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1 Cobordism Homology Theories

In this section we will explain how to construct generalized homology and coho-
mology theories which are based on cobordism classes of manifolds (with various
extra structure). With begin with some basic terminology.

Let X be a topological space and E −→ X a (real) vector bundle equipped
with an inner product. Then one can form the corresponding disc bundle
D(E) −→ X and sphere bundle S(E) −→ X by replacing each fiber with
its corresponding (closed) unit disc or unit sphere. We define the Thom space
XE of E to be the quotient space

XE = D(X)/E(X)

We will always consider XE as a pointed space with the base point being the
collapsed E(X). In particular we will employ the convention that

XR0

= X+
df
= X

∐
{∗}

where R0 is the trivial 0-dimensional vector bundle. Note that XE can also be
identified with the cone of the map S(E) −→ X.

The construction of Thom spaces can be thought of as a twisted form of
suspension. In particular, if E = Rk is the trivial k-vector bundle then XE can
be naturally identified with the n-fold suspension

Σn(X+) = Sn ∧X+
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More generally, if E −→ X and F −→ Y are two inner product vector bundles
then we have a natural vector bundle

D = p∗XE ⊕ p∗Y F −→ X × Y

One can then identify the Thom space (X × Y )D with the smash product

XE ∧ Y F

Taking Y = ∗, for example, one gets the homeomorphism

XE⊕Rk ∼= Sk ∧XE = ΣkXE

Now recall that if X is a reasonably nice space then k-dimensional vector
bundles with inner product E −→ X are classified by maps

c : X −→ BO(k)

where O(k) ⊆ GLk(R) is the group of orthogonal k-matrices and BO(k) is the
classifying space of O(k). More explicitly there exists a universal vector bundle
Ek −→ BO(k) and for each (inner product) vector bundle E −→ X there exists
a classifying map c : X −→ BO(k) and an isomorphism of inner product vector
bundles

ψ : E
'−→ c∗Ek

Further more, given the vector bundle E, the pair (c, ψ) becomes essentially
unique - under a natural topology the space of pairs (c, ψ) is contractible.

Remark 1.1. Given a vector bundle E −→ X on a reasonably nice space X
the space of inner products on E is contractible. Hence there is no essential
loss of generality in assuming that all vector bundles in sight carry an inner
product. This claim can also be seen as the observation that the inclusion of
topological groups O(k) −→ GLk(R) is a homotopy equivalence and so we could
have replaced in the above discussion BO(k) by BGLk(R) (which is the space
classifying vector bundles without inner product).

Now let MO(k) be the Thom space of the universal bundle Ek −→ BO(k).
The main idea is that the homotopy groups of the spaces MO(k) are closely
related to (unoriented) cobordism classes of manifolds. In order to see this we
first need to understand how to organize all the MO(k)’s together. Note that
for each k, the vector bundle Ek ⊕ R is classified by the inclusion

ιk : BO(k) ↪→ BO(k + 1)

which is induced by the ”top-left” inclusion of O(k) inside O(k+1). In particular
we have a natural isomorphism of (k + 1)-vector bundles

ψk : Ek ⊕ R −→ ι∗kEk+1

inducing a map

Σ MO(k) ∼= BO(k)Ek⊕R −→ BO(k + 1)Ek+1 = MO(k + 1)
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The sequence of space
∗ = M(0),M(1),M(2), ...

together with the maps ΣM(k) −→ M(k + 1) form a spectrum, which is
denoted by MO and is called the unoriented Thom spectrum. The key
observation of Thom (in his PhD thesis from 1954) was that this spectrum
encodes the information of (unoriented) cobordism classes of manifolds. In par-
ticular, the homotopy groups of this spectrum are isomorphic to the unoriented
cobordism groups.

In order to see how this works suppose that we are given a closed n-manifold
M . Then it is known that M can be (smoothly) embedded in Euclidean space
Rn+k for large k. In fact, when taking k to infinity we obtain an essentially
unique embedding, i.e. the direct limit of the sequence

Emb(M,Rn) ↪→ Emb(M,Rn+1) ↪→ Emb(M,Rn+2) ↪→ ...

is contractible (where each Rn+k is included in Rn+k+1 via the first n + k
coordinates and the spaces Emb(M,Rn+k) carry a certain natural topology).

