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Abstract

In this paper we formulate and prove a combinatorial version of the section conjecture
for finite groups acting on finite graphs. We apply this result to the study of rational
points and show that finite descent is the only obstruction to the Hasse principle for
mildly singular curves whose components are all geometrically rational.
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1. Introduction

The connection between rational points and sections of the Grothendieck exact sequence has
an analogue for topological spaces carrying an action of a group. The corresponding section
conjecture is false in general (as for general varieties), but it does hold for some special classes
of spaces and groups. In this paper we will show that a certain variant of this section conjecture
is true when the underlying space is a graph and the acting group is finite.

This result can be applied back to the study of rational points by considering algebraic
varieties whose geometry is controlled by a graph. In particular, we will consider the following
class of (mildly singular) curves:

Definition 1.1. Let K be a field with algebraic closure K. We will say that a projective reduced
curve C/K is conical if each irreducible component of C = C ⊗K K is K-rational (but not
necessarily smooth). We will say that a projective reduced curve is transverse if each singular
point is a transverse intersection of components, i.e. if for each singular point s ∈ C

(
K
)

the
branches of C through s intersect like n coordinate axes at 0 ∈ An.

Conical curves were studies by A. Skorobogatov and the author in [SH13]. In that paper it
was shown that conical curves can posses surprising properties no smooth curve can ever have:
they can contain infinitely many adelic points while having only finitely many rational points or
none at all, and yet have a trivial Brauer group. In particular, the Brauer-Manin obstruction is
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http://www.ams.org/msc/


Yonatan Harpaz

not the only obstruction to the Hasse principle for such curves. This was used in [SH13] in order
to construct smooth projective surfaces with no rational points and infinite étale-Brauer sets.
The surfaces in question were fibred into curves with some of the fibers being conical curves.

As the Brauer-Manin obstruction is not sufficient for conical curves, one is led to ask whether
the étale-Brauer obstruction is sufficient. In other words, if a conical curve has a non-empty
étale-Brauer set, must it have also a rational point? In this paper we will apply the section
conjecture for graphs in order to prove the following result, implying in particular a positive
answer to this question (at least in the transverse case):

Theorem 1.2. Finite descent is the only obstruction to the Hasse principle for transverse
conical curves over number fields.

Remark 1.3. Since the obstruction of finite descent is weaker than the étale-Brauer obstruction
this implies that the étale-Brauer obstruction is sufficient as well.

Remark 1.4. Let C be a curve. Then there exists a universal transverse curve C ′ admitting a map
ρ : C ′ −→ C (see [BLR90, p. 247]). The curve C ′ can be obtained from the normalization C̃ of C
by gluing points which have the same image in C. Note that the map ρ induce an isomorphism

ρ∗ : C ′(L) −→ C(K)

for every field L containing K. In particular, when dealing with Diophantine questions such as
the Hasse principle it is quite reasonable to restrict attention to the transverse case.

This paper is organized as follows. In § 2 we recall a general setting for the Grothendieck
exact sequence and describe some relevant examples. In § 3 we recall the notion of pro-finite
trees as studied in [ZM89] and use it in order to prove an appropriate section conjecture for
finite groups acting on finite graphs. In § 4 we explain how to model a conical curve C by its
incidence graph X(C) and use it in order to relate the Grothendieck exact sequences of C of
X(C). We will then use these results in order to prove the main theorem as stated above.

2. Grothendieck’s short exact sequence

In this section we will recall Grothendieck’s short exact sequence in a somewhat abstract setting.
We do not claim any originality for the content of this section (most of it is essentially due to
Grothendieck). See [D89] §10 for a thorough presentation of the subject.

Let Π be a small groupoid and Γ a group acting on Π. The Grothendieck construction
associates with the pair Π,Γ a new groupoid Q(Π,Γ) as follows. The objects of Q(Π,Γ) are the
objects of Π. Now for every two objects x, y ∈ Π the morphisms Q(Π,Γ)(x, y) are pairs (σ, α)
where σ ∈ Γ and α : σ(x) −→ y is a morphism in Π. Composition is given by

(σ, α) ◦ (τ, β) = (στ, α ◦ σ(β)).

It is easy to verify that Q(Π,Γ) is indeed a groupoid.

Let BΓ denote the groupoid with one object ∗ such that BΓ(∗, ∗) = Γ. One then has a natural
functor

Q(Π,Γ) −→ BΓ

which sends all objects to ∗ and the morphism (σ, α) to the morphism σ. The groupoid-theoretic
fiber of this map can then be identified with Π.
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Remark 2.1. This construction is a particular case of a more general Grothendieck construction
which applies to the situation of a functor from a groupoid B to the category of small groupoids.
The particular case above is obtained by taking B = BΓ in which case a functor from B to
groupoids is just a groupoid with a Γ-action.

Remark 2.2. In homotopy theory the groupoidQ(Π,Γ) is also known as the homotopy quotient
of Π under the action of Γ. This is why we denote it here with the letter Q, although this notation
is not standard.

Now assume that Π is connected (i.e. every two objects are isomorphic) and let x ∈ Π be an
object. Let us denote by

Q(Π,Γ, x)
def
= Q(Π,Γ)(x, x)

the set of morphisms from x to x in Q(Π,Γ). We have a surjective homomorphism of groups

Q(Π,Γ, x) −→ BΓ(x, x) = Γ

whose kernel can be identified with Π(x, x). In particular, we obtain a short exact sequence of
the form

1 −→ Π(x, x) −→ Q(Π,Γ, x) −→ Γ −→ 1

which we shall call the Grothendieck exact sequence associated with (Π,Γ).

