(CO)CARTESIAN FIBRATIONS
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Introduction. Let X be a nice topological space. A classical result in algebraic
topology asserts an equivalence between the category of covering spaces Y — X
and the category of functors II;(X) — Set, where II;(X) is the fundamental
groupoid of X, i.e., the groupoid whose objects are the points in X and whose
morphisms are homotopy classes of paths. From a modern perspective this result
is just the tip of the iceberg. Let us replace the concept of a nice topological spaces
by the equivalent one of a Kan complex, which we may consider in particular as
an oo-category all of whose morphisms are invertible, i.e., an co-groupoid. From
this point of view the fundamental gruopoid can be identified with the homotopy
category of X. The classical classification of covering spaces can now be promoted
to a much more comprehensive result, stating that the concept of a Kan fibration
p:Y — X is essentially equivalent to that of a functor X — 8 to the oo-category
of spaces, where we associate to each point x € X the fiber p~!(x) € 8.

A similar phenomenon occurs in classical category theory. Given a category C
and a functor F : € — Cat, one may assemble the various categories {F(A4)}ace
into a global category [, F. The objects of [, F are pairs (A4, X) where A is an
object of € and X is an object of F(A). A morphism from (A4,X) to (B,Y)
is a pair (f,¢), where f : A — B is a morphism in € and ¢ : fi(X) — Y
is a morphism in F(B), where we denoted by fi : F(A) — F(B) the functor
associated to f by F. If (f,¢): (A, X) — (B,Y) and (g,%) : (B,Y) — (C, Z) are
morphisms then the composition (¢, f)o (1, g) = (1, fog), where 7 is the composed

map g1 1X 29 qY 2, Z. The category [, F is known as the Grothendieck
construction of F, and carries a natural functor [, ¥ — € given by (4,X) — A.
A fundamental insight of Grothendieck is that under suitable conditions one can
also go the other way and associate to a category over C a functor from C to Cat.
Let us begin by observing that some of the morphisms in [, @ J are more special then
others. These are the morphisms (f,¢) where ¢ : fi(X) — X’ is an isomorphism.
We claim that these morphisms can be characterized intrinsically in a way that
depends only on [, F as an abstract category together with the projection to €.

Definition 1. Let 7 : D — € be a functor. We will say that a map ¢ : X — Y
in D is m-coCartesian if it has the unique relative extension property, that
is, if for every map ¢ : X — Z in D and every dotted extension

7(X) s 1(2)
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in the projection down to €, there exists a unique dotted extension

x-Ysz

in D such that 7e = p.

FEzercises.

(1) If € = * then a morphism in D is m-coCatesian if and only if it is an isomorphism.

(2) If we take D = fe F with the projection 7 : fe J — € as above, then a morphism
(f,p): (A, X) — (B,Y) is m-coCartesian if and only if ¢ : /X — Y is an
isomorphism in F(B).

Grothendieck’s idea was that functors of the form [, ¥ — € can be intrinsically
characterized as those functors which have a sufficient supply of m-coCartesian
maps. More precisely, we have the following definition:

Definition 2. Let 7: D — C be a functor. We will say that 7 is a coCartesian
fibration if for every morphism f: A — B in € and every object X € D such that
m(X) = A, there exists a m-coCatersian morphism ¢ : X — Y such that 7¢ = f.
A morphism of coCartesian fibrations over € from 7: D — Cto n’' : D' — C is
a functor F: D — D’ over € which maps m-coCartesian edges to m'-coCartesian
edges.

Given a category C, the collection of coCartesian fibrations 7 : D — € and
their morphisms can be organized into a (2,1)-category coCar(€) (using natural
isomorphisms of functors over € as 2-morphisms). We then have the following
classical theorem:

Theorem 3 (Grothendieck’s correspondence). Let C be a small category. Then the
formation of Grothendieck’s construction induces an equivalence of (2,1)-categories

Fun(C, Cat) — coCar(€)

The property of having the unique relative extension property can be easily
dualized to obtain the unique relative lifting property. Morphisms satisfying
this condition are called m-Cartesian morphisms. If for every morphism f: A —
B and every Y € D such that 7(Y") = B there exists a m-Cartesian map ¢: X — Y
lifting f then we say that 7 is a Cartesian fibration. Using a suitable dual
variant of the Grothendieck construction one can form a similar equivalence between
Cartesian fibrations over € and functors C°® — Cat, i.e., contravariant functors
from € to Cat. We note that if 7 : D — € is a coCartesian fibration (corresponding
to a functor F : € — Cat) then 7°P : D°P — C°P is a Cartesian fibration, and
the corresponding functor 3’ : (C°P)°P = € — Cat is given by F'(A4) = F(A)°P. A
similar implication holds in the opposite direction.