Now suppose that we have chosen an embedding ι : M ↪→ Rn+k for some k.
Using the standard inner product on Rn+k we can define the normal bundle
of M inside Rn+k. This is the vector bundle N ι −→M whose fiber over m ∈M
is the subspace

N ι
m ⊆ Tι(m)Rn+k

of vectors which are orthogonal to the tangent space ι∗TmM ⊆ Tι(m)Rn+k.

Remark 1.2. Since the choice of embedding ι : M ↪→ Rn+k is essentially unique
with k −→ ∞ we see that the stable equivalence class of the vector bundle
N ι −→M is independent of ι. This class is called the stable normal bundle
of M . Note that the direct sum N ι ⊕ TM is isomorphic to the trivial vector
bundle ι∗TRn+k = Rn+k, which means that the stable class [N ι] is the inverse

of the stable class [TM ] in the K-group K̃0(M).

Now the vector bundle N ι is classified by a map c : M −→ BO(k) - i.e. there
is an essentially unique choice of a pair (c, ψ) where c : M −→ BO(k) is a map
and

ψ : N ι −→ c∗Ek

is an isomorphism of inner product vector bundles. In particular ψ induces an
isomorphism of disc bundles

ψD : D(N) −→ D(c∗Ek)

Now for a small enough ε > 0 the map D(N) −→ Rn+k given by

(m, v) 7→ ι(m) + εv ∈ Rn+k

is a topological embedding. Choosing such an ε (again a contractible menu of
choices) we can identify the open unit disc bundle Do(N) with a small neigh-
borhood U of M inside Rn+k and the sphere bundle S(N) with the boundary
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∂U of U inside Rn+k. Then the pair (c, ψ) gives us a map U −→ D(Ek) which
sends the boundary ∂U to S(Ek). This gives us a map

U −→ MO(k)

which sends ∂U to the base point, and so can be extended to map

Rn+k −→ MO(k)

which sends all of Rn+k \ U to the base point. Identifying Sn+k with the one
point compactification Rn+k ∪ {∞} of Rn+k we obtain a pointed map

Sn+k −→ MO(k)

Now, when k −→∞ all the choices we made were essentially unique (i.e. when-
ever we had to choose we had a contractible space of choices), and so we conclude
that the resulting element

α ∈ πn(MO) = lim
k
πn+k(MO(k))

is well defined. We then have Thom’s theorem:

Theorem 1.3 (Thom). Let Ωun
n denote the group of unoriented n-dimensional

cobordism classes. Then the construction above induces an isomorphism

Ωun
n

'−→ πn(MO)

Now the spectrum MO gives a generalized homology theory

MOn(X) = lim
−→
k

πn+k(X+ ∧MO(k))

The group MOn(X) can also be described in terms of unoriented coboridsm
- the elements of this group are represented by manifolds over X, i.e. pairs
(M,f) where M is a closed n-manifold and f : M −→ X is a map. A cobordism
from (M,f) to (M ′, f ′) is a cobordism W from M to M ′ together with a map
F : W −→ X extending f

∐
f ′. The cobordism classes of manifolds over X

form a group Ωun
n (X) under disjoint union. By the same construction as above

one can construct a natural isomorphism

Ωun
n (X) ∼= MOn(X)

Remark 1.4. One can also construct the corresponding cohomology groups
by setting

MOn(X) ∼= lim
−→
k

[
ΣkX+,MO(n+ k)

]
∗

In some cases one can find geometric description of these groups via cobordisms
of manifolds (like for the homology groups).
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Remark 1.5. There exists natural maps

BO(n)× BO(m) −→ BO(n+m)

which encode the operation of direct sum of vector bundles. These maps induce
maps

MO(n) ∧MO(m) −→ MO(n+m)

which in turn induce a map

MO∧MO −→ MO

This map can be used to endow MO with the structure of a coherently asso-
ciative and commutative ring spectrum (i.e. an E∞-ring). In particular the
cohomology theory MO•(−) is multiplicative (i.e. admits a notion of a cup
product).

When X = ∗ the cohomology groups MO−n(∗) can be identified with the
homology groups MOn(∗), i.e. with cobordism classes of n-dimensional mani-
folds. In this case the cup product admits a simple geometric description - it
corresponds to Cartesian product of manifolds.

2 Stable Structures and Complex Cobordism

In many situations one is interested in vector bundles which admit some extra
structure, such as an orientation, a complex structure, a trivialization, etc. In
particular, one can try to attach such a structure to the tangent bundle of a
manifold. In certain cases, one will be able to make sense of cobordism classes of
manifolds with this extra structure by requiring the cobordism to carry similar
extra structure in a compatible way. One can then try to construct a variant
of the homology theory MO•(−) by considering cobordism classes of manifolds
over X carrying this additional structure.

