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1 Introduction

A prominent problem in number theory and arithmetic geometry is to under-
stand the set of integral solutions to equations with integral coefficients. In
modern terms one usually fixes a number field k (i.e., a finite extension of the
field Q of rational numbers), a finite set S of places of k, and a scheme X of finite
type over the ring OS ⊆ k of S-integers. To make things more concrete, let us
take k = Q, in which case we can identify S with a finite set of prime numbers
(although technically we always include the infinite places in S), and the ring of
S-integers ZS is the ring of numbers of the form a

b where b is only divisible by
primes in S. To make things even more concrete, one may also imagine that X

is affine, i.e., it is defined by a finite set of equations with coefficients in ZS . We
will denote by the letter X the base change of X from ZS to Q, i.e., the variety
over Q given by the same equations as X. In this talk, we will attempt to say
something intelligent about S-integral points on the affine scheme X ⊆ A4 given
by an equation of the form

at2x2 + bs2x2 + ct2y2 + ds2y2 = 1 (1)

where a, b, c, d ∈ ZS are S-integers such that abcd(ad − bc) 6= 0. However, we
first wish to give a proper context for this question.

When studying S-integral points, one often begins by considering the set of
S-integral adelic points

X(A)
def
=

∏
p∈S

X(Qp)×
∏
p/∈S

X(Zp).

If X(A) = ∅ one may immediately deduce that X has no S-integral points.
When a family of schemes satisfies the implication X(A) 6= ∅ ⇒ X(ZS) 6= ∅ we
say that the family satisfies the S-integral Hasse principle. The name is due
to the Hasse-Minkowski theorem which asserts the analogous claim for rational
points when X is a quadratic hypersurface. For example, if q(x1, ..., xn) is an
indefinite quadratic form in n ≥ 4 variables then the equation q(x1, ..., xn) = a

1



satisfies the S-integral Hasse principle (Eichler, Kneser). The same holds for
certain forms of higher degree, if the number of variables is large enough (circle
method).

In general, it can certainly happen that X(A) 6= ∅ but X(ZS) is still empty.
One way to account for this phenomenon is given by the integral version of
the Brauer-Manin obstruction, introduced in [CTX09]. This is done by
constructing a natural subset X(A)Br ⊆ X(A), which can be defined informally
as those S-integral adelic points which satisfy a certain coherence condition
relating the various primes, and based on the notion of global reciprocity arising
from class field theory.

When X(A)Br = ∅ one says that there is a Brauer-Manin obstruction to the
existence of S-integral points. A central question in the study of integral points
is then the following:

question 1.1. Given a family F of varieties does the property X(A)Br 6= ∅
implies that X has an S-integral point for every X ∈ F?

When the answer to Question 1.1 is yes one says that the Brauer-Manin
obstruction is the only obstruction to the existence of S-integral points for the
family F. In their paper, Colliot-Thélène and Xu showed that if X is a homoge-
neous space under a simply-connected linear algebraic group G with connected
geometric stabilizers, and G satisfies a certain non-compactness condition over
S, then the Brauer-Manin obstruction is the only obstruction to the existence
of S-integral points on X. Similar results hold when X is a principal homo-
geneous space of an algebraic group of multiplicative type (Wei, Xu). On the
other hand, there are several known types of counter-examples, i.e., families
for which the answer to Question 1.1 is negative. One way to construct such
counter-example is to consider varieties which are not simply-connected. In this
case, one can sometimes refine the Brauer-Manin obstruction by applying it to
various unramified coverings of X (Colliot-Thèléne, Wittenberg). Other types
of counter-examples occur when X lacks a sufficient supply of local S-points “at
infinity”. For example, let r < p < q ∈ Z be odd positive non-square integers
such that the quaternion algebra (r,−p) is nowhere ramified (e.g. r, p = 13, 17).
Then the affine scheme X given by the equation

x2 + py2 + qz2 + pqw2 = r

has a real point and integral points everywhere locally. However, since r is not
a square and p, q > r there is no global integral point on X. This violation of
the integral Hasse principal is not explained by the Brauer-Manin obstruction.
We claim that the problem here arises from the fact that X lacks real points at
infinity (note that in this case the set S contains only the real place). To see
this, we may consider the smooth compacitification X ⊆ P4 of X given by

x2 + py2 + qz2 + pqw2 = rv2

The complement D = X \ X is determined, inside X, by the condition v = 0,
and can hence be identified with the surface inside P3 given by

x2 + py2 + qz2 + pqw2 = 0
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Since p, q > 0 we see that D does not have any real points. Another way to see
this phenomenon (in this case) is that the space of real points of X is compact.
As a result, there can a-priori only be finitely many integral points, even though
all S-integral adelic points satisfy “global reciprocity”.

