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In this note we attempt to summarize the content of [NS, §3] concerning the
construction of the topological Hochshild homology spectrum THH(A) of an asso-
ciative ring spectrum A as a cyclotomic spectrum.

1. Recollections on the cyclic and paracyclic categories

Definition 1. Let Λ∞ be the full subcategory of Z− PoSet consisting of the sets
[n]Λ∞ := 1

nZ ⊆ Q equipped with the partial order induced from the usual one on
Q and with the Z-action given by (n, x) 7→ x+ n.

Let BZ denote the groupoid with one object whose endomorphism group is Z.
Since Z is an abelian group we have a canonical symmetric monoidal structure on
BZ, and the category Z − PoSet = Fun(BZ,PoSet) inherits a canonical action of
the BZ induced by its action on itself. Unwinding the definition, such an action
amounts to a natural transformation from the identity functor of Z − PoSet to
itself, i.e., a canonical self equivalence of every Z-poset. This self equivalence is
given by the action of 1 ∈ Z (which is a map of Z-posets since Z is abelian). This
explicit formulation also makes it clear that the full subcategory Λ∞ ⊆ Z− PoSet
inherits this action. In particular, we have an induced action of Z on every Hom
set HomΛ∞([n]λ∞ , [m]λ∞) in Λ∞ (where the k ∈ Z acts by post-composing with
the action of k on [m]λ∞).

Definition 2. For a positive integer q ≥ 1 let Λq be the quotient category Λ∞/B(qZ).
Explicitly, we may identify Λq as the category whose objects are the same as those
of Λ∞ (where the object corresponding to [n]λ∞ will now be denoted [n]Λq to avoid
abuse) and such that HomΛq ([n]Λq , [m]Λq ) = HomΛ∞([n]Λ∞ , [m]Λ∞)/qZ. When
q = 1 we will denote Λ1 simply by Λ. We note that Λq inherits a remaining
B(Z/q)-action.
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Remark 3. The category Λ∞ admits a self duality D : Λ∞
'−→ Λop

∞ which sends
every object to itself and sends a map f : [n]Λ∞ −→ [m]Λ∞ to the map D(f) :
[m]Λ∞ −→ [n]Λ∞ given by D(f)(x) = min({y|f(y) ≥ x}). Furthermore, the duality
D intertwines the BZ-action on Λ∞ with the BZ action on Λop

q via the isomorphism

Z [−1]−→ Z, and hence descends to a self duality Dq : Λq
'−→ Λop

q for every q ∈ N.

Using the fact that the hom sets HomΛ∞([n]Λ∞ , [m]Λ∞) are all free as Z-sets
one can show that the quotient Λq = Λ∞/B(qZ) coincides with the corresponding
homotopy quotient in Cat∞. This means, in particular, that the classifying
space |Λq| is the homotopy quotient of |Λ∞| by the induced action of |B(qZ)| ' S1.
One can then show that the category Λop

∞ is sifted, and hence |Λ∞| ' |Λop
∞ | ' ∗. It

then follows that |Λq| ' |Λop
q | ' B(B(q,Z)) is a classifying space for circle actions.

Furthermore, one can show that the resulting square of ∞-categories

Λop
∞

//

��

|Λop
∞ |

��

' ∗

Λop
q

// |Λop
q | ' B(B(qZ, 2))

is Cartesian, i.e., Λop
∞ is the homotopy fiber of the map Λop

q −→ |Λop
q | (over any

object in |Λop
q |: they are all equivalent).

This property of the categories Λop
q has the following important consequence: if

C is an ∞-category which admits colimits and F : Λop
q −→ C is a functor then by

the Beck-Chevalley property for left Kan extensions we may consider the diagram
Lan(F) : |Λop

q | −→ C as encoding a B(qZ)-action on colim(F|Λop
∞ ). We also note that

this B(qZ)-action is compatible with the action of B(Z/q) on Λop
q in the sense that

the resulting functor Fun(Λop
q ,C) −→ CB(B(qZ)) is B(Z/q)-equivariant. Explicitly,

this means that for each [m]Λq
∈ Λq the natural map

F([m]Λop
q

) −→ colim(F|Λop
∞ )

intertwines the associated Z/q-action on F([m]Λop
q

) with the B(qZ) action on colim(F|Λop
∞ )

with respect to the map Z/qZ −→ B(qZ) (which is equivalent to the inclusion of
the q-torsion subgroup of B(qZ) ' S1).

2. The cyclic bar construction and THH

Now suppose that C is a symmetric monoidal ∞-category admitting colimits
and let A be an associative algebra in C equipped with an action of Z/q (via
associative algebra maps). We note that the ∞-operad which controls such an
algebraic structure is the ∞-operad

Ass⊗q := B(Z/q)⊗Ass⊗ ' B(Z/q)
∐
×Fin∗ Ass⊗

where ⊗ denotes the∞-operadic Boardman-Vogt tensor product and B(Z/q)
∐
−→

Fin∗ is the coCartesian operad of B(Z/q). In particular, if C⊗ −→ Fin∗ is the
coCartesian fibration encoding the symmetric monoidal structure on C then an
associative algebra object in C equipped with a Z/q-action is encoded by a map

A : B(Z/q)
∐
×Fin∗ Ass⊗ −→ C⊗
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over Fin∗ which carry inert maps to inert maps. The operad B(Z/q)
∐

can also
be understood using the “geometric” model TorZ/q ' B(Z/p) given by the ∞-
category of Z/q-torsors (indeed, up to isomorphism there is a unique Z/p-torsor
and its automorphism group is Z/p). Using this model one can show that the base

change B(Z/q)
∐
act −→ Fin (restricted along the functor (−)