Now suppose that y ∈ Π is an object which is fixed by Γ. One can then construct a section

Q(Π,Γ, x) // Γ
vv

as follows. Choose an isomorphism ϕ : x −→ y. Then for each σ ∈ Γ we have an isomorphism

σ(ϕ) : σ(x) −→ σ(y) = y.

Hence we can construct a section sϕ : Γ −→ Q(Π,Γ, x) by setting

sϕ(σ) = (σ, ϕ−1 ◦ σ(ϕ)).

It is not hard to verify that sϕ is indeed a homomorphism of groups. Note that if we would have
chosen a different isomorphism ϕ′ : x −→ y then we would get

sϕ′ = ψ−1sϕψ

where

ψ = ϕ−1 ◦ ϕ′ ∈ Π(x, x) ⊆ Q(Π,Γ, x).

Two sections which differ by a conjugation with an element of Π(x, x) are called conjugated.
We hence obtain a natural map from the set of Γ-fixed objects of Π to the set of conjugacy
classes of sections of the form

1 // Π(x, x) // Q (Π,Γ, x) // Γ
vv

// 1 .

We will denote by Sec(Π, G) the set of conjugacy classes of sections as above and by

h : ΠG −→ Sec(Π, G)

the map associating with each fixed object its corresponding conjugacy class of maps.

Remark 2.3. Two fixed objects y, y′ which are isomorphic via a Γ-invariant isomorphism will
give rise to the same conjugacy class. Hence the map h always factors through a map

π0

(
ΠG
)
−→ Sec(Π, G)
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where π0 of a groupoid denotes the corresponding set of isomorphism types.

Example 1. Let X be a topological space. The fundamental groupoid Π1(X) is the groupoid
whose objects are the points of X and the morphisms from x to y are the homotopy classes of
continuous paths from x to y.

IfG is a group acting onX then Π1(X) naturally inherits aG-action as well. The Grothendieck
short exact sequence in this case is the sequence

1 −→ Π1(X,x) −→ Q(Π1(X), G, x) −→ G −→ 1

where Π1(X,x) can be identified with the fundamental group of X based at x. The section map
then descends to a map

π0

(
XG
)
−→ Sec(Π1(X), G).

In general this map is far from being an isomorphism. For example consider the group Z/2 acting

on S2 via the antipodal involution. Then we have
(
S2
)Z/2

= ∅ while Sec(Π1(S2),Z/2) = {∗}
because Π1(S2, x) = 1 for every x ∈ S2.

In order to describe the algebro-geometric analogue of Example 1 in the language of Grothendieck’s
construction it is useful to replace the notion of a groupoid by a pro-finite analogue:

Definition 2.4. A pro-finite groupoid Π is a groupoid enriched in pro-finite sets. More
explicitly, we have:

(i) A collection of objects Ob(Π).

(ii) For each X,Y ∈ Ob(Π) a pro-finite set of morphisms

Π(X,Y ).

(iii) For each three objects X,Y, Z ∈ Ob(Π) a continuous associative composition rule

Π(X,Y )×Π(Y,Z) −→ Π(X,Z).

(iv) For each object X ∈ Ob(Π) a designated identity morphisms IdX ∈ Π(X,X) which is
neutral with respect to composition.

(v) For each morphism f : X −→ Y an inverse f−1 : Y −→ X (this is the groupoid part of
the definition).

Remark 2.5. The category of pro-finite sets can be naturally identified with the category of totally
disconnected compact Hausdorf spaces. The reader is welcome to choose his or hers preferred
point of view for this notion.

Now let Π be a pro-finite groupoid and let Γ be a pro-finite group acting on Π (via con-
tinuous functors). The Grothendieck construction described above generalizes naturally to the
pro-finite setting. In this case Q(Π,Γ) inherits a natural structure of a pro-finite groupoid and
the Grothendieck short exact sequence

1 −→ Π(x, x) −→ Q(Π,Γ, x) −→ Γ −→ 1

becomes a short exact sequence of pro-finite groups.

Example 2. Let X be a variety over an algebraically closed field k. Let E(X) be the category
whose objects are connected finite étale coverings f : Y −→ X and whose morphisms are maps
over X. For each point x ∈ X (k) we have an associated fiber functor

Fx : E(X) −→ Set
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which sends (f : Y 7→ X) ∈ E(X) to the fiber f−1 (x) ∈ Set. Now given two points x, y ∈ X (k)
we can consider the set

Iso(Fx, Fy)

of natural equivalences from Fx to Fy. More explicitly, each α ∈ Iso(Fx, Fy) consists of a
compatible family of isomorphisms

αf : f−1(x) −→ f−1(y)

indexed by the objects f : Y −→ X of E(X). The set Iso(Fx, Fy) carries a natural topology in
which the neighborhood basis of an element α ∈ Iso(Fx, Fy) consists of the sets

Wα,f = {β ∈ Iso(Fx, Fy)|βf = αf}

for each f : Y −→ X in E(X). This topology makes Iso(Fx, Fy) into a totally disconnected
compact Hausdorf space, or in other words, a pro-finite set. Since natural equivalences can be
composed and inverted we get a pro-finite groupoid Π1 (X) whose objects are

Ob (Π1 (X)) = X (k)

and whose morphisms are

Π1 (X) (x, y)
def
= Iso(Fx, Fy).

