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In this tirgul we will develop the classical proof of Gauss’s Theorema Egregium,
which states that the curvature of a surface

f : M ↪→ R3

is determined by the metric g induced from f . This means that the curvature
can be determined using only measurements inside the surface.

A common poetic description of this idea is to imagine a civilization living
on a two dimensional surface, unable to sense the third dimension. For example,
these people have no concept of the normal vector to the surface, which is the
data we used in order to define the curvature. It is thus surprising that they
can measure the curvature nonetheless.

In contrast, consider the analogous situation for curves in R3. A civilization
living on a 1-dimensional curve and (could only measure distances inside the
curve) would have no way to measure the curvature. The concept becomes
meaningless without the embedding.

If t he curve is a closed curve then the only meaningful number that they
can measure is the total length of their world. This statement can be made
precise further on in the course - two riemannian structures on S1 are isometric
if and only if the total length is equal.

Now recall that the curvature can be expressed using the Weingarten map
L : TpM −→ Tp which is defined by

L(X) = −X(n)

where n(p) is a continuous choice of normal vector and −X(n) means the deriva-
tive of n in the direction given by X ∈ TpM . The curvature K(p) at p can then
be expressed as

K(p) = det(L)

We want to show directly from this expression that K(p) depends only on g.
Choose local coordinates u1, u2 in some neighborhood of p ∈ U ⊆M and write
g in these coordinates:

g =
∑
i,j

gi,jdu1dv2
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Now the vectors
X1 =

∂

∂u1
(p), X2 =

∂

∂u1
(p)

form a basis for TpM and by definition

g(Xi, Xj) = gi,j(p)

Let us assume for simplicity that u1, u2 are chosen in such a way that X1, X2

form an orthonormal basis at p (if they are not we can do a linear change of
coordinates to make them so). Note that ∂

∂u1 , ∂
∂u2 might not be orthonormal at

other points in U .
Now since X1, X2 are orthonormal the matrix representing T in the basis

X1, X2 is (
g(L(X1), X1) g(L(X2), X1)
g(L(X1), X2) g(L(X2), X2)

)
and

K(p) = g(L(X1), X1)g(L(X2), X2)− g(L(X1), X2)g(L(X2), X1)

The form X, Y −→ g(L(X), Y ) is known as the second fundamental form.
It is sometimes custom to denote

l = g

(
L

(
∂

∂u1

)
,

∂

∂u1

)

m = g

(
L

(
∂

∂u1

)
,

∂

∂u2

)
n = g

(
L

(
∂

∂u2

)
,

∂

∂u2

)
which are called the coefficients of the second fundamental form in the coordi-
nates u1, u2.

Now since g(n, Xi) = 0 is constant it follows from Leibnitz formula that

g(L(Xi), Xj) =
〈
− ∂n

∂ui
, Xj

〉
=
〈

n,
∂Xj

∂ui

〉
def
= 〈n, Xi,j〉

where <, > is the standard scalar product in R3. This is also called the second
fundamental form (evaluated on the vectors X1, X2). Note that Xi,j = Xj,i so
we can write

K(p) =< n,X1,1 >< n,X2,2 > − < n,X1,2 >2

Now since X1, X2, n are an orthonormal basis for R3 it follows that

Xi,j =< Xi,j , Xi > Xi+ < Xi,j , Xj > Xj+ < Xi,j , n > n

Let us denote
ai,j,k =< Xi,j , Xk >
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Note that from Leibnitz formula

Xi(gj,k) = Xi(< Xj , Xk >) = 2ai,j,k

so all the terms of the form ai,j,k are determined by the metric coefficients.
Substituting in the expression above one gets:

K(p) = 〈X1,1 − a1,1,1X1 − a1,1,2X2, X2,2 − a2,2,1X1 − a2,2,2X2〉−

|X1,2 − a1,2,1X1 − a1,2,2X2|2 =

< X1,1, X2,2 > − < X1,2, X1,2 > + terms depending on ai,j,k

Hence it remains to show that < X1,1, X2,2 > − < X1,2, X1,2 > depends
only on the metric coefficients. For that we use the Leibnitz formula one more
time:

X2(a1,1,2)−X1(a1,2,2) = 〈X2(X1,1), X2〉 − 〈X1,1, X2,2〉−

〈X1(X1,2), X2〉+ 〈X1,2, X1,2〉

and since partial derivatives commute in R3 we see that X1(X1,2) = X2(X1,1)
so

X2(a1,1,2)−X1(a1,2,2) =< X1,1, X2,2 > − < X1,2, X1,2 >

and so K(p) depends only on the coefficients of the metric (and their deriva-
tives). This means that the metric is indeed intrinsic, as god intended.
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1 The Real Projective Space

The real projective space is an n-dimensional manifold which is a good example
because it is constructed without using any concrete embedding in some ambient
RN .

In order to define a smooth manifold (notation: smooth = differentiable in
Do Carmo’s book) we need to specify the set of points and an atlas {Uα, xα}.
For the real projective space RPn the set of points is the set of lines in Rn+1

which contain the origin, i.e. a point L ∈ RPn is a subset of Rn+1 of the form

L = {λv|λ ∈ R}

for some 0 6= v ∈ Rn+1. Note that there exists a natural map π : Rn+1 \{0} −→
RPn which sends 0 6= v ∈ Rn+1 to the line {λv|λ ∈ R}. This map is surjective
but not injective: for each 0 6= v ∈ Rn+1 and 0 6= λ ∈ R we have π(λv) = π(v).

We will now put a smooth structure on RPn in which the map π will be
smooth. Let fi : Rn −→ Rn+1 \ {0} be the map

fi(x1, ..., xn) = (x1, ..., xi, 1, xi+1, ..., xn)

Then we can compose π and get a map φi = π ◦ fi : Rn −→ RPn. We claim
that the set {(Rn, φ)} is a smooth atlas (but not maximal). First of all we need
to show that the φi’s are injective. Suppose that (x1, ..., xn), (y1, ..., yn) ∈ Rn
satisfy

φi(x1, ..., xn) = φi(y1, ..., yn)

Then the following lines in Rn+1 are equal

{λ(x1, ..., 1, ..., xn)|λ ∈ Rn+1} = {λ(y1, ..., 1, ..., yn)|λ ∈ Rn+1}

This means that there exists a λ ∈ Rn+1 such that

(y1, ..., 1, ..., yn) = λ(x1, ..., 1, ..., xn)

by considering the i’th coordinate we see that λ must be 1, which means that

(x1, ..., xn) = (y1, ..., yn)
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Now we want to show that

∩iφi(Rn) = RPn

Let L ∈ RPn. Then there exists a 0 6= v ∈ Rn+1 such that π(v) = L. Write
v = (x1, ..., xn). Since v 6= 0 there exists an i such that xi 6= 0. Then we can
divide v by xi and get a vector

u =
(
x1

xi
, ..., 1, ...,

xn
xi

)
such that π(u) = L as well. But

u = fi

(
x1

xi
, ..., ...,

xn
xi

)
which means that

L = φi

(
x1

xi
, ..., ...,

xn
xi

)
so

L ∈ ∩iφi(Rn) = RPn

It is left to show that the transition maps are smooth. Let i > j ∈ {1, ..., n+
1} and consider

Wi,j = φi(Rn) ∩ φj(Rn)

Note that
φ−1
i (Wi,j) = {(x1, ..., xn) ∈ Rn|xj 6= 0}

φ−1
j (Wi,j) = {(y1, ..., yn) ∈ Rn|yi−1 6= 0}

are both open. It is left to compute the map

φ−1
j ◦ φi : φ−1

i (Wi,j) −→ φ−1
j (Wi,j)

and show that it is smooth. Let (x1, ..., xn) ∈ φ−1
i (Wi,j). Then

φ−1
j (φi(x1, ..., xn)) = φ−1

j (π(x1, ..., xi−1, 1, xi, ..., xn)) =

φ−1
j

(
π

(
x1

xj
, ...,

xj−1

xj
, 1,

xj+1

xj
, ...,

xi−1

xj
,

1
xj

xi
xj
, ...,

xn
xj

))
(
x1

xj
, ...,

xj−1

xj
,
xj+1

xj
, ...,

xi−1

xj
,

1
xj
,
xi
xj
, ...,

xn
xj

)
Clearly φ−1

j ◦ φi is smooth and its inverse φ−1
i ◦ φj is smooth as well. This

means that {(Rn, φi)} is a smooth atlas. Now we can complete it to a maximal
atlas and get a smooth structure on RPn.

Note that for each i, if we restrict π to π−1(φi(Rn)) then

φ−1
i (π(x1, ..., xn+1)) =

(
x1

xi
, ...,

xi−1

xi
,
xi+1

xi
, ...,

xn
xi

)
which is a smooth map. Hence π is smooth.
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2 Orientability

Definition 2.1. Let M be a smooth manifold with atlas A. An orientable
on M is a sub-atlas {(Uα, φα)} ⊆ S which covers M such that all transition
functions within it have differentials with positive determinant. We say that M
is orientable if is has an orientation.