∐
{∗} : Fin −→ Fin∗)

can equivalently be described as the quotient functor

(1) (−)Z/q : FreeZ/q −→ Fin

where FreeZ/q is the category of finite free Z/q-sets and SZ/q := S/(Z/q) ∈ Fin is
the associated quotient. We have a natural functor

(2) Uq : Λq −→ FreeZ/q

which sends [n]Λq to the set 1
nZ/q equipped with its natural Z/q-action by transla-

tions. Furthermore, the composition Λq −→ FreeZ/q −→ Fin of (1) and (2), which

sends [n]Λq
to the finite set 1

nZ/Z admits a natural lift along Ass⊗ −→ Fin. To

prove this it will suffice to show that the map Λ∞ −→ Fin sending [n]Λ∞ to 1
nZ/Z

admits a B(qZ)-equivariant lift to Ass⊗. We now observe that if f : 1
nZ −→

1
mZ is

a Z-equivariant order preserving map then for every x ∈ 1
mZ the fiber f−1(x) ⊆ 1

nZ
acquires a natural linear ordering (which is invariant under replacing f with f +1),
and that the square of sets

1
nZ //

f

��

1
nZ/Z

f∗

��
1
mZ // 1

mZ/Z
is Cartesian. We may now conclude that Uq : Λq −→ FreeZ/q lifts to a map

(3) Vq : Λq −→ FreeZ/q ×Fin Ass⊗act Vq([n]Λq ) =

(
1

n
Z/qZ,

1

n
Z/Z

)
.

We will denote similarly denote by

V D
q : Λop

q −→ FreeZ/q ×Fin Ass⊗act

the composition of Vq with the self duality functor Λop
q

'−→ Λq of Remark 3.

Definition 4. Let C be a symmetric monoidal ∞-category that admits colimits
and let

A : B(Z/q)
∐
×Fin∗ Ass⊗ −→ C⊗

be a Z/q-equivariant associative algebra object in C. We define the q-cyclic Bar
construction of A to be the composed map

Barq(A) : Λop
q

V D
q−→ FreeZ/q ×Fin Ass⊗act

Aact−→ C⊗act −→ C

where the last functor is the canoical symmetric monoidal projection C⊗act −→ C

sending (X1, ..., Xn) to X1⊗...⊗Xn. We then define the topological q-Hochshild
homology of A to be

THHq(A) := colim(Barq |Λ∞) ∈ CB(qZ).

When q = 1 we will denote Barq(A) and THHq(A) simply by Bar(A) and THH(A).

Before we proceed further let us record the following colimit-like property of
THHq:
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Lemma 5. Let F : C −→ D be a lax symmetric monoidal functor between sym-
metric monoidal ∞-categories with colimits. Then there is a canonical natural
transformation

τF : THHq(F(−)) −→ F(THHq(−))

of functors AlgAssq (C) −→ DB(qZ). Furthermore, if F is symmetric monoidal and
preserves colimits then τF is an equivalence.

Proof. Let F⊗ : C⊗ −→ D⊗ the ∞-operad map encoding the lax symmetric mo-
noidal structure of F. By the universal property of C⊗act ([Lur, Proposition 2.2.4.9])
there is a canonical natural transformation from the composed symmetric monoidal
functor

C⊗act

F⊗act−→ D⊗act −→ D (X1, ..., Xn) 7→ F(X1)⊗ ...⊗ F(Xn)

to the composed lax symmetric monoidal functor

C⊗act −→ C
F−→ D (X1, ..., Xn) 7→ F(X1 ⊗ ...⊗Xn)

which is an equivalence if F is symmetric monoidal. In particular, we have a
natural transformation Barq(F(A)) −→ F(Barq(A)) for A ∈ AlgAssq (C), which is
an equivalence if F is symmetric monoidal. We then obtain τF by composing this
natural transformation with the natural transformation

Lan(FBarq(A))⇒ F(Lan Barq(A))

where Lan : Fun(Λq,C) −→ Fun(|Λq|,C) is the left Kan extension functor, which is
an equivalence when F preserves colimits, as desired. �

We also have the following compatibility properties between THHq and THH. We
note that we have two natural functors AlgAss(C) −→ AlgAssq(C). The first functor

takes an associative algebra object A and considers is as being Z/q-equivariant with
constant action. Let us denote the resulting Z/q-equivariant associative algebra by
Infq(A). The second functor takesA and associates to it the Z/q-equivariant algebra
object ⊗x∈Z/qA obtained by the q-fold tensor product of A with itself, where the
action of Z/q is by permuting the factors. To describe this functor formally, let us
invoke some machinery.

Now let C be a presentably symmetric monoidal∞-category and consider the∞-
category Fun(C,C). This ∞-category admits a symmetric monoidal functor given
by Day convolution, whose algebra objects can be identified with lax monoidal
functors C −→ C. In particular, the∞-category Funlax(C,C) inherits the day con-
volution monoidal structure. Since Fin is the free symmetric monoidal ∞-category
generated by an commutative algebra object ∗ ∈ Fin, and since the identify functor
Id : C −→ C admits a canonical lax monoidal structure it follows that there is an
essentially unique symmetric monoidal functor

(4) Fin −→ Funlax(C,C)

which sends the singleton ∗ ∈ Fin to identity functor Id ∈ Funlax(C,C) (considered
as a lax monoidal functor). Unwinding the definitions we see that (4) corresponds
to the functor Fin×C −→ C which sends (S,X) to ⊗s∈SX. Now consider the
functor TorZ/q ×TorZ/q −→ Fin which sends a pair (S, S′) of Z/q-torsors to the

contracted product S ×Z/q S′. Composing with (4) we now obtain a functor

(5) TorZ/q ×TorZ/q −→ Funlax(C,C)
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Unwinding the definitions we see that (5) corresponds to the functor

(6) Nnaive
(−) : TorZ/q −→ Fun(TorZ/q,Funlax(C,C)) ' Funlax(C,CB(Z/q))

which sends (S,X) to the (naively) Z/q-equivariant spectrum Nnaive
S (X) := ⊗s∈SX.