(co)Cartesian fibrations of co-categories. Having encountered the same phe-
nomenon for families of sets parametrized by a space, families of spaces parametrized
by a space, and families of categories parametrized by a category, we are naturally
led to consider the possibility that all of these can be unified into a global picture
concerning families of co-categories parametrized by an oco-category. In order to
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generalize the definition of a coCartesian edge to the oco-categorical setting it will
be useful to formulate the unique relative extension property in terms of the as-
sociated map of nerves 7 : N(D) — N(C) (which we also denote by 7). Indeed,
a pair of maps of the form ¢ : X — Y ¢ : X — Z in D can be encoded as a
map of simplicial sets ¢ v 1) : A3 — N(D), and an extension of 7y along 7@ can
be encoded as a map of simplicial sets A? — N(C). If we drop the uniqueness
condition, then the mere existence of a relative extension amounts to the existence
of a dotted lift in the resulting square

AZ 2L N(D)

Lk

A? — = N(©C)

Somewhat surprisingly, the uniqueness can also be phrased as a similar lifting con-
dition using the horn inclusion A3 — A3.

Ezercise. Suppose that the morphism ¢ : X — Y in D has the (non-unique)
relative extension property. Then ¢ has the unique extension property if and only
if a dotted lift exists in any square of the form

A3 —7=N(D)

Lk

A3 ——= N(€)
in which o sends the edge A0} ¢ A} to .

Definition 4. Let 7: X — S be a map of simplicial sets and let ¢ :  — y be
an edge in X. We will say that ¢ is m-coCartesian if for every n > 2 a dotted lift
exists in every square of the form

(1) Af ——=X

Lk

A" — S

in which o maps A% ¢ AZ to . Similarly, we will say that ¢ is 7-Cartesian if
the same holds when we replace o : Af — X in[I|by a map 7: A — X such that
7 maps A1) to .

Definition 5. Let 7 : X — S be a map of simplicial sets. We will say that
m: X — S is a coCartesian fibration (resp. Cartesian fibration) if the
following conditions hold:

(1) m is an inner fibration, i.e., 7 satisfies the right lifting property with
respect to all horn inclusions A} — A™ with 0 < ¢ < n (this condition is
automatic when X and S are nerves of discrete categories).

(2) For every edge f :a — b in S and every = € X such that n(z) = a
(resp. every y € X such that m(y) = b) there exists a w-coCartesian (resp.
m-Cartesian) edge ¢ : © — y such that 7w(p) = f.
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Remark 6. The terminal map 7 : X — * is a (co)Cartesian fibration if and only
if X is an oo-category, in which case the 7-(co)Cartesian edges are exactly the
equivalences.

Remark 7. By definition the property of being a (co)Cartesian fibration is invariant
under base change. In other words, if 7: X — S is a (co)Cartesian fibration and
T — S is any map then X xgT — T is a (co)Cartesian fibration. In particular,
if 7: X — S is a (co)Cartesian fibration then the fiber 771(s) is an co-category
for every se€ S.

The Lurie-Grothendieck correspondence. As in the case of discrete categories
the collection of coCatersian fibrations over S can be organized into an oco-category
coCar(.S) whose mapping spaces are the subspaces of maps over S which preserve
coCartesian edges. We then have the following higher categorical analogue of The-
orem [3]

Theorem 8 (The Lurie-Grothendieck correspondence). For S € Seta there exists
an equivalence of co-categories

Ung : Fun(S, Cate,) —> coCar(S)

which is compatible with base change and which reduces to the tautological identifi-
cation

coCar(*) = Cate 1, Cates = Fun(*, Catos)

for S = x. Furthermore, if S = N(@) is the nerve of a discrete category and F :
C — Cate factors through the full (2,1)-subcategory Cat € Cateo, then Ung (F)
is naturally equivalent to [, F. The same claim holds if we replace coCar(S) by
Car(S) and Fun(S, Cates) by Fun(S°, Cate ).

If #: X — S is a coCartesian fibration and F : S — Cat is such that
Ung(F) ~ (7 : X — S) then we will say that 7 : X — S is classified by F.
By compatibility with base change we mean that if f : T — S is a map
of simplicial sets then under the Lurie-Grothendieck correspondence the functor
f* : coCar(S) — coCar(T) given by (X — S) » (X xg T —> T') corresponds
to the restriction functor Fun(S,Cate) — Fun(7T,Cate). Combined with the
“normalization” condition for S = * this means that 7 : X — S is a coCartesian
fibration classified by a functor F: S — Cat, then for every s € S the co-category
F(s) is equivalent to the fiber 771(s).