We hence see that the behavior of Question 1.1 for integral points is quite
subtle. In order to obtain a better understanding of it it is important to have
good tools to establish the existence of integral points, when possible. For this
let us recall the standard techniques from the world of rational points which
are used to establish existence (under suitable conditions):

1. Method relying on special structure and special circumstances. Examples
include homogeneous spaces (Borovoi), varieties with special configura-
tions of singular points, varieties with a 0-dimensional moduli, such as del
Pezzo surfaces of degree ≥ 5 (Manin, CT), and others.

2. Analytic methods, such as modern variants of the circle method, sieve
methods and others. Such methods typically apply to varieties defined
by equations whose degrees are small compared to the dimension of the
variety (for smooth proper varieties this can be expressed intrinsically
by saying that anti-canonical class is “big”). For example, smooth cubic
hypersurfaces of dimension n have a rational point if n ≥ 9 (Heath-Brown)
and satisfy the Hasse principle if n ≥ 8 (Hooley).

3. The descent method. When X satisfies certain geometric conditions and
X(A)Br 6= ∅, one may construct a torus torsor Y −→ X, known as the
universal torsor, such that Y (A) 6= ∅. Furthermore the geometry of Y
is often simpler than that of X. One may then reduce question 1.1 for X
to the question of the Hasse principle for Y , and attack the latter using
one of the methods above. The most well known example of this is CT,
SD and Sansuc’s proof that the Brauer-Manin obstruction is the only for
Châtlet surfaces.

4. The fibration method. This method can sometimes be applied when X is
equipped with a dominant morphism π : X −→ B such that the arithmetic
of B and the generic fiber of π is simple enough. In a typical application
the base B is the projective line P1, the generic fiber of π is geometrically
integral, and one is interested in reducing Question 1.1 for X to Ques-
tion 1.1 for the smooth fibers of π. This can be achieved in the following
circumstances:

(a) When all the fibers of π but one are split (CT, Sansuc, Swinnerton-
Dyer, Skorobogatov, Harari).

(b) Under Schinzel’s hypothesis, when all the fibers of π split in an
abelian extension of the base field and the Brauer groups of all the
fibers is trivial (CT, Sansuc, Swinnerton-Dyer, Serre, Skorobogatov).

(c) When all the non-split fibers are defined over the base field (H, Wit-
tenberg).
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5. The descent-fibration method. This method first appeared in Swinnerton-
Dyer’s paper [SD95], where it was applied to diagonal Del-Pezzo surfaces of
degree 4. It was later expanded and generalized to deal with semi-diagonal
Del-Pezzo surfaces of degree 4 ([BSD01],[CT01],[Wit07]), diagonal Del-
Pezzo surfaces of degree 3 ([SD01]), Kummer surfaces ([SDS05], [HS]) and
more general elliptic fibrations ([CT01],[Wit07]). In all these papers one
is trying to establish the existence of rational points on a variety X. In
order to apply the method one exploits a suitable geometric structure on
X in order to reduced the problem to the construction of rational points
on a suitable fibered variety Y −→ P1 whose fibers are torsors under
a family A −→ P1 of abelian varieties. The first step is to apply the
fibration method above in order to find a t ∈ P1(k) such that the fiber
Yt has points everywhere locally (this part typically uses the vanishing of
the Brauer-Manin obstruction, and often requires Schinzel’s hypothesis).
The second step then consists of modifying t until the Tate-Shafarevich
group X1(At) (or a suitable part of it) vanishes, implying the existence
of a k-rational point on Yt. This part usually assumes, in additional to a
possible Schinzel hypothesis, the finiteness of the Tate-Shafarevich group
for all relevant abelian varieties, and crucially relies on the properties of
the Cassels-Tate pairing. The descent-fibration method is currently the
only method powerful enough to prove (though often conditionally) the
existence of rational points on families of varieties which includes non-
rationally connected varieties, such as K3 surfaces.