For a fixed S the functor Nnaive
S (−) is lax monoidal, and hence if A is an associative

algebra object in C then Nnaive
S (A) is an associative algebra object in CB(Z/q). In

fact, it will be convenient to use the (self-commuting) Z/q-action twice to treat
Nnaive
S (A) as an Assq-algebra object in CB(Z/q). For this, we note that since the

functor Nnaive
(−) (−) : TorZ/q ×C −→ CB(Z/q) is lax monoidal in its second argument

it extends to a map of ∞-operads

Nnaive,⊗ : Tor
∐
Z/q ×FinC

⊗ −→ (CB(Z/q))⊗.

In particular, if A is given by a map Ass⊗ −→ C⊗ over Fin∗, then we will denote
by Nnaive

q (A) the Assq-algebra object in CB(Z/q) encoded by the map

Tor
∐
Z/p×Fin Ass⊗

A−→ Tor
∐
Z/p×FinC

⊗ Nnaive,⊗

−→ (CB(Z/q))⊗.

We then have the following compatibility statement:

Lemma 6.

(1) There is a natural B(qZ)-equivariant equivalence

THHq(Infq(A)) ' resBZ
B(qZ) THH(A).

where resBZ
B(qZ) : CBZ −→ CB(qZ) is the restriction along the q-fold covering map

B(qZ) −→ BZ.
(2) There is a natural BZ-equivariant equivalence

THHq(N
naive
q (A)) ' THH(A).

where the BZ-action on the left hand side is obtained via the equivalence B(qZ)
'−→

BZ which sends the generator q ∈ qZ to the generator 1 ∈ Z.

Proof. To prove (1), observe that we have a natural equivalence

Barq(Infq(A)) ' Bar(A)|Λq

and so the result follows from the Beck-Chevalley property for left Kan extension
applied to the Cartesian square

Λop
q

//

��

|Λop
q |

��

' K(qZ, 2)

Λop // |Λop| ' K(Z, 2)

To prove (2), we note that this time we have a natural equivalence

Barq(N
naive
q (A)) ' sd∗q Bar(A)

where sdq : Λop
q −→ Λop is the subdivision functor which sends [n]Λq to [qn]Λq

and sends the equivalence class of an order preserving map f : 1
nZ −→

1
mZ to

the equivalence class of the order preserving map 1
q f(q(−)) : 1

qnZ −→
1
qmZ. The
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one can check that sdq : Λop
q −→ Λop is cofinal and in particular induces an equi-

valence on classifying spaces B(qZ) ' |Λop
q |

'−→ |Λop| ' BZ (sending the gene-
rator q of qZ to the generator 1 of Z) and a compatible equivalence between the
Lan(Barq(N

naive
q (A))) : |Λop

q | −→ C and Lan(Bar(A)) : |Λop| −→ C, as desired. �

3. The Tate diagonal and the cyclotomic structure on THH

Let us now specialize to the case C = Sp. Given an associative ring spectrum
A, we wish to promote THH(A) to a cyclotomic spectrum in the sense of [NS].
For this, we need to equip THH(A) with a collection of BZ-equivariant Frobenius
maps ϕp : THH(A) −→ THH(A)t(Z/p). To define those, we will need to recall the
definition of the Tate diagonal. Let us now fix a positive prime number p.

Definition 7. We will denote by

T(−) : TorZ/p
Nnaive

(−)−→ Funlax(Sp,SpB(Z/p))
(−)t(Z/p)∗−→ Funlax(Sp,Sp)

the composition of (6) and the functor induced by post-composing with the (lax

monoidal) Tate functor (−)t(Z/p) : SpB(Z/p) −→ Sp. Unwinding the definitions, we
see that T(−) corresponds to the functor

T(−)(−) : TorZ/p× Sp −→ Sp (S,X) 7→ (⊗s∈SX)t(Z/p)

Lemma 8. For any fixed S ∈ TorZ/p the functor

TS(−) : Sp −→ Sp

is exact.

Proof. We follow the proof given in [NS]. We first prove that TS(−) preserves direct
sums. Indeed:

TS(X0 ⊕X1) '

 ⊕
(is)∈{0,1}S

⊗s∈SXis

t(Z/p)

'

TS(X0)⊕TS(X1)⊕

 ⊕
(is)∈{0,1}S\{(0,...,0),(1,...,1)}

⊗s∈SXis

t(Z/p) ' TS(X0)⊕TS(X1).

where the last equivalence is due to the fact that the action of Z/p on {0, 1}S \
{(0, ..., 0), (1, ..., 1)} is free, and the Tate functor vanishes on induced modules. It
will now suffice to show that TS(−) preserves fiber sequences. Here the argument

is similar: if X0 −→ X̃ −→ X1 is a fiber sequence then ⊗s∈SX̃ inherits a filtra-
tion whose successive quotients are either ⊕s∈SX0, ⊕s∈SX1, or one of the induced
modules appearing above. The desired result follows from the fact that (−)t(Z/p)

exact and vanishes on induced modules. �

In light of Lemma 8 we may consider T(−) as a functor

T(−) : TorZ/p −→ Funex
lax(Sp,Sp).