Let us now say a few words about the proof of the Lurie-Grothendieck corre-
spondence (see [Lu09, §3]). The main idea consists of finding suitable model cate-
gories which model the co-categories on both sides and then constructing explicit
Quillen equivalence between them. This is done by introducing the category Set}x
is marked simplicial sets. A marked simplicial set is a pair (X, M) where X is
a simplicial set and M < X7 is a collection of edges containing all the degenerate
edges. Given a simplicial set X one denotes by X! = (X, X) the marked simplicial
set in which all edges are marked. The path to the proof of the Lurie-Grothendieck
correspondence passes through the following steps:

(1) There exists a model structure on Set} whose underlying co-category is Cateo.

(2) Let € = €[S] be the simplicial category generated from S. Then the model
structure of (1) induces a model structure on the functor category (Setk)®
whose underlying oo-category is Fun(S, Cate ).
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(3) The category (Setp );si of marked simplicial set over S* can be endowed with
a model structure whose underlying oo-category is coCar(S).
(4) There exists a Quillen equivalence

Stg: (Seta)yss — £ (SetA)®:Ung

which is suitably compatible with base change, and such that for S = = the
resulting Quillen equivalence StI + Un! is naturally equivalent to the identity.
Furthermore, if S = N(C€) is the nerve of a discrete category and F: € — Cato,
factors through Cat € Cate, then Ung (F) is naturally equivalent to the nerve
of [¢ F (with the marked edges being the coCartesian ones).

The functors St§ and Ung are known as the straightening and unstraighten-
ing functors. The exact form of these functors will not be important for us, mainly
because we will take the position that if S is a simplicial set then coCartesian fi-
brations X — S are a much more convenient and accessible object then functors
S — Cateo, which are typically very hard to construct explicitly. A framework
which allows one to work as much as possible within the realm of coCartesian fi-
brations, without ever having to explicitly straighten or unstraighten any functor,
is hence highly desirable, if not indispensable.

Examples and constructions. Let us begin by singling out an important par-
ticular case of coCartesian fibrations.

Claim 9. Let p: X — S be a (co)Cartesian fibration. Then the following condi-

tions are equivalent:

(1) Every edge of X is p-(co)Cartesian.

(2) For every s € S the co-category n=1(s) is an co-groupoid.

(8) The functor classifying  takes values in the full subcategory Grp,, € Cateo
spanned by oo-groupoids.

A coCartesian fibration m : X — S satisfying the equivalent conditions of
Claim [Jis called a left fibration, and a Cartesian fibration satisfying these condi-
tions is called a right fibration. Combing condition (1) of Claim [J] with Condition
(1) of Definition [5| we see that an arbitrary map = : X — S is a left (resp. right)
fibration if and only if 7 has the right lifting property with respect to all horn in-
clusion of the form A ¢ A™ for 0 <i<n (resp. 0 <i<n). The Lurie-Grothendieck
correspondence then descends to an equivalence between the co-category of left
(resp. right) fibrations over S and the oco-category of functors S — Grp,, (resp.
SP — Grpg,)-

Let us now review a few examples of how to express everyday common functors
as (co)Cartesian fibrations. We begin with (co)representable functors. Let C be
an oo-category. The most basic type of a functor € — Cat, is the functor which
associates to an object y € C the mapping space Mape(z,y) € Grp,, € Cate, out of
a fixed object of €. Such functors are called corepresentable functors. The cor-
responding coCartesian fibration, which is in particular a left fibration, is denoted
by €,/ — € and can be constructed explicitly as follows: the n-simplices of C,,
are given by the (n + 1)-simplices o : A™*' — @ such that o sends A{%} ¢ An+?
to z. The oco-category C,, is known as the coslice co-category. Loosely speaking,
this is the oo-category whose objects are pairs (y, f) where y is an object of € and
f:ix — yis a map. On the dual side, we may also consider the right fibration
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€/, — € where C, is the simplicial set whose n simplices are given by the (n+1)-
simplices o : A™! — @ such that o sends A{"*1} ¢ A"*1 to 2. The right fibration
€/, — € models the representable (contravariant) functor y = Mape (y, ).