In principle, methods (1)-(3) above can often be generalized to the context
of integral points, occasionally under addition conditions (such as conditions
regarding real points at infinity, etc.). However, for the descent-fibration method
no such generalization is known. As a consequence, there is currently no class of
non-proper varieties for which question 1.1 is known to have a positive answer,
except for classes which include only homogeneous spaces or only varieties with
very big (log) anti-canonical class. In particular, question 1.1 is not known
to have a positive answer for any class of varieties containing log K3 surfaces
(or, more generally, log Calabi-Yau varieties, i.e., those whose log anti-canonical
class vanishes). In this talk I will describe an approach for adapting the descent-
fibration method to the world of integral points.

The key point is that when working with integral points, one should replace
torsors under abelian varieties with torsors under algebraic tori. Let us
return to our example X ⊆ A4 given by

at2x2 + bs2x2 + ct2y2 + ds2y2 = 1 (2)

Let us set f(t, s) = at2 + bs2 and g(t, s) = ct2 + ds2. We can then write our
equation as

f(t, s)x2 + g(t, s)y2 = 1

If we fix a pair (t0, s0), the equation becomes an affine conic

ax2 + by2 = 1

4



with a = f(t0, s0) and b = g(t0, s0). Furthermore, if a, b are coprime then this
conic is a torsor under the norm 1 torus T(t,s) given by the equation

x2 − dy2 = 1

where d = −ab. We may hence consider X has a two parameter family of
torsors under tori. The homogeneous quadratic dependence on t, s suggests
that we should actually think of this as a one parameter family. Indeed, there
is a natural action of Gm on X given by

(t, s, x, y) 7→ (ut, us, u−1x, u−1y)

The quotient Y = X/Gm is a smooth 2-dimensional scheme over ZS and we
obtain a Cartesian square of ZS-schemes

X
q //

��

Y

π

��
A2
S \ {(0, 0)} // P1

S

where the bottom horizontal map is the standard projection. In particular, given
an S-integral point (t, s) ∈ A2

S \ {(0, 0)} we may identify the fiber X(t,s) with
the fiber Y(t:s). The surface Y is now a (one dimensional) pencil of torsors under
algebraic tori. The varieties X and Y are very similar. They are both log Calabi-
Yau, and for any field k the map X(k) −→ Y (k) is surjective. Furthermore, one
can show that Question 1.1 is equivalent for X and Y.

The first part of the descent-fibration method is the fibration method. Ap-
plied to the case of either Y or X we may obtain a pair (t0, s0) such that the
associated T(t0,s0)-torsor

ax2 + by2 = 1 (3)

has S-integral points everywhere locally. In general, this does not imply that 5
has an S-integral points. However, like with elliptic curves or abelian varieties,
there exists a finite abelian group, that we will denote here by X1(T(t0,s0)) =

X1(T(t0,s0), S(t0, s0)) (where S(t0, s0) is suitable set of places depending on
(t0, s0)), which classifies exactly such everywhere soluble torsors modulu the
soluble ones (where soluble here means soluble by an S(t0, s0)-integral element).
Furthermore, our torsors 3 are not arbitrary torsors of Tt,s. They are in fact
classified by a 2-torsion element of X1(T(t0,s0)). Following the descent-fibration
strategy, one would like to modify the fiber (t0, s0) into another one, (t1, s1),
such that the 2-torsion part X1(T(t1,s1))[2] vanishes. To achieve this, one may
consider the natural perfect pairing

X1(T(t,s))×X2(T̂(t,s)) −→ Q/Z (4)

where T̂(t,s) is the character group of T(t,s), considered as an étale sheaf over

spec(ZS(t,s)). Hence if we can find a fiber (t1, s1) such that X2(T̂(t1,s1))[2] =
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0 then we would be able to conclude that X1(T(t1,s1))[2] = 0, and hence
that our fiber X(t1,s1) has an S-integral point. In order to be able to control

X1(T(t1,s1))[2] we have developed a suitable 2-descent formalism, analogous
to that of elliptic curves an abelian varieties, in which one describes a certain
Selmer group Sel(T̂(t,s)) that is mapped surjectively onto X2(T̂(t,s))[2]. The
kernel of this mapping can be explicitly determined, and so given the group
Sel(T̂(t,s)) one may deduce the size of X2(T̂(t,s))[2]. In particular, one wishes

to reduce the size of Sel(T̂(t,s)) until it will coincide with the above said kernel.

