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Let M be a smooth manifold of dimension 2n with a smooth almost complex
structure J : TM −→ TM . Let L ⊆ M be a closed sub-manifold of dimension
n which is totally real with respect to J , i.e.

Jp(TpL) ∩ TpL = {0}

for every p ∈ L (in many interesting examples M will carry a J-compatible
simplectic structure and L will be a lagrangian sub-manifold but we don’t need
to assume this here). Let Σ be a Riemann surface with boundary ∂Σ. Note
that the boundary of a Riemann surface is always totally real with respect to
its complex structure.

We are interested in J-holomorphic maps u : Σ −→M which send ∂Σ to L.
These are maps which solves the first order non-linear boundary value problem

(1) dup(iv) = Ju(p)(dup(v)), u(∂Σ) ⊆ V

where p ∈ Σ, v ∈ TpΣ.
Note that one can also consider weak solutions to (1). These are functions

u ∈ W k,p(Σ,M) (with k ≥ 1) which satisfy (∗) almost everywhere. In this
lecture we will show that weak solutions to (1) are actually smooth. This is the
content of Corollary 0.5 which will be our final destination.

Let us begin by localizing the problem so we can write it with coordinates.
Let U ⊆ Σ be a small subset which is bi-holomorphic to an an open subset
Ω ⊆ H∪R where H is the upper half plane (open subsets of H∪R are the local
models of Reimann surfaces with boundary. In particular this identifies U ∩ ∂Σ
with Ω ∩ R). Let z = s+ it be the holomorphic coordinate on Ω.

Assume that U is small enough so that u(U) is contained in some V ⊆ M
which is diffeomorphic to R2n. We can further assume that this diffeomorphism
identifies V ∩L with Rn×{0}. The restriction of J to V can then be identified
with a function J : R2n −→ Mn×n such that (Jx)2 = Id. Then we are looking
for functions u : Ω −→ R2n which satisfy the boundary value problem

(2) ∂su+ (J ◦ u)(∂tu) = 0, u(Ω ∩ R) ⊆ Rn × {0}

This boundary problem is non-linear because J ◦ u depends non-linearly on
u. In order to simplify the problem we will linearize it: let u be a solution of

1



the above problem and consider the map J = J ◦ u : Ω −→ Mn×n. Then we
see that u solves linear boundary problem:

(3) ∂su+ J ∂tu = 0, u(Ω ∩ R)

Note that here we think of J as a function on Ω and ”forget” that we con-
structed it using u itself. Such equations will be called (linear) Cauchi-Riemann
equations. Now for reasons that will be clear later and will be useful for us to
consider the more general case of an non-homogenous Cauchi-Riemann equa-
tion, in which we add an non-homogenous term:

(4) ∂su+ J ∂tu = η, u(Ω ∩ R)

Now note the following fun property: if u is a solution of homogenous Cauchi-
Riemann equation, then the derivative v = ∂su satisfies the non-homogenous
equation (4) with η = −∂sJ∂tu. This property will be useful later.

Now since (4) is a linear equation we can now consider even weaker solutions,
i.e. solutions which are in Lp

loc(Ω). Note that if u is a smooth solution of (4)
and φ ∈ C∞0 (Ω,R2n) such that φ(Ω ∩ R) ⊆ Rn × {0} then∫

Ω

〈
u, ∂sφ+ J t∂tφ

〉
=
∫

Ω

〈η + (∂tJ)u, φ〉

This equality makes since for a general u ∈ Lp
loc(Ω,R2n) so we can use to define

when a function in Lp
loc(Ω,R2n) is a weak solution of (4).

We are interested in regularity results for Cauchi-Riemann equations of types
(1)− (4). Our first theorem is the opening step towards regularity for the non-
homogenous Cauchi-Riemann equations (4).

Theorem 0.1. Let Ω ⊆ H ∪ R be an open subset and 2 < p ≤ ∞, 0 < q ≤ ∞
and 0 < r ≤ ∞ real numbers such that

1
p

+
1
q

=
1
r

Assume that u ∈ Lq
loc(Ω,R2n) is a weak solution of (4) for some J ∈W 1,p

loc (Ω,Mn×n)
and η ∈ Lr

loc(Ω,R2n). Then u is in W 1,r
loc (Ω,R2n).

Proof. Let ψ ∈ C∞0 (Ω,R2n) be such that

ψ(s, 0) ∈ Rn × {0}

and
∂tψ(s, 0) ∈ {0} × Rn

consider the function
φ = ∂sψ − J T∂tψ

is in W 1,p(Ω,R2n) and satisfies the boundary condition φ(Ω ∩ R) ⊆ Rn × {0}.
Further more one has

∂sφ+ J T∂tφ = ∂s

[
∂sψ − J T∂tψ

]
+ J T∂t

[
∂sψ − J T∂tψ

]
=
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∂s,sψ − ∂s(J T∂tψ) + J t∂t,sψ − J T∂t(J T∂tψ) =