This pro-finite groupoid is called the étale fundamental groupoid of X. Given a point x ∈
X (k) one denotes

Π1 (X,x)
def
= Π1(X)(x, x).

This pro-finite group is called the étale fundamental group of X based at x.

If X is a variety over a general field K and X = X ×K K is the base change to the algebraic
closure then Π1

(
X
)

inherits a natural action of ΓK = Gal
(
K/K

)
by (continuous) functors.

Taking the associated Grothendieck exact sequence we obtain a short exact sequence of pro-
finite groups

1 −→ Π1

(
X,x

)
−→ Q

(
Π1

(
X
)
,ΓK , x

)
−→ ΓK −→ 1.

Note that any K-rational point of X determines a ΓK-invariant object of Π1

(
X
)

and hence a
conjugacy class of sections

Q
(
Π1

(
X
)
,ΓK , x

)
// ΓK

ss
.

Example 3. Let X be a topological space and G a finite group acting on X. Imitating the
algebraic construction of the fundamental groupoid one can consider the category E(X) of finite
covering maps Y −→ X and consider the groupoids Π̂1(X) whose objects are the points of X
and such that the morphisms from x to y are the natural transformations between the associated
fiber functors (carrying their natural pro-finite topology). There is a natural functor

Π1(X) −→ Π̂1(X)

which identifies Π̂1(X) with the pro-finite completion of Π1(X) (in an appropriate sense). In
particular, for each x ∈ X the group Π̂1(X,x) is the pro-finite completion of the fundamental
group Π1(X,x).

We will be interested in a variant of example 3 with graphs instead of spaces. To fix notation,
let us recall what we mean by a graph:
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Definition 2.6. A graph X = (X0, X1, s, t) is a pair of sets X0, X1 (called vertices and edges
respectively) together with two maps

s, t : X1 −→ X0

associating with each edge its source and target respectively. Note that every edge carries an
orientation (i.e. a graph for us is always directed) and that both loops and multiple edges are
allowed.

Definition 2.7. A map f : Y −→ X of graphs is called a graph covering if the following two
conditions are satisfied:

(i) For each edge e ∈ X1 and every vertex v ∈ Y1 such that f(v) = s(e) there exists a unique
edge ẽ ∈ Y1 such that f(ẽ) = e and s(ẽ) = v.

(ii) For each edge e ∈ X1 and every vertex v ∈ Y1 such that f(v) = t(e) there exists a unique
edge ẽ ∈ Y1 such that f(ẽ) = e and t(ẽ) = v.

A covering map Y −→ X is called finite if the preimage of each vertex v ∈ X1 is finite. We
will denote by E(X) the category of finite coverings maps Y −→ X.

Now recall that every graph X can be geometrically realized into a topological space |X|. It
is not hard to see that a map Y −→ X of graphs is a graph covering if and only if the induced
map |Y | −→ |X| is a covering map of topological spaces. Furthermore, every covering map of
|X| arises this way. Hence we can describe the pro-finite fundamental groupoid Π̂1(|X|) in terms
of X. More explicitly, given a graph X and vertex v ∈ V (X) we can consider the fiber functor

Fv : E(X) −→ Set

sending each p : Y −→ X in E(X) to the set p−1(v). We can then consider the combinatorial
version Π̂1(X) of Π̂1(|X|) to be the pro-finite groupoid whose objects are the vertices of X and
whose morphisms are the natural transformations between the associated fiber functors. The
realization functor then induces an equivalence of pro-finite groupoids

Π̂1(X)
'−→ Π̂1(|X|).

Now let G be a group acting on a graph X. We then have an induced action of G on Π̂1(X)
and we can consider the associated Grothendieck exact sequence

1 −→ Π̂1(X,x) −→ Q
(

Π̂1(X), G, x
)
−→ G −→ 1.

The section map then descends to a map

π0

(
XG
)
−→ Sec(Π1(X), G)

where π0 of a graph denotes the set of connected components of the graph (which can be identified
with the set of connected components of the geometric realization of the graph). In § 3 below we
will prove that when X and G are finite then this section map is an isomorphism. We consider
this result as the combinatorial analogue of Grothendieck’s section conjecture for curves.

3. Pro-finite trees and the section conjecture for graphs

The purpose of this section is to prove the section conjecture for graphs (see Theorem 3.7
below). For this purpose we will recall the theory of pro-finite trees as developed in [ZM89].
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Definition 3.1. A pro-finite graph is a graph X = (X0, X1, s, t) (see Definition 2.6) together
with a pro-finite topology T on the set X0

∐
X1 such that

(i) X0 ⊆ X1
∐
X0 is closed in T. In particular the induced topology on X0 is pro-finite as well.

(ii) The induced maps

(s)∗, (t)∗ : X1

∐
X0 −→ X0

(which are the identity on the second component) are continuous.

Example 4. Every finite graph can be considered as a pro-finite graph in a unique way.

Example 5. Let Γ be a pro-finite group and S ⊆ Γ a subset not containing 1. Let (Γ,Γ× S, s, t)
be the Cayley graph of Γ with respect to S (so that s(γ, a) = γ, t(γ, a) = γ · a for γ ∈ Γ, a ∈ S).
Then (Γ,Γ× S, s, t) carries a natural structure of a pro-finite graph by endowing

[Γ× S]
∐

Γ ∼= Γ× [S ∪ {1}]

with the product topology. We call this graph the pro-finite Cayley graph of Γ.

