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1 Curves

2 The Genus

As always in algebraic geometry when study an object, we need to start by
understanding its geometry, i.e. its behavior over C or over Q. We will only
be interested in smooth projective curves and we know that for such curves the
complex points C(C) form a compact manifold of dimension 2. These manifolds
will always be orientable, and so are classified by a unique invariant g ∈ N,
called the genus, which corresponds to the number of ”holes” (the 2-sphere has
no holes, the torus has 1, etc). We will refer to it as the genus of the curve C.

We will show how to construct curves of arbitrary genus. For a given g ∈ N
set n = 2(g + 1) and let a0, ..., an ∈ C be and define a smooth projective curve
C over C by gluing the two affine curves

C1 : y2 =
∑
k

akx
k

C2 : w2 =
∑
k

akz
n−k

Let U1 ⊆ X1 be the open set defined by x 6= 0 and U2 ⊆ C2 the open set defined
by z 6= 0. Consider the map U1 −→ U2 given by

z =
1

x

w =
y

x
n
2

Note that this is morphism of algebraic varieties because

( y

x
n
2

)2
=

y2

xn
=

∑
k akx

k

xn
=
∑
k

ak

(
1

x

)n−k
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This map is also invertible. Its inverse is

x =
1

z

y =
w

z
n
2

Hence it is an isomorphism. This means we glue C1 to C2 along this isomorphism
U1
∼= U2 to obtain a new curve C.
Let us now check when C is smooth. We only need to check each of the

affine curves C1, C2. Note that both of them are defined by an equation of the
form

F (x, y) = y2 − f(x) = 0

where f is a polynomial of degree ≤ 2(g + 1). We claim that such a curve is
smooth if and only if f has no double roots. The gradient of F is given by

∇F = −f ′(x)dx + 2ydy

Hence ∇F = 0 at the point (x0, y0) ∈ C if and only if f ′(x0) = 0 and y = 0 (or
equivalently f ′(x0) = 0 and f(x0) = y20 = 0). This occurs exactly when x0 is a
double root of f .

Now note that if C2 is smooth then f =
∑

k akx
k must has degree at least

n − 1, because other wise an−1 = an = 0 and then
∑

k akz
n−k has a double

root at z = 0. Now it is not hard to verify that if
∑

k akx
k is a polynomial of

degree at least n−1 and has no double roots then
∑

k akz
n−k satisfies the same

condition and C is smooth.
Note also that if f has no double roots then it has no root in the field C(x)

and so y2− f(x) is irreducible in C[x, y]. This means that in that case C is also
an irreducible variety.

We now want to convince ourselves that C is complete. Note that we have
a map C −→ P1 given on C1 and C2 respectively by

ϕ(x, y) = (x : 1)

ϕ(z, w) = (1 : z)

We now that the property of being complete is equivalent to C(C) being com-
pact. Now ϕ induces a surjective map from C(C) to P1(C) (which is compact)
and the fiber above every point is finite (its size is either 2 or 1). By some rather
simple topological arguments one can prove in that way that C(C) is compact.

Another approach is to embed C as a closed subvariety of some complete
variety. Recall the weighted projective space P

(
1, n

2 , 1
)

from Tomer’s lecture.
You saw that this is a complete variety of dimension 2. The equation

y2 =
∑
k

akx
kzn−k
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is well defined on P
(
1, n

2 , 1
)

with projective coordinates x : y : z where x and
z have weight 1 and y has weight n

2 . Its solution set is a closed (and hence
projective) subvariety. Call it X.

Now note that X can be covered by two affine open sets given by x 6= 0
and z 6= 0 respectively (the point (1 : 0 : 0) ∈ P

(
1, n

2 , 1
)

is not on X). These
two affine subsets are then isomorphic to C1 and C2 respectively, and one easily
checks that the gluing map is the same. Hence X ∼= C and C is complete.