We now recall a previous result of Nikolaus ([Nik]) which states the following:

Proposition 9 (Nikolaus). The identity functor is the initial object of Funex
lax(Sp,Sp).
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Corollary 10. There exists a unique levelwise lax symmetric monoidal natural
transformation

∆(−) : I(−) −→ T(−)

where I(−) : TorZ/p −→ Funex
lax(Sp,Sp) is the constant functor taking the value

Id ∈ Funex
lax(Sp,Sp).

Definition 11. Let S be a Z/p-torsor and X a spectrum. Then the natural map

∆S(X) : X −→ TS(X) ' (⊗s∈SX)t(Z/p)

furnished by Corollary 10 is called the Tate diagonal.

Let us now fix a Z/p-torsor S and an associative ring spectrum A. Since the func-
tor TS(−) is lax monoidal we have an induced associative ring structure on TS(A)
and since the natural transformation ∆S(−) is lax monoidal the Tate diagonal map

∆S(A) : A −→ TS(A)

is naturally a map of associative ring spectra. As above, we can use the extra
S-argument in order to promote TS(A) to an Assp-algebra object. This results in
a homotopically trivial action, but it is still formally convenient to do so. In parti-
cular, since T(−)(−) : TorZ/p×Sp −→ Sp is lax monoidal in the second coordinate
it extends to a map of ∞-oprads

T⊗p : Tor
∐
Z/p×Fin Sp⊗ −→ Sp⊗ .

If A is given by a map Ass⊗ −→ C⊗ over Fin∗, then we will denote by Tp(A) the
Assq-algebra object in Sp encoded by the map

Tor
∐
Z/p×Fin Ass⊗

A−→ Tor
∐
Z/p×Fin Sp⊗

T⊗p−→ Sp⊗ .

The natural transformation ∆(−) of Corollary 10 then induces a map of Assp-ring
spectra

∆p(A) : Infp(A) −→ Tp(A) ' Nnaive
p (A)t(Z/p)

which can be considered as an Z/p-equivariant version of the Tate diagonal. We
may then consider the composed map

(7) resBZ
B(qZ) THH(A)

'−→ THH(InfpA)
(∆p(A))∗−→ THHp

(
Nnaive
p (A)t(Z/p)

)
τ−→

THHp(N
naive
p (A))t(Z/p)

'−→ THH(A)t(Z/p)

where the first arrow is the equivalence of Lemma 6(1), τ is the natural transforma-

tion of Lemma 5 associated to the lax symmetric monoidal (−)t(Z/pZ) : SpB(Z/p) −→
Sp and the last arrow is the equivalence of Lemma 6(2). Tracing the compatibi-
lity with the circle action specified in Lemma 6 we see that ϕp intertwines the

B(pZ)-action on resBZ
B(pZ) THH(A) with the B(pZ)-action on THH(A)t(Z/p) obtai-

ned by taking the B(pZ)-action on THH(A) (via the identification B(pZ) ' BZ)
and then passing to the induced action on THH(A)t(Z/p). In both these actions
B(Z/p) ends up acting trivially and hence ϕp descends to a BZ-equivariant map

THH(A) −→ THH(A)t(Z/p).

Definition 12. Let A be a ring spectrum. We define the Frobenius map

ϕp : THH(A) −→ THH(At(Z/p))

to be the BZ-equivariant induced by (7) as explained above.
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4. Construction of the Frobenius using genuine Z/p-equivariant
spectra

Let us now describe an alternative way of defining the cyclotomic structure
on THH(A), this time using genuine Z/p-equivariant spectra. The Hill-Hopkins-
Ravanel norm functor refines

(8) Nnaive
(−) : TorZ/p −→ Funlax(Sp,SpB(Z/p))

to a functor

(9) Ngen
(−) : TorZ/p −→ Funlax(Sp, (Z/p) Sp)

where (Z/q) Sp denotes the ∞-category of genuine Z/q-spectra. For a given Z/p-
torsor S the genuine Z/p-equivariant structure Ngen

S (X) enjoys the following two
properties:

(1) There is a natural equivalence σ : X −→ ΦZ/pNgen
S (X), where ΦZ/p is the

geometric fixed point functor.

(2) The composed map X
σ−→ ΦZ/pNgen

S (X) −→ Nnaive
S (X)t(Z/p) is naturally ho-

motopic to the Tate diagonal.

Remark 13. The functors ΦZ/p and Ngen
S (−) are symmetric monoidal and the na-

tural equivalence σ can be promoted to a symmetric monoidal natural equivalence
from the identity functor Id : Sp −→ Sp to the functor ΦZ/p ◦ Ngen

S : Sp −→ Sp.

Since the natural transformation ΦZ/pNgen
S (−) −→ Nnaive

S (−)t(Z/p) is lax monoidal
as well Proposition 9 now implies the existence of a unique homotopy as in (2).

In particular, if A is an associative ring spectrum then Ngen
S (A) is naturally an

Ass-algebra object in (Z/p) Sp. As above we can spend the extra dependence in
S to obtain an Assp-algebra object in (Z/p) Sp, which we will denote by Ngen

p (X).

