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Abstract

The goal of this paper is to provide the last equivalence needed in order to identify
all known models for (∞,2)-categories. We do this by showing that Verity’s model of
saturated 2-trivial complicial sets is equivalent to Lurie’s model of ∞-bicategories, which,
in turn, has been shown to be equivalent to all other known models for (∞,2)-categories.
A key technical input is given by identifying the notion of∞-bicategories with that of weak
∞-bicategories, a step which allows us to understand Lurie’s model structure in terms of
Cisinski–Olschok’s theory. Several of our arguments use tools coming from a new theory
of outer (co)cartesian fibrations, further developed in a companion paper. In the last part
of the paper we construct a homotopically fully faithful scaled simplicial nerve functor for
2-categories, give two equivalent descriptions of it, and show that the homotopy 2-category
of an ∞-bicategory retains enough information to detect thin 2-simplices.
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Introduction

Nowadays, ∞-categories are widely recognized as an extremely important tool to
develop homotopy coherent mathematics. These were first introduced by Boardman
and Vogt [66], and later developed by Joyal and Lurie, in terms of simplicial sets
admitting fillers for inner horns [1212, 1717]. Just as in order to develop category
theory for ordinary categories one cannot avoid the framework of 2-categories (in
particular, one has to consider the 2-category Cat), (∞,1)-categories are best
understood when their theory is framed inside an (∞,2)-category.

There are currently many models for (∞,2)-categories, and almost all of them
have been proven to be equivalent to one another in the works of Lurie, Rezk–
Bergner, Ara, Barwick–Schommer-Pries and others ([1616], [44], [55], [11], [33]). Yet, an
important one is still left out: the complicial model. This has been developed
by Verity, initially in its strict version motivated by proving the Street–Robert’s
conjecture [2222], and later on weakened in [2323], where a model structure for weak
complicial sets is introduced. These are stratified sets, i.e., simplicial sets bearing
some extra structure in the form of a marking on n-simplices for n > 0, which satisfy
an extension property with respect to a set of anodyne morphisms (the analogues of
inner horns for ∞-categories). When we specialize to those which are saturated, i.e.,
those in which the marked n-simplices satisfy the 2-out-of-6 property, and 2-trivial,
i.e., every n-simplex is marked when n > 2, we get a model for (∞,2)-categories. In
[1919], a model structure whose fibrant objects are the saturated n-trivial complicial
sets is constructed, based on a general principle established in [2323]. In this paper
we will only consider the case where n = 2.

So far, the complicial model has not been proven to be equivalent to any other
known one. This has resulted in an undesirable gap between the theory as develo-
ped by Verity and collaborators and the theory developed in other settings. In this
paper we close this gap by providing a Quillen equivalence between the later and
Lurie’s bicategorical model structure on scaled simplicial sets [1616]. We do so in two
steps: first, we show that ∞-bicategories coincide with weak ∞-bicategories, where
the latter are defined as those scaled simplicial sets with the extension property
with respect to a certain set of anodyne morphisms. Second, using the identifica-
tion above we redefine Lurie’s model structure on scaled simplicial sets by invoking
the combinatorial machinery of Cisinski–Olschok. The equivalence between the two
definitions allows us to prove the result we previously mentioned: a Quillen equiva-
lence with the model structure for 2-trivial saturated complicial sets. We may then
conclude that the model of complicial sets is equivalent to all other known models.
A quite comprehensive and hopefully self-explanatory diagram of the relationships
between the known models for (∞,2)-categories (with arrows indicating right Quil-
len equivalences) is depicted in Figure 11 below. Our contribution then corresponds
to the two dotted arrows.

In the final parts of the paper we construct a homotopy fully faithful nerve
functor for 2-categories, which embeds them (in the ∞-categorical sense) in the ca-
tegory of scaled simplicial sets as a particular class of ∞-bicategories. We then show
that the homotopy 2-category of an ∞-bicategory has a conservativity property: a
2-simplex in X is thin if and only if it represents an invertible 2-cell in ho2(X).

Several of our arguments make use of a new theory of outer (co)cartesian fibra-
tions. This notion, which we introduce in this paper, will be developed in greater
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Figure 1. Models for (∞,2)-categories.

detail in the companion paper [99], where we also cover topics related to Gray pro-
ducts and lax limits.

This paper is organized as follows. In §11 we review all the necessary definitions
and preliminary results concerning the model structures involved in what follows,
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including the one on scaled simplicial sets and that of n-trivial saturated complicial
sets.

In §22 we introduce the notion of outer (co)cartesian fibrations and develop some
of its basic properties. We then generalize the join and slice constructions to the
setting of scaled simplicial sets, yielding in particular a model for the hom-∞-cat-
egories of an ∞-bicategory.

In §33 and §44 we do some preparatory work for the subsequent proofs by develo-
ping a few technical tools and proving some key results concerning thin triangles
in weak ∞-bicategories.

In §55 we prove one of the main results of this paper, namely that weak ∞-bi-
categories and ∞-bicategories coincide. In particular, this implies that the fibrant
objects in Lurie’s model structure can be detected by means of a generating set of
anodyne morphisms. This part uses the technology of outer cartesian fibrations.