We now wish to calculate the genus of C. Let f̃(x, z) =
∑

k akx
kzn−k and

think of C as embedded in P
(
1, n

2 , 1
)

as the solution set to the equation

y2 = f̃(x, z)

The map ϕ : C −→ P1 can be written as

ϕ(x : y : z) = (x : z)

This map is well defined because the point (1 : 0 : 0) ∈ P
(
1, n

2 , 1
)

is not on
C. Now the fiber over a point (x : z) ∈ P1(C) consists of the points (x : y : z)
where y = ±

√
(f(x, z)). There are exactly n = 2(g + 1) different points (x1 :

z1), ..., (xn : zn) ∈ P1(C) for which f̃(xi, zi) = 0 (these are called ramification
points). Over these points there is a unique point in C, and over any other
point there are two points in C.

Now let Ii ⊆ P1(C) be a line segment connecting (x2i : z2i) and (x2i+1 :
z2i+1) and suppose that the Ii’s don’t intersect each other. Let U ⊆ P1(C)
be the complement of the union of the Ii’s. Assume for simplicity that U is
contained in the affine set x 6= 0 and so we identify U(C) with an open subset of

the complex plane via the coordinate u = x
z . Let f(u) = f̃(u, 1). Then f(u) 6= 0

for every u ∈ U(C) and in fact every loop in U circles an even number of roots
of f .

From the theory of complex functions we know that in that case we can
choose the square root

√
f(u) continuously on all of U . This means that

ϕ−1(U) = U1 ∩ U2 is a disjoint union of two sets, such that each Ui(C) is
homeomorphic to U(C). Note that U(C) is homeomorphic to the sphere with
g + 1 closed discs removed. The subsets U1(C), U2(C) ⊆ C(C) have a common
boundary which is ∪iϕ−1(Ii) and is homeomorphic to a disjoin union of g + 1
circles. We then see that gluing two spheres with g+1 discs removed along their
boundary which is a union of circles gives a 2 dimensional manifold of genus g.

One can also argue via the notion of Euler characteristic. It turns out that if
we triangulate a 2 dimensional manifold using V vertices, E edges and F faces
then the quantity F − E + V is independent of the triangulation, and is called
the Euler characteristic. In particular for a 2 dimensional manifold of genus g
this quantity is

F − E + V = 2− 2g

and in particular for a sphere its always 2 (e.g. the tetrahedron with F = 4, E =
6, V = 4) and for a torus it is 0. Now triangulate the sphere P1(C) in such a
way that all the ramification points are vertices. Let F,E, V be the amounts of
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faces, edges and vertices in this triangulation. The triangulate C(C) in such a
way that ϕ maps vertices to vertices, edges to edges and faces to faces. We then
see that we have use exactly 2F faces, 2E edges and 2V −n vertices (because a
ramification point has only one pre-image in C(C) and a non-ramification point
has 2). We then get

2− 2g = 2F − 2E + 2V − n = 4− n

or
g =

n

2
− 1

which means that by choosing n = 2(g + 1) we are ensuring that the resulting
curve has genus g.

The genus is the most fundamental invariant of curves. However, it is not a
complete invariant, i.e. there can be many non-isomorphic curves (even over an
algebraically closed field) with the same genus. Tomorrow we will talk about
genus 1 curves and we will see examples.

In genus 0, though, all curves are isomorphic (over any algebraically closed
field) to P1. They may be, however, curves which are isomorphic to P1 over,
say, Q, but not over Q. For example, the two projective curves C1, C2 ⊆ P2

given by the equations
C1 : x2 + y2 + z2 = 0

C2 : x2 + y2 − z2 = 0

are isomorphic over Q by the isomorphism

z 7→ iz

but not over Q (the first has no rational points and the second has, for example,
the point (0 : 1 : 1)). The sharp reader will notice that the same argument
shows that in fact they are not isomorphic over R.