Definition 3.2. We will say that a pro-finite graph (X0, X1, s, t,T) is split if X1 ⊆ X1
∐
X0 is

closed in T. In this case the induced topology on X1 is pro-finite as well and T exhibits X1
∐
X0

as a topological disjoint union of (X1,T|X1) and (X0,T|X0).

Example 6. Let Γ be a pro-finite set and S ⊆ Γ a subset not containing 1. LetX = (Γ,Γ×S, s, t,T)
be the pro-finite Cayley graph of Γ with respect to S. Then X is split if and only if 1 is not in
the closure of S (e.g. when S is finite).

All the pro-finite graphs appearing in this paper will be split (in fact, they will be very close
to the pro-finite Cayley graph of a free pro-finite group on a finite set of generators). Since this
restriction simplifies things somewhat we will restrict our attention to split pro-finite graphs from
now on.

Let Pro(FinAb) be the category of pro-finite abelian groups and Pro(FinSet) the category of
pro-finite sets. The forgetful functor

U : Pro(FinAb) −→ Pro(FinSet)

commutes with all limits and so admits a left adjoint

Ẑ : Pro(FinSet) −→ Pro(FinAb).

If X is a pro-finite set then the pro-finite abelian group Ẑ(X) can be considered as the pro-
finite abelian group (or Ẑ-module, justifying the notation) freely generated from X. The unit
map ι : X −→ Ẑ(X) is an embedding and if A is a pro-finite abelian group then continuous
homomorphisms

Ẑ(X) −→ A

are in one-to-one correspondence (obtained via ι) with maps of pro-finite sets

X −→ U(A).

Remark 3.3. Note that if X is not discrete (i.e. not finite) then Ẑ(X) will generally not be free
in the classical (pro-finite) sense. In fact, one has

Ẑ(X) ∼= lim
α

Ẑ(Xα)

where Xα runs over all the finite quotients of X.
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Now let X = (V,E, s, t,T) be a split pro-finite graph. We have an associated complex of
pro-finite abelian groups

Ẑ(E)
∂1−→ Ẑ(V )

∂0−→ Ẑ
where ∂1(e) = t(e) − s(e) for every e ∈ E ⊆ Ẑ(E) and ∂0(v) = 1 for every v ∈ V ⊆ Ẑ(V ). One
then defines the reduced homology groups H̃1(X), H̃0(X) to be the homology groups of the
above complex. These groups carry a natural structure of pro-finite abelian groups.

Example 7. If X is a finite graph then H̃0(X) and H̃1(X) coincide with the reduced homology
groups of X with coefficients in Ẑ (in the usual topological sense).

The following lemma appears in [ZM89]:

Lemma 3.4 [ZM89] (1.7, 1.12). Let X be a pro-finite graph. Then for i = 0, 1 one has

H̃i(X) ∼= lim
α
H̃i(Xα)

where Xα runs over the finite quotients of X.

We say that a pro-finite graph X is connected if H̃0(X) = 0. Note that if X is a finite graph
then this notion coincides with the usual notion of connectedness. Using Lemma 3.4 we see that a
pro-finite graph is connected if and only if each finite quotient graph of X is connected. However,
note that X might be connected as a pro-finite graph and yet not connected as a discrete graph
(i.e. when forgetting the pro-finite topology).

Definition 3.5. Let X be a pro-finite graph. X is said to be a pro-finite tree if it is connected
and H̃1(X) = 0.

We will be interested in the following types of pro-finite trees. Let X be a finite connected

graph and let p : X̃ � X be a universal cover. Let A = AutX

(
X̃
)

be the group of automor-

phisms of X̃ over X. For each finite index subgroup H < A the (connected) quotient graph

YH
def
= X̃/H admits a natural covering map YH −→ X. We define the pro-universal cover X̂

of X to be the limit (in the category of pro-finite graphs):

X̂ = lim
H<A,[A:H]<∞

YH .

Then by Lemma 3.4 we get that X̂ is a connected. Furthermore it is easy to see that for each
H < A and each u ∈ H̃1(YH) there exists an H ′ < H of finite index such that u is not in the
image of the induces map

H̃1 (YH′) −→ H̃1(YH).

Hence H̃1

(
X̂
)

= 0 and so X̂ is a pro-finite tree.

The main result we will need from [ZM89] is the following fixed point theorem. It is a known
fact that a finite group acting on an (oriented) graph always has a fixed vertex. This is usually
considered as part of the comprehensive Bass-Serre theory concerning groups acting on trees.
The following is a generalization of this fixed point theorem to the pro-finite setting:

Theorem 3.6 [ZM89]. Let G be a finite group acting on a pro-finite tree T . Then there exists
a vertex v fixed by G. In fact, the fixed subgraph TG is also a pro-finite tree.
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Our main application of this theorem is the following result, which can be considered as the
section conjecture for finite graphs. Let X be a finite graph acted on by a finite group G.
Recall the pro-finite fundamental groupoid Π̂1(X) which was defined in § 4. Then Π̂1(X)
carries a G-action and we have the Grothendieck exact sequence

1 −→ Π̂1(X, v) −→ Q(Π̂1(X), G, v) −→ G −→ 1.