We note that in this case we may consider ΦZ/pNgen
p (X) as an Assp-algebra object

in Sp (with trivial action) and σ as a map σ : Infp(A) −→ ΦZ/pNgen
p (X) of Assp-

algebras. The associated topological Hochschild homology THHp(N
gen
p (A)) is now

a B(pZ)-equivariant object in genuine Z/p-spectra whose underlying spectrum is
equivalent to THH(A) by Lemma 6(2). We may hence consider THHp(N

gen
p (A)) as

promoting the Z/p-action on THH(A) to a genuine one.
Applying now Lemma 5 to the symmetric monoidal colimit preserving functor

ΦZ/p and using Lemma 6 we get a composed natural BZ-equivariant equivalence

ψp : U(THHp(N
gen
p (A))) ' THH(A)

'−→ THHp(InfpA)
'−→
σ∗

(10)

THHp(Φ
Z/pNgen

p (A))
'−→ ΦZ/p THHp(N

gen
p (A))

where U : (Z/p) Sp −→ Sp is the forgetful functor. Using the (lax monoidal) natural
transformation

ΦZ/p(−)⇒ U(−)t(Z/p)

of functors (Z/p) Sp −→ Sp we now obtain another Forbenius map

ϕp : THH(A) −→ THH(A)tZ/p.
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To see that this construction is compatible with the previous one we observe that
Lemma 5 furnishes a commutative diagram

THH(A)
' // THHp(Φ

Z/pNgen
p A) //

��

ΦZ/p THHp(N
gen
p A)

��
THHp((N

naiveA)tZ/p) // THHp(N
naiveA)tZ/p

' // THH(A)tZ/p

in which the top path traces the Frobenius maps of the second construction and
the bottom path traces the Frobenius maps of the first construction by Property 2
of the Hill-Hopkins-Ravanel norm.

5. An S1-genuine structure on THH

We note that the Hill-Hopkins-Ravanel norm exists for every positive integer q.
In particular, for every q, we may consider THHq(N

gen
q A) as promoting THH(A)

to a genuine Z/qZ-spectrum, in a way that is compatible with the circle action
on THH(A). Furthermore, the Z/qZ-structures for various q fit together to endow
THH(A) with the structure of a genuine S1-spectrum (with respect to the family of
finite subgroups of S1). Let us informally survey how this goes, based on ideas of
Denis Nardin. In what follows, all references to genuine S1-structures will always
mean genuine with respect to the collection of finite subgroups H ⊆ S1.

Let OS1 ⊆ SBS
1

be the full subcategory spanned by the S1-spaces of the form
S1/H for all finite subgroups H ⊆ S1. Recall that an S1-category is simply a
coCartesian fibration π : C −→ O

op
S1 . Such a fibration encodes with the data of a

functor Oop
S1 −→ Cat∞ sending S1/H to the fiber CH := CS1/H . We can then think

of C as consisting of an underlying category Ce equipped with an S1-action and of
each of the fibers CH as specifying an∞-category of “H-genuine objects in C”. We
will then define the notion of a genuine S1-object in C to be a section O

op
S1 −→ C

of π.
Let us now discuss some examples of interest. For this let us note that the data

of a functor Oop
S1 −→ Cat∞ can informally be described as associating to each finite

subgroup H ⊆ S1 an ∞-category CH equipped with an action of S1/H and for
each inclusion H ⊆ H ′ an S1/H-equivariant functor CH′ −→ CH . Now for a finite
subgroup H ⊆ S1 let us denote by ZH = p−1(H) ⊆ R the preimage of H under the
universal covering p : R −→ S1. We note that ZH is a group isomorphic to Z. We
may then identify BZH ' R/ZH ' S1/H. We will be interested in the following
examples of S1-categories:

(1) For H ⊆ S1 let SpH denote the ∞-category of genuine H-spectra. Then SpH

carries a canonical action of B(H) which we can inflate to a BZH -action via
the natural quotient map ZH −→ H. For every subgroup inclusion H ⊆ H ′ the

forgetful functor SpH
′
−→ SpH is then BZH -equivariant and so the association

H 7→ SpH determines an S1-category

Spgen −→ O
op
S1

whose underlying S1-equivariant ∞-category is Sp with trivial S1-action.
(2) For H ⊆ S1 let ΛH∞ ⊆ ZH − PoSet be the full subcategory spanned by the

ZH -posets of the form ZH′ for H ′ ⊇ H. We note that each ΛH∞ is equivalent
to Λ∞ and carries a natural BZH -action, and that for each subgroup inclusion
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H ⊆ H ′ we have a BZH -equivariant forgetful functor ΛH
′

∞ −→ ΛH∞ obtained
by restricting the action from ZH′ to ZH . The association H 7→ ΛH∞ then
determined an S1-category

Λgen
∞ −→ O

op
S1

whose underlying S1-equivariant category is Λ∞. We note that the fiberwise

dualities DH : (ΛH∞)op '−→ ΛH∞ don’t respect the functorial dependence on H,
but instead intertwine it with the functorial dependence obtained by pulling
back along the automorphism [−1] : O

op
S1 −→ O

op
S1 which is the identity on

objects and acts by conjugation by [−1] : S1/H −→ S1/H on all mapping
spaces. Hence if we let Λop− gen

∞ −→ O
op
S1 be the coCartesian fibration classifying

the functor

O
op
S1

[−1]−→ O
op
S1

(Λ(−)
∞ )op−→ Cat∞

then the fiberwise dualities DH assemble to a functor Dgen : Λop− gen
∞ −→ Λgen

∞
of S1-categories.