It turns out (and we will explain more about why that is after the Galois
cohomology lecture) that a curve defined over Q is isomorphic to P1 over Q if
and only if it has a rational point. This means that on curves of genus 0 we have
the following behavior: It either has no rational points, or infinitely many (in
which case finding an explicit isomorphism to P1 will give a nice parametrization
of all the rational points).

This is of course not true for higher genus. The behavior of rational points
on genus 1 curves is very rich and interesting, as will see in the next section.
For now let us just say that a curve of genus 1 may have no rational points, may
have finitely many or may have infinitely many rational points. Further more,
due a special structure of genus 1 curves, we can in some case obtain something
similar to a ”parametrization” of the rational points.

For genus ≥ 2 we have a (hard) theorem of Faltings which states that such
curves have only finitely many rational points. Hence we see that the genus has
a fundamental connection to the behavior of rational points. This is part of a
fundamental deep theme in arithmetic algebraic geometry: the geometry has a
deep influence on the arithmetic behavior.
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3 Elliptic Curves

3.1 The Group Operation

Yesterday we’ve discussed curves and learned of the important invariant called
the genus. In this talk we will discuss the genus 1 case, which have a particularly
rich theory. Our approach will start with looking at the geometry of the curve,
i.e. looking at it over Q or over C.

Over C we see that the points form a torus. The torus has a very interesting
property: one can put a group structure on it so that the group operations are
continuous. Such an object is called a topological group. One is then tempted
to ask whether this can be done in the setting of algebraic geometry as well,
and the (surprising) answer is: Yes!

First of all note that a group has a special point, called the unit. The torus
as a topological space doesn’t have any special point, and nor does an algebraic
genus 1 curve. In fact, for every point on the torus there exists a group structure
such that this point is the unit. Hence we expect that the construction of the
group structure will involve an (arbitrary) choice of a point to be the unit. We
call a curve of genus 1 with a choice of point on in an elliptic curve.

Now in the previous lecture we saw that an affine curve of the form

y2 = x3 + Cx2 + Ax + B

can be completed to a smooth projective genus 1 curves. One possible way to do
this is to take the projective curve E ⊆ P2 given by the homogenous equation

zy2 = x3 + Cx2z + Axz2 + Bz3

when z 6= 0 we get our affine curve and there is a unique point on E with z = 0 -
the point (0 : 1 : 0), which we will call∞. We will denote by U = E− \{∞} the
original affine curve. Note that by preforming the coordinate change x 7→ x+ C

3
one can make the coefficient of x2 to be 0, so from no on we will assume that
C = 0.

Let us try to construct algebraically a group structure on E in which ∞ is
the unit. We need to find a way to take 2 points in E(Q and calculate from
them a third point. But note that out curve is given by a cubic equation in P2.
Hence by Bezout’s theorem, if we take a line between two points, it will intersect
the our curve in one additional point (note that a line cannot be equal to E so
Bezout will be true). Note that this additional point might be equal to one of
the starting points. This is the case is called intersection with multiplicity.

This gives us indeed a binary operation on E(Q). Could this be our group
structure? Our first guess should be no, because this operation does not depend
on the point we have chosen to be the unit. To give a more definite no, since we
wish to have∞ as a unit element if this was our group structure we should expect
the line passing through∞ and P to have multiplicity at P (i.e. would not meet
E at any other point). But this is not true in general. Let P = (a : b : 1) and
take the line x = az. This line intersects E at the points ∞, (a : b : 1) and
(a : −b : 1). In general (a : b : 1) 6= (a : −b : 1).
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Hence we see that this cannot be our group structure. Hence we do a small
modification: we declare that this binary operation takes two points to the
inverse of their sum. This implies in particular that when we pass a line from∞
to P , the third intersection point is the inverse of P . By the above considerations
this means that the inverse of the point (a : b : 1) is (a : −b : 1). Now the group
operation on two points is calculated as follows: first we pass a line between
them, get the third intersection point and take its inverse by inverting its y
coordinate.