It turns out that in order for this new set of invariants to form a generalized
homology theory one needs to consider the structure not on the tangent
bundle itself but rather on the stable class if it.

A rather general setting for such ”stable extra structure” is the following. A
stable structure consists of the following pieces of data:

1. An infinite set A ⊆ N of indices considered as a poset with the linear order
induced from N.

2. A functor k 7→ G(k) from the poset A to topological groups, i.e. for each
k < m we have a homomorphism of topological groups G(k) −→ G(m)
which are compatible with each other.

3. A natural transformation F : G(•) −→ O(•) where O(•) is the functor
which is assigns to each k the orthogonal group O(k) and to each pair
k < m the top-left inclusion O(k) ↪→ O(m).
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Now let (A,G(•), F•) be a stable structure. Recall the universal inner prod-
uct vector bundles

Ek −→ BO(k)

Then for each k ∈ A we can pull the universal bundle to BG(k) via the induced
map

BFk : BG(k) −→ BO(k)

We will denote by

EGk
df
= (BFk)∗Ek −→ BG(k)

the pulled back universal bundle.
Now let X be a space and let E −→ X an inner product k-vector bundle for

some k ∈ A. An unstable G(k)-structure on E is a map

d : X −→ BG(k)

together with an isomorphism of inner product vector bundles (over X)

ψ : E
'−→ d∗EGk

As for the stable case, suppose that E −→ X is an m-vector bundle for some
m, not necessarily in A. A stable G-structure on E is an integer m ≤ k ∈ A,
a map

d : X −→ BG(k)

and an isomorphism

ψ : E ⊕ Rk−m '−→ d∗EGk

One can define an equivalence of stable G-structure in a straight forward
(although slightly tidies) way. This notion will endow the set of stable G-
structure on a E with the structure of a topological groupoid.

Alternatively, one can described the classifying space of this topological
groupoid rather explicitly. If we fix a map c : X −→ BO(m) which classifies E
then the stable class [E] can be encoded as the composed map

X
c−→ BO(m) ↪→ colim

i
BO(i)

df
= BO

which we can denote by c̃ : X −→ BO. Giving a stable structure on E is then
equivalent to giving a map d̃ : E −→ BG and a homotopy making the diagram

X
d̃ //

c̃

!!

BG

��
BO

commute. In other words, the classifying space of stable G-structures on
E can be identified with the homotopy fiber of the map

[X,BG] −→ [X,BO]

over the point c̃ ∈ [X,BO].
Examples:
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1. The unoriented stable structure is given simply by setting G(k) = O(k)
for every k (so that A = N). Every inner product vector bundle carries a
natural unoriented structure (both stably and unstably).

2. The oriented stable structure is given by setting G(k) = SO(k) for every
k. Note that in this case the notions of stable oriented structure and
unstable oriented structure coincide. Such a structure is classically known
as an orientation.

3. The trivial stable structure is given by setting G(k) = {1} for every k.
Then a G-structure on a vector bundle E consists of a trivialization of
E ⊕ Rk for large enough k.

4. The complex (or unitary) stable structure is given by taking A = 2N to
be the even numbers and setting G(2n) = U(n) where U(n) is the complex
unitary group (which admits a natural map U(n) ↪→ O(2n)).

5. The special complex (or special unitary) stable structure is given by
taking A ⊆ N to be the even numbers and setting G(2n) = SU(n).

6. The quaternionic stable structure is given by taking A = 4N and
G(4n) = Sp(n) where Sp(n) is the group of (n×n)-matrices over H which
preserve the quarternionic norm.

7. The spin stable structure is given by G(n) = Spin(n) where Spin(n) is
the universal cover of SO(n).

8. The string stable structure is given by G(n) = String(n) where String(n)
is the 2-connected cover of Spin(n).

Now let G(•) be a stable structure. A stable G-manifold is a pair (M,d)
where M is a manifold and d is a stable G-structure on the tangent bundle TM .
Given two stable n-dimensional closed G-manifolds (M,d), (M ′, d′), a stable G-
cobordism from (M,d) to (M ′, d′) is an (n+ 1)-dimensional G-manifold (W,D)
together with

1. A diffeomorphism

B : M
∐

M ′
'−→ ∂W

2. A nowhere vanishing section s of the 1-dimensional normal bundle of ∂W
inside W which is inward pointing on M and outward pointing on M ′

(such a section is unique up to a contractible space of choices).