Two orientations {(Uα, φα)}, {(Uβ , φβ)} are called equivalent if their union
is an orientation.

It is not hard to show that if M is orientable and connected then it has
exactly two orientations up to equivalence.

Examples:

1. The sphere Sn ⊆ Rn+1 has an atlas composed of two maps {(Rn, φ1), (Rn, φ2)}
such that the image of φ1 is Sn − {(0, ...., 0, 1)} and the image of φ2 is
Sn − {(0, ..., 0,−1)}.
The intersection of these two charts is connected, and so the differential
between them is either always positive or always negative. If it is always
negative reverse the chart by composing a self diffeomorphism Rn −→ Rn
of negative differential (like (x1, ..., xn) 7→ (−x1, ..., xn)). Then the two
charts will have a positive differential transition function so they will form
an orientation. Hence Sn is orientable.

2. The real projective space RPn is orientable iff n is odd. The reason for
that is the following. Consider the embedding

f : Sn −→ Rn+1

and compose on it the map π : Rn+1 −→ RPn. We obtain a map p =
π ◦ f : Sn −→ Rn+1 which is surjective but not injective. In fact every
L ∈ RPn+1 has exactly two pre-images, which are the two points of norm
1 in L.

Now consider the map σ : Sn −→ Sn defined by σ(x1, ..., xn) = −(x1, ..., xn).
The clearly p ◦ σ = p. Further more σ is a diffeomorphism so it sends an
orientation {(Uα, φα)} to an orientation {(Uα, σ ◦ φα)}. Since there are
exactly two orientations up two equivalence we see that σ either preserves
them both or switches between them. It is an exercise to show that when
n is odd then σ preserves each orientation and when n is even it switches
them.

The map p is actually very nice: for each L ∈ RPn+1 there exists a
neighborhood L ∈ V such that

g−1(V ) = U ∪ σ(U)

with U ∩ σ(U) = ∅ and such that p induces diffeomorphisms

U
'−→ V, σ(U) '−→ V
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Now if σ preserves the orientation (i.e. n is odd) then we can use p to
induce an orientation on RPn by choosing an orientation {(Uα, φα)} on
Sn which is fine enough so that p induces diffeomorphisms

φα(Uα) '−→ p(φα(Uα))

We claim that in that case {(Uα, p ◦ φα)} is an orientation of RPn. For
suppose that p(φα(Uα))∩p(φβ(Uβ)) 6= ∅. If φα(Uα)∩φβ(Uβ) 6= ∅ then the
transition function has positive differential. If φα(Uα) ∩ φβ(Uβ) = ∅ then
φα(Uα) ∩ σ(φβ(Uβ)) 6= ∅. But σ preserves orientation so the transition
function is has again positive differential.

Now suppose that σ reverses orientation (i.e. n is even). Then we claim
that RPn is not orientable. The argument is similar but the other way
around: suppose RPn was orientable and choose an atlas {(Vα, ψα)} for
it which is fine enough so that

p−1(ψα(Vα)) = Wα ∪ σ(Wα)

such that Wα ∩ σ(Wα) = ∅ and such that p induces diffeomorphisms

Wα
'−→ ψα(Vα), σ(Wα) '−→ ψα(Vα)

Then it is a similar check to verify that {(Vα, q ◦ ψα), (Vα, σ ◦ q ◦ ψα))}
would constitute an orientation for Sn where q : Vα −→Wα is the inverse
diffeomorphism to p. But then σ would preserve this orientation and this
is a contradiction.

We finish this tirgul with a theorem which says that this situation is actually
quite general:

Theorem 2.2. Let M be a smooth manifold of dimension n. Then there exists
an orientable smooth manifold M̃ , a map M̃

p−→ M and a self diffeomorphism
σ : M̃ −→ M̃ such that σ◦p = p and for each x ∈M there exists a neighborhood
V such that

p−1(V ) = U ∪ σ(U)

with U ∩ σ(U) = ∅ and p induces a diffeomorphism U
'−→ V, σ(U) '−→ V .

Proof. Let V be an n-dimensional vector space over R. We call two basis B1, B2

equivalent if the basis transition matrix has positive determinant. This is an
equivalence relation on the set of basis of V . The equivalence classes of this
relations are called orientations for V . It is clear that there are exactly two
orientations for every V . If O is an orientation then we denote by O the other
orientation.

Let us now construct M̃ . The points of M would be pairs (x,O) where
x ∈ M and O is an orientation for TxM . Let {(Uα, φα)} be a maximal atlas
for M . Since Uα ⊆ Rn we can identify the tangent space TvUα with Rn for all
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v ∈ Uα. Rn has an orientation given by the standard basis e1, ..., en so we get
an orientation Oα for TvUα. Now consider the two maps φ̃α : Uα −→ M̃ given
by

φ̃α(v) = (φα(v), φα(Oα))

Then the set {(Uα, φ̃α)} is an atlas for M̃ . It is a simple exercise to show that
this atlas is actually an orientation, so M̃ is orientable.

The map p is defined by p(x,O) = x and the map σ is defined by σ(x,O) =
(x,O). It is again a simple exercise to show that they satisfy the conditions in
the theorem.
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0.1 SLn(R) and On(R)

Let Mn(R) denote the space of n × n matrices. This space can of course be
identified with Rn2

and we can give it the standard smooth structure using the
atlas {Rn2 '−→Mn(R)}.

In class you’ve learned that if we have a smooth map f : RN −→ Rk and
if x ∈ Rk is a regular value then M = f−1(x) ⊆ RN admits a natural smooth
structure under which the inclusion M ↪→ RN is an embedding.

The tangent space TpM then embeds in TpRN = RN and can be identified
with the kernel of the differential dfp : RN −→ Rk. We will now explore the two
examples SLn(R),SO(R) ⊆Mn(R).

Let subset SLn(R) ⊆ Mn(R) is defined by the equation det(A) = 1. Hence
our f = det : Mn(R) −→ R and we are taking the pre-image of 1 ∈ R. Let us
show that 1 is a regular value for f . For that we need to compute the differential.

Let A,B ∈ Mn(R) and think of B as a vector in TAMn(R) = Mn(R). We
will compute dfA(B) in the case f(A) = 1 and show that it is surjective. This
would imply that 1 6= x ∈ R is a regular value (in fact all non-zero values are
regular).

Consider the linear curve γ(t) = A+Bt ∈Mn(R). The tangent vector to γ
at time 0 is

dγ(t)
dt

∣∣∣∣
t=0

= B

Hence the tangent vector to f(γ(t)) at t = 0 is by definition dfA(B). Let us
compute it:

d

dt
f(γ(t))

∣∣∣∣
t=0

= lim
t→0

[
f(γ(t))− f(γ(0))

t

]
=

lim
t→0

[
det(A+ tB)− 1

t

]
= lim

t→0

[
det(I + tA−1B)− 1

t

]
=

lim
t→0

[
tnPA−1B(t−1)− 1

t

]
= Tr(A−1B)

Where PA−1B is the characteristic polynomial of A−1B. This means that

dfA(B) = Tr(A−1B)

1



This is a linear into a 1-dimensional space so in order to show that it is surjective
we just need to produce one B such that Tr(A−1B) 6= 0. But this is easy - just
take B = A.

This proves that 1 is a regular value and so SLn(R) admits a smooth structure
making it into a smooth sub-manifold of Mn(R) od dimension n2 − 1. If A ∈
SLn(R) then TASLn(R) ⊆ TAMn(R) can be identified with the kernel of dfA.
In particular

TASLn(R) = {AC|Tr(C) = 0}

The case of On(R) is similar. Let Symn(R) denote the space of symmetric

n× n matrices. This is a vector space of dimension
(
n+ 1

2

)
so it can be given

a 1-map smooth atlas R

n+ 1
2


 '−→ Symn(R)

Our map now will be g : Mn(R) −→ Symn(R) defined by

g(Q) = QTQ

We want to show that I ∈ Symn(R) is a regular value so we will take an
Q ∈Mn(R) such that g(Q) = I and compute the differential dgQ. As before let
B ∈ TQMn(R) = Mn(R) and γ(t) = Q+ tB. We want to compute

d

dt
g(γ(t))

∣∣∣∣
t=0

= lim
t→0

[
g(γ(t))− g(γ(0))

t

]
=

lim
t→0

[
(Q+ tB)T (Q+ tB)− I

t

]
= lim

t→0

[
I + (QTB +BTQ)t+ t2BTB − I

t

]
= QTB+BTQ

Hence our differential is

dgQ(B) = QTB +BTQ ∈ TQSymn(R) = Symn(R)

This is a map from Mn(R) to Symn(R) and we need to show that it surjective.
Let C ∈ Symn(R) be a matrix. Then

dgQ

(
QC

2

)
=
QTQC

2
+
CTQTQ

2
= C

and so dgQ is surjective.
This proves that I is a regular value for g and so On(R) admits a smooth

structure making it into a smooth sub-manifold of Mn(R) of dimension

n2 −
(
n+ 1

2

)
=
(
n
2

)

2



If Q ∈ SOn(R) then TQSOn(R) ⊆ TQMn(R) can be identified with the kernel
of dgQ. In particular

TQSOn(R) = {QD|DT = −D}

Note that each Q ∈ On(R) satisfies

det(Q)2 = det(QTQ) = det(I) = 1

so det(Q) = ±1. It is easy that both signs can be obtained, so On(R) has
two connected components. It is clear that each connected component inherits
a smooth structure from On(R). In particular the connected component with
det = 1 is denoted by SOn(R).