∂s,sψ − (∂sJ T )∂tψ − J T∂s,tψ + J T∂s,tψ − J T∂t(J T )ψ − J TJ T∂t,tψ =

4ψ − (∂sJ T )∂tψ − J T∂t(J T )∂tψ

so ∂tJ and J anti-commute at every point.
Now since u is a weak solution we have∫

Ω

〈
∂sφ+ J T∂tφ, u

〉
= −

∫
Ω

〈φ, η + (∂tJ )u〉 = −
∫

Ω

〈
∂sψ − J T∂tψ, η + (∂tJ )u

〉
=

−
∫

Ω

〈∂sψ, η + (∂tJ )u〉+
∫

Ω

〈
J T∂tψ, η + (∂tJ )u

〉
This means that ∫

Ω

〈4ψ, u〉 =

−
∫

Ω

〈∂sψ, η + (∂tJ )u〉+
∫

Ω

〈
J T∂tψ, η + (∂tJ )u

〉
+
∫

Ω

〈
(∂sJ T )∂tψ, u

〉
+
∫

Ω

〈
J T∂t(J T )∂tψ, u

〉
=

−
∫

Ω

〈∂sψ, η + (∂tJ )u〉+
∫

Ω

〈∂tψ,J η + (∂sJ )u+ ((∂tJ )J + J (∂tJ ))u〉

Since J 2 is a constant function we get that

(∂tJ )J + J (∂tJ ) = ∂t(J 2) = 0

and so ∫
Ω

〈4ψ, u〉 = −
∫

Ω

〈∂sψ, η + (∂tJ )u〉+
∫

Ω

〈∂tψ,J η + (∂sJ )u〉

Now by Holder’s inequality we get that both η + (∂tJ )u and J η + (∂sJ )u
are in Lr

loc(Ω). Now if Ω∩R = ∅ then we can simply apply our regularity results
for the Laplacian operator and get that u ∈W 1,r

loc (Ω). If Ω∩R 6= ∅ then we need
to deal with the boundary points. The way to do this is two replace Ω with

Ω0 = {s+ it ∈ C|s+ i|t|} ∈ Ω

and extend ψ and φ from Ω to Ω0. We can then apply the same regularity result
to Ω0 instead of Ω. The details are left to the reader.

It is left to show that u(Ω∩R) ∈ Rn×{0}. This is written on page 537 and
we leave it for homework reading.

Our next theorem takes the regularity of (4) one step further:

Theorem 0.2. Let Ω ⊆ H ∪ R be an open subset, 2 < p ≤ ∞ a real number
and 0 < l, 0 ≤ k ≤ l integers. Assume that u ∈ Lp

loc(Ω,R2n) is a weak solution
of (4) for some J ∈ W l,p

loc(Ω,Mn×n) and η ∈ W k,p
loc (Ω,R2n). Then u is in

W k+1,p
loc (Ω,R2n).
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Proof. We will give the proof assuming Ω ∩ R = ∅. Before we go to the prove
we are going to prove a quick lemma:

Lemma 0.3. Let Ω ⊆ R2 be an open subset. Let p > 2 and 1 < r ≤ p be real
numbers and f ∈ W 1,p(Ω), g ∈ W 1,r(Ω) functions. Then the product fg is in
W 1,r

loc (Ω).

Proof. Note that d(fg) = (df)g+f(dg) so it is enough to show that (df)g, f(dg) ∈
Lr

loc(Ω). Since p > 2 we get from Sobolev embedding theorems that f is con-
tinuous. Since g ∈W 1,r(R2) we get that f(dg) is in Lr

loc(Ω).
For (df)g we separate to the cases r > 2 and r ≤ 2. If r > 2 then by

Sobolev embedding g is continuous. Since p ≥ r and df ∈ Lp(Ω) we get that
df ∈ Lr

loc(Ω) and so (df)g ∈ Lr
loc(Ω).

If r ≤ 2 then r has to be strictly smaller then p. In this case define q = pr
p−r .

We then get that q < 2r
2−r and so by Sobolev embedding dg ∈ Lq

loc(Ω). Then
from Holder’s inequality we get that f(dg) ∈ Lr

loc(Ω).

We now prove the result in 3 steps:

1. Step 1: prove for l = 1 and k = 0.

Let a = p
p−1 , b = 2p

p−2 and consider the function h : (a, b) −→ (2,∞)
defined by

h(q) =
2pq

2p+ 2q − pq
=

1
1
q −

1
b

It is easy to see that h is a monotonically increasing diffeomorphism sat-
isfying q < h(q). Now let a < q0 ≤ p be any number. Then there has to
be an m such that hm(q0) > b. We then set qi = hi(q0) for i = 0, ...,m
and ri = pqi

p+qi
.