In §66 we define the model structure for weak ∞-bicategories using the machinery
developed in [77] and [1818] and recorded in the appendix. Using the results of §55 we
then prove that the fibrant objects are exactly Lurie’s ∞-bicategories.

In §77 we construct a Quillen pair between the model structure for ∞-bicategories
and that of 2-trivial saturated complicial sets, and we show in Theorem 7.77.7 that
it is a Quillen equivalence. This is achieved by producing an explicit model for a
fibrant replacement of the image of a weak ∞-bicategory under the left adjoint.

Finally, in Section §88 we construct a scaled simplicial nerve for 2-categories in two
different ways, and prove they coincide in Proposition 8.28.2. Then, in Proposition 8.38.3,
we show that this nerve is homotopy fully faithful. The left adjoint of this scaled
2-nerve gives a construction of the homotopy 2-category associated to an ∞-bi-
category. We then prove a conservativity property by showing that the homotopy
2-category detects thin triangles.
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RVO:67985840. The authors thank H. Gindi for the diagram of figure 11.

Notation

We will denote by Set∆ the category of simplicial sets. We will employ the
standard notation ∆n ∈ Set∆ for the n-simplex, and for ∅ ≠ S ⊆ [n] we write
∆S ⊆ ∆n the (∣S∣ − 1)-dimensional face of ∆n whose set of vertices is S. For
0 ≤ i ≤ n we will denote by Λni ⊆ ∆n the i’th horn in ∆n, that is, the subsimplicial
set spanned by all (n−1)-dimensional faces containing the i’th vertex. By an ∞-ca-
tegory we will always mean a quasi-category, i.e., a simplicial set X which admits
extensions for all inclusions Λni → ∆n, for all n > 1 and all 0 < i < n (known as
inner horns). Given an ∞-category X, we will denote its homotopy category by
ho(X). This is the ordinary category having as objects the 0-simplices of X, and
as morphisms x→ y the set of equivalence classes of 1-simplices f ∶x→ y of X under
the equivalence relation generated by identifying f and f ′ if there is a 2-simplex H
in X with H ∣∆{1,2} = f, H ∣∆{0,2} = f ′ and H ∣∆{0,1} degenerate on x. We recall that
the functor ho∶∞-Cat → 1-Cat is left adjoint to the ordinary nerve functor.
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1. Preliminaries

In this section we will review the main definitions and basic results concerning
marked simplicial sets, marked-simplicial categories, scaled simplicial sets and stra-
tified sets. In particular, we will recall the relevant model category structures and
some of the Quillen adjunctions relating them.

1.1. Marked simplicial sets and marked-simplicial categories.

Definition 1.1. A marked simplicial set is a pair (X,E) where X is simplicial set
and M is a subset of the set of 1-simplices of X, called marked simplices, such that it
contains the degenerate ones. A map of marked simplicial sets f ∶ (X,EX) → (Y,EY )
is a map of simplicial sets f ∶X → Y satisfying f(EX) ⊆ EY .

The category of marked simplicial sets will be denoted by Set+∆.

Notation 1.2. For simplicity, we will often speak only of the non-degenerate mar-
ked edges when considering a marked simplicial set. For example, if X is a simplicial
set and E is any set of edges in X then we will denote by (X,E) the marked simpli-
cial set whose underlying simplicial set is X and whose marked edges are E together
with the degenerate edges. In addition, when there is no risk of ambiguity we will
omit the set of marked 1-simplices and just denote (X,E) by X.

Remark 1.3. The category Set+∆ of marked simplicial sets admits an alternative
description, as the category of models of a limit sketch. In particular, it is a
reflective localization of a presheaf category and it is a cartesian closed category.

Definition 1.4. Given a marked simplicial set (X,E) we define its marked core as
the sub-simplicial set of X spanned by those n-simplices whose 1-dimensional faces
are marked, i.e., they belong to E. We will denote by κ(X,E) the marked core of
(X,E).

Theorem 1.5 ([1717]). There exists a model category structure on the category Set+∆
of marked simplicial sets in which cofibrations are exactly the monomorphisms and
the fibrant objects are marked simplicial sets (X,E) in which X is an ∞-category
and E is the set of equivalences of X, i.e., 1-simplices f ∶∆1 → X which are inver-
tible in ho(X).

This is a special case of Proposition 3.1.3.7 in [1717], when S = ∆0. We will refer
to the model structure of Theorem 1.51.5 as the marked categorical model structure,
and its weak equivalences as marked categorical equivalences.

Remark 1.6. Marked simplicial sets are a model for (∞,1)-categories.

Recall that a relative category is a pair (C,W), where C is a category and W is
a subcategory of C, called the subcategory of weak equivalences in C, containing
all the objects of C. We denote by RCat the category of small relative categories
having as morphisms the functors which preserve weak equivalences.