Recall that Sec
(

Π̂1(X), G
)

denotes the set of conjugacy classes of sections

Q
(

Π̂1(X), G, v
)

// G

ww

and that each fixed vertex of X gives an element of Sec
(

Π̂1(X), G
)

, i.e. we have a map

h : V
(
XG
)
−→ Sec

(
Π̂1(X), G

)
.

We then claim the following:

Theorem 3.7. Let X be a finite graph acted on by a finite group G. Then the map

h : XG −→ Sec
(

Π̂1(X), G
)

is surjective an induces a bijection

h : π0

(
XG
)
−→ Sec

(
Π̂1(X), G

)
where π0 of a graph denotes the corresponding set of connected components.

Proof. Let A = Aut
(
X̃/X

)
as above and

X̂ = lim
H<A,[A:H]<∞

YH

be the pro-universal cover of X with p : X̂ −→ X the induced map. Let v̂ ∈ X̂ be a vertex over

v. Our first observation is that the choice of v̂ determines an action of Q
(

Π̂1(X), GL, v
)

on X̂.

Although this is a straight forward pro-finite adaptation of standard covering space theory let
us explain this point with some more detail as to establish the setting for the rest of the proof.

First note that inside the partially ordered set (poset) of finite index subgroups H < A the
sub-poset of finite index normal subgroups is cofinal. Hence we have a natural isomorphism

X̂ ∼= lim
H/A,[A:H]<∞

YH .

Let α ∈ Π̂1(X, v) be an element (so that α : v −→ v is a morphism in Π̂(X)) and let û = α−1
∗ (v̂)

be the the pre-image of v̂ under the induced map

α∗ : p−1(v) −→ p−1(v).

For each H/A of finite index let vH , uH be the respective images of v̂, û in YH = Y/H. Since H is
normal we have that Y/H −→ X is a normal covering and so there exists a unique automorphism
Tα,H ∈ AutX(YH) = A/H which sends vH to uH . The automorphisms Tα,H are compatible as
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H ranges over finite index normal subgroups and so induce a pointed automorphism(
X̂, v̂

)
Tα //

##GG
GG

GG
GG

G

(
X̂, û

)
{{www

ww
ww

ww

(X, v)

The association α 7→ Tα is easily seen to be a free action of Π̂1(X, v) on X̂. In fact, this identifies
Π̂1(X, v) with the group

AutX

(
X̂
)
∼= lim

H/A,[A:H]<∞
AutX(YH) = lim

H/A,[A:H]<∞
A/H = Â.

Note that in order to make this identification we needed to choose the vertex v̂, but different
choices would have resulted in conjugated isomorphisms. In particular, we have a canonical
identification of finite index normal subgroups of Π̂(X, v) and finite index normal subgroups of
Â, which in turn is the same as finite index normal subgroups of A.

Let us now explain how to extend this action to all of Q
(

Π̂1(X), G, v
)

. The quotient

Q
(

Π̂1(X), G, v
)
� G

induces a quasi-action of G on Π̂1(X), i.e. a homomorphism G −→ Out
(

Π̂1(X, v)
)

. In light of

the above discussion this gives a quasi-action of G on Â which in turn gives an action of G on
the poset of finite index normal subgroups in A. Since G is finite we see that the sub-poset of
G-invariant normal subgroups H / A is cofinal, and hence we can assume that the limit

X̂ = lim
H/A,[A:H]<∞

YH

is taken only over G-invariant H’s. Now given an element (g, α) ∈ Q
(

Π̂1(X), G, v
)

(so that

α : g(v) −→ v is a morphism in Π̂(X)) we set as before û = α−1
∗ (v̂) ∈ X̂ (note that this time û

lies above g(v)). For each G-invariant finite index H / T we let vH , uH be the respective images
of v̂, û in YH . Then there exists a unique automorphism of graphs Tg,α,H : Y/H −→ Y/H fitting
into a commutative diagram of pointed graphs

(Y/H, vH)
Tg,α,H //

��

(Y/H, uH)

��
(X, v)

g // (X, g(v))

As above the maps Tg,α,H are compatible as H ranges over G-invariant finite index normal

subgroups H / A. Hence we get a map Tα,g : X̂ −→ X̂ which fits in the commutative diagram

(∗)
(
X̂, v̂

)
Tg,α //

��

(
X̂, û

)
��

(X, v)
g // (X, g(v))

It is not hard to see that the association (g, α) 7→ Tg,α gives an action of Q
(

Π̂(X), G, v
)

on X̂

10
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extending the action of Π̂1(X, v) and covering the action of G on X.

Let us now proceed with the proof of Theorem 3.7. For each section s : G −→ Q(Π̂1, G) we
can restrict the action of Q(Π̂1(X), G) on X̂ to G via s. According to Theorem 3.6 the fixed
subgraph

X̂s(G) ⊆ X̂
is a tree, and in particular non-empty. Furthermore, if s, s′ are two different sections then

X̂s(G) ∩ X̂s′(G) = ∅

because s(g)−1s′(g) ∈ Π̂1(X, v) which acts freely on X̂. Now if two sections s, s′ are conjugated
by γ ∈ Π̂1(X, v) then

γ
(
X̂s(G)

)
= X̂s′(G).

However, if two sections s, s′ are not conjugated then by the above considerations we will get
that

γ
(
X̂s(G)

)
∩ X̂s′(G) = ∅

for every γ ∈ Π̂1(X, v). Hence the images{
p
(
X̂s(G)

)}
[s]∈Sec(Π̂1(X),G)

is a pairwise disjoint collection of connected subgraphs of XG.