(3) For H ⊆ S1 let FinS1/H denote the category of free ZH -sets with finitely many
orbits (which is equivalent to the comma category of finite sets equipped with
a map to S1/H). Then FinS1/H carries a canonical action of BZH and for each
subgroup inclusion H ⊆ H ′ we have the BZH -equivariant forgetful functor
FinS1/H′ −→ FinS1/H . The association H 7→ FinS1/H then determines an

S1-category

Fingen
S1 −→ O

op
S1

whose underlying S1-equivariant category is FinS1 .
(4) For H ⊆ S1 let AssS1/H := FinS1/H ×Fin Ass⊗act, where the map FinS1/H −→

Fin is the quotient by ZH (alternatively, it’s the functor that forgets the map
to S1/H). Then AssS1/H carries a canonical action of BZH and the association

H 7→ AssS1/H then determines an S1-category

Assgen
S1 −→ O

op
S1

whose underlying S1-equivariant category is AssS1 .

Let us now recall that an S1-symmetric monoidal structure on an S1-
category C −→ O

op
S1 is an extension of the functor S1/H 7→ CH to a product-

preserving functor Aaff(S1) −→ Cat∞, where Aaff(S1) is the effective Burnside
category of S1 given by the span ∞-category of the coproduct completion of OS1 .
Informally speaking, we may describe an S1-symmetric monoidal structure on C

as follows: for every subgroup inclusion H ⊆ H ′, every finite free H ′-set I and
every H ′/H-equivariant map X : I/H −→ CH we have associated a new object
⊗I/HXi ∈ CH′ , subject to a variety of compatibility constraints.

Out of the four examples above, the first, third and forth carry S1-symmetric
monoidal structures. In terms of the informal description above involving a finite
free H ′-set and an H ′/H-equivariant map I −→ CH , these are given by a suitable
form of the norm construction in the case of Spgen, and by the formula

⊗I/HXi :=
∐

i∈I/H

Xi ∈ FinS1/H′

in the case of Fingen
S1 , where the right hand side is endowed with a suitable ZH′ -

action. The latter also induces an S1-symmetric monoidal structure on Assgen
S1 .
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Furthermore, one can show that Fingen
S1 and Assgen

S1 enjoy certain universal proper-

ties. More precisely, Fingen
S1 is the free S1-symmetric monoidal ∞-category con-

taining a commutative algebra object lying over S1/e, while Assgen
S1 is the free

S1-symmetric monoidal ∞-category containing an associative algebra object lying
above S1/e. We note that the underlying symmetric monoidal ∞-category AssS1

is also known in the context of factorization homology as the symmetric monoidal
∞-category of S1-framed 1-disks.

By the above universal properties it follows that if A ∈ Sp = Spgen
e is an associa-

tive algebra object then A determines an essentially unique S1-symmetric monoidal
functor

A : Assgen
S1 −→ Spgen .

On the other hand, there is a natural S1-functor

V : Λgen
∞ −→ Assgen

S1

induced by the functor VH(ZH′) = (ZH′ ,ZH′/ZH) ∈ FinS1/H ×Fin Ass⊗act as in (3).

Similarly we have a map V D : Λop− gen,op
∞ −→ Assgen

S1 obtained by composing with

the duality Dgen : Λop− gen
∞

'−→ Λgen
∞ . Since Spgen −→ O

op
S1 has relative colimits

then we can define
THHgen(A) : Oop

S1 −→ Spgen

to be section obtained by relatively left Kan extending V D along Λop− gen,op
∞ −→

O
op
S1 . The section THHgen(A) is then by definition a genuine S1-spectrum whose

underlying S1-equivariant spectrum is THH(A).

6. Comparison with the point-set model construction of [ABGHLM]

Recall that the symmetric monoidal ∞-category Sp of spectra can be presen-
ted by the symmetric monoidal topological model category SpO of orthogonal
spectra. Here, we will identify the underlying category of SpO with the category
of Top∗-enriched functors O −→ Top∗ where

(1) Top∗ is the category of pointed compactly generated weak Hausdorff spaces
endowed with the (pointed) Serre model structure in which cofibrations are
retracts of pointed relative cell complexes, fibrations are Serre fibrations and
weak equivalences are the weak homotopy equivalences.

(2) O is the Top∗-enriched category whose objects are the finite dimensional inner
product spaces V and whose mapping spaces are given by MapO(V,W ) =
Emb(V,U)τ where Emb(V,U) is the space of isometric emebddings V ↪→ U ,
τ : E −→ Emb(V,U) is the vector bundle whose fiber over ι : V ↪→ U is
the orthogonal complement of ι(V ) in U , and (−)τ denotes the corresponding
Thom space.

The category SpO can then be endowed with the stable model structure in
which the cofibrations are the projective cofibrations in Fun(O,Top∗) and whose

weak equivalences are the stable equivalences. The model category SpO is then
symmetric monoidal (with cofibrant unit) and tensored over Top∗. Using the left
Quillen functor (−)+ : Top −→ Top∗ (where Top is endowed with the unpointed

Serre model structure) we may also consider SpO as tensored over Top.

Given an orthogonal ring spectrum A, i.e., an associative algebra object in SpO,
we may define its cyclic bar construction Bar(A) : Λop −→ SpO as above using the
point-set smash product. To make sure that this has the right type we will only
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consider the case where the underlying object of A is cofibrant. In fact, given that
the unit S0 of SpO is cofibrant it will be convenient to require instead the slightly
stronger condition that the unit map S0 −→ A is a cofibration. We note that this
holds, for example, for every cofibrant algebra with respect to the transferred model
structure on associative algebras.