We claim that this operation gives an algebraic map E ×E −→ E. We will
construct this map on the affine subset U × U and leave it as an exercise to
complete the description. Given two points (a : b : 1), (d : e : 1) we will find a
line l of the form

y = Mx + N

that passes between them. We get the equations

Ma + N = b

Md + N = e

and solve them to get

M =
b− e

a− d

N = b− a(b− e)

a− d
=

b(a− d)− a(b− e)

a− d
=

ae− bd

a− d

We now want to find a third point on l which meets E. To do that we will
substitute it in the equation for E and get

(Mx + N)2 − x3 −Ax−B = 0

M2x2 + 2MNx + N2 − x3 −Ax−B = 0

x3 −M2x2 + (A− 2MN)x + B −N2 = 0

This is a monic polynomial in x and so its trace, which is −M2, is minus the
some of its roots. Since it has two roots - a and d - that we know of we find
that the third root must by

x = M2 − a− d =

(
b− e

a− d

)2

− (a + d)

The corresponding y is then

y = Mx + N = M3 −M(a + d) + N =

(
b− e

a− d

)3

− b− e

a− d
(a + d) +

ae− bd

a− d

Now recall that in order to get our group operation we know need to take the
inverse of this point, i.e. multiply y by −1. Hence we get that our group
operation can be written as a rational function

(x, y) =

((
b− e

a− d

)2

− (a + d),−
(
b− e

a− d

)3

+
(b− e)(a + d)

a− d
− ae− bd

a− d

)
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Isn’t this a problem? This is a rational function, and not a polynomial. In par-
ticular it seems to be undefined when a = d. The problem might be connected
to the fact that we can’t define the group operation only on the affine subset
U ⊆ E given by z 6= 0, because the addition of two points might be ∞. Hence
we make a first attempt to solve this by writing the point (x, y) in projective
coordinates (x : y : z) as

x = (a− d)(b− e)2 − (a− d)3(a + d)

y = −(b− e)3 + (a− d)2(b− e)(a + d)− (a− d)2(ae− bd)

z = (a− d)3

It seems that we have cheated no one: now when a = d and e = b all three
terms vanish and we don’t get a well defined point. In order to solve this problem
we need to define this function differently when we approach the a = d, e = b
area. To do that we write M and N differently using the curve equations:

M =
b− e

a− d
=

b2 − e2

(b + e)(a− d)
=

a3 − d3 + A(a− d)

(b + e)(a− d)
=

a2 + ad + d2 + A

b + e

N =
ae− bd

a− d
=

(b + e)(ae− bd)

(b + e)(a− d)
=

ae2 − db2 + eb(a− d)

(b + e)(a− d)
=

ad3 + Aad + aB − da3 −Aad−Bd + eb(a− d)

(b + e)(a− d)
=

B − ad(d + a) + eb

b + e

We then get

x =

(
a2 + ad + d2 + A

b + e

)2

− (a + d)

y = −
(
a2 + ad + d2 + A

b + e

)3

+
(a2 + ad + d2 + A)(a + d)

b + e
− B − ad(d + a) + eb

b + e

and so an alternative expression for our function is

x = (b + e)(a2 + ad + d2 + A)2 − (b + e)3(a + d)

y = −(a2+ad+d2+A)3+(b+e)2(a2+ad+d2+A)(a+d)−(b+e)2(B−ad(d+a)+eb)

z = (b + e)3

Now all three coordinates vanish exactly when e+b = 0 and a2+ad+d2+A =
0. Note that this can’t coincide with the case a = d, e = b because then e = b = 0
and 3a2+A. But if b = 0 then a3+Aa+B = 0 so a is a root of both x3+Ax+B
and its derivative 3x2 + A which can’t be because x3 + Ax + B doesn’t have
double roots.

Note that we still need to show that this map extends to a morphism defined
on all of E × E (and not just the product of the affine sets U × U).