Let us note a nice fact which occurs in dimension n = 3. Note that if
Q ∈ SO3(R) and if we denote by x̂, ŷ, ẑ the columns of Q then x̂, ŷ, ẑ form an
orthogonal basis (this is in all dimensions) and satisfy

x̂× ŷ = ẑ

ŷ × ẑ = x̂

ẑ × x̂ = ŷ

Now it is a direct computation to verify that if

D =

 0 −c b
c 0 −a
−b a 0


Is a general anti-symmetric matrix then the columns of QD are v× x̂, v× ŷ, v× ẑ
for

v = ax̂+ bŷ + cẑ

This proves question 4 in exercise 1, namely for any smooth path Φ(s) ∈ SO3(R)
there exists a function v(s) ∈ R3 such that for every vector u0 ∈ R3 the curve
u(s) = Φ(s)u0 ∈ R3 satisfies

x′(s) = u(s)× x(s)
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1 The Tangent Bundle

Let M be a smooth manifold of dimension n. In this section we will discuss
how to construct an atlas on the tangent bundle TM giving it the structure of
a smooth manifold of dimension 2n.

As a set, the tangent bundle is defined to be

TM = {(p, v)|v ∈ TpM}

We now wish to put an (oriented) atlas on TM . Let {(Uα, φα)} be an atlas for
M . Since Uα ⊆ Rn we can identify for all x ∈ Uα the tangent space TxUα with
Rn in a canonical way (the vector in TxUα which corresponds to v ∈ Rn is the
equivalence class of the path x+ tv at t = 0). This means that we can consider
the differential (dφα)x as map from Rn to Tφα(x)M . Consider the map

φ̃α : Uα × Rn −→ TM

defined by
φ̃α(x, v) = (φ(x), (dφα)x(v))

We claim that {(Uα×Rn, φ̃α)} is an oriented atlas for TM (Uα×Rn is considered
as an open subset of Rn × Rn = R2n. Hence this will be a 2n-dimensional
structure).

First we need to verify that all the maps are injective. This clear because
φα is injective and each (dφα)x is an isomorphism and so injective. A similar
argument shows that the images of φ̃α cover M : each p ∈ M is in the image
of some Uα and since (dφα)x is an isomorphism it is surjective so all tangent
vectors to x are covered.

We now want to show that the transition functions are smooth and with
positive differential. Define

Wα,β = φ−1
α (φα(Uα) ∩ φβ(Uβ))

and
W̃α,β = φ̃−1

α (φ̃α(Uα × Rn) ∩ φ̃β(Uβ × Rn))

1



Now suppose that the image of φ̃α intersects the image of φ̃β . Then clearly
from the definition (and the fact that each (dφα)x is an isomorphism) we get

φ̃α(Uα × Rn) ∩ φ̃β(Uβ × Rn) = Tφα(Uα) ∩ Tφβ(Uβ) =

T (φα(Uα) ∩ φβ(Uβ))

and so

W̃α,β = φ̃−1
α (φ̃α(Uα×Rn)∩φ̃β(Uβ×Rn)) = φ−1

α (φα(Uα)∩φβ(Uβ))×Rn = Wα,β×Rn

Further more from the definition of φ̃α we see that

φ̃−1
β ◦ φ̃α : W̃α,β −→ W̃β,α

is just
(φ−1
β ◦ φα, dφ

−1
β ◦ dφα) : Wα,β × Rn −→Wβ,α × Rn

The first coordinate is a smooth function because we started with a smooth
atlas for M . The second coordinate depends smoothly ont the first coordinate
(because it is a differential of a smooth function) and is linear in the second
coordinate, i.e. it is smooth. This means that we have a smooth atlas for TM .

We claim that this atlas is oriented, i.e. that these transition functions have
a positive differential. This is because the differential of a linear map is it self.
Further more, since in the map φ̃−1

β ◦ φ̃α the last n coordinates depend only on
the last n coordinates, its differential at any point takes the form(

dφ−1
β ◦ dφα 0
∗ dφ−1

β ◦ dφα

)
whose determinant is

det(dφ−1
β ◦ dφα)2 > 0

Hence TM is an orientable manifold of dimension 2n.
There exists a natural map pM : TM −→ M which sends (x, v) to x. Note

that for any α if we look at the maps φα and φ̃α the map pM looks like a simple
projection on the first n coordinates. Hence pM is a smooth function between
these manifolds.

2 The Lie Bracket

Recall that we associate to a tangent vector v ∈ TxM and a smooth function
f ∈ C∞(U) (for some neighborhood U of x) a real number v(f) which is the
derivative of f at x in direction v. We have also seen in class that all maps from
dx : C∞(U) −→ R satisfy the local Leibnitz rule at x:

dx(fg) = f(x)dx(g) + dx(f)g(x)

can be realized as dx(f) = v(f) for some v ∈ TxM .
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Having defined the tangent bundle TM as a smooth manifold we can nat-
urally define now what is a vector field: it is a smooth map X : M −→ TM
such that pM ◦ X = Id. Now given a vector field X and a smooth function
f ∈ C∞(M) we can create a new function X(f) by setting

X(f)(p) = Xp(f)

It is not hard to show that (check it in every map as in the previous section)
that X(f) is also a smooth map. We also get a global Leibnitz rule

X(fg) = X(f)g + fX(g)

Similarly to the case of a single tangent vector, it is quite straight forward to
show that every map C∞ −→ C∞ which satisfies the global Leibnitz rule is of
the form f 7→ X(f) for some smooth vector field X (since clearly it satisfies
the local Leibnitz rule at every point we get a tangent vector Xp ∈ TpM at
every p. It is then not hard to check in coordinates that the resulting map
X : M −→ TM is smooth).

Now suppose we have two vector fieldsX,Y . Consider the map Z : C∞(M) −→
C∞(M) defined by

Z(f) = X(Y (f))− Y (X(f))

We will show that this map satisfies the global Leibnitz rule:

X(Y (fg))− Y (X(fg)) = X(Y (f)g + fY (g))− Y (X(f)g + fX(g)) =

X(Y (f))g+Y (f)X(g)+X(f)Y (g)+fX(Y (g))−Y (X(f))g−X(f)Y (g)−Y (f)X(g)−fY (X(g)) =

[X(Y (f))− Y (X(f))] g + f [X(Y (f))− Y (X(f))] = Z(f)g + fZ(g)

Hence there exist a vector field, which we will denote by [X,Y ], such that

[X,Y ](f) = Z(f)

This vector field is called the Lie Bracket of X and Y . Comment: Note that
we can’t take the Lie bracket of two tangent vectors, only of two vector fields.

Let us calculate the Lie bracket in coordinates. For this it is enough to
calculate the Lie bracket of two vector fields on Rn with coordinates u1, ..., un.
Let

X =
∑
i

Xi
∂

∂ui

Y =
∑
i

Yi
∂

∂ui

be two vector fields on Rn, where each Xi, Yi is a function from Rn to R. Then
if f : Rn −→ R is a smooth function then

X(f) =
∑
i

Xi
∂f

∂ui
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Y (f) =
∑
i

Yi
∂f

∂ui

and

X(Y (f))− Y (X(f)) =
∑
i,j

Xi
∂

∂ui

[
Yj

∂f

∂uj

]
−
∑
i,j

Yi
∂

∂ui

[
Xj

∂f

∂uj

]
=

∑
i,j

Xi
∂Yj
∂ui

∂f

∂uj
− Yi

∂Xj

∂ui
∂f

∂uj

which means that

[X,Y ] =
∑
j

[∑
i

(
Xi
∂Yj
∂ui
− Yi

∂Xj

∂ui

)]
∂

∂uj

The Lie Bracket satisfies these three basic properties

1. [−,−] is R-bilinear.