This requires a delicate analysis of the dependence of Sel(T̂(t,s)) on (t, s), which
is very similar to the analysis of the fiber dependence of the Selmer group in a
pencil of elliptic curves, done in the classical application of the descent fibration
method.

Let us now state the main assumptions that are needed in order to apply
the method.

Assumption 1.2.

1. The homogeneous Schinzel’s hypothesis holds for the pair f, g.

2. The classes of −1, −ab , − c
d , ad−bc

a and −ad−bcc are linearly independent
in H1(k,Z/2). In particular, k does not contain a square root of −1.

3. There exists a place v∞ ∈ S0 and a point (tv∞ , sv∞ , xv∞ , yv∞) ∈ X(kv∞)
such that −f(tv∞ , sv∞)g(tv∞ , sv∞) is a square in kv∞ (note that despite
the notation v∞ is not assumed to be an infinite place, just a place of S0).

4. For every place v /∈ S0 there exists a (tv, sv) ∈ Ov such that valv(f(tv, sv)g(tv, sv)) ≤
1.

Remark 1.3.

1. Condition 1.2(2) is analogous in some sense to Condition (D) of [CTSSD98b].
Similarly to the case there, one can also show here that condition 1.2(2)
implies that the 2-torsion of Br(X) is contained in Brvert(X).

2. Condition 1.2(3) guarantees that S0-integral points are no obstructed at
∞ (see [Ha] for a discussion of this notion). For example, if k = Q and
S0 = {∞} then this condition is equivalent to saying that a, b, c, d do
not all have the same sign. Note that if k = Q, S0 = {∞} and all the
a, b, c, d have the same sign then an S0-integral point exists if and only if
one of a, b, c, d is equal to 1. In general, if condition 1.2(2) is not satisfied,
then there exists a finite procedure for determining whether or not an
S0-integral point exists.

3. Condition 1.2(4) seems to be a biproduct of the method of proof. It is
possible that this condition can be removed if the 2-descent procedure
(and the arithmetic duality result it relies on) will be extended to more
general types of tori.
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We are now ready to state our main theorems:

Theorem 1.4. Let k be a number field and S0 a finite set of places of k con-
taining all the archimedean places and all the places above 2. Let a, b, c, d ∈ OS0

be elements such that abcd(ad − bc) 6= 0 and such that conditions 1.2(1)-(4)
are satisfied. If there exists an S0-integral adelic point on X (resp. Y) which is
orthogonal to the vertical Brauer group then there exists an S0-integral point on
X (resp. Y).

2 Some more details, if there is time

Let S0 be a finite set of places of Q containing the real place, and let d ∈ ZS0
be

a non-zero S0-integer. For every divisor a|d we may consider the affine scheme
ZaS0

given by the equation

ax2 + by2 = 1 (5)

where b = − da . We are interested in the solubility in ZS0 of 5. For this we see
that a necessary condition is that a and b will be coprime outside S0. Our goal
in this section is formulate a sufficient condition for equations of the form 5 to
satisfy the S0-integral Hasse principle (see Proposition 2.12 below).

Let K = Q(
√
d) and consider the subring

Od = {a+ b
√
d|a, b ∈ OS0

} ⊆ K

Let T0 denote the set of places of K lying above S0. We note that in general Od
might fail to coincide with the subring of T0-integral elements in K, but for our
purposes we may assume that it does. Let Ia ⊆ Od be the Od-ideal generated
by a and

√
d. The association (x, y) 7→ ax+

√
dy identifies the set of S0-integral

points of X with the set of elements in Ia whose norm is a. We note that Ia is an
ideal of norm a (i.e., Od/Ia ∼= Z/a), and hence we may consider the scheme Z

a,b
S0

as parameterizing generators for Ia whose norm is exactly a. Let TdS0
denote

the algebraic group given the equation

x2 − dy2 = 1

We may identify the S-integral points of TdS0
with the set of units in Od whose

norm is 1 (in which case the group operation is given by multiplication in Od).