Definition 1.7. We define the marked nerve

N+∶RCat → Set+∆ ,

to be the functor which sends a relative category (C,W) to the marked simplicial
set (N(C),Arr(W)), where N(C) is the standard nerve of the small category C and



6 ANDREA GAGNA, YONATAN HARPAZ, AND EDOARDO LANARI

the marking Arr(W) consists of those edges of N(C) which are contained in N(W).
The marked nerve functor admits a left adjoint

ho∶Set+∆ → RCat

which can be explicitly described as follows: a marked simplicial set (X,E) is
mapped to the relative category (ho(X),hIm(X,E)), where ho∶Set∆ → Cat is
the standard left adjoint to the nerve functor and hIm∶Set+∆ → Cat is defined by
mapping (X,E) to the smallest subcategory containing the image of the functor
hoκ(X,E) → ho(X).
Remark 1.8. For any two marked simplicial sets (X,EX) and (Y,EY ) we have

ho((X,EX) × (Y,EY )) ≅ ho(X × Y,EX ×EY )
≅ (ho(X × Y ),hIm(X × Y,EX ×EY ))
≅ (ho(X) × ho(Y ),hIm(X,EX) × hIm(Y,EY ))
≅ (ho(X),hIm(X,EX)) × (ho(Y ),hIm(Y,EY ))
≅ ho(X,EX) × ho(Y,EY ) ;

hence, the functor ho∶Set+∆ → RCat preserves finite products.

The canonical functor ι∶Cat → RCat , mapping a small category C to the relative
category (C, Iso(C)) having as weak equivalences the set of isomorphisms of C, has a
left adjoint L∶RCat → Cat which is the localization functor mapping a small relative
category (C,W) to the small category C[W −1], that is to say, the category in which
we have formally inverted the arrows of W . It is well-known that the functor L
preserves finite products. Composing the adjunctions L ⊣ ι and ho ⊣ N+ we now
obtain an adjunction

(1.1) Set+∆

Lho
%%

N+ι

gg
⊥ Cat

in which the left adjoint Lho preserves finite products.
Recall that the category Cat carries the canonical model structure in which the

weak equivalences are the categorical equivalences, the fibrations are the isofibrati-
ons and the cofibrations are the functors which are injective on objects.

Lemma 1.9. The adjunction (1.11.1) is a Quillen adjunction. In particular, the

functor Lho preserves weak equivalences (since all objects in Set+∆ are cofibrant).

Proof. Since the objects of Lho(X,EX) are the vertices of X the functor Lho clearly
preserves cofibrations. Now let f ∶ (X,EX) → (Y,EY ) be a trivial cofibration of

marked simplicial sets, so that f∗∶Lho(X,EX) → Lho(Y,EY ) is a cofibration. In
order to prove that f∗ is also an equivalence of categories it will suffice to show that
for every category C the induced map Fun(Lho(Y,EY ),C) → Fun(Lho(X,EX),C) is
trivial fibration of categories. Replacing f by its pushout-products with ∂∆1 →∆1

and ∂∆2 → ∆2 and using Remark 1.81.8 we may reduce to showing that the induced
map Fun(Lho(Y,EY ),C) → Fun(Lho(X,EX),C) is surjective on objects, that is,

every functor Lho(X,EX) → C extends to Lho(Y,EY ). Finally, since f is a trivial
cofibration it will suffice to check that N+(ιC) = (N(C), Iso(C)) is fibrant. Indeed,
N(C) is an ∞-category whose equivalences are exactly Iso(C). �
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Since Set+∆ is a model for ∞-categories, using enrichment in marked simplicial
sets one can form a model for the theory of (∞,2)-categories.

Definition 1.10. We let Cat+∆ denote the category of categories enriched over
marked simplicial sets. We will refer to these as marked-simplicial categories.

By virtue of Proposition A.3.2.4 and Theorem A.3.2.24 of [1717], the category Cat+∆
is endowed with a model category structure in which the weak equivalences are the
Dwyer–Kan equivalences. More explicitly, these are the maps f ∶C→D which are

● fully-faithful: in the sense that the maps f∗∶MapC(x, y) →MapD(f(x), f(y)) are
marked categorical equivalences;

● essentially surjective: in the sense that the functor of ordinary categories given
by f∗∶ho(C) → ho(D) is essentially surjective, where for a marked-simplicial
category E we denote by ho(E) the category whose objects are the objects of E
and such that Homho(E)(x, y) ∶= [∆0,MapC(x, y)] is the set of homotopy classes

of maps from ∆0 to MapC(x, y) with respect to the marked categorical model
structure.

We also note that the trivial fibrations in Cat+∆ are the maps f ∶C → D which are
surjective on objects and such that f∗∶MapC(x, y) →MapD(f(x), f(y)) is a trivial
fibration of marked simplicial sets for every pair of objects (x, y) in C.

Now since the left adjoint in the adjunction (1.11.1) above preserves products it
induces in particular an adjunction on the level of enriched categories, which we
will denote by

(1.2) Cat+∆

ho∗
&&

N∗

gg
⊥ 2-Cat .

In [1515] Lack constructs a model structure on the category 2-Cat of 2-categories,
in which the weak equivