrically connected one has $X^h(\mathbb{A}) = X^{\mathrm{fin},\mathrm{Br}}(\mathbb{A})$

▲圖▶ ★ 国▶ ★ 国▶

The Local Global Principle - Variations

 Given an augmented functor
 F : Ho(Top) → Ho(Top) one can construct a new (weaker) obstruction set X^F(A) by replacing Ét_{/K}(X) with F(Ét_{/K}(X))

The Local Global Principle - Variations

Given an augmented functor $F : Ho(Top) \longrightarrow Ho(Top)$ one can construct a new (weaker) obstruction set $X^F(\mathbb{A})$ by replacing $\acute{E}t_{/K}(X)$ with $F(\acute{E}t_{/K}(X))$

Examples (H. S. 2010):

■ For F = P₁ the first Postnikov piece functor recover finite descent: X^F(A) = X^{fin}(A)

The Local Global Principle - Variations

Given an augmented functor
F : Ho(Top) → Ho(Top) one can construct a new (weaker) obstruction set X^F(A) by replacing Ét_{/K}(X) with F(Ét_{/K}(X))

Examples (H. S. 2010):

- For F = P₁ the first Postnikov piece functor recover finite descent: X^F(A) = X^{fin}(A)
- For F = Z the free abelian group functor recover the Brauer-Manin obstruction: X^F(A) = X^{Br}(A)

- 本部 とくき とくき とうき

The Local Global Principle - Variations

Given an augmented functor
F : Ho(Top) → Ho(Top) one can construct a new (weaker) obstruction set X^F(A) by replacing Ét_{/K}(X) with F(Ét_{/K}(X))

Examples (H. S. 2010):

- For F = P₁ the first Postnikov piece functor recover finite descent: X^F(A) = X^{fin}(A)
- For F = Z the free abelian group functor recover the Brauer-Manin obstruction: X^F(A) = X^{Br}(A)
- For $F = P_1 \circ \mathbb{Z}$ recover finite abelian descent: $X^F(\mathbb{A}) = X^{\text{fin-ab}}(\mathbb{A})$

• Let *K* be number field and assume all varieties are smooth and geometrically connected

Let K be number field and assume all varieties are smooth and geometrically connected
 (X × Y)(A)^{fin,Br} = X(A)^{fin,Br} × Y(A)^{fin,Br}

Let K be number field and assume all varieties are smooth and geometrically connected

$$(X \times Y)(\mathbb{A})^{\operatorname{fin},\operatorname{Br}} = X(\mathbb{A})^{\operatorname{fin},\operatorname{Br}} \times Y(\mathbb{A})^{\operatorname{fin},\operatorname{Br}} \\ \pi_2^{\acute{e}t}(\overline{X}) = 0 \Rightarrow X(\mathbb{A})^{\operatorname{fin}} = X(\mathbb{A})^{\operatorname{fin},\operatorname{Br}}$$

Let K be number field and assume all varieties are smooth and geometrically connected

$$\begin{array}{l} (X \times Y)(\mathbb{A})^{\mathrm{fin},\mathrm{Br}} = X(\mathbb{A})^{\mathrm{fin},\mathrm{Br}} \times Y(\mathbb{A})^{\mathrm{fin},\mathrm{Br}} \\ \pi_2^{\acute{e}t}(\overline{X}) = 0 \Rightarrow X(\mathbb{A})^{\mathrm{fin}} = X(\mathbb{A})^{\mathrm{fin},\mathrm{Br}} \\ \pi_1^{\acute{e}t}(\overline{X}) \text{ abelian and } \pi_2^{\acute{e}t}(\overline{X}) = 0 \text{ (e.g. abelian varieties)} \end{array}$$

$$\begin{array}{c} X(\mathbb{A})^{\mathsf{fin-ab}} = X(\mathbb{A})^{\mathsf{fin}} \\ \| \\ X(\mathbb{A})^{\mathsf{Br}} = X^{\mathsf{fin},\mathsf{Br}}(\mathbb{A}) \end{array}$$

Let K be number field and assume all varieties are smooth and geometrically connected

$$\begin{array}{l} (X \times Y)(\mathbb{A})^{\mathrm{fin},\mathrm{Br}} = X(\mathbb{A})^{\mathrm{fin},\mathrm{Br}} \times Y(\mathbb{A})^{\mathrm{fin},\mathrm{Br}} \\ \pi_2^{\acute{e}t}(\overline{X}) = 0 \Rightarrow X(\mathbb{A})^{\mathrm{fin}} = X(\mathbb{A})^{\mathrm{fin},\mathrm{Br}} \\ \pi_1^{\acute{e}t}(\overline{X}) \text{ abelian and } \pi_2^{\acute{e}t}(\overline{X}) = 0 \text{ (e.g. abelian varieties)} \end{array}$$

$$X(\mathbb{A})^{\text{fin-ab}} = X(\mathbb{A})^{\text{fin}}$$
$$\| \qquad \|$$
$$X(\mathbb{A})^{\text{Br}} = X^{\text{fin,Br}}(\mathbb{A})$$

•
$$H_2^{\acute{et}}(\overline{X}) = 0 \Rightarrow X(\mathbb{A})^{\operatorname{Br}} = X(\mathbb{A})^{\operatorname{fin-ab}}$$

Local-global obstructions for integral points

向下 イヨト イヨト

- Local-global obstructions for integral points
- Section conjecture for hyperbolic curves over number rings, e.g. $\mathbb{P}_1 \setminus \{0, 1, \infty\}$ over Spec $(\mathbb{Z}[1/2])$

- Local-global obstructions for integral points
- Section conjecture for hyperbolic curves over number rings, e.g. $\mathbb{P}_1 \setminus \{0, 1, \infty\}$ over Spec $(\mathbb{Z}[1/2])$
- The flat homotopy type

- Local-global obstructions for integral points
- Section conjecture for hyperbolic curves over number rings, e.g. $\mathbb{P}_1 \setminus \{0, 1, \infty\}$ over Spec $(\mathbb{Z}[1/2])$
- The flat homotopy type
- Can we mod-out information coming from Artin-Schrier extensions, e.g. invert A¹ → Spec(Z) as in A¹-homotopy theory?
- Local-global obstructions for integral points
- Section conjecture for hyperbolic curves over number rings, e.g. $\mathbb{P}_1 \setminus \{0, 1, \infty\}$ over Spec $(\mathbb{Z}[1/2])$
- The flat homotopy type
- Can we mod-out information coming from Artin-Schrier extensions, e.g. invert A¹ → Spec(Z) as in A¹-homotopy theory?
- Higher dimensional fields

・ 同 ト ・ ヨ ト ・ ヨ ト …

Thank you for listening!

Yonatan Harpaz Tomer Schlank The Relative Étale Shape and Obstructions to Rational Points

イロン イヨン イヨン イヨン

æ