3. An equivalence of stable G-structures on M
∐
M ′ between d

∐
d′ and the

stable G-structure induced by d via B and s (note that B and s provide
an isomorphism of bundles T (M

∐
M ′)⊕ R ' B∗TW ).
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The set of stable G-cobordism classes of closed n-dimensional G-manifolds
can be endowed with an abelian group structure via disjoint union. This group
is called the G-cobordism group and is denote by ΩGn .

Now given a space X we can make the above construction relative by consid-
ering triplets (M,d, f) where (M,d) is a closed n-dimensional stable G-manifold
and f : M −→ X is a map. A stableG-cobordism from (M,d, f) to (M ′, d′, f ′) is
a G-cobordism (W,D) from (M,d) to (M ′, d′) together with a map F : W −→ X
extending f

∐
f ′. The group of stableG-cobordism classes of stableG-manifolds

over X is denoted by ΩGn (X). As above, one can show that the functors ΩGn (X)
actually form a generalized homology theory by constructing a spectrum which
represents them. This functor can be constructed in a similar way to MO by
letting MG(k) denote the Thom space of the vector bundle

EGk = (BFk)∗Ek −→ BG(k)

Given two k ≤ m ∈ A one has a natural map

Σm−k MG(k) −→ MG(m)

This information is enough to construct a spectrum MG, which is called the
Thom spectrum of G. By similar technics to above one can show that the
spectrum MG represents the functors ΩGn , i.e. that for each space X one has

ΩGn (X) ∼= MGn(X) = colim
k∈A

πn+k (X+ ∧MG(k))

One can also form the G-cobordism cohomology groups by setting

MGn(X) ∼= colim
n≤k∈A

[
Σk−nX+,MG(k)

]
∗

Remark 2.1. Since the stable normal bundle is the inverse of stable class [TM ]
one can equivalently think of a stable G-manifold as a manifold together with a
stable structure on its stable normal bundle. This view point can be exploited
in order to translate a G-manifold M into a map Sn+k −→MG(k) for large k,
yielding the desired isomorphism above.

Now taking the stable structure G(2n) = U(n) one obtains the notion of
stable complex cobordism, which will be of special interest for us. For the
sake of brevity we will omit from now on the label ”stable” and simply say
complex cobordism. We will denote the Thom spectrum of U(•) by MU.

Now note that we have natural maps

BU(n)× BU(m) ↪→ BU(n+m)

which encode the direct sum operation of complex vector bundles. These maps
induce maps

MO(n) ∧MO(m) −→ MO(n+m)

which in turn induce a map

MU∧MU −→ MU
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This map can be used in order to endow MU with the structure of a coher-
ently associative and commutative ring spectrum (i.e. an E∞-ring). Hence the
associated cohomology theory is multiplicative. In particular the graded group

⊕
n∈Z

MU−n(∗) = ⊕
n∈Z

MUn(∗) df
= MU∗

has the structure of a graded ring. On the level of manifolds this product can
be described by Cartesian products of manifolds (with the associated product
stably complex structure).

The coefficient ring MU∗ has been calculated as follows:

Theorem 2.2. 1. The ring MU∗ is isomorphic to the polynomial ring Z[t1, t2, ...]
where the generator ti has degree 2i.

2. The cobordism classes [CPn] freely generate MU∗ over Q (but not over
Z), i.e. we have

MU∗⊗Q ∼= Q[[CP 1], [CP 2], ...]

Now in order to better understand the special role of the spectrum MU in
stable homotopy theory one needs to understand the notion of a formal group
law. This will be explained in the next section.

3 Formal Group Laws

Let R be a ring. A formal group law over R is a formal power series

f(x, y) =

∞∑
n,m=0

ai,jx
iyj

satisfying the following properties:

1. f(x, f(y, z)) = f(f(x, y), z).

2. f(x, 0) = x and f(0, y) = y.

3. f(x, y) = f(y, x).

Note that the second condition is equivalent to saying a0,0 = 0 and a1,0 = a0,1 =
1, so that f can be written as

f(x, y) = x+ y +
∑
i+j≥2

ai,jx
iyj

In order to gain preliminary intuition for this concept one can start by taking
R to be the field of real (or complex) numbers and assume that the power
series f converges to a function R × R −→ R. Then the first axiom states
that f is an associative binary operation. The second axioms states that 0 is a
neutral element with respect to this operation. The third axiom claims that this
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operation is commutative. In particular one obtains in this way a structure
of a commutative monoid on R. However, it is not hard to show (Hensel’s
lemma) that under the three axioms above there will exist a power series

g(x) =
∑
i=1

bix
i

over R such that
f(x, g(x)) = 0

i.e., if we assume g to converge as well we obtain an inverse function x 7→ x−1

for this binary operation, i.e. the binary operation is in fact a group structure
on R.

