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Introduction

Recall that the lecture yesterday where we have learned of the notion of an
∞-category, which models the appropriate weak version of a category enriched
in spaces. ∞-categories themselves form an ∞-category which admits various
models, in particular the complete Segal space combinatorial model cate-
gory. The∞-category of∞-categories has all limits and colimits, and in partic-
ular all products. Hence one can try to consider a notion of (∞, 2)-categories,
which should be the appropriate weak version of ∞-categories enriched in
∞-categories.

There are several ways to access the notion of enriched categories. Let us
consider first the discrete case. Let M be a category and assume for simplicity
that it admits all small limits and colimits. One can then consider the notion of
categories enriched in M (with respect to the cartesian monoidal structure).

One way to approach this object, which will be relevant to this workshop,
is to compare it with the notion of categories internal to M. This means
that we look at a(small) category as a certain diagram in sets involving the set
of objects O, the set of morphisms (or arrows) A, the source and target maps
s, t : A −→ O, the identity map O −→ A and the composition map

A×O A −→ A

which is required to be associative and unital (all conditions that be expressed by
the commutativity of certain obvious diagrams). This ”diagramatic” definition
makes sense in any category M which has fiber products (and in particular in
our M which has all limits), by taking A and O to be objects of M and all the
maps to be morphisms in M. This gives the notion of a category internal to M.

The notion of a category enriched in M is obviously a different one. However,
in some cases we can make a connection between the two. The first difference
one encounters is that in a (small) category C the objects Ob(C) are always a
set, and not an object of M. Hence in order to make any connection between
enriched and internal categories one needs to be able to interpret sets as objects
in M. Note that that since M has coproducts and a terminal object one can
construct a functor

c : Set −→M
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by setting

c(A) =
∐
A

∗

where ∗ ∈ M is the terminal object. We can then make sense of an ”object of
objects” by setting

O
def
= c(Ob(C))

We shall call objects in the essential image of c set-like objects. Similarly, one
can define an ”object of arrows” by setting

E
def
=

∐
X,Y ∈Ob(C)

HomC(X,Y ) ∈M

Note that E admits two natural maps t, s : E −→ O. However, this is still not
enough in order to identify enriched categories as a particular kind of internal
categories. The reason is that the composition rule of C is only defined for each
triple of objects separately, in we need to be able to write it as a map in M of
the form

E×O E −→ E

Furthermore, we will want functors of enriched categories to be given by maps
of the corresponding object of objects and object of morphisms. To obtain a
sensible theory we will hence need some strong conditions:

Definition 0.0.1. Let M be a complete and cocomplete category and let c :
Set −→M be as above. We shall say that M is an absolute distributer if

1. The functor c is fully-faithful and respects all limits and colimits (the
colimits part is actually automatic as c admits a right adjoint represented
by ∗).

2. For each set A, the adjoint functors MA −→M/c(A) and M/c(A) −→MA

given by

(Xa)a∈A 7→

[∐
a∈A

Xa −→ c(a)

]
and

[X −→ c(A)] −→ (X ×c(A) c({a}))a∈A
are categorical inverses (i.e. the unit and counit maps are natural equiv-
alences).

The categories of sets, the category of categories and the category of topo-
logical spaces are all absolute distributers.

Now let us assume that M is an absolute distributer. From condition (2) in
the definition of absolute distributer it follows that the fiber product

E×O E //

��

E

s

��
E

t // O
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can be identified with ∐
X,Y,Z∈Ob(C)

HomC(X,Y )×HomC(Y,Z)

and hence we can write the composition rule as a map

E×O E −→ E

These constructions gives a functor

F : CatM−enriched −→ CatM−internal

from the category of categories enriched in M to categories internal to M . Fur-
thermore, from the definition of absolute distributor it follows that this functor
is fully-faithful and its essential image is given by the internal category objects
whose object of objects is set-like.

The discussion above can be generalized to the ∞-setting. Given an ∞-
category M with (homotopy) limits and colimits one can consider two different
notions: ∞-categories internal to M and ∞-categories enriched in M.

Both notions are a bit more subtle then the corresponding discrete analogue.
However, the notion of internal categories is much more straightforward to es-
tablish in the ∞-setting - one needs to work with simplicial objects in M

satisfying the Segal condition (which makes sense as M has fiber products), and
possibly also some completeness condition. In any case, this is arguably simpler
than the enriched notion, and so it is worth while to check when one can for-
malize the notion of enriched ∞-categories via internal ∞-categories, similarly
to the discrete case discussed above.

The first difference one encounters when passing to the ∞-case is that an
∞-category C naturally has a space, or an ∞-groupoid, of objects, as opposed
to just a set. This ∞-groupoid is the underlying (or maximal) ∞-groupoid of
C. Hence when we define an ∞-category enriched in M we should first have
an ∞-groupoid O and then add a morphism object MapC(X,Y ) ∈ M for each
X,Y ∈ O which is functorial in O× Oop.

In particular, we see that in order to generalize the discussion above to the
∞-setting one should replace the category of sets by that of∞-groupoids. Note
that when M has colimits and a terminal object ∗ then there is an essentially
unique colimit preserving functor

c : Grp∞ −→M

which sends the trivial ∞-groupoid to ∗.
We can call objects in essential image of c space-like objects of M. Then

if C is a category enriched in M then c(O) ∈ M can serve as our ”object of
objects”. As for the object of morphisms, one can take the colimit

colim
X,Y ∈O×Oop

MapC(X,Y ) ∈M
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which is analogous to the coproduct we took before. This construction can
be naturally extended to give a simplicial object in M . However, if we want
this simplicial object to satisfy the Segal condition we will need to put strong
assumptions on M amounting to an∞-version of the notion of absolute distrib-
utor.

Note that the first condition in Definition 0.0.1 generalizes immediately to
the ∞-setting. As for the second condition, note that the condition we wrote
corresponded to a given set A, together with the construction of A as a coproduct
of its elements. In order to generalize to the ∞-case, one needs to replace A
with an arbitrary∞-groupoid, and the coproduct of singletons with an arbitrary
presentation of A as a colimit of ∞-groupoids. We refer the reader to [Lur] for
the exact definition.

The important fact which makes this discussion relevant to our needs is the
following:

Theorem 0.0.2 (Lurie). The ∞-category Cat∞ is an absolute distributor.

This means that we can study ∞-categories enriched in Cat∞ (i.e. (∞, 2)-
categories) as special kinds of ∞-categories internal to ∞-categories (where the
special kinds means having a space-like object of objects). This results in the
definition of 2-fold complete Segal spaces.
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