Now let w ∈ XG be a fixed vertex and let ϕ : v −→ w be a morphism in Π̂1(X). Then

h(w) ∈ Sec
(

Π̂1, G
)

is represented by the section

sw : g 7→ (g, α) ∈ Q(Π̂1, X, v)

where α = ϕ−1 ◦ g(ϕ).

Let û = α−1
∗ ∈ p−1(g(v)) as above and let ŵ = ϕ∗ (v̂) ∈ p−1(w) be the image of v̂ under the

bijection

ϕ∗ : p−1(v)
'−→ p−1(w).

Now recall that for every finite covering q : Y −→ X considered as an object q ∈ E(X) we have
g(q) = g ◦ q and so by definition the map

(g(ϕ))q : q−1(g(v)) −→ q−1(g(w))

is equal to the map

ϕq′ : q′−1(v) −→ q′−1(w)

where q′ = g−1(q) = g−1 ◦ q. In view of the commutative diagram (∗) this implies that the
following diagram of pointed pro-finite sets

(
p−1(v), v̂

)
(Fg,α)∗

��

ϕ∗ //
(
p−1(w), ŵ

)
(Fg,α)∗

��

(
p−1(w), ŵ

)
(Fg,α)∗

��(
p−1(g(v)), û

) g(ϕ)∗ //
(
p−1(g(w)), ŵ

) (
p−1(w), ŵ

)
is commutative, and so ŵ is fixed by Fg,α for every g, i.e.

w ∈ p
(
X̂sw(G)

)
.

11
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Since the various X̂s(G)’s are pairwise disjoint it follows that for each [s] ∈ Sec
(

Π̂1(X), g
)

one

has

h−1([s]) = V
(
p
(
X̂s(G)

))
6= ∅.

Since p
(
X̂s(G)

)
is also connected (because X̂s(G) is a tree) we get that all the vertices in h−1([s])

sit in the same connected component of XG. On the other hand, by using Remark 2.3 it is not
hard to show that vertices in the same connected component of XG have identical images under
h. This means that h induces a bijection between the connected components of XG and the

elements of Sec
(

Π̂1(X), g
)

.

Remark 3.8. The statement of Theorem 3.7 remains true if one replaces the pro-finite fundamen-
tal groupoid Π̂1(X) ∼= Π̂1(|X|) with the discrete groupoid Π1(|X|). The proof is essentially the
same (using the classical fixed point theorem for finite groups acting on trees instead of Theo-
rem 3.6). The reason we focused our attention on the pro-finite case was our desired applications
for rational points on curves (see § 4).

4. Finite descent on conical curves

In this section we will turn our attention to transverse conical curves over a number field
K. The main purpose of this section is to prove Theorem 4.11 below stating that finite descent
is the only obstruction to the Hasse principle for transverse conical curves.

We begin by encoding the structure of a conical curve in a graph. The following construction
and notation recalls that of [SH13]. Let K be a number field with algebraic closure K and
let C/K be a projective reduced curve with a normalization map ν : C̃ −→ C. Consider the
0-dimensional schemes

Λ = Spec
(
H0
(
C̃,O

C̃

))
, Π = Csing, Ψ = ν−1 (Csing) .

Here Λ is the K-scheme of irreducible components of C (or the connected components of C̃) and
Csing is the singular locus of C. Let Λ, Π, Ψ be the K-schemes obtained from Λ, Π, Ψ by extending
the ground field to K. Note that 0-dimensional schemes over an algebraically closed field can
be naturally identified with sets and so we can think of Λ,Π and Ψ as the sets of irreducible
components of C, singular points of C and critical points of ν respectively. In addition, since
these schemes were base changed from K-schemes the corresponding sets carry an action of the
Galois group ΓK .

Definition 4.1. Let C/K be a projective reduced curve. We define the incidence graph X(C)
of C to be the graph whose vertex set is

X(C)0 = Λ ∪Π

and whose set of edges is X(C)1 = Ψ. The source map

s : Ψ −→ Λ
∐

Π

associates with each Q ∈ Ψ the connected component L ∈ Λ containing it and the target map

t : Ψ −→ Λ
∐

Π

associates with Q ∈ Ψ its image P = ν(Q) ∈ Π. By construction X(C) is a bipartite graph with
a natural action of the Galois group ΓK .

12



The Section Conjecture for Graphs

Remark 4.2. The construction C 7→ X(C) is not, strictly speaking, functorial. However, it is
functorial if we restrict ourselves to étale maps C −→ D of curves. Furthermore, given a finite
étale map C −→ D the resulting map of graphs X(C) −→ X(D) is a finite graph covering (see
Definition 2.7). In particular, given a reduced projective curve C we obtain a functor

X : E
(
C
)
−→ E(X(C)).

Remark 4.3. If C is a reduced projective curve and ρ : C ′ −→ C is the universal map from a
transverse curve then ρ induces an isomorphism of graphs

ρ∗ : X(C ′) −→ X(C).

Definition 4.4. Let C/K be a reduced projective curve. We define the splitting field L/K to
be the minimal Galois extension which splits Λ,Π and Ψ. We will denote by

GL = Gal(L/K)

the Galois group of this finite extension. Note that the action of ΓK on X(C) factors through
the quotient

ΓK � GL.

Our first lemma verifies that when C is transverse conical curve then the incidence graph
of X(C) captures all the information regarding finite étale coverings of C.