What this intuition shows is that a formal group law can be thought of
as infinitesimal group operation, but in a abstract algebraic setting (without
assuming any notion of convergence).

Remark 3.1. By defining an appropriate notion of a formal scheme one can
make the intuition above more precise - one can consider the formal spectrum
Spf(R[[x]]) of the power series ring R[[x]] as the infinitesimal neighborhood of 0
inside the affine line A1

R over R. Then specifying a formal group law is equivalent
to specifying a group object structure on Spf(R[[x]]).

Examples:

1. The formal power series
f(x, y) = x+ y

is a formal group law over any ring. It is called the additive formal group
law.

2. The formal power series

f(x, y) = x+ y + xy

is a formal group law over any ring. The last two axioms are clear. In
order to see why f is associative write

f(t− 1, s− 1) = (t− 1) + (s− 1) + (t− 1)(s− 1) = ts− 1

This formal group law is called the multiplicative formal group law.

3. Let E be an elliptic curve over a ring R. Then by formally completing the
multiplication map E × E −→ E along the zero section one will obtain a
formal group law.

Now note that if

g(t) =

∞∑
n=1

bnt
n
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is a power series such that b1 is a unit in R then g admits an inverse

g−1(t) =

∞∑
n=1

cnt
n

satisfying g(g−1(t)) = g−1(g(t)) = t. In this case we say that g is invertible.
One can think of g as an infinitesimal coordinate change. In particular if
f(x, y) is a formal group law over R and g is an invertible formal power series
over R then one can form a new formal group law f ′(x, y) by setting

f ′(x, y) = g−1 (f(g(x), g(y)))

we will say that two formal group laws are isomorphic if one is obtain from
the other by an invertible coordinate change as above.

Remark 3.2. If R is a Q-algebra then the multiplicative formal group law is
isomorphic to the additive formal group via the invertible coordinate changes

g(x) = ex − 1 =

∞∑
n=1

xn

n!

and

g−1(x) = ln(1 + x) =

∞∑
n=1

(−1)n+1x
n

n

In fact, one can show that over Q every formal group law is isomorphic to the
additive one. However if R is not a Q-algebra this need not be the case (for
example if R = Z or R is a field of positive characteristic then the multiplicative
formal group law will not isomorphic to the additive one).

For various purposes it is useful to consider also a graded variant of the
notion of formal group laws. In order to understand how gradings fit in let us
start by considering a power series in one variable

f(x) =
∑
n

cnx
n

We want to think of f as if it was a function x 7→ f(x). Further more we want
it to be an endo-function, i.e. a function from some domain to itself. Hence if
we consider x as an object with degree d, then we will want the ”output” of
f to have degree d as well. This means that ci should have degree d(1 − n).
Similarly if we consider a formal power series in two variables

f(x, y) =
∑
i,j

ai,jx
iyj

and we want to think of f as a function which takes two objects of degree d and
returns an object of degree d then ai,j should have degree d(1 − i − j). When
we take d = 0 we get the usual ungraded notion. However all the choices d 6= 0
are equivalent on the algebraic level (it’s just a ”rescaling” of all the degrees).
For the application we have in mind it will be convenient to take d = −2. In
particular we have the following definition:
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Definition 3.3. Let R be a graded commutative ring. A graded formal group
law over R is a formal group law

f(x, y) =

∞∑
i,j=0

ai,jx
iyj

such that each ai,j ∈ R is homogenous of degree 2(i+ j− 1). In particular if we
consider x, y to have degree −2 then f has homogenous degree −2.

Remark 3.4. One can define isomorphisms of graded formal group laws in the
obvious way.

3.1 The Universal Formal Group Law

Let R be a graded ring. In order to specify a formal group over R one needs to
choose elements ai,j ∈ R of homogenous degree 2(i+ j − 1) for all i, j ≥ 0 such
that i+ j ≥ 2 (because a0,0 = 0 and a1,0 = a0,1 = 1 by axiom 2). The elements
ai,j need to satisfy the restriction obtained by the other 2 two axioms of formal
group laws. In particular the third axiom is quite simple and translate to the
restriction ai,j = aj,i. This means that we can content ourselves with choosing
the ai,j only for i ≤ j.