We have a natural action of the algebraic group TdS0
on the scheme Z

a,b
S0

corre-
sponding to multiplying a generator by a unit. This action exhibits ZaS0

as a
torsor under TS0 .

We now note that ZaS0
is not an arbitrary torsor of TS0 . Since the norm of

Ia is a and since I2a contains a it follows that I2a = (a). We may define a map

q : ZaS0
−→ TS0

which sends a generator x of Ia of norm a to the element x2

a whose norm is 1.
The action of TS0

on ZaS0
is compatible with the action of TS0

on itself via the
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multiplication-by-2 map TS0

2−→ TS0
. We will say that q is a map of TS0

-torsors

covering the map TS0

2−→ TS0
.

The analogy one should keep in mind is that of abelian varieties. Let A
be an abelian varity over k and let Â be the dual abelian variety. Let X be
an A-torsor equipped with a map of A-torsors q : X −→ A covering the map

A
2−→ A. Then q itself is a torsor under A[2], and determines an element in

α ∈ H1(k,A[2]). If X has points everywhere locally, then α belongs to the
Selmer group Sel2(A). The torsor X has a rational point if and only if image of
α in X1(A)[2] is trivial. Now we have a the Cassels-Tate pairing

X1(A)×X1(Â) −→ Q/Z

which is a perfect pairing if X1(A) is finite. In this case, the vanishing of the

2-torsion subgroup X1(Â)[2] would imply the vanishing of the 2-torsion sub-
group X1(A)[2], and hence the solubility of X. In order to determine whether

X1(Â)[2] vanishes, one may perform the classical 2-descent process on Â: one

may use local computations in order to compute the finite group Sel2(Â). If,

for example, Sel2(Â) consists only if the elements which comes from A[2] under
the boundary map associated to the Kummer sequence, then one may conclude
that X1(Â)[2] is zero and hence X has a rational point.

Remark 2.1. The procedure described above only has a chance to work if A is
not isomorphic to Â over k, otherwise we will find α itself in Sel(Â) ∼= Sel(A),
which will normally not come from a 2-torsion point. However, if A admits a
principal polarization coming from a divisor in Pic(A) then X1(A) will carry
an alternating self-pairing which is non-degenerate if X1(A) is finite. In this
case the 2-torsion subgroup X1(A)[2] must have an even 2-rank. Then, if we
know that Sel2(A) is generated by α and the image of A[2] we may conclude
that dim2 X1(A)[2] ≤ 1 and hence that X1(A)[2] = 0 as desired. This idea is a
core point in Swinnerton-Dyer’s method, where the abelian varieties in question
are most often elliptic curves.

In order to perform our 2-descent process we will need to enlarge our set S0

so that TS0
will become an algebraic torus. Let S be the union of S0 with all

the places which ramify in K and the prime 2, and let T be the set of places
of K which lie above S. Let OT1

denote the ring of T1-integers in K. Let ZaS
and TS be the base changes of ZaS and TS from ZS0 to ZS . We note that TS
becomes isomorphic to Gm after base changing from ZS to OT1 , and OT1/ZS is
an étale extension of rings. This means that TS is an algebraic torus over ZS .
Furthermore, ZaS is now a torsor under the torus TS . We will denote by T̂S be
the character group of TS considered as an étale sheaf over spec(OS).

In order to proceed with our analysis we will now enforce the following
assumption:

Assumption 2.2. The ring Od coincides with the ring of T0-integers in K.

Remark 2.3. Condition 2.2 implies, in particular, that d is square-free outside
S0.
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Let us begin by checking that this base change did not lose any information,
solubility wise:

Lemma 2.4. Assume condition 2.2 and suppose in addition that either 2 ∈ S0

or that d = 2d′ with d′ odd. If ZaS has an S-integral point then ZaS0
has an

S0-integral point.

Proof.

We will use the notation Hi(ZS ,F) to denote étale cohomology of spec(ZS)
with coefficients in the sheaf F.

Definition 2.5.

1. We will denote by X1(TS) ⊆ H1(ZS ,TS) the kernel of the map

H1(ZS ,TS) −→
∏
p∈S

H1(Qp,TS ⊗ZS
Qp).

