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Introduction. Let X be a nice topological space. A classical result in algebraic
topology asserts an equivalence between the category of covering spaces Y Ð→X
and the category of functors Π1(X) Ð→ Set, where Π1(X) is the fundamental
groupoid of X, i.e., the groupoid whose objects are the points in X and whose
morphisms are homotopy classes of paths. From a modern perspective this result
is just the tip of the iceberg. Let us replace the concept of a nice topological spaces
by the equivalent one of a Kan complex, which we may consider in particular as
an ∞-category all of whose morphisms are invertible, i.e., an ∞-groupoid. From
this point of view the fundamental gruopoid can be identified with the homotopy
category of X. The classical classification of covering spaces can now be promoted
to a much more comprehensive result, stating that the concept of a Kan fibration
p ∶ Y Ð→X is essentially equivalent to that of a functor X Ð→ S to the ∞-category
of spaces, where we associate to each point x ∈X the fiber p−1(x) ∈ S.

A similar phenomenon occurs in classical category theory. Given a category C

and a functor F ∶ C Ð→ Cat, one may assemble the various categories {F(A)}A∈C
into a global category ∫C F. The objects of ∫C F are pairs (A,X) where A is an
object of C and X is an object of F(A). A morphism from (A,X) to (B,Y )
is a pair (f,ϕ), where f ∶ A Ð→ B is a morphism in C and ϕ ∶ f!(X) Ð→ Y
is a morphism in F(B), where we denoted by f! ∶ F(A) Ð→ F(B) the functor
associated to f by F. If (f,ϕ) ∶ (A,X) Ð→ (B,Y ) and (g,ψ) ∶ (B,Y ) Ð→ (C,Z) are
morphisms then the composition (ϕ, f)○(ψ, g) = (η, f ○g), where η is the composed

map g!f!X
g!ϕÐ→ g!Y

ψÐ→ Z. The category ∫C F is known as the Grothendieck
construction of F, and carries a natural functor ∫C F Ð→ C given by (A,X) ↦ A.
A fundamental insight of Grothendieck is that under suitable conditions one can
also go the other way and associate to a category over C a functor from C to Cat.
Let us begin by observing that some of the morphisms in ∫C F are more special then
others. These are the morphisms (f,ϕ) where ϕ ∶ f!(X) Ð→X ′ is an isomorphism.
We claim that these morphisms can be characterized intrinsically in a way that
depends only on ∫C F as an abstract category together with the projection to C.

Definition 1. Let π ∶ D Ð→ C be a functor. We will say that a map φ ∶ X Ð→ Y
in D is π-coCartesian if it has the unique relative extension property, that
is, if for every map ψ ∶X Ð→ Z in D and every dotted extension

π(X) πψ //

πφ
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in the projection down to C, there exists a unique dotted extension

X
ψ //

φ

��

Z

Y

ε

>>~
~

~
~

in D such that πε = ρ.

Exercises.

(1) If C = ∗ then a morphism in D is π-coCatesian if and only if it is an isomorphism.
(2) If we take D = ∫C F with the projection π ∶ ∫C F Ð→ C as above, then a morphism

(f,ϕ) ∶ (A,X) Ð→ (B,Y ) is π-coCartesian if and only if ϕ ∶ f!X Ð→ Y is an
isomorphism in F(B).

Grothendieck’s idea was that functors of the form ∫C F Ð→ C can be intrinsically
characterized as those functors which have a sufficient supply of π-coCartesian
maps. More precisely, we have the following definition:

Definition 2. Let π ∶ D Ð→ C be a functor. We will say that π is a coCartesian
fibration if for every morphism f ∶ AÐ→ B in C and every object X ∈D such that
π(X) = A, there exists a π-coCatersian morphism φ ∶ X Ð→ Y such that πφ = f .
A morphism of coCartesian fibrations over C from π ∶ D Ð→ C to π′ ∶ D′ Ð→ C is
a functor F ∶ D Ð→ D′ over C which maps π-coCartesian edges to π′-coCartesian
edges.