2.
[X,Y ] = −[Y,X]

3. Jacobi’s identity:

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0

The first two properties are obvious. The third one can be proved by a direct
calculation. Consider 3 vectors fields X1, X2, X3. Denote for shortage

{i, j, k} = Xi(Xj(Xk(f)))

Then

[X1, [X2, X3]]f = X1([X2, X3]f)−[X2, X3](X1(f)) = X1(X2(X3(f)))−X1(X3(X2(f)))−X2(X3(X1(f)))+X3(X2(X1(f)))

which means that

[X1, [X2, X3]]f = ({1, 2, 3} − {2, 3, 1}) + ({3, 2, 1} − {1, 3, 2})

[X2, [X3, X1]]f = ({2, 3, 1} − {3, 1, 2}) + ({1, 3, 2} − {2, 1, 3})

[X3, [X1, X2]]f = ({3, 1, 2} − {1, 2, 3}) + ({2, 1, 3} − {3, 2, 1})

and so the sum of these three terms vanishes.
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Differential Geometry - Tirgul 4

Yonatan Harpaz

May 21, 2009

1 Flows and Local Behavior at Critical Points

Let M be a smooth compact manifold and X a vector field defined on all of M .
We now that in that case the flow Φt : M −→ M is defined for all t ∈ R with
Φ0 = Id. Now let p ∈M be a point such that Xp = 0. In that case the constant
curve γ(t) = p is an integral curve of X which means that

Φt(p) = p

for all t. We say that p is a fixed point of the flow. We wish to describe the
local behavior of the flow around p. For example, a natural question to ask is
about stability: suppose we pick a point which is very close to p, would is flow
towards p (limt→∞ Φt(p′) = p), stay in some neighborhood of p, or maybe flow
away (at least in the nearby time)?

In order to answer this question, let us start by making the following as-
sumption: there exists a chart around p with coordinates x1, ..., xn such that X
in these coordinates is linear, i.e. there exists constants ai,j ∈ R such that

X(x1, ..., xn) =
n∑

i,j=1

ai,jx
j ∂

∂xi

In particular
Xp = X(0, ..., 0) = 0

Let A = [ai,j ]. Now if γ(t) =

x1(t)
...

xn(t)

 is in an integral curve of this linear

vector field then it satisfies the linear ODE

d

dt

x1(t)
...

xn(t)

 = A ·

x1(t)
...

xn(t)


From the classical theory of linear ODE’s we know that in order to analyze

this situation we need first find the eigenvalues and eigenvectors of A. Assume

1



for simplicity that A is non-singular and diagonalizable over C. Let λ1, ..., λk be
the real eigenvalues of A and α1±β1i, ..., αr±βri, the non-real eigenvalues (note
that k + 2r = n). Similarly let v1, ..., vk be the corresponding real eigenvectors
and u1 ± iw1, ..., ur ± iwr the corresponding non-real eigenvectors.

From the classical theory we know that if γ is an integral curve of X in the
coordinate chart such that

γ(0) =
k∑
i=1

Aivi +
r∑
j=1

[Bjuj + Cjwj ] =

k∑
i=1

Aivi +
1
2

r∑
j=1

[(Bj − iCj)(uj + iwj) + (Bj + iCj)(uj − iwj)]

with Ai, Bj , Cj ∈ R then

γ(t) =
k∑
i=1

eλitAivi+
1
2

r∑
j=1

[
e(αj+βji)t(Bj − iCj)(uj + iwj) + e(αj−βji)t(Bj + iCj)(uj − iwj)

]
=

k∑
i=1

eλitAivi +
r∑
j=1

eαjt [cos(βjt)(Bjuj + Cjwj) + sin(βjt)(Cjuj −Bjwj)]

This formula allows us to analyze what happens if we move away from p =
(0, ..., 0) in some direction which is an eigenvector of A. If we move a bit in
the direction of vi (respectively uj), then we would flow back to p if λi < 0
(respectively αi < 0) and away form p if λi > 0 (respectively αi > 0).

If at least one of the λi, αi’s is > 0 then in most directions (all the directions
which have a non-zero coefficient in the corresponding eigenvector) the point
will flow away from p. We then say that the fixed point is unstable. If all the
λi, αi’s are < 0 then in every direction we go we will flow back to p. In that
case we say that the fixed point is stable.

If αi = 0 (this is possible without making A singular, as apposed to λi = 0)
then if we move away from p in a direction spanned by uj , wj then we would
enter a periodic orbit with period of time 2π

βj
. If we move away in a direction

which is a span of u1, w1, ..., ur, wr then we would enter a bounded orbit (i.e.
stay in the proximity of p) but without an orbit (unless the βj ’s are linearly
dependent over Q).

Now suppose that X wasn’t linear but a general vector field

X =
∑
i

fi
∂

∂xi

satisfying fi(0, ..., 0) = 0. Then we could approximate the fi’s (in the standard
Taylor expansion way) by the linear maps

fi '
∑
j

∂fi
∂xj

xj

2



and do the same analysis only with the matrix A =
[
∂fi

∂xi

]
. This would give

us at least a good approximation of the dynamics in a small neighborhood of
(0, ..., 0), and will answer the basic stability questions.

Now return to the case of a general vector field X on a manifold M such that
Xp = 0. We can put coordinates near p and analyze the matrix A given above
to understand the local behavior around p in terms of stability, periodic orbits
etc. But what if we now change the coordinate system? we would get a different
matrix, although clearly the dynamical behavior is (at least qualitatively) not
coordinate dependent.

To explain this phenomenon we shall show that the matrix A is coordinate
independent up to conjugation (i.e., if we change to a different coordinate system
A would change by conjugation). This is because A represents a map TpM −→
TpM defined internally by X at every point p where Xp = 0.

To see this map think of X as a smooth map X : M −→ TM . Recall
that we have two familiar maps connecting M and TM . One is the projection
π : TM −→ M which takes (p, v) to p and the other is the zero-section z :
M −→ TM which sends p to (p, 0).

Clearly from the definition π ◦ z = Id which means that

dπ(p,0) ◦ dzp = Id

in particular this implies that dzp is injective, dπ(p,0) is surjective and that we
have a direct sum decomposition

T(p,0)TM = ker(dπ(p,0))⊕ Im (dzp)

This direct sum decomposition induces a projection ρ from T(p,0)TM to ker(dπp,0)
which in turn can be naturally identified with the tangent space to the sub-
manifold π−1(p) at (p, 0). Since π−1(p) = TpM is a vector space we can identify
its tangent space at every point with TpM itself.

Now since Xp = 0 we get a differential

dXp : TpM −→ T(p,0)TM

composing this with the projection ρ we get a well defined map

ρ ◦ dXp : TpM −→ TpM

It can be shown that if we work in local coordinates where

X =
∑
i

fi
∂

∂xi

then this linear transformation is represented by the matrix A =
[
∂fi

∂xi

]
. Hence

this matrix is intrinsic up to conjugation, and in particular all its eigenvalues
(and their dynamical consequences) are well defined invariants of X.
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Differential Geometry - Tirgul 6

Yonatan Harpaz

June 6, 2009

1 Some calculations of Geodesics

1.1 The Sphere

Let us solve question 2 from HW 5:

1. Let M be a surface and V ⊆ R3 an affine plane such that M is locally
(around some intersection point p ∈ M ∩ V ) symmetric with respect to
reflection by V . By maybe replacing M by some open subset of it we can
assume WLOG that M it self is symmetric with respect to V .

Note that V will never be tangent to M (because then since M is sym-
metric to reflection it will not look locally like R2 at around that point).
Hence by the implicit function theorem the intersection id a curve γ. We
want to show that γ is a geodesic.

From the existence and uniqueness theorem for geodesics we know that
there exists a unique geodesic γg such that

γg(0) = γ(0)

γ′g(0) = γ′(0)

Let σ : R3 −→ R3 denote the reflection by V . Then σ induces an isometry
form M to itself and so σ(γg(t)) is also a geodesic. But

(σ(γg(t)))′ = dσ(γ′g(t)) = dσ(γ′(r)) = γ′(t)

because σ(γ(t)) = γ(t). Hence γg(t) and σ(γg(t)) are two geodesics which
agree on the initial point and initial velocity. From uniqueness we get that

σ(γg(t)) = γg(t)

which means that γg(t) is contained in V . Since it is also contained in M
and since the intersection of V and M is a curve we see that γg(t) = γ(t).
Hence γ(t) is a geodesic.

1



2. The great circles on the sphere are intersections of the sphere with a plane
which contains the center of the sphere. Clearly the sphere is symmetric
to reflection by such a plane which means by section 1 that great circles
are geodesics.

3. Let γ(t) be a geodesic on S2 with T (t), n(t) the tangent and normal re-
spectively. Let V be the plane spanned by T (0), n(0) and consider the
intersection of γ(0) + V with S2.

Since γ(0) + V would contain the center of the sphere we see that this
intersection is actually a great circle, hence defining a curve γM which is
a geodesic. We can choose the direction and speed of γM so that γ′M (0) =
T (0). Then from uniqueness of geodesics we get that γ(t) = γM (t).