Now since q0 ≤ p we get that u ∈ Lq0
loc(Ω) and since each ri < p then

η ∈ Lri

loc(Ω) for every i. Theorem 0.1 then tells us that

u ∈ Lqi

loc(Ω)⇒ u ∈W 1,ri

loc (Ω)

Now direct calculation verifies that qi+1 = 2ri

2−ri
and so Sobolev’s embed-

ding theorems tells us that

u ∈W 1,ri

loc (Ω)⇒ u ∈ Lqi+1
loc (Ω)

Hence by induction we get that u ∈ W 1,rm . Since qm > b = 2p
p−2 we get

that rm > 2 and so by u is continuous. Applying Theorem 0.1 again for
q =∞ and r = p one gets that

u ∈W 1,p
loc (Ω)

This finishes the proof for l = 1 and k = 0.
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2. Step 2: prove for l = 1 and k = 1. First of all from step 1 we get that
u ∈W 1,p

loc (Ω). We need to show that it is also in W 2,p
loc (Ω).

Let q0, ..., qm be as in step 1. Note that since q0 ≤ p and u ∈W 1,p
loc (Ω) we

get that u ∈W 1,q0
loc (Ω). Now we will show that for each i one has

u ∈W 1,qi

loc (Ω)⇒ u ∈W 2,ri

loc (Ω)

Consider the (distributional) derivative u′ = ∂su. We claim that u′ sat-
isfies a certain non-homogenous Cauchi-Riemann equation (in the weak
sense). To see this let φ ∈ C∞0 (Ω,R2n) be a test function such that
φ(Ω ∩ R) ⊆ Rn × 0. Then one has∫

Ω

〈
∂su, ∂sφ+ J t∂tφ

〉
=
∫

Ω

〈
u, ∂s(∂sφ) + ∂s(J t∂tφ)

〉
=

∫
Ω

〈
u, ∂s(∂sφ) + J t∂t(∂sφ) + ∂s(J t)∂tφ

〉
=

−
∫

Ω

〈η + (∂tJ )u, ∂sφ〉+
∫

Ω

〈∂s(J )u, ∂tφ〉 =

∫
Ω

〈∂s(η + (∂tJ )u)− ∂t(∂sJ )u, φ〉 =

∫
Ω

〈∂sη − (∂sJ )∂tu+ (∂tJ )∂su, φ〉

which means that v satisfies the Cauchi-Riemann equation with non-
homogenous term

η′ = ∂sη − (∂sJ )∂tu

Now ∂sη and ∂sJ are in Lp
loc and so if u ∈ W 1,qi

loc (Ω) then by Holder
η′ ∈ Lri

loc(Ω). Hence by Theorem 0.1 we get that ∂su ∈W 1,ri

loc . Note that
since each ri ≤ p we get that η ∈ W 1,ri

loc (Ω) and so by Lemma 0.3 we get
that

∂tu = J(∂su− η)

is in W 1,ri as well. This means that u ∈W 2,ri .

We now get by induction that u ∈ W 2,rm . Since rm > 2 we get that u
is continuously differentiable so v is continuous. Applying the argument
above again for q =∞ and r = p yields in

u ∈W 2,ri

and we are done.
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3. The general case. After the first two steps the general case is easier.
Note that if the theorem is true for a pair (k, l) then it is true for (k, l+1).
Hence it is enough to prove that if it is true for (k, k+1) then it is true for
(k + 1, k + 1). Since we’ve done the pairs (0, 1) and (1, 1) we can assume
k ≥ 1.

Now from the induction hypothesis we already know that u ∈W k+1,p
loc (Ω)

and we want to show that it is also in W k+2,p
loc (Ω). Let u′ = ∂su and

η′ = ∂sη − (∂sJ )∂tu

be like in step 2. Then ∂sη, ∂tu and ∂sJ are all in W k,p
loc (Ω). Since k ≥ 1

we can use Lemma 0.3 to conclude that η′ ∈ W k,p(Ω) as well. Applying
the induction hypothesis again to u′, η′ we get that u′ ∈ W k+1,p

loc (Ω) and
a similar argument to Lemma 0.3 shows that

∂tu = J(∂su− η)

is also in W k+1,p
loc (Ω).

We now apply the regularity results for the linear Cauchi-Riemann equations
to the non-linear case:

Theorem 0.4. Let Ω ⊆ H ∪ R be an open subset, 2 < p ≤ ∞ a real number
and 0 < l an integer. Assume that u ∈ W 1,p

loc (Ω,R2n) is a weak solution of (2)
for some J ∈ Cl(Ω,Mn×n). Then u is in W l,p

loc(Ω,R2n).

Proof. The theorem is trivial if l = 1 so we assume l > 1. Let u ∈W 1,p
loc (Ω,R2n)

be a solution of
∂su+ (J ◦ u)(∂tu) = 0

Since J is of class Cl the composition J = J ◦ u is of class W 1,p
loc . By Theorem

0.2 (with η = 0) we get that u ∈ W 2,p
loc (Ω). If l = 2 we are done. If l > 2 then

now J = J ◦ u turns out to be of class W 2,p
loc so we can apply 0.2 again to get

that u ∈W 3,p
loc (Ω). We continue like this until we get that u ∈W l,p

loc(Ω).

Corollary 0.5. Let M be a smooth 2n-dimensional manifold with a smooth
almost complex structure J and a totally real sub-manifold L ⊆M . Let

u : Σ −→M

be a W 1,p-class function which is a weak solution of (1). Then u is smooth.

6