As discussed above, we know that the homotopy colimit hocolim Bar(A)|Λop
∞

should carry a circle action on the level of the underlying ∞-category of spectra.
Given that SpO is tensored over Top (i.e., it is a topological model category), it

makes since to talk about objects in SpO equipped with a point-set action of the
topological group S1 itself. We would hence like to realize the homotopy colimit
hocolim Bar(A)|Λop

∞ using an explicit point set model which carries a natural circle
action. For this we may consider the composed functor

Q : Λ −→ |Λ| ' BS1 ⊆ SBS
1

where the last inclusion is the Yoneda embedding. We then observe that if x ∈ Λ is
an object and Rx := Hom(−, x) : Λop −→ Set its associated representable functor
then colimRx|Λop

∞ is naturally equivalent to Q∞(x) as an S1-space. As a result,
if C is an ∞-category with colimits F : Λop −→ C is a functor, then the S1-
object colim(F|Λop

∞ ) is naturally equivalent to the coend
∫

Λ
F ⊗ Q. If M is now a

topological model category, then to get an explicit point set model for the circle
action on homotopy colimits of the form hocolimF|Λop for functors Λop −→ M it

will suffice to fix a point-set model Q : Λ −→ TopS
1

for the above ∞-functor Q.
For such an M there is an associated Quillen bifunctor

M× TopS
1

−→MS1

where TopS
1

and MS1

are equipped with the respective projective model structures.
Given a projectively cofibrant functor F : Λop −→ M, the coend ‖F‖Q :=

∫
Λ
F ⊗

Q ∈ MS1

is then a model for hocolimF|Λop
∞ equipped with a point-set S1-action.

There is, in fact, a natural choice for such a Q, which furthermore posses several
good formal properties. In fact, this choice can be done in a compatible way
for all the Λq’s, including q = ∞. More precisely, let Q∞ : Λ∞ −→ TopR be

the composition of the duality D : Λ∞
∼=−→ Λop

∞ and the functor Λop
∞ −→ TopR

which sends the Z-poset 1
nZ to the space of ordering preserving Z-equivariant maps

Map( 1
nZ,R) (topologized in the natural way). For every positive integer q the

composed functor Λ∞ −→ TopR (−)qZ−→ TopR/qZ factors uniquely through a functor

Qq : Λq −→ TopR/qZ. For q ≤ ∞ and a functor F : Λop
q −→M we then set

(11) ‖F‖q :=

∫
Λq

F ⊗Qq ∈MR/qZ.

This definition enjoys the following compatibility properties:

Lemma 14.

(1) For q|q′ ≤ ∞ and F : Λop
q −→M there is a natural R/q′Z-equivariant isomor-

phism

‖F|Λ′q‖q′ ∼= res
R/qZ
R/q′Z ‖F‖q.
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(2) For q|q′ <∞ and F : Λop
q −→M there is a natural R/q′Z-equivariant isomor-

phism

‖(sdqq′)
∗F|‖q′ ∼= ‖F‖q.

where the R/q′Z-action on the right hand side is obtained via the multiplication

by q′

q isomorphism R/q′Z ∼= R/qZ.

(3) For F : Λop
∞ −→M there is a natural isomorphism in M

‖F|∆op‖ ∼= ‖F‖∞
after forgetting the R-action on the right hand side, where ‖ − ‖ denotes the
standard geometric realization of simplicial objects.

Remark 15. Lemma 6 implies that if F : Λop
∞ −→ M is a functor then ‖F‖∞ is a

model for the homotopy colimit of F as soon as F|∆op is Reedy cofibrant, i.e., as
soon as the latching maps are cofibrations in M.

Let us now assume that M is a topological model category which carries a com-
patible symmetric monoidal structure (with cofibrant unit). We will say that an
associative algebra object A in M is weakly cofibrant if the unit map 1M −→ A
is a cofibration. Given a weakly cofibrant associative algebra object A ∈M with a
Z/qZ-action we now define

THHq(A) := ‖Barq(A)‖q ∈MR/qZ.

Remark 16. Let A∞ denote the image of A in the underlying ∞-category M∞.
Then there is a natural comparison map

(12) THHq(A∞) −→ THHq(A)

which comes from comparing the coend operation 11 with its derived counterpart.
By Lemma 14(3) the map (12) is an equivalence whenever the simplicial object
Bar(A)|∆op is Reedy cofibrant. This holds in our setting for every weakly cofibrant
algebra object.

We have the following analogue of Lemma 17:

Lemma 17. Let F : M −→ N be a lax symmetric monoidal topological functor
between topological symmetric monoidal model categories. Then there is a canonical
natural transformation

τF : THHq(F(−)) −→ F(THHq(−))

of functors AlgAssq (M) −→ NR/qZ. Furthermore, if F is symmetric monoidal and
preserves geometric realizations then τF is an isomorphism.

Let us now return to the case where M = SpO. We wish to define point-set mo-
dels for the maps ψp of (10) using the above point-set model for THH(A). For this
we will follow the approach of [ABGHLM]. We note that the first construction of
the cyclotomic structure on THH is due to Bökstedt-Hsiang-Madsen ([BHM]), and
it is the latter construction to which Nikolaus-Scholze compare their construction.
The construction of [BHM] and the construction of [ABGHLM] are in turn shown
to be equivalent in [DMPSW].

Given a finite group G let SpG := Fun(BG,SpO) = Fun(O,TopG∗ ) denote the

category of G-objects in SpO. It can then be shown that SpG is equivalent (as an

ordinary category) to the category of TopG∗ -enriched functors Rep(G) −→ TopG∗
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where Rep(G) is the TopG∗ -category whose objects are the finite dimensional ortho-
gonal representations V of G and whose mapping spaces are given by the mapping
spaces in O between the underlying quadratic spaces equipped with the correspon-
ding conjugation G-action. In particular, the functor IG(X) : Rep(G) −→ TopG∗
associated to an orthogonal spectrum X by the above equivalence is given by
IG(X)(V ) = Iso(Rn, V )×On Xn equipped with the diagonal G-action.