2 The Poincare Upper Half Plane

Recall the Poincare upper half place R2
+ = {(x, y) ∈ R2|y > 0} with the metric

g = dx2+dy2

y (i.e. in the x, y coordinates g1,1 = g2,2 = 1
y and g1,2 = g2,1 = 0). As

in the last tirgul we will use the notation
(
a
b

)
, where a, b are smooth functions

from R2
+ to R, to denote the vector field

X = a
∂

∂x
+ b

∂

∂y

We saw in the previous tirgul that the Levi-Civita connection on R2
+ is given by

∇Y
(
a
b

)
=
(
Y (a)
Y (b)

)
+ Γ(Y )

(
a
b

)
where

Γ
(
c
d

)
= −1

y

(
d c
−c d

)
We want find all the geodesics on R2

+. Let us first find all the geodesics γ(t)
which whose tangent γ′(t) is parallel to the y-axis. The geodesic equation is

∇γ′(t)γ
′(t) = 0

which explicitly gives
γ′′(t) + Γ(γ′(y))γ′(t) = 0

Since γ′(0) has only a ∂
∂y component we see that Γ(γ′(0)) is a multiple of the

identity matrix. Hence γ′′(0) is also parallel to the y-axis. This hints to us that
we should look for a solution which is contained in a line parallel to the y-axis.
Let γ(0) = (x0, y0) and look for a solution of the form γ(t) = (x0, c(t)). Then
the geodesic equation becomes

c′′(t) +
c′(t)2

c(t)
= 0
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Note that all the functions of the form c(t) = Aeat solve this equation. From
our initial conditions we get that if γ′(0) = a ∂

∂y then

γ(t) = (x0, y0e
at)

How will find all the other geodesics? For this we will use Mobius transfor-
mations. Identify R2 with C in the usual way and think of the upper half plane
as complex numbers with positive imaginary part. A Mobius transformation
is a map of the form

ρ(z) =
az + b

cz + d

where a, b, c, d ∈ C and ab− cd 6= 0. Note that ρ
(
−dc
)

is apparently ill defined
because the denominator vanishes. The standard way to fix this (see any basic
course on complex functions) is to add a point to C, called∞, and put a topology
on Ĉ = C ∩ {∞} which makes it homeomorphic to S2. It is easy to show that
then ρ becomes a continuous map Ĉ −→ Ĉ which is actually homeomorphism.
Its inverse is

ρ−1(z) =
dz − b
−cz + a

Now suppose that a, b, c, d ∈ R. Then ρ(R ∩ {∞}) = R ∩ {∞} and since ρ is a
homeomorphism it maps X = Ĉ \(R ∩ {∞}) to itself (homeomorphically). But
X has two connected components - the upper and lower half planes. It is an
easy exercise to show that the condition ad − bc > 0 (this expression is called
the determinant of ρ) is equivalent to the fact that ρ maps the upper half
plane to itself.

Now to top all that, we shall now show that ρ preserves the metric g. Let
us write the differential of ρ in the x, y coordinates (i.e. we use the vector fields
∂
∂x ,

∂
∂y as a basis for each tangent space). Since ρ is a holomorphic, we know

that if we identify the tangent spaces of each point of the upper half plane with
C in the canonical way, then dρ : TzR2

+ −→ Tρ(z)R2
+ would be multiplication by

the complex number ρ′(z). Such map are always a composite of a rotation by
arg(ρ′(z)) and expansion by |ρ′(z)|.

Since the metric is dx2+dy2

y2 we see that in order to preserve the metric the
expansion part |ρ′(z)| has to be equal to

Im (ρ(z))
Im (z)

=
ρ(z)− ρ(z)
z − z

=
az+b
cz+d −

az+b
cz+d

z − z
=

(cz + d)(az + b)− (cz + d)(az + b)
|cz + d|2(z − z)

=
ad− bc
|cz + d|2

and indeed:

|ρ′(z)| =
∣∣∣∣ ad− bc(cz + d)2

∣∣∣∣ =
ad− bc
|cz + d|2

3



Now this means that real Mobius maps with positive determinant are self
isometries of the upper half plane. Hence they must take geodesics to geodesics.
Now we claim that for each z1, z2 ∈ R2

+ there exists a mobius map sending z1
to z2. The proof is simple: since z1 is not real we get that z1 and 1 are linearly
independent over R. Hence there exists a, b ∈ R such that

az1 + b = z2

with a > 0 (becomes both z1, z2 have positive imaginary part). Hence this is a
real Mobius map with positive determinant.

Now we claim that for every v ∈ Tz1R2
+, u ∈ Tz2R2

+ such that g(v, v) =
g(u, u) there exists a real positive Mobius map ρ such that

ρ(z1) = z2

dρ(v) = u

Since we already know that we can move z1 to z2, it is enough to show this under
the assumption that z1 = z2, and in fact we can even assume that z1 = z2 = i.
Now the Mobius maps of the form

ρ(z) =
cos(α)z + sin(α)
− sin(α)z + cos(α)

satisfy
ρ(i) = i

det(ρ) = 1 > 0

and
ρ′(z) =

1
(− sin(α)i+ cos(α))2

= cos(2α) + i sin(2α)

which means that ρ′(z) rotates TiR2
+ in an angle of 2α. Since we can do this

for every α we can send every vector in TiR2
+ to any other vector of the same

length.
Now from uniqueness of geodesics we know that they are determined by an

initial point and an initial velocity. Hence from the above considerations we get
that every geodesic is an image under some real positive ρ of the line vertical
line x = 0. From complex functions we know that the image of a line is either
a line or a circle, and that a holomorphic map preserves angles (in the usual
sense) on C. Hence we get that the image of the straight line x = 0, y > 0 is
either another straight line of the form x = b, y > 0 or half a circle which is
orthogonal to the line y = 0.
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Differential Geometry - Tirgul 7

Yonatan Harpaz

June 6, 2009

1 The Curvature Tensor and Parallel transport

In this tirgul we will see how the curvature tensor is connected to parallel trans-
port. Let p, q ∈ M be two points and γ a smooth path from p to q. Let
Pγ : TpM −→ TqM be the parallel transport map. The curvature tensor mea-
sures in some sense how much Pγ will change if we change γ smoothly to another
curve γ′ (without moving the end points).

The prototypical case here is the case q = p. Suppose I have a path which
can be smoothly deformed (without moving the end points) to the constant
path from p to p. How different will Pγ be from the identity, or in other words,
what will Pγ be?

In this tirgul we shall prove a theorem for 2 dimensional manifolds (there is
an analogous general statement but it intails some technical difficulties which
we don’t wish to enter).

Theorem 1.1. Let M be a 2-dimensional Riemannian manifold with Levi-
Civita connection ∇ and

RX,Y (Z) = ∇Y∇XZ −∇X∇Y Z +∇[X,Y ]Z

the associated curvature tensor.
Consider R2 with coordinates u1, u2 and D ⊆ R2 the open unit disc. Let γ

be a smooth closed curve in M and F : D −→M such that

F |∂D = γ

(with respect to the counter clockwise direction).
We will write ∂F

∂ui for dF
(
∂
∂ui

)
. Let X,Y be some orthonormal frame defined

on an open set containing F (D) such that the determinant

det(dF ) =
∣∣ ∂F
∂u1

∂F
∂u1

∣∣ ≥ 0

where the determinant is taken with respect to the orthonormal basis given by
X,Y .

Then the parallel transport Pγ along γ is a rotation by angle α (counter
clockwise in the orientation given by X,Y ) where

α =
∫
D

g
(
R ∂F

∂u1 ,
∂F
∂u2

(X), Y
)
du1du2 =

∫
D

κ(F (u1, u2)) det(dF )du1du2

1



Before we come to the proof we give a short lemma:

Lemma 1.2. Let X1, X2 be an orthonormal frame defined on some open set
U ⊆ M . Then for every vector field Z on U , then expression g (∇ZXi, Xj) is
anti-symmetric with respect to i, j. In particular

∇ZX1 = g (∇ZX1, X2)X2

∇ZX2 = −g (∇ZX1, X2)X1

Proof. Since g (Xi, Xj) is a constant function (its either constantly 0 or con-
stantly 1) we get that

0 = Z(g(Xi, Xj)) = g (∇ZXi, Xj) + g (Xi,∇ZXj)

which means that
g (∇ZXi, Xj) = −g (Xi,∇ZXj)

this means in particular that ∇ZX1 is a multiple of X2, and so

∇ZX1 = g (∇ZX1, X2)X2

Similarly
∇ZX2 = g (∇ZX2, X1)X2 = −g (∇ZX1, X2)X1

We now come to the proof of theorem 1.1:

Proof. From question 1 in assigned problems 3 we know that parallel transport
preserves the Riemannian inner product and orientation (here we have an ori-
entation defined locally around the image of F by the basis X,Y ). Hence the
prarallel transport must be a rotation by some angle. Note that this angle is
determined by looking at the image of a single vector.

Let V (t) be the parallel transport of the vector Xγ(0) along γ. Note that
V (t) is always of norm 1 and so we can write

V (t) = cos(α(t))X(t) + sin(α(t))Y (t)

for some function α : [0, 1] −→ R.
Then the parallel transport along γ results in a rotation by α(1), so this is

the quantity we wish to compute. From the definition of parallel transport we
get

0 =
DV

dt
= ∇γ′(t)V (t) =

cos(α(t))∇γ′(t)X + sin(α(t))∇γ′(t)Y − α′(t) sin(α(t))X + α′(t) cos(α(t))Y

Now using lemma 1 we can write this as

g
(
∇γ′(t)X,Y

)
(sin(α(t))X − cos(α(t))Y ) = α′(t) (− sin(α(t))X + cos(α(t))Y )

2



which means that
α′(t) = −g

(
∇γ′(t)X,Y

)
Hence we need to compute the integral

α(1) = −
∫ 1

0

g(∇γ′(t)X,Y )dt

Write
F1 = g

(
∇ dF

du1
X,Y

)
F2 = g

(
∇ dF

du2
X,Y

)
We will do it by using Stocks’s theorem from advanced infi (or from electromag-
netism to the Physicists among you):

α(1) = −
∫ 1

0

g(∇γ′(t)X,Y )dt = −
∫
γ

[
F1du

1 + F2du
2
]

=
∫
D

[
dF1

du2
− dF2

du1

]
du1du2

From (∗) we know that

g
(
∇ dF

du1
X,∇ dF

du2
Y
)

= g
(
∇ dF

du2
X,∇ dF

du1
Y
)

= 0

hence we get

α(1) =
∫
D

g
(
∇ ∂F

∂u2
∇ ∂F

∂u1
X −∇ ∂F

∂u2
∇ ∂F

∂u1
X,Y

)
du1du2 =

∫
D

g
(
R ∂F

∂u1 ,
∂F
∂u2

(X), Y
)
du1du2

because
[
∂F
∂u1 ,

∂F
∂u2

]
= 0.

If you are not familiar with the equality

g
(
R ∂F

∂u1 ,
∂F
∂u2

(X), Y
)

= κ(F (u1, u2)) det(dF )

Recall that in the last tirgul we saw that the Levi-Civita connection on a surface
in M ⊆ R3 with the induced Riemannian metric is given by

∇ZX = ∇ZX − g(L(Z), X)n

where L is the Weingarten map. Hence in particular if Y is any vector field on
M then

〈∇ZX,Y 〉 =
〈
∇ZX − g(L(Z), X)n, Y

〉
=
〈
∇ZX,Y

〉
Hence〈
R ∂F

∂u1 ,
∂F
∂u2

(X), Y
〉

=
〈
∇ ∂F

∂u2
∇ ∂F

∂u1
X −∇ ∂F

∂u1
∇ ∂F

∂u2
X,Y

〉
=
〈
∇ ∂F

∂u2
∇ ∂F

∂u1
X −∇ ∂F

∂u1
∇ ∂F

∂u2
X,Y

〉
3



Now since ∇ has no curvature we get that

∇ ∂F
∂u2
∇ ∂F

∂u1
= ∇ ∂F

∂u1
∇ ∂F

∂u2

and so the above term equals〈
∇ ∂F

∂u1
g

(
L

(
∂F

∂u2

)
, X

)
n−∇ ∂F

∂u2
g

(
L

(
∂F

∂u1

)
, X

)
n, Y

〉
=

g

(
L

(
∂F

∂u1

)
, X

)
g

(
L

(
∂F

∂u2

)
, Y

)
− g

(
L

(
∂F

∂u1

)
, Y

)
g

(
L

(
∂F

∂u2

)
, X

)
which is the determinant of the matrix representing L as a map from the basis
∂F
∂u1 ,

∂F
∂u2 to the basis X,Y . Hence

g
(
R ∂F

∂u1 ,
∂F
∂u2

(X), Y
)

= κ(F (u1, u2)) det(dF )

since det(dF ) can be viewed as the determinant of the base change matrix from
the basis X,Y to the basis function ∂F

∂u1 ,
∂F
∂u2 .

Corollary 1.3. In the above situation, if the curvature tensor vanishes then
Pγ = Id whenever γ can be smoothly deformed to a constant curve without
moving the end points. In fact - for those of you who took algebraic topology -
it means that if the curvature tensor vanishes then for any γ, Pγ depends only
on the (end-points preserving) homotopy type of γ.

Examples:

1. Consider the unit sphere S2 ⊆ R3. We know that its curvature κ is
constantly 1. Further more every path in S2 can be smoothly deformed to
the constant path, and so we see that the parallel transport along a curve
simply equals the spherical area bounded by the curve. In particular
parallel transport along a geodesic should give the identity, because the
area of a hemisphere is 2π.

Now consider a latitude of hight z0. Then it is an easy (and some what
surprising) geometric exercise to see that the area in the cape above the
latitude is exactly 2π(1 − z0). Hence the total angle we get by doing
parallel transport is 2π(1 − z0) = −2πz0( mod 2π). This is consistent
with an exercise in assigned problems 3.

2. Consider a curve which is the boundary of the domain

D = {(x, y)|x2 + y2 < r, y > y0}

this is a piece-wise smooth curve composed of the circular piece

{(x, y)|x2 + y2 = 1, y > y0}
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and the linear piece

{(x, y)|y = y0, x
2 + y2 < r}

Let X = y ∂
∂x , Y = y ∂

∂y be a global orthonormal frame.

The circular piece is a geodesic, so we know that the parallel transport
along it (measured in the orthonormal frame X,Y ) will be a rotation by
the angle between γ′(t) at its beginning and γ′(t) at its end (measured in
the same orthonormal basis). In particular here this angle is 2θ0 where
0 ≤ θ0 ≤ π/2 is the angle satisfying cos(θ0) = y0.

Also from question 8 in assigned problems 3 we know that the parallel
transport along the curve γ(t) = (t, y0) from t = −

√
r2 − y2

0 to t =√
r2 − y2

0 results in a rotation by an angle of − 2
√
r2−y2

0
y0

= −2 tan(θ0).
Hence the total angle obtained by doing parallel transport along γ is

2θ0 − 2 tan θ0

Let us see that this agrees with our theorem. Now in the next tirgul we
will show that the curvature of the Poincare upper half plane is constantly
−1. Hence the integral in the theorem becomes

−Area(D) = −
∫ r

y0

2
√
r2 − y2

y2
dy

Substituting variables by
y = r cos(θ)

dy = −r sin(θ)dθ

we get

−
∫ θ0

0

2 sin2 θ

cos2 θ
dθ = −2

∫ θ0

0

dθ

cos2 θ
+ 2θ0 = 2θ0 − 2 tan θ0

2 Applications

1. Geodesic Triangles:

A geodesic triangle on Riemannian manifold is a triangle all of whose ver-
tices are geodesics. Now it is simple to see that if we do parallel transport
along a geodesic triangle with angles α1, α2, α3 we get total rotation

α =
∑
i

(αi − π) =
∑
i

αi − π(mod 2π)

Hence we get from the theorem as a corollary a famous theorem of Gauss:
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Corollary 2.1. Let T be a geodesic triangle on a surface M ⊆ R3 with
angles α1, α2, α3. Then

α1 + α2 + α3 = π +
∫
T

κdet(g)

In particular the usual triangles we know from Euclidean geometry whose
angles sum up to π are explained by the fact that the curvature is 0. On a
sphere, for example, the curvature is always 1 which means that the sum
of degrees is always greater than π. In the upper half plane the curvature
is always −1 which means that the sum of degrees is always smaller then
π.
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Differential Geometry - Tirgul 8

Yonatan Harpaz

June 7, 2009

1 Completions from the last tirgul

1.1 The Curvature of the Poincare Upper Half plane

Recall the Poincare upper half plane R2
+ = {(x, y)|y > 0} with the metric

dx2+dy2

y2 . We claim that it has constant curvature −1. To see this recall that
the Levi-Civita connection is given by

∇XZ = ∇XZ + Γ(X)Z

where∇ is the standard connection on R2 (i.e. just derivation of the coefficients)
and

Γ(Z) = −1
y

(
b a
−a b

)
where

Z = a
∂

∂x
+ f

∂

∂y
=
(
a
b

)
Now in order to compute the curvature let us pick an orthonormal basis

X =
(
y
0

)

Y =
(

0
y

)
Now we calculate

∇ ∂
∂y
∇ ∂

∂x
X = ∇ ∂

∂y

(
1
0

)
= −1

y

(
1
0

)
= − 1

y2
Y

and

∇ ∂
∂x
∇ ∂

∂y
X = ∇ ∂

∂x

[(
1
0

)
−
(

0
1

)]
= 0

Combined together we get a

g
(
∇ ∂

∂y
∇ ∂

∂x
X −∇ ∂

∂x
∇ ∂

∂y
X,Y

)
= − 1

y2
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Since ∣∣∣ ∂∂x ∂
∂y

∣∣∣ =
∣∣ 1
yX

1
yY
∣∣ =

1
y2

we get that the curvature is constantly −1.

1.2 Hyperbolic structures on compact surfaces

Consider the surface Σ with ”two handles” (draw on board). We would like to
put a Riemannian structure on Σ which has constant curvature −1. In order to
do this we will cut Σ along 4 circles which meet at a unique point in the way
showed on the board. We will obtain an open polygon P with 8 edges.

In order to put a riemannian metric on Σ we will put a Riemannian metric
on this open polygon. We will then need to show that this metric extends to
a metric o Σ. The Riemannian metric we will put P will be induced by an
embedding P ↪→ R2

+ in the Poincare upper half plane as a regular geodesic
8-gon (i.e. a polygon with 8 edges which are geodesics of equal length and equal
angles between them).

Note that in Euclidean space, the some of angles in an 8-gon is 6π. From a
similar argument to what we did for geodesic triangles, the sum of angles in a
geodesic 8-gon P in a general Riemannian surface is

(∗) 6π +
∫
P

κdet(g)

Now in order for P to glue back on Σ (see drawing on board) we need the some
of angles to be 2π. Hence we need the integral of the curvature to be −4π.
This is why, for example, we can’t put a metric on Σ with constant positive
curvature.

We shall now want to convince the reader of the existence of regular polygons
in R2

+ whose some of angles is 2π. We will do this heuristically as follows: since
regular polygons posses a rotational symmetry we will wish to work with a
model for R2

+ which has a more obvious rotational symmetry. Recall from the
course complex functions that the mobius map

ρ(z) =
z − i
z + i

maps the upper half plane diffeomorphically to the unit disc D. Hence we can
use it to induce a Riemannian structure on D making ρ into an isometry (clearly
there is a unique such Riemannian metric. In fact, one can think of (R2

+, φ) as a
chart on D, making x, y coordinates on D with the Poincare metric coefficients).

Now recall that the Mobius maps with real coefficients were isometries of
R2

+ and we saw that for each p, q ∈ R2
+ and v ∈ TpR2

+, u ∈ TqR2
+ of the same

norm there exists a Mobius mao ρ such that ρ(p) = q and dρ(v) = u. From
uniqueness geodesics we get that we can map any geodesic to any other geodesic
using a mobius map, and similarly any geodesic segment to any other geodesic
segment of the same length.
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Note also that for any geodesic we have an orientation reversing isometry
preserving that geodesic but switching both its sides (for the vertical geodesic
x = 0 it is the map σ(x, y) = (−x, y) and for any geodesic we can conjugate σ
with a real Mobius map sending that geodesic to x = 0). Hence we can send
any geodesic segment to any other geodesic segment of the same length such
that a certain ”side” of our geodesic segment is mapped to any of the two sides
of the other segment. Since D is isometric to R2

+ it also posses these properties.
Now recall that every Mobius map preserves generalized circles and angles

(in the usual sense on C). Hence every circular arc in D that meets ∂D in right
angles is mapped by ρ−1 to either a vertical line or a half circle that meet the
real line in right angles. This means that every such an arc in D is a geodesic.

From all this we obtain that for each 0 < r < 1 the sequence of points

pn = r cis
(

2πin
8

)
∈ D

form (in that order) the vertices of a unique regular geodesic 8-gon. It is clear
that the sum of angles of this 8-gon tends to 0 when r −→ 1, and tends to 6π as
r approaches 0 (this can be seen from formula (∗) as the area clearly approaches
0). Hence there exists an r such that this regular 8-gon has a sum of angles of
exactly 2π. This is the polygon we will use.

In order to show that we can extend the metric to Σ let p be a point on one
of circles we have removed (but not the point that is common to all the circles).
There are exactly two points q1, q2 on the boundary of P mapping to p and they
sit on different edges E1, E2. Let U ⊆ Σ be a small neighborhood of p. Then
U is partitioned by the removed circles into two halves. The closure of the first
half forms a neighborhood U1 of q1 in P and the second a neighborhood U2 of
q2 (see drawing).

Since all the edges are of the same length there exists an isometry τ of D
(with respect to the poincare metric) which maps E1 to E2 such that the P -
inward direction is mapped to the P -outward direction. Hence in particular
U2 ∪ τ(U1) forms an open neighborhood in D (!) of q2. Hence we can use this
to extend our Rimannian metric consistently to all of U . A similar argument
(only a bit more involved) can be made for the point common to all the circles.
We will of course have to use the fact that the sum of angles is exactly 2π.

1.3 Convex Neighborhoods and Applications

Let M be a riemannian manifold. We recall the definition of a strongly convex
neighborhood:

Definition 1.1. A subset U ⊆M is called a strongly convex neighborhood
if it is open and

1. For every p, q ∈ U there exists a unique minimizing geodesic γ connecting
p, q.

2. The interior of this minimizing geodesic is contained in U .
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Definition 1.2. A set U ⊆M is called totally normal if there exists a δ > 0
such that for every p ∈ U , the exponential map exp restricted to the ball
Bδ ⊆ TpM is a diffeomorphism on its image exp(Bδ) and exp(Bδ) contains
U .

We shall now show some applications of the following theorem:

Theorem 1.3. Every point p ∈ M has a neighborhood which is a strongly
convex and totally normal.

Applications

Definition 1.4. A topological space X is called contractible if there exists a
continuous map f : I ×X −→ X such that f(1, x) = x and f(0, x) = x0 does
not depend on x.

As a first application we shall prove question 4 in assigned problems 4 - we
shall show that every Riemannian manifold has a cover M =

⋃
Ui such that

any finite intersection of the Ui’s is contractible.
By theorem 1.2 we can cover M by strongly convex totally normal open sets.

We shall show that this covering satisfies the required property. This will follow
from the following two lemmas:

Lemma 1.5. A finite intersection of strongly convex totally normal neighbor-
hoods is strongly convex and totally normal.

Proof. The property of being totally normal is inherited by open subsets so its
no problem. As for strongly convex, we shall prove it for the intersection of two
strongly convex neighborhoods and the rest will follow by induction. Let U1, U2

be two strongly convex sets. Let

p, q ∈ U1 ∩ U2 ⊆ U1 ∩ U2

then since U1 is strongly convex there exists a unique minimizing geodesic from
p to q. Since both U1, U2 are strongly convex the interior of this geodesic must
lie in both U1, U2. Hence it lies in their intersection and we are done.

Lemma 1.6. Any non-empty strongly convex totally normal neighborhood is
contractible.

Proof. Let U be a non-empty strongly convex totally normal neighborhood and
take a p ∈ U . Let δ > 0 be such that the exponential map exp is a diffeo-
morphism when restricted to Bδ ⊆ TpM and such that U ⊆ exp(Bδ). Then
V = exp−1(U) is open in Bδ and exp induces by restriction a diffeomorphism
from V to U .

Now let q ∈ U be any point. Since U ⊆ exp(Bδ) there exists a unique
minimizing geodesic from p to q, and it is given by the image under exp of
the linear segment in Bδ from 0 to exp−1(q). Since U is strongly convex and
p, q ∈ U we get that this geodesic must lie inside U . Hence the linear segment
from 0 to exp−1(q) lies in V .

4



This means that for every t ∈ [0, 1], the set

tV = {tv|v ∈ V }

is contained in V . Hence V is contractible by the function H : I × V −→ V
given by (t, v) 7→ tv. Since U is diffeomorphic to V it is contractible as well.

5



Differential Geometry - Tirgul 10

Yonatan Harpaz

July 1, 2009

1 The Energy Functional and Curvature

Let M be a Riemannian manifold with Riemannian metric g. For p, q ∈ M let
C(p, q) be the space of smooth maps γ : [0, 1] −→M such that γ(0) = p, γ(1) =
q. Define the energy functional to be the map E : C(p, q) −→ R given by

E(γ) =
∫ 1

0

g(γ′(t), γ′(t))dt

This notation comes of course from physics (where this expression will actually
be called the action of the curve, and not the energy). A word of mathematical
caution is in order here: the energy functional does depend on the specific
parametrization of γ. Hence we will always work with parameterized curves.

We first wish to explain the connection between the energy functional and
geodesics. The idea is that geodesics from p to q are precisely the critical points
of E in C(p, q).

A critical point of a function into R is a point where the differential vanishes.
The space C(p, q) is not a manifold, so apriori we don’t know how to define this
differential.