Given a category C, the collection of coCartesian fibrations π ∶ D Ð→ C and
their morphisms can be organized into a (2,1)-category coCar(C) (using natural
isomorphisms of functors over C as 2-morphisms). We then have the following
classical theorem:

Theorem 3 (Grothendieck’s correspondence). Let C be a small category. Then the
formation of Grothendieck’s construction induces an equivalence of (2,1)-categories

Fun(C,Cat) ≃Ð→ coCar(C)

The property of having the unique relative extension property can be easily
dualized to obtain the unique relative lifting property. Morphisms satisfying
this condition are called π-Cartesian morphisms. If for every morphism f ∶ AÐ→
B and every Y ∈D such that π(Y ) = B there exists a π-Cartesian map φ ∶X Ð→ Y
lifting f then we say that π is a Cartesian fibration. Using a suitable dual
variant of the Grothendieck construction one can form a similar equivalence between
Cartesian fibrations over C and functors Cop Ð→ Cat, i.e., contravariant functors
from C to Cat. We note that if π ∶DÐ→ C is a coCartesian fibration (corresponding
to a functor F ∶ C Ð→ Cat) then πop ∶ Dop Ð→ Cop is a Cartesian fibration, and
the corresponding functor F′ ∶ (Cop)op = C Ð→ Cat is given by F′(A) = F(A)op. A
similar implication holds in the opposite direction.

(co)Cartesian fibrations of ∞-categories. Having encountered the same phe-
nomenon for families of sets parametrized by a space, families of spaces parametrized
by a space, and families of categories parametrized by a category, we are naturally
led to consider the possibility that all of these can be unified into a global picture
concerning families of ∞-categories parametrized by an ∞-category. In order to
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generalize the definition of a coCartesian edge to the ∞-categorical setting it will
be useful to formulate the unique relative extension property in terms of the as-
sociated map of nerves π ∶ N(D) Ð→ N(C) (which we also denote by π). Indeed,
a pair of maps of the form ϕ ∶ X Ð→ Y,ψ ∶ X Ð→ Z in D can be encoded as a
map of simplicial sets ϕ ∨ ψ ∶ Λ2

0 Ð→ N(D), and an extension of πψ along πϕ can
be encoded as a map of simplicial sets ∆2 Ð→ N(C). If we drop the uniqueness
condition, then the mere existence of a relative extension amounts to the existence
of a dotted lift in the resulting square

Λ2
0

ϕ∨ψ //

��

N(D)

π

��
∆2

<<z
z

z
z

// N(C)

Somewhat surprisingly, the uniqueness can also be phrased as a similar lifting con-
dition using the horn inclusion Λ3

0 ↪∆3.

Exercise. Suppose that the morphism ϕ ∶ X Ð→ Y in D has the (non-unique)
relative extension property. Then ϕ has the unique extension property if and only
if a dotted lift exists in any square of the form

Λ3
0

σ //

��

N(D)

π

��
∆3

<<z
z

z
z

// N(C)

in which σ sends the edge ∆{0,1} ⊆ Λ3
0 to ϕ.

Definition 4. Let π ∶ X Ð→ S be a map of simplicial sets and let ϕ ∶ x Ð→ y be
an edge in X. We will say that ϕ is π-coCartesian if for every n ≥ 2 a dotted lift
exists in every square of the form

(1) Λn0
σ //

��

X

π

��
∆n

>>|
|

|
|

// S

in which σ maps ∆{0,1} ⊆ Λn0 to ϕ. Similarly, we will say that ϕ is π-Cartesian if
the same holds when we replace σ ∶ Λn0 Ð→X in 1 by a map τ ∶ Λnn Ð→X such that

τ maps ∆{n−1,n} to ϕ.

Definition 5. Let π ∶ X Ð→ S be a map of simplicial sets. We will say that
π ∶ X Ð→ S is a coCartesian fibration (resp. Cartesian fibration) if the
following conditions hold:

(1) π is an inner fibration, i.e., π satisfies the right lifting property with
respect to all horn inclusions Λni ↪ ∆n with 0 < i < n (this condition is
automatic when X and S are nerves of discrete categories).

(2) For every edge f ∶ a Ð→ b in S and every x ∈ X such that π(x) = a
(resp. every y ∈ X such that π(y) = b) there exists a π-coCartesian (resp.
π-Cartesian) edge ϕ ∶ xÐ→ y such that π(ϕ) = f .
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Remark 6. The terminal map π ∶ X Ð→ ∗ is a (co)Cartesian fibration if and only
if X is an ∞-category, in which case the π-(co)Cartesian edges are exactly the
equivalences.