Proposition 4.5. Let C/K be a transverse conical curve. Then the functor (see Remark 4.2)

X : E(C) −→ E(X(C))

is an equivalence of categories.

Proof. In order to show that X is an equivalence we will construct an explicit inverse for it.
Recall that X(C) is a two-sided graph - the edges always go from the subset Π to the subset
Λ. This property is inherited by any covering Y −→ X(C): one can just divide the vertices of Y
to the preimage of Π and the preimage of Λ.

Note any two-sided graph Y can be considered as a category with the vertices being the
objects and each edge interpreted as a morphism from its source to its target (the identity
morphisms are added formally). Due to the two-sidedness no pair of non-trivial morphisms is
composable and so we don’t need to add any new morphisms.

Now the structure of X(C) as the incidence graph of C defines a natural functor

S : X −→ Sch /L

from X to schemes over L where the vertices in Π map to their corresponding L-point (considered
as a copy of Spec(L)) and the vertices in Λ map to the corresponding component (considered as
a rational curve over L).

Given a covering map p : Y −→ X(C) we can consider it as a functor from Y to X(C) and
hence obtain a functor

S ◦ p : Y −→ Sch /L.

We then define a functor

RL : E(X(C)) −→ E (CL)

by associating with each p : Y −→ X(C) in E(X(C)) the curve

RL(Y )
def
= colim

v∈Y
S(p(v))

13
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which admits a natural finite étale map to CL. We call RL(p) the L-realization of the covering
map p : Y −→ X(C). Now composing with the base change functor

−⊗L K : E (CL) −→ E
(
C
)

we obtain a functor

R : E(X(C)) −→ E
(
C
)
.

We have natural maps

u : D −→ R(X(D))

and

v : X(R(Y ) −→ Y

which are easily seen to be isomorphisms. Hence the functor R is an inverse to X and we are
done.

Remark 4.6. Note that if C/K is a transverse conical curve and Y −→ X(C) is a covering of
graphs then R(Y ) is a transverse conical curve as well. Hence we get that every étale covering
of a transverse conical curve is conical.

We are now in a position to relate the Grothendieck exact sequences of associated with C and
X(C). A finite étale map of the form R(Y ) −→ C carries by construction a canonical L-structure.
This means that the action of ΓK on E

(
C
)

essentially factors over L. More precisely, the GL
action on X(C) induces an action of GL on E(X(C)) such that σ ∈ GL sends p : Y −→ X(C) to
σ ◦ p : Y −→ X(C). If we pull this action back to an action of ΓK we will get that the functor R

is ΓK-equivariant (more precisely, it carries a natural structure of ΓK-equivariant functor). We
can phrase this by saying that R is (ΓK , GL)-equivariant.

Now we have a natural map

ρ : C
(
K
)
−→ V (X(C))

which sends the singular points of C(K) to their corresponding vertices in Π ⊆ V (X(C)) and
the smooth points to their (uniquely defined) components in Λ ⊆ V (X(C)). The functor R

introduced in the proof of Proposition 4.5 induces an isomorphism of pro-finite sets

R∗ : Iso (Fx, Fy)
'−→ Iso

(
Fρ(x), Fρ(y)

)
which is compatible with composition. Hence we obtain a fully-faithful functor of pro-finite
groupoids

ϕ : Π1

(
C
) '−→ Π̂1(X(C))

which is an equivalence since Π̂1(X(C)) is connected. Finally, the action of GL = Gal(L/K) on
E(X(C)) induces a natural action of GL on Π̂1(X) and ϕ is naturally (ΓK , GL)-equivariant. In
particular, every K-rational point of C will be mapped by ρ to a GL-fixed vertex, which in turn
induces a section of the form

1 // Π̂1(X(C), v) // Q
(

Π̂1(X(C)), GL, v
)

// GL //
yy

1 .

Similarly, for each completion Kν of K and each Kν-point x ∈ C(Kν) we get a vertex ρ(Kν)
which is fixed by the corresponding decomposition group Dν ⊆ GL. Hence each Kν-point induces
a section

1 // Π̂1(X(C), v) // Q
(

Π̂1(X(C)), Dν , v
)

// Dν
//

yy

1 .
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Now since ϕ is (ΓK , GL)-equivariant it induces a map between the Grothendieck exact se-
quences of Π1

(
C
)

and Π̂1(X(C)). Namely, we have a map of short exact sequences

1 // Π1

(
C, x

)
//

��

Q
(
Π1

(
C
)
,ΓK , x

)
//

��

ΓK //

����

1

1 // Π̂1(X(C), v) // Q
(

Π̂1(X(C)), GL, v
)

// GL // 1

(1)

Similarly, for each place ν of K we get a corresponding local version of the above diagram, namely

1 // Π1

(
C, x

)
//

'
��

Q
(
Π1

(
C
)
,Γν , x

)
//

��

Γν //

����

1

1 // Π̂1(X(C), v) // Q
(

Π̂1(X(C)), Dν , v
)

// Dν
// 1

(2)

and each Kν-point of C then induces a conjugacy class of compatible sections of the top and
bottom row of 2. We will use the following terminology:

Definition 4.7. We will say that a conjugacy class of sections [s] ∈ Sec
(
Π1

(
C, x

)
,ΓK

)
is

locally realizable if for each place ν the restriction [s|Γν ] comes from a Kν-point of C. Similarly

we will say that conjugacy class of sections [s] ∈ Sec
(

Π̂1(X(C), v), GL

)
is locally realizable if

for each place ν the restriction [s|Dν ] comes from a Kν-point of C.