2. We will denote by X2(T̂S) ⊆ H2(ZS , T̂S) the kernel of the map

H2(OS , T̂S) −→
∏
p∈S

H2(Qp, T̂S ⊗ZS
Qp).

Since TS is an algebraic torus we may apply [Mil, Theorem 4.6(a), 4.7] and

deduce that the groups X1(TS) and X2(T̂S) are finite and that the cup product
in étale cohomology with compact support induces a perfect pairing

X1(TS)×X2(T̂S) −→ Q/Z (6)

Since 2 is invertible in ZS the multiplication by 2 map TS −→ TS is surjective
when considered as a map of étale sheaves on spec(ZS). We hence obtain a short
exact sequence of étale sheaves

0 −→ Z/2 −→ TS
2−→ TS −→ 0.

We define the Selmer group Sel(TS) ⊆ H1(OS ,Z/2) be the subgroup consist-
ing of all elements whose image in H1(ZS ,TS) belongs to X1(TS). We hence
obtain a short exact sequence

0 −→ TS(ZS)2 −→ Sel(TS) −→X1(TS)[2] −→ 0

where TS(ZS)2 denotes the cokernel of the map TS(ZS)
2−→ TS(ZS). Similarly,

we have a short exact sequence of étale sheaves

0 −→ T̂S
2−→ T̂S −→ Z/2 −→ 0

and we define the dual Selmer group Sel(T̂S) ⊆ H1(ZS ,Z/2) to be the sub-

group consisting of all elements whose image in H2(ZS , T̂S) belongs to X2(T̂S).
The dual Selmer group then sits in a short exact sequence of the form

0 −→ H1(ZS , T̂S)2 −→ Sel(T̂S) −→X2(T̂S)[2] −→ 0
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Remark 2.6. By Dirichlet’s unit theorem the 2-rank of TS(OS)2 is equal to the
number of places of S which split in K plus 1. On the dual side, a direct
computation shows that the 2-rank of H1(ZS , T̂S)2 is 1. This is in contrast
to the elliptic curve case where the analogous group is the Mordell-Weil group
whose rank is hard to determine in general.

The map H1(ZS ,Z/2) = Z∗S/(Z∗S)2 −→ H1(TS) can be described explicitly
as follows. To each a ∈ Z∗S we may associate the TS-torsor ZaS given by the
equation

ax2 − d

a
y2 = 1.

By the association (x, y) 7→ ax +
√
dy we may identify S-integral points of ZaS

with T -units in K whose norm is a. Since both d and a are S-units we observe
that each such torsor has an Ov-point for every v /∈ S. We hence see that the
class of a belongs to Sel(TS) if and only if a is everywhere locally a norm from
K. The image of TS(OS)2 −→ Sel(TS) consists of those elements whose image
in H1(OS ,TS) is 0. These are the classes represented by S-units a which are
norm of T -units.

On the dual side, we may consider the short exact sequence

0 −→ T̂S −→ T̂S ⊗Q −→ T̂S ⊗ (Q/Z) −→ 0

Since T̂S ⊗Q is a uniquely divisible sheaf we get an identification

H2(ZS , T̂S) ∼= H1(ZS , T̂S ⊗ (Q/Z))

By the Hocshiled-Serre spectral the latter may be identified with the kernel of
the corestriction map

Cores : H1(OT ,Q/Z) −→ H1(ZS ,Q/Z)

The mapH1(ZS ,Z/2) −→ H2(ZS , T̂S) can then be identified with the composite

H1(ZS ,Z/2)
res−→ H1(OT ,Z/2) −→ H1(OT ,Q/Z)

Indeed, since K/k is a quadratic extension the corestriction of the restriction

of any quadratic extension is 0. The group X2(T̂S) is then the group which
classifies everywhere unramified cyclic extensions of K which split over T and
whose corestriction to OS vanishes. Finally, the 2-torsion part X2(T̂S)[2] is the
group classifying everywhere unramified quadratic extensions of K, splitting
over T , whose corestriction to k vanishes. Using the fact that S contains all
the places with residue characteristic 2 we then obtain the following explicit
description of Sel(T̂):

Corollary 2.7. Let a ∈ Z∗S be an element. Then [a] ∈ Sel(T̂S) if and only if
every place in T splits in K(

√
a).