Remark 7. By definition the property of being a (co)Cartesian fibration is invariant
under base change. In other words, if π ∶ X Ð→ S is a (co)Cartesian fibration and
T Ð→ S is any map then X ×S T Ð→ T is a (co)Cartesian fibration. In particular,
if π ∶ X Ð→ S is a (co)Cartesian fibration then the fiber π−1(s) is an ∞-category
for every s ∈ S.

The Lurie-Grothendieck correspondence. As in the case of discrete categories
the collection of coCatersian fibrations over S can be organized into an ∞-category
coCar(S) whose mapping spaces are the subspaces of maps over S which preserve
coCartesian edges. We then have the following higher categorical analogue of The-
orem 3

Theorem 8 (The Lurie-Grothendieck correspondence). For S ∈ Set∆ there exists
an equivalence of ∞-categories

Un∞S ∶ Fun(S,Cat∞) ≃Ð→ coCar(S)
which is compatible with base change and which reduces to the tautological identifi-
cation

coCar(∗) = Cat∞
IdÐ→ Cat∞ = Fun(∗,Cat∞)

for S = ∗. Furthermore, if S = N(C) is the nerve of a discrete category and F ∶
C Ð→ Cat∞ factors through the full (2,1)-subcategory Cat ⊆ Cat∞, then Un∞S (F)
is naturally equivalent to ∫C F. The same claim holds if we replace coCar(S) by
Car(S) and Fun(S,Cat∞) by Fun(Sop,Cat∞).

If π ∶ X Ð→ S is a coCartesian fibration and F ∶ S Ð→ Cat∞ is such that
Un∞S (F) ≃ (π ∶ X Ð→ S) then we will say that π ∶ X Ð→ S is classified by F.
By compatibility with base change we mean that if f ∶ T Ð→ S is a map
of simplicial sets then under the Lurie-Grothendieck correspondence the functor
f∗ ∶ coCar(S) Ð→ coCar(T ) given by (X Ð→ S) ↦ (X ×S T Ð→ T ) corresponds
to the restriction functor Fun(S,Cat∞) Ð→ Fun(T,Cat∞). Combined with the
“normalization” condition for S = ∗ this means that π ∶ X Ð→ S is a coCartesian
fibration classified by a functor F ∶ S Ð→ Cat∞ then for every s ∈ S the ∞-category
F(s) is equivalent to the fiber π−1(s).

Let us now say a few words about the proof of the Lurie-Grothendieck corre-
spondence (see [Lu09, §3]). The main idea consists of finding suitable model cate-
gories which model the ∞-categories on both sides and then constructing explicit
Quillen equivalence between them. This is done by introducing the category Set+∆
is marked simplicial sets. A marked simplicial set is a pair (X,M) where X is
a simplicial set and M ⊆ X1 is a collection of edges containing all the degenerate
edges. Given a simplicial set X one denotes by X♯ = (X,X1) the marked simplicial
set in which all edges are marked. The path to the proof of the Lurie-Grothendieck
correspondence passes through the following steps:

(1) There exists a model structure on Set+∆ whose underlying ∞-category is Cat∞.
(2) Let C = C[S] be the simplicial category generated from S. Then the model

structure of (1) induces a model structure on the functor category (Set+∆)C
whose underlying ∞-category is Fun(S,Cat∞).
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(3) The category (Set+∆)/S♯ of marked simplicial set over S♯ can be endowed with
a model structure whose underlying ∞-category is coCar(S).

(4) There exists a Quillen equivalence

St+S ∶ (Set+∆)/S♯
// (Set+∆)C ∶ Un+S⊥oo

which is suitably compatible with base change, and such that for S = ∗ the
resulting Quillen equivalence St+∗ ⊣ Un+∗ is naturally equivalent to the identity.
Furthermore, if S = N(C) is the nerve of a discrete category and F ∶ CÐ→ Cat∞
factors through Cat ⊆ Cat∞, then Un∞S (F) is naturally equivalent to the nerve
of ∫C F (with the marked edges being the coCartesian ones).

The functors St+S and Un+S are known as the straightening and unstraighten-
ing functors. The exact form of these functors will not be important for us, mainly
because we will take the position that if S is a simplicial set then coCartesian fi-
brations X Ð→ S are a much more convenient and accessible object then functors
S Ð→ Cat∞, which are typically very hard to construct explicitly. A framework
which allows one to work as much as possible within the realm of coCartesian fi-
brations, without ever having to explicitly straighten or unstraighten any functor,
is hence highly desirable, if not indispensable.

Examples and constructions. Let us begin by singling out an important par-
ticular case of coCartesian fibrations.