We are now ready to formulate finite descent obstruction on C in terms of sections for the
Grothendieck exact sequence of X(C):

Proposition 4.8. Let C be a geometrically connected transverse conical curve. Then Cfin(A) 6= ∅
if and only if there exists a locally realizable element in Sec

(
Π̂1(X(C), v), GL

)
.

Proof. We will rely on the following theorem which appears in [HS12]:

Theorem 4.9 (Harari,Stix). Let X be a (not necessarily smooth) projective geometrically con-
nected variety over K. Then Xfin(A) 6= ∅ if and only if there exists a locally realizable element
in Sec

(
Π1

(
X,x

)
,ΓK

)
.

Since the left most vertical map in 1 is an isomorphism we get that the right square of 1 is a
pullback square, i.e. it induces an isomorphism

Q
(
Π1

(
C
)
,ΓK , x

) ∼= Q
(

Π̂1(X(C)), GL, v
)
×GL ΓK .

This means that sections of the form

1 // Π1

(
C, x

)
// Q
(
Π1

(
C
)
,ΓK , x

)
// ΓK

ss
// 1

are in 1-to-1 correspondence with lifts

ΓK

����

ψ

wwo o o o o o

1 // Π̂1(X(C), v) // Q
(

Π̂1(X(C)), GL, v
)

// GL // 1

(3)
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Now by pre-composing with ΓK we can transform any section of the bottom row of 1 into a lift
as in 3 and hence a section of the top row of 1. Since pre-composing commutes with conjugation
by Π̂1(X(C), v) this operation induces a map on the corresponding conjugacy classes, i.e., we
have a map

ρ : Sec
(

Π̂1(X(C), v), GL

)
−→ Sec

(
Π1

(
C, x

)
,ΓK

)
(4)

Since the map ΓK −→ GL is surjective it follows that the map 4 is injective (note that de-
scending to conjugacy classes preserves injectivity). This injectivity implies that an element

in Sec
(

Π̂1(X(C), v), GL

)
is locally realizable if and only if its image in Sec

(
Π1

(
C, x

)
,ΓK

)
is

locally realizable.

In order to relate Theorem 4.9 to our desired result we will prove the following:

Lemma 4.10. If a conjugacy class [s] ∈ Sec
(
Π1

(
C, x

)
,ΓK

)
is locally realizable then [s] = ρ([t])

for some element [t] ∈ Sec
(

Π̂1(X(C), v), GL

)
(which by the above is also locally realizable).

Proof. The section s corresponds to a lift ψ : ΓK −→ Q
(

Π̂1(X(C)), GL, v
)

as in 3. Let ΓL ⊆ ΓK

be the kernel of the quotient map ΓK −→ GL. Since [s] is locally realizable it follows that [s|Γν ]

comes from a class in Sec
(

Π̂1(X(C), v), Dν

)
for each ν. This means that ψ vanishes when

restricted to each decomposition subgroup Γν ∩ΓL (note that such a vanishing is invariant under
conjugation). From the Chebotarev’s density theorem it follows that ψ vanishes on ΓL and so

descends to a section t : GL −→ Q
(

Π̂1(X(C)), GL, v
)

. This finishes the proof of the Lemma.

From Lemma 4.10 we get that the subset of Sec
(
Π1

(
C, x

)
,ΓK

)
of locally realizable elements

can be identified with the subset of Sec
(

Π̂1(X(C), v), GL

)
of locally realizable elements. This

means that Theorem 4.9 implies Proposition 4.8.

We are now ready to prove the main result of this section:

Theorem 4.11. Let K be a number field and C/K a geometrically connected transverse conical
curve for which C(AK)fin 6= ∅. Then C(K) 6= ∅.

Proof. Let L/K be the splitting field of X(C) and GL = Gal(L/K). According to Corollary 4.8
there exists a section

1 // Π̂1(X, v) // Q
(

Π̂1(X), GL, v
)

// GL

s
ww

// 1 .

which is locally realizable.

According to Theorem 3.7 the graph X(C) has a fixed vertex which induces the section s.
If this vertex corresponds to a singular point then C has a K-rational point and we are done.
Hence we can assume that this fixed vertex corresponds to a ΓK-invariant irreducible component
C0 of C. We claim that C0 must have points everywhere locally. Since C0 is a conic this will
imply that C0(K) 6= ∅.

Assume C0 does not have points everywhere locally and let ν be a place such that C0(Kν) = ∅.
This means that no neighboring vertices of C0 in X(C) are fixed by Dν and so C0 is an isolated
vertex in the Dν-fixed subgraph XDν . Since the section s|Dν comes from a Kν-point and this
Kν-point can’t be on C0 we get that it has to come from a vertex on a different connected
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component of X(C)Dν . This means that s|Dν is induced by two different vertices which lie on
two different connected component X(C)Dν . But this is impossible in view of Theorem 3.7 and
we are done.
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Ihrer Grenzgebiete, Springer (1990).

D89 P. Deligne, Le Groupe Fondamental de la Droite Projective Moins Trois Points, Mathematical
Sciences Research Institute Publications, 16 (1989), p. 79–297.

SH13 A. Skorobogatov and Y. Harpaz, Singular curves and étale-Brauer obstruction for surfaces, sub-
mitted.
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