The collection of all representable functors can be organized into a single canon-
ical functor C°? x € — Cate, which sends (z,y) to Mape(z,y) € Grp,, S Cateo.
Let us now see how we can construct this functor as a right fibration in an in-
trinsic way. If I is a linearly ordered set, we let I°P denote the same set with the
opposite ordering. If I and J are linearly ordered sets, we let I = J denote the
coproduct I[]J equipped with the unique linear ordering which restricts to the
given linear orderings of I and J, and satisfies ¢ < j for i € I and j € J. Let A de-
note the category of combinatorial simplices. The construction I * I°P determines
a functor @ : A — A to itself, given on objects by Q([n]) = [2n +1]. If € is an
oo-category then we let TwArr(C) denote the oo-category whose n-simplices are
given by the Q([n])-simplices of of €. By construction, the vertices of TwArr(C)
are edges f:x — y in €. More generally, the n-simplices of TwArr(€) are given
by (2n + 1)-simplices of €, which we may depict as diagrams

i) i) Tn
Yo n Yn

The natural maps I — I % I°? and I°® — [ % I°? induce a map TwArr(C) —
C x C°P,

Claim 10 ([Lu09, Proposition 5.2.1.3]). The map TwArr(C) — € x C°? is a right
fibration classifying the contravariant functor (x,y) — Mape(z,y).

Let us now review some more elaborated funtoriality properties of (co)Cartesian
fibrations. Let f : X — S be a map of simplicial sets. The functor f*
(Seta);s — (Seta),x has both a left adjoint and a right adjoint. Then left
adjoint fi : (Seta);x — (Seta),s is given by sending ¥ — X to the composed
map Y — X — §. The right adjoint f. : (Seta);x — (Seta),s is given by
sending Y — X to the simplicial set f,Y — S over S defined by the property
that if o : A" — S is a simplex then Homg(o, f,Y) = Homp(X xg A™Y). In
general, neither fi nor f, send (co)Cartesian fibrations to (co)Cartesian fibrations.
However, there are special cases where this does hold:

Proposition 11 ([Lu09],[Luldl §B.4]).

(1) If f: X — S is a coCartesian fibration then fi sends coCartesian fibrations
over X to coCartesian fibrations over S.

(2) If f: X — S is a Cartesian fibration then f. sends coCartesian fibration
over X to coCartesian fibration over S.

In the cases described in Proposition the operation f; corresponds under
the Lurie-Grothendieck correspondence to a type of lax left Kan extension
Fun(X,Cate,) — Fun(S,Cate,). Similarly, the operation f. corresponds to a
type of lax right Kan extension. It is useful to single out the following instances
of Proposition

Corollary 12 ([Lu09l Corollary 3.2.2.12]). Let p: Y — S be a coCartesian fibra-
tion classified by F: S — Cate, and let f: X — S be a map. Then:
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(1) If f is a coCatesian fibration classified by the functor G : S — Cato, then
HY — S is a coCartesian fibration classified by the functor s — G(s)xF(s).

(2) If f is a Catesian fibration classified by the functor G : S — Cats, then
[+ /Y — S is a coCartesian fibration classified by the functor s = Fun(G(s),F(s)).

The Hinich Comparison theorem. Recall that a relative category is a category
C equipped with a collection of morphisms W which contains all identities, and
which are usually referred to as weak equivalences. The co-localization ¢ —
C[W] of € by W is an oo-category under € satisfying the following universal
property: for every co-category D, the restriction map

Fun(C[W™],D) — Fun(€, D)

is fully-faithful and its essential image consists of those functors € — D which send
every morphism in W to an equivalence. When W is implied we will also denote
C[W™] by Ce. A functor F: (€, W) — (D, U) is called a Dwyer-Kan equiv-
alence if it induces an equivalence of co-categories after oo-localization. Let us
denote by RelCat the category of (small) relative categories and let DK denote the
collection of Dwyer-Kan equivalences. It is then well-known that RelCat[DK '] ~
Cate,, and so we can consider (RelCat,DK) as a model for the theory of oco-
categories. A typical scenario in which families of co-categories do come with an
explicit parametrization is when they come from a family of relative categories via
oo-localization. More specifically consider the situation where we have a functor of
relative categories F : (€, W) — (RelCat, DK), i.e., we have a family of relative
categories parametrized by €, such that morphisms in W are sent to Dwyer-Kan
equivalences. By the universal property of co-localizations F descends to an essen-
tially unique functor
Foo : Coo — Cateo

and we can model Fo, by a suitable coCartesian fibration p : Ung_(Feo) — Coo.
On the other hand, we may form the classical Grothendieck construction [, ¥ — €
and promote it to a relative category by declaring that a map (f,¢) : (4,X) —
(B,Y) in [, F is a weak equivalence if f: A — B is a weak equivalence in € and
¢: fiX — Y is a weak equivalence in F(B). The projection 7 : [, F — € then
become a functor of relative categories. By the compatibility of unstraightening
with the Grothendieck construction and with base change we obtain a natural
commutative diagram

JoF—Ung_(Fu)

yok
C—Cx
We then have the following theorem of Hinich (see [Hil3]):

Theorem 13 (The Hinich comparison theorem). The induced functor

(JeF)oo —————= Ung_(J)
\ ) /

s an equivalence of oo-categories over Co,.
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