What we will do is we will consider small ”smooth” paths F : (−ε, ε) −→
C(p, q) such that F (0) = γ is a fixed path. Then E ◦ F will be a function
from R to R and we can ask if its derivative vanishes. If C(p, q) was a regular
manifold then this vanishing (for all small paths) would have been equivalent
to the vanishing of the differential.

How will we define what it means for a function F : (−ε, ε) −→ C(p, q) to be
smooth? Note that any such function defines a function F̃ : (−ε, ε)× [0, 1] −→
M . We say that F is smooth if the corresponding F̃ is smooth. Such an F
satisfying F (0) = γ is called a variation of γ. Note that since F is a map into
C(p, q) then F (s, 0) = p and F (s, 1) = q for all s ∈ (−ε, ε).

Let us assume for simplicity that F̃ is an embedding when restricted to
(−ε, ε)× (0, 1) and consider

T = dF̃

(
∂

∂t

)
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S = dF̃

(
∂

∂s

)
as vector fields on the image U = F̃ ((−ε, ε)× (0, 1)), on which we use t, s as
coordinates (this assumption is not necessary but it will simplify the analysis
for us). Note that in this formalism T is not well defined at the limit points p
and q (but is bounded there), and S converges to 0 there (because F̃ (s, 0) and
F̃ (s, 1) are constant). This means in particular that for every bounded vector
field V on U we have ∫ 1

0

∂

∂t
g (S(s, t), V (s, t)) dt = 0

which implies that (here and below we drop the explicit depends on s, t for
convenience of writing):

(∗)
∫ 1

0

g (∇TS, V ) dt = −
∫ 1

0

g (S,∇TV ) dt

Now to the calculation. We want to differentiate the function

E(F (s)) =
∫ 1

0

g (T (s, t), T (s, t))) dt

with respect to s. This gives:

∂(E ◦ F )
∂s

=
∫ 1

0

∂

∂s
(g (T, T ))dt = 2

∫ 1

0

g (∇ST, T ) dt =

2
∫ 1

0

g (∇TS, T ) dt = −2
∫ 1

0

g (S,∇TT ) dt

where we have use the symmetry of ∇ and the (∗) principle. Setting s = 0 and
denoting V (t) = S(0, t) we get

∂(E ◦ F )
∂s

∣∣∣∣
s=0

= −2
∫ 1

0

g
(
V (t),∇γ′(t)γ

′(t)
)
dt

Then vector field V (t) is called the variational field of F . It is reasonable to
consider the vector field V (t) as the tangent vector to F in C(p, q) and to think
of the space of vector fields along γ vanishing at the end points as the tangent
space to C(p, q). This perception is strengthened by the fact that for every such
vector field V (t) there exists a smooth variation F : (−ε, ε)× [0, 1] −→M such
that

dF̃

(
∂

∂s

)
(0, t) = V (t)

The reason is quite simple: since the image of γ is a compact set there exists an
ε > 0 such that expγ(t) is well defined on a ball of radius ε|V (t)| for all t ∈ [0, 1].
We can then define

F (s, t) = expγ(t)(sV (t))
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and we get

dF̃

(
∂

∂s

)
= V (t)

We then conclude that ∂(E◦F )
∂s = 0 for all variations F if and only if∫ 1

0

g
(
V (t),∇γ′(t)γ

′(t)
)
dt = 0

for all vector fields V (t) along γ vanishing at the end points. This is easily seen
to be equivalent to the fact that ∇γ′(t)γ

′(t) = 0 which is just the condition for
γ to be a geodesic.

So now we know that the critical points of E are the geodesics. What about
geodesic which are length minimizing?

Recall the Swartz inequality∣∣∣∣∫ 1

0

fgdt

∣∣∣∣ ≤
√∫ 1

0

f2dt

√∫ 1

0

g2dt

Substituting in f(t) = |γ′(t)| and g(t) = 1 one gets

∫ 1

0

|γ′(t)|dt ≤

√∫ 1

0

|γ′(t)|2dt =
√
E(γ)

which means that the length of a curve is bounded from above by the square
root of the energy (note that this is true even though the energy depends on
the parametrization and the length doesn’t, as long as we parameterizing our
curve along a unit time interval).

Now if |γ′(t)| is constant, for example if γ is a geodesic, then clearly the
length equals

√
E(γ). Now suppose that γ is a length minimizing geodesic.

Then any other curve from p to q has a longer length and so a bigger energy.
Hence in that case γ is also a minima of E.

If γ is a critical point of E, them the property of being a local minima of E
can be determined from the second derivative of E in various deformations, in
particular, all deformations must have positive second derivative.

Let us now calculate the second derivative of E along a deformation of a
geodesic γ.

∂2(E ◦ F )
∂s2

= −2
∫ 1

0

∂

∂s
g (S,∇TT ) dt = −2

∫ 1

0

g (∇SS,∇TT ) dt−2
∫ 1

0

g (S,∇S∇TT ) dt

Since γ is a geodesic the first term vanishes at s = 0. Let us then calculate only
the second term. Note that T and S are coordinate vector field and so don’t
have Lie brackets. Hence

−2
∫ 1

0

g (S,∇S∇TT ) dt = −2
∫ 1

0

g (S,RT,ST ) dt− 2
∫ 1

0

g (S,∇T∇ST ) dt =
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−2
∫ 1

0

g (S,RT,ST ) dt+ 2
∫ 1

0

g (∇TS,∇ST ) dt =

(∗∗) − 2
∫ 1

0

g (S,RT,ST ) dt+ 2
∫ 1

0

g (∇TS,∇TS) dt =

−2
∫ 1

0

g (S,RT,ST ) dt− 2
∫ 1

0

g (S,∇T∇TS) dt

Hence we get

∂2(E ◦ F )
∂s2

= −2
∫ 1

0

g (S,RT,ST +∇T∇TS) dt

Note that this expression at s = 0 depends only on V (t) = S(0, t) and can be
written as

∂2(E ◦ F )
∂s2

= −2
∫ 1

0

g
(
V (t), Rγ′(t),V (t)γ

′(t) +∇γ′(t)∇γ′(t)V (t)
)
dt

It is also referred to as second order variation of the energy along V (t).
Now from line (∗∗) see that if the sectional curvature is always negative then

the second variation is always positive, resulting in the fact that every geodesic
is a local minima of the energy. In fact, it can be show that in negatively curved
manifold every geodesic is length minimizing.

When V (t) satisfies

Rγ′(t),V (t)γ
′(t) +∇γ′(t)∇γ′(t)V (t) = 0

we call it a Jacobi field. Jacobi fields correspond to deformations which (up to
second order approximation) don’t change the length of the curve. In particular
it can be shown that every Jacobi field is a variational field of a variation F for
which F (s) is a geodesic for every s ∈ (−ε, ε).

Let us now use this formula in order to prove a very nice theorem relating
the curvature of a Riemannian manifold to its ”size”:

Theorem 1.1. Let M be a complete Riemannian manifold for which the sec-
tional curvature is bounded below by some constant κ > 0. Then M is compact
and its diameter (maximal distance between points) is bounded by π√

κ
.

Proof. Since M is complete every two points p, q ∈M can be joined by a length
minimizing geodesic γ. Let l be the length of γ and assume that l > π√

κ
.

Suppose that γ is parameterized on [0, 1] and so |γ′(t)| = l for all t.
Let E(t) be a parallel field of unit length along γ which is orthogonal to γ′(t)

(this is possible since γ is a geodesic and so γ′(t) is parallel). Define

V (t) = sin(πt)E(t)
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Put T (t) = γ′(t)
|γ(t)| . We then calculate the second order variation of the energy

along V (t):

−2
∫ 1

0

g
(
V (t), Rγ′(t),V (t)γ

′(t) +∇γ′(t)∇γ′(t)V (t)
)
dt =

−2
∫ 1

0

l2 sin2(πt)g(E(t), RT (t),E(t)T (t))dt+ 2
∫ 1

0

π2 sin2(πt)g(E(t), E(t))dt

Since |T (t)| = |E(t)| = 1 and E(t) is orthogonal to T (t) we see that

g(E(t), RT (t),E(t)T (t))

is the sectional curvature of the hyperplane spanned by T (t), E(t), and so is
bounded below by κ. Further more g(E(t), E(t)) = 1 and so the above term is
bounded from above by

−2
∫ 1

0

l2κ sin2(πt)dt+ 2
∫ 1

0

π2 sin2(πt)dt = −l2κ+ π2 < −π2 + π2 = 0

Hence γ cannot be a local minima for the energy, in contrast to the fact that it
is a length minimizing geodesic. Hence the distance between every two points
is at most π√

κ
. Now since M is complete the exponential maps are defined on

all tangent vectors, and so we see that M is the image of expp when restricted
to a ball of radius π√

κ
. Hence M is compact and we are done.
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