Unfortunately the restriction given by the associativity axiom is less clean.
However, it is not hard to verify that the constraints on the ai,j will take the
form of homogenous polynomial equations (homogenous when taking into
account the different degrees of the ai,j ’s). In particular the set of formal group
laws overR can be described as the set of solutions to a set of graded homogenous
polynomial equations. We will refer to these equations as the associativity
equations.

Now each associativity equation can be written as a homogenous element in
the graded polynomial ring which is generated over Z by the set {ai,j} (con-
sidered as abstract generators). In particular we can taking this polynomial
ring and quotient out the ideal generated by the associativity equations. The
resulting ring is called the Lazard ring, and is denoted by L. The ring L can
be thought of as the ring in which the associativity equations admit a natural
tautological solution. Further more, for each graded ring R one has a natural
identification between formal group laws over R, and homomorphism of rings
from L to R (the coefficients of the formal group specify to which element in R
one should send each generator of L). We say that L corepresents the functor

R 7→ FGL(R)

where FGL(R) is the set of formal group laws over R. If one would ignore
the grading for a moment, one can consider the spectrum of the underlying
ungraded ring of L. This spectrum is the classifying scheme of ungraded formal
group laws. The points of Spec(L) over a ring R are the (ungraded) formal
group laws over R.
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Now at first sight the Lazard ring looks very complicated - it is generated by
infinitely many generators modulu infinitely many relations. However, it turns
out the result is not that complicated after all:

Theorem 3.5 (Lazard). The Lazard ring L is isomorphic to the graded poly-
nomial ring Z[t1, t2, ...] where each ti has degree 2i.

In particular, in order to specify a formal group law on a graded ring R, one
simply has to choose (unconstrainedly) a sequence of elements ti ∈ R such that
ti has homogenous degree |2i|.

4 Complex Orientation and Formal Groups Laws

Now let us go back to algebraic topology. The emergence of formal group laws in
algebraic topology begins in the notion of a complex orientation. Let CP∞
considered with its standard CW structure with one cell in each even dimension.
In particular the zero skeleton provides us with a base point.

Let E be a ring spectrum. If (X,x0) is a pointed space then we can identify

the reduced E-cohomology groups Ẽn(X) with the relative groups En(X,x0)
which in turn can be identified with the kernel of the map

x∗0 : En(X) −→ En(∗)

In particular the suspension isomorphism can be written as

En (ΣX,x0) ∼= En−1(X,x0)

We will refer to elements in En(X,x0) ⊆ En(X) as reduced classes.

Definition 4.1. Let E be a ring spectrum. A complex orientation on E is
a reduced element

t ∈ E2(CP∞, x0) ⊆ E2(CP∞)

such that the restriction of t to

E2
(
S2, x0

) ∼= E0
(
S0, x0

)
= E0(∗)

is equal to the unit element 1 ∈ E0(∗) (where the map S2 ↪→ CP∞ is the
2-dimensional cell map).

We will say that E is complex orientable if there exists a complex orien-
tation t ∈ E2 (CP∞, x0).

Examples:

1. The Eilenberg-McLane spectrum HZ admits a unique complex orientation:
the restriction map

H2(CP∞, x0) −→ H2(S2, x0) ∼= Z

is an isomorphism.
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2. The complex K-theory spectrum KU is complex orientable. If we let L −→
CP∞ denote the universal line bundle on CP∞ and use bott periodicity
then the class

[L]− 1 ∈ KU0 (CP∞) = KU2 (CP∞)

is a complex orientation - it vanishes when restricted to the base point (so
it is reduced) and gives the standard generator when restricted to

KU2(S2, x0) = KU0(S2, x0) ∼= Z

3. Complex cobordism is complex orientable: recall that MU(1) is the Thom
space of the universal line bundle L −→ CP∞ (considered as a 2-dimensional
real vector space). In particular we have a natural (unpointed) map

t : CP∞ −→ MU(1)

which is actually a homotopy equivalence (because the sphere bundle of
the universal line bundle is EU and in particular contractible). We claim
that the image of t in

colim
k

[
Σ2k−2 (CP∞+ ) ,MU(k)

]
∗ = MU2 (CP∞)

is a complex orientation. First of all note that the restriction of t to the
base point ∗ ∈ CP∞ yields a pointed map