Claim 9. Let p ∶ X Ð→ S be a (co)Cartesian fibration. Then the following condi-
tions are equivalent:

(1) Every edge of X is p-(co)Cartesian.
(2) For every s ∈ S the ∞-category π−1(s) is an ∞-groupoid.
(3) The functor classifying π takes values in the full subcategory Grp∞ ⊆ Cat∞

spanned by ∞-groupoids.

A coCartesian fibration π ∶ X Ð→ S satisfying the equivalent conditions of
Claim 9 is called a left fibration, and a Cartesian fibration satisfying these condi-
tions is called a right fibration. Combing condition (1) of Claim 9 with Condition
(1) of Definition 5 we see that an arbitrary map π ∶ X Ð→ S is a left (resp. right)
fibration if and only if π has the right lifting property with respect to all horn in-
clusion of the form Λni ⊆ ∆n for 0 ≤ i < n (resp. 0 < i ≤ n). The Lurie-Grothendieck
correspondence then descends to an equivalence between the ∞-category of left
(resp. right) fibrations over S and the ∞-category of functors S Ð→ Grp∞ (resp.
Sop Ð→ Grp∞).

Let us now review a few examples of how to express everyday common functors
as (co)Cartesian fibrations. We begin with (co)representable functors. Let C be
an ∞-category. The most basic type of a functor C Ð→ Cat∞ is the functor which
associates to an object y ∈ C the mapping space MapC(x, y) ∈ Grp∞ ⊆ Cat∞ out of
a fixed object of C. Such functors are called corepresentable functors. The cor-
responding coCartesian fibration, which is in particular a left fibration, is denoted
by Cx/ Ð→ C and can be constructed explicitly as follows: the n-simplices of Cx/

are given by the (n + 1)-simplices σ ∶ ∆n+1 Ð→ C such that σ sends ∆{0} ⊆ ∆n+1

to x. The ∞-category Cx/ is known as the coslice ∞-category. Loosely speaking,
this is the ∞-category whose objects are pairs (y, f) where y is an object of C and
f ∶ x Ð→ y is a map. On the dual side, we may also consider the right fibration
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C/x Ð→ C where C/x is the simplicial set whose n simplices are given by the (n+1)-
simplices σ ∶ ∆n+1 Ð→ C such that σ sends ∆{n+1} ⊆ ∆n+1 to x. The right fibration
C/x Ð→ C models the representable (contravariant) functor y ↦MapC(y, x).

The collection of all representable functors can be organized into a single canon-
ical functor Cop × C Ð→ Cat∞ which sends (x, y) to MapC(x, y) ∈ Grp∞ ⊆ Cat∞.
Let us now see how we can construct this functor as a right fibration in an in-
trinsic way. If I is a linearly ordered set, we let Iop denote the same set with the
opposite ordering. If I and J are linearly ordered sets, we let I ∗ J denote the
coproduct I∐J equipped with the unique linear ordering which restricts to the
given linear orderings of I and J , and satisfies i ≤ j for i ∈ I and j ∈ J . Let ∆ de-
note the category of combinatorial simplices. The construction I ∗ Iop determines
a functor Q ∶ ∆ Ð→ ∆ to itself, given on objects by Q([n]) = [2n + 1]. If C is an
∞-category then we let TwArr(C) denote the ∞-category whose n-simplices are
given by the Q([n])-simplices of of C. By construction, the vertices of TwArr(C)
are edges f ∶ x Ð→ y in C. More generally, the n-simplices of TwArr(C) are given
by (2n + 1)-simplices of C, which we may depict as diagrams

x0
//

��

x1
//

��

... // xn

��
y0 y1
oo ...oo ynoo

The natural maps I Ð→ I ∗ Iop and Iop Ð→ I ∗ Iop induce a map TwArr(C) Ð→
C × Cop.

Claim 10 ([Lu09, Proposition 5.2.1.3]). The map TwArr(C) Ð→ C×Cop is a right
fibration classifying the contravariant functor (x, y) ↦MapC(x, y).