Corollary 2.8. The kernel of the map Sel(T̂S) −→X2(T̂S) has rank 1 and is

generated by the class [d] ∈ Sel(T̂S).
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Remark 2.9. In might not be immediately clear why the map

Sel(T̂) −→X2(T̂S)[2]

is surjective. Elements in the latter are generally represented by elements α ∈ K,
which are squares in Kw for every w ∈ T , whose valuations are even outside T
and such that NK/k(α) = b2 for some b ∈ Z∗S . By Hilbert 90 we see that in this

case there exists a β ∈ K such that β
σ(β) = α

b and so α = bβ2

NK/k(β)
. In particular,

α is equivalent mod squares to an element a = b
NK/k(β)

which comes from k.

Since α has even valuations outside T -unit it follows that a must have even
valuations outside S (recall that S contains all the ramified places of K). Since
S contains a set of generators for the class group we get that a is equivalent
mod squares to an S-unit.

Our proposed method of 2-descent can be considered as way to calculate the
2-ranks of Sel(TS) and Sel(T̂S). When k = Q our method can be considered
as a repackaging of Gauss’ classical genus theory for computing the 2-torsion of
the class groups of quadratic fields.

The notation introduced in the next few paragraphs follows the analogous
notation of [CTSSD98b] and [CT01]. For each p ∈ S, let Vp and V p denote
two copies of H1(Qp,Z/2) ∼= Q∗p/(Q∗p)2, considered as F2-vector spaces. We will

also denote VS = ⊕p∈SVp and V S = ⊕p∈SV p. By taking the sum of the Hilbert
symbol pairings

〈, 〉p : Vp × V p −→ Z/2 (7)

we obtain a non-degenerate pairing

〈, 〉S : VS × V S −→ Z/2 (8)

Let IS and IS be two copies of the group Z∗S/Z∗S ∼= H1(OS ,Z/2). From our
assumptions on S it follows that the inclusions Q ↪→ Qp induces embeddings

IS ↪→ VS

IS ↪→ V S

and that the dimensions of IS , I
S is exactly half the dimensions of VS , V

S re-
spectively. Furthermore, IS is the orthogonal complement of IS with respect
to 8 and vice versa.

For each p ∈ S let W p ⊆ V p be the subspace generated by the class [d] and
we let Wp ⊆ Vp be the orthogonal complement of W p with respect to 7. We will
denote by WS = ⊕p∈SWv and WS = ⊕p∈SW v. By construction we see that
WS is the orthogonal complement of WS with respect to 8 and vice versa.

Now consider the induced pairings

IS ×WS −→ Z/2 (9)

and
WS × IS −→ Z/2 (10)

We then have the following straightforward lemma (compare [CT01]).
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Lemma 2.10. The Selmer group Sel(TS) can be identified with each of the
following groups:

1. The intersection IS ∩WS.

2. The left kernel of 9.

3. The left kernel of 10.

Similarly, the dual Selmer group Sel(T̂S) can be identified with each of the fol-
lowing groups:

1. The intersection IS ∩WS.

2. The right kernel of 9.

3. The right kernel of 10.

Proof.

Remark 2.11. Let Ssplit ⊆ S0 denote the places of S0 which split in K (recall
that by construction all the places of S \ S0 do not split in K). From our
assumptions on S in follows that dim(IS) = |S| and it is straightforward to
verify that dim(WS) = |S| − |Ssplit|. Since the vector (d, d, ..., d) ∈ WS is
always in the left kernel of 10 we see that the pairing 10 is never of full rank.
However, the rank of 10 may achieve is maximal value of |S| − |Ssplit| − 1,

in which case Sel(T̂) is generated by [d], Sel(T) has dimension |Ssplit| + 1 and

X1(TS)[2] = X2(T̂)[2] = 0. In particular, in such a case every S-unit which is
a norm everywhere locally is a norm of a T -unit.

We are now ready to prove our main result of this section, applying the above
2-descent formalism to obtain sufficient condition for the solubility in OS0

of our
equation of interest:

Proposition 2.12. Assume condition 2.2 and suppose in addition that either
2 ∈ S0 or that d = 2d′ with d′ odd. If Sel(T̂) is generated by [d] then for every
a|d the torsor ZaS0

(see 5) satisfies the S0-integral Hasse principle.
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