Example: Consider the elliptic curve

y2 = x3 − 11
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The solution P = (3, 4) is simple and easy to find. We can use it to form
solutions which are more complicated by adding the point with itself. Since we
are adding two identical points we will use the alternative formula for M,N :

M =
a2 + ad + d2 + A

b + e
=

27

8

N =
B − ad(d + a) + eb

b + e
=
−11− 54 + 16

8
=
−49

8

Hence the point P + P has coordinates

x = M2 − a− d =
272

64
− 6 =

345

64

y = −(Mx + N) = −27

8

345

64
+

49

8
=
−6179

512

And indeed
3453

643
− 11 =

38180041

643
=

(−6179)2

5122

So we have a solution which is quite more complicated than the one we’ve started
with.

Note that we have defined the group operation only for curves which are
given in the form

y2 = x3 + Ax + B

called the Weierstrass form. It can be shown that every curve of genus 1 which
has a point over a field k is isomorphic over k to a curve of this form. Hence
every elliptic curve over k (which by definition has a point over k) can be written
in this form.

It is good to note that this form is not unique. For example for any A,B
and u 6= 0 the curves

y2 = x3 + Ax + B

y2 = x3 + u4Ax + u6B

are isomorphic by the isomorphism x 7→ u2x, y 7→ u3u. The group operation we
have defined will not change if we change the Weierstrass form to an isomorphic
one.

3.2 Torsion Points

A fundamental principle in algebraic geometry is that if a geometric property
of the variety over C can be expressed in algebraic terms then it is true over
any algebraically closed field of characteristic 0 (and most of the time over any
characteristic).

A nice example of this principle is given by subgroup of torsion points. Note
that on the torus we have that the subgroup of all elements of order n is isomor-
phic to Z/n×Z/n. Since the group operation is given by polynomial functions
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we can express the property of being of order n algebraically as solutions to
polynomial equations.

If we will analyze the number of solutions these polynomials have (by care-
fully examining their degrees) we’ll get n2 (because this is what we get over
C) and so this number will be true over any characteristic 0 field (the group
structure can also be found in that way). If we go to positive characteristic we’ll
get the same answer as long as n is prime to p.

3.3 The Mordell-Weil Group

Since the group operation is defined over Q we see that when we add two
rational points we get another rational point. Hence the set of rational points
on an elliptic curve forms an abelian group, called the Mordell-Weil group. The
following is a classic result :

Theorem 3.1. (Mordell-Weil) The Mordell-Weil group of rational points on
an elliptic curve is finitely generated.

A finitely generated group is always isomorphic to F ⊗ Zr for some finite
group F and number r, called the rank. It turns out that the torsion part of the
Mordell-Weil group is quite well understood: it has very few possibilities and its
size cannot exceed 22. It can also be effectively determined (using a computer)
for any given elliptic curve.

On the other hand, the rank is much less understood. It is not even known
if elliptic curves can have arbitrarily large rank (the record is something like
24...). You will see in the Galois cohomology lectures a method to bound the
rank of a given elliptic curve. Note that if one can find r then in principal one
can search for points until r independent points are found and then use them
to give a parametrization of all the points on the curve.

In particular the example above has rank 2. The Mordell-Weil group is
generated freely by the points (3, 4), (9/4, 5/8).

A famous conjecture regarding the rank of the Mordell-Weil group is the
Birch-Swinnerton-Dyer conjecture which relates the rank to the vanishing order
of some analytic function (called the L-function) which can be computed from
the curve (and in particular from the number of points on the curve over finite
fields). The proof of this conjecture is worth 1, 000, 000 dollars.

3.4 Abelian Varieties

One may ask for generalizations of the concept of elliptic curves. One possible
direction is to find other complete varieties which admit group structures. It
can be shown that in such case the group operation will have to be abelian, and
in fact the complex points of such a creature will be higher dimensional tori.
These are called abelian varieties and you will here more about them in the
Picard group lecture.
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It turns out to be really hard to give explicit equations which define abelian
varieties. The only examples which can described explicitly are those which are
products of elliptic curves or product of elliptic curves mod a finite subgroup.
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