Let us now review some more elaborated funtoriality properties of (co)Cartesian
fibrations. Let f ∶ X Ð→ S be a map of simplicial sets. The functor f∗ ∶
(Set∆)/S Ð→ (Set∆)/X has both a left adjoint and a right adjoint. Then left
adjoint f! ∶ (Set∆)/X Ð→ (Set∆)/S is given by sending Y Ð→ X to the composed
map Y Ð→ X Ð→ S. The right adjoint f∗ ∶ (Set∆)/X Ð→ (Set∆)/S is given by
sending Y Ð→ X to the simplicial set f∗Y Ð→ S over S defined by the property
that if σ ∶ ∆n Ð→ S is a simplex then HomS(σ, f∗Y ) = HomT (X ×S ∆n, Y ). In
general, neither f! nor f∗ send (co)Cartesian fibrations to (co)Cartesian fibrations.
However, there are special cases where this does hold:

Proposition 11 ([Lu09],[Lu14, §B.4]).

(1) If f ∶ X Ð→ S is a coCartesian fibration then f! sends coCartesian fibrations
over X to coCartesian fibrations over S.

(2) If f ∶ X Ð→ S is a Cartesian fibration then f∗ sends coCartesian fibration
over X to coCartesian fibration over S.

In the cases described in Proposition 11 the operation f! corresponds under
the Lurie-Grothendieck correspondence to a type of lax left Kan extension
Fun(X,Cat∞) Ð→ Fun(S,Cat∞). Similarly, the operation f∗ corresponds to a
type of lax right Kan extension. It is useful to single out the following instances
of Proposition 11:

Corollary 12 ([Lu09, Corollary 3.2.2.12]). Let p ∶ Y Ð→ S be a coCartesian fibra-
tion classified by F ∶ S Ð→ Cat∞ and let f ∶X Ð→ S be a map. Then:
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(1) If f is a coCatesian fibration classified by the functor G ∶ S Ð→ Cat∞ then
f!f

∗Y Ð→ S is a coCartesian fibration classified by the functor s↦ G(s)×F(s).
(2) If f is a Catesian fibration classified by the functor G ∶ Sop Ð→ Cat∞ then

f∗f
∗Y Ð→ S is a coCartesian fibration classified by the functor s↦ Fun(G(s),F(s)).

The Hinich Comparison theorem. Recall that a relative category is a category
C equipped with a collection of morphisms W which contains all identities, and
which are usually referred to as weak equivalences. The ∞-localization C Ð→
C[W−1] of C by W is an ∞-category under C satisfying the following universal
property: for every ∞-category D, the restriction map

Fun(C[W−1],D) Ð→ Fun(C,D)
is fully-faithful and its essential image consists of those functors CÐ→D which send
every morphism in W to an equivalence. When W is implied we will also denote
C[W−1] by C∞. A functor F ∶ (C,W) Ð→ (D,U) is called a Dwyer-Kan equiv-
alence if it induces an equivalence of ∞-categories after ∞-localization. Let us
denote by RelCat the category of (small) relative categories and let DK denote the

collection of Dwyer-Kan equivalences. It is then well-known that RelCat[DK−1] ≃
Cat∞, and so we can consider (RelCat,DK) as a model for the theory of ∞-
categories. A typical scenario in which families of ∞-categories do come with an
explicit parametrization is when they come from a family of relative categories via
∞-localization. More specifically consider the situation where we have a functor of
relative categories F ∶ (C,W) Ð→ (RelCat,DK), i.e., we have a family of relative
categories parametrized by C, such that morphisms in W are sent to Dwyer-Kan
equivalences. By the universal property of ∞-localizations F descends to an essen-
tially unique functor

F∞ ∶ C∞ Ð→ Cat∞

and we can model F∞ by a suitable coCartesian fibration p ∶ Un∞C∞(F∞) Ð→ C∞.
On the other hand, we may form the classical Grothendieck construction ∫C F Ð→ C

and promote it to a relative category by declaring that a map (f,ϕ) ∶ (A,X) Ð→
(B,Y ) in ∫C F is a weak equivalence if f ∶ A Ð→ B is a weak equivalence in C and
ϕ ∶ f!X Ð→ Y is a weak equivalence in F(B). The projection π ∶ ∫C F Ð→ C then
become a functor of relative categories. By the compatibility of unstraightening
with the Grothendieck construction and with base change we obtain a natural
commutative diagram

∫C F //

π

��

Un∞C∞(F∞)

p

��
C // C∞

We then have the following theorem of Hinich (see [Hi13]):

Theorem 13 (The Hinich comparison theorem). The induced functor

(∫C F)∞

##H
HH

HH
HH

HH
// Un∞C∞(F∞)

yyttt
tt
tt
tt

C∞

is an equivalence of ∞-categories over C∞.
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