∗+ = S0 −→ MU(1)

which is pointed null-homotopic because MU(1) is connected. Hence the
class of t in MU2((CP∞) is reduced. Next we need to check that the
restriction of t to S2 ⊆ CP∞ is the standard generator. Note that the
standard generator of 1 ∈ MU0(∗) = MU0(∗) corresponds geometrically
to the 0-dimensional manifold which is a point with the trivial stable
complex structure. Recalling the discussion in the first section we see that
this cobordism class is represented by the pointed map u : S2 −→ MU(1)
induced by the inclusion of pairs

(D2, S1) ↪→ (D(L), S(L))

given by some fiber of L (which we can assume is the fiber over the old
base point ∗ ∈ S2 ⊆ CP 2). In order to show that t gives a complex
orientation it will be enough to show that the restriction t|S2 is homotopic
to u as unpointed maps. Now note that the Thom space of the restricted
line bundle L|S2 can be identified with CP 4 (because the corresponding
sphere bundle is the Hopf map). Hence we get an inclusion of Thom spaces

CP 4 ↪→ MU(1)

14



such that the images of both t|S2 and u are contained in CP 4. In fact,
both t|S2 and u described smooth inclusions of S2 in CP 4 which meet
transversely in a single point. Observing the simple structure of the coho-
mology ring H∗

(
CP 4

)
we deduce that t|S2 is homotopic to CP 4 and we

are done.

4. Let E be a ring spectrum such that πn(E) = 0 for odd n’s (such spectrums
will be called even spectrums). Then one can use standard obstruction
theory in order to show that the map

E2 (CP∞, x0) −→ E2
(
S2, x0

)
is surjective. This amounts to showing that every pointed map

S2 −→ colim
n

Ω2n−2 MU(n)

extends to all of CP∞. But CP∞ has only even cohomologies and X has
no odd homotopy groups. In particular we get that every even ring
spectrum is complex orientable.

Now let E be a complex orientable ring spectrum and let

t ∈ E2(CP∞, x0) ⊆ E2(CP∞)

be a complex orientation. Note that for every space X the ring

E∗(X) =
∏
n

En(X)

is naturally an algebra over the ring E∗(∗), which can be identified with the
coefficients ring E−∗ = E−∗(∗) after inverting the grading.

Remark 4.2. Note that the convention

E∗(X) =
∏
n

En(X)

differs from the familiar convention

E∗(X) = ⊕nEn(X)

In particular we will write

H∗ (CP∞) = Z[[t]]

and not
H∗ (CP∞) = Z[t]

as is customary. The advantage of the our convention is that of X is an infinite
CW complex then E∗(X) will be the inverse limit of E∗(F ) where F ⊆ X ranges
over all finite sub CW complexes of X.
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The following theorem determines the cohomology rings E∗(CPn) and E∗(CP∞)
as E−∗ algebras:

Theorem 4.3. For every n one has a natural isomorphism of rings

E∗ (CPn) ∼= (E−∗) [t] /tn+1

where t ∈ E2 (CPn) is the image of the complex orientation of E (and by abuse
of notation it is denoted by the same name). Further more one has

E∗ (CP∞) ∼= lim
n←−
E∗ (CPn) ∼= E−∗[[t]]

Proof. The computation of E∗ (CPn) can be done essentially via the Atyah-
Hirtzebruch spectral sequence (which is shown to collapse when E is complex
orientable). The last equality follows from the fact that each of the projection
homomorphisms

(E−∗) [t] /tn+1 −→ (E−∗) [t] /tn

is surjective, and so there is no lim1 term.

A similar computation shows that

E∗ (CPn × CPm) ∼= (E−∗)[x, y]/
〈
xn+1, ym+1

〉
where x = p∗1t and y = p∗2t for the two projections

p1, p2 : CP∞ × CP∞ −→ CP∞

In particular one gets that

E∗ (CP∞ × CP∞) ∼= (E−∗)[[x, y]]

Now recall that CP∞ ∼= BU(1) ∼= K(Z, 2) and so is an infinite loop space.
In particular CP∞ admits a binary operation

µ : CP∞ × CP∞ −→ CP∞

which is associative and commutative up to coherent homotopy. In fact, this
multiplication operation encodes the information of tensor product of line
bundles, i.e. it classifies the line bundle

p∗1L⊗ p∗2L

on CP∞ × CP∞, where L −→ CP∞ is the universal line bundle.