Using the identification SpG ∼= Fun(Rep(G),TopG∗ ) we may endow SpG with a
model structure presenting the ∞-category of genuine G-spectra. Recall first that
the category TopG∗ of pointed G-spaces can be equipped with a model structure in
which a map f : X −→ Y is a fibration (resp. weak equivalence) if and only if
for every subgroup H ⊆ G the induced map fH : XH −→ Y H is a Serre fibration
(resp. weak homotopy equivalence). This model category is cofibrantly generated
with generating cofibrations of the form (G/H)+ ∧ Sn+ ↪→ (G/H)+ ∧Dn

+ and con-
stitutes a model categorical presentation of the ∞-category of genuine G-spaces.
We may then consider the projective model structure on the enriched functor ca-
tegory Fun(Rep(G),TopG∗ ) in which the cofibrations are generated by maps of the
form S−V ∧G/H+ ∧Sn+ ↪→ S−V ∧G/H+ ∧Dn

+, where V is a G-representation and

S−V : Rep(G) −→ TopG∗ is the functor corepresented by V , and then localize it so
that the new fibrant objects are the orthogonal G-Ω-spectra (i.e., those for which
for each representation embedding V ↪→ U with complement V ⊥ the induced map

X(V ) −→ Map∗(S
V ⊥ , X(U)) is a weak equivalence in TopG∗ ). This yields a model

categorical presentation of the ∞-category of genuine G-spectra.
Given a normal subgroup H /G we will denote by Rep(G)H the TopH∗ -enriched

category obtained by applying the fixed point functor (−)H to each mapping space
in Rep(G). In particular, given an orthogonal spectrum we obtain a functor IHG :

Rep(G)H −→ TopH∗ given by V 7→ (IG(X)(V ))H = (Iso(Rn, V ) ×On Xn)H . We
now define the geomertric fixed point functor

ΦH : SpG −→ SpG/H

by the formula

ΦG(X) = Lan(IHG (X))

where Lan : Fun(RepH(G),TopH∗ ) −→ Fun(Rep(G/H),TopH∗ ) ∼= SpH is the left

Kan extension along the map RepH(G) −→ Rep(G/H) given by V 7→ V H . We
note that ΦH is a point-set model for the geometric fixed points functor discussed
in §4. Then functor ΦH enjoys the following properties (see [HHR, Proposition
2.53], [ABGHLM, Theorem 2.31, Lemma 4.5]):

(1) ΦH preserves cofibrations and trivial cofibrations, and so in particular weak
equivalences between cofibrant objects.

(2) ΦH carries a lax monoidal structure

ρX,Y : ΦH(X) ∧ ΦH(Y ) −→ ΦH(X ∧ Y )

and ρX,Y is an isomorphism whenever X,Y are cofibrant.
(3) For a G-representation V and a pointed G-space K there is a canonical isomor-

phism

ΦH(S−V ∧K) ∼= S−V
H

∧KH .
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(4) ΦH sends pushout squares in SpG

X
f //

��

Y

��
Z // Z

in which f is a cofibration to a pushout square in SpG/H . In particular ΦH

preserves geometric realizations of Reedy cofibrant objects.
(5) Let Z(G) ⊆ G be the center of G and Z(G/H) the center of G/H. Then ΦH

intertwines the BZ(G)-action on SpG with the BZ(G/H)-action on SpG/H via
the natural map BZ(G) −→ BZ(G/H). In particular, if X is an orthogonal
G-spectrum z ∈ Z(G) is an element and z∗ : X −→ X is the associated G-
equivariant map then the induced map ΦG(z∗) : ΦG(X) −→ ΦG(X) is the
identity.

In order to construct a point-set model for ψp we will also need to make use of
Hill-Hopkins-Ravanel norm functor, whose ∞-categorical version was described in
§4. In the model of orthogonal spectra the norm functor is given explicitly as as

NCq : Sp −→ SpCq X 7→
∧
i∈Cq

X

and enjoys the following properties:

(1) NCq preserves cofibrations and trivial cofibrations, and so in particular weak
equivalences between cofibrant objects.

(2) NCq is symmetric monoidal.
(3) There is a natural symmetric monoidal transformation

σq : X −→ ΦCqNCq (X)

which is an isomorphism when X is cofibrant.

Let now A be a weakly cofibrant orthogonal ring spectrum. Then for every
prime p the norm Np(A) is a weakly cofibrant ring spectrum and ΦCp(Np(A)) is a
weakly cofibrant ring spectrum (isomorphic to A by property (3) above). Denoting

by U : SpCp −→ SpO the forgetful functor we may now apply Lemma 17 and
Lemma 14 we get a composed natural R/Z-equivariant equivalence

ψp : U(THHp(N
Cp(A))) ' THH(A)

'−→ THHp(InfpA)
'−→

(σp)∗

THHp(Φ
CpNCp(A))

'−→ ΦCp THHp(N
Cp(A))

where the last map is an isomorphism when A is weakly cofibrant since ΦG is
symmetric monoidal on cofibrant objects and commutes with geometric realizations
of Reedy cofibrant objects. To show that ψp is a point-set model for the map ψp
defined in §4 it will suffice to check that NCp ,ΦCp and σp are point-set models for
their ∞-categorical counterparts. This is essentially true by definition.
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