Remark 4.4. One can easily introduce a strictly associative strictly commutative
multiplication on CP∞ by identifying points in CPn with homogenous polyno-
mials of degree n in two variables up to a scalar, in which case the multiplication
can be given simply as multiplication of polynomials. Under this multiplication
CP∞ becomes a strict topological monoid, which can be identified with the
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strict topological monoid generated by the points of S2 = CP 1 modulu the the
submonoid generated by the base point ∞ ∈ CP 1. Note however that this op-
eration does not admits a strict inverse (only up to homotopy). However, the
group completion of this topological monoid (which can be identified with the
free abelian group on CP 1 modulu the subgroup generated by ∞) is homotopy
equivalent to it

Now suppose that E is a ring spectrum with a complex orientation t ∈
E2 (CP∞, x0) ⊆ E2 (CP∞). Then the map µ induces a homomorphism of rings

(E−∗)[[t]] = E∗ (CP∞)
µ∗−→ E∗ (CP∞ × CP∞) = (E−∗)[[x, y]]

The image of t under this map is a formal power series

f(x, y) =
∑
i,j

ai,jx
iyj

where ai,j ∈ E2(i+j−1)(∗). Since µ is associative, commutative and unital it is
quite immediate that f is a graded formal group law over the graded commu-
tative ring

E2∗(X) = ⊕nE2n(∗)

Remark 4.5. The situation is a bit more pleasant when E is an even ring spec-
trum, in which case E∗ = E2∗. This restriction is not that far fetched as we
have seen that any even ring spectrum is automatically complex orientable. In
particular in this lecture we have absolutely no reason to consider any complex
orientable ring spectrum that is not even.

Remark 4.6. In the definition above the formal group law associated with E
depends on the choice of complex orientation t ∈ E2 (CP∞, x0). However if one
would choose another complex orientation t′ ∈ E2 (CP∞, x0) then there would
be a graded power series

g(t) =

∞∑
n=0

bnt
n

with bn ∈ E2n−2(∗) such that
t′ = g(t)

Now since t′ is a complex orientation we would get that t′|S2 = t|S2 and so g
has the form

g(t) = t+

∞∑
n=2

bnt
n

and so in particular g is invertible. Further more it is immediate that the formal
group law of E with respect to t′ will be isomorphic to the formal group law
of E with respect to t via the invertible coordinate change g. In particular
the isomorphism type of the formal group f does not depend on t, and is an
invariant of the ring spectrum E alone.

Examples:
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1. The Eilenberg-McLane spectrum HZ has the additive group law. There
is not much choice there because HZ∗ contains no elements of non-zero
degree (and the only coefficients of degree 0 are a1,0, a0,1 which are bound
to be 1 since f is a formal group law).

2. The complex K-theory spectrum KU has the multiplicative group law
(up to isomorphism). In fact if we take the complex orientation

L− 1 ∈ KU0 (CP∞) ∼= KU2 (CP∞)

then we get it on the nose - to see this recall that the multiplication map

µ : CP∞ × CP∞ −→ CP∞

Classifies the line bundle
p∗1[L]⊗ p∗2[L]

on CP∞ × CP∞. This means that

µ∗([L]− 1) = p∗1[L]⊗ p∗2[L]− 1 =

p∗1 ([L]− 1) + p∗2 ([L]− 1) + p∗1 ([L]− 1)⊗ p∗2 ([L]− 1)

and so that the formal group law is

f(x, y) = µ∗(t) = x+ y + xy

Note that the coefficient a1,1 looks like it’s sitting in KU0(∗) but it is
actually in KU2(∗) (where it belongs) and we are looking at everything
through the glasses of bott periodicity.

Coming to the exciting end point of the lecture, one can wonder what is the
formal group law of the complex cobordism spectrum MU with respect to the
canonical complex orientation t ∈ MU2 (CP∞). Note that this formal group
law is classified by a homomorphism of graded rings

L −→ MU∗

where L is the Lazard ring which was introduced in the previous section.
We then have the following fundamental result

Theorem 4.7 (Quillen). The classifying map

L −→ MU∗

is an isomorphism of rings. In particular MU∗ carries the universal formal
group law.

This observation raises the question of whether the spectrum MU itself is
somehow universal among complex oriented ring spectra. This is in fact the
case:
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Theorem 4.8. Let t ∈ MU2 (CP∞, x0) be the canonical complex orientation
and let E be a ring spectrum. Then the association φ 7→ φ∗(t) induces a bijection
between the set of homotopy classes of ring spectrum maps

φ : MU −→ E

and the set of complex orientations of E.

We hence consider MU as the universal complex oriented ring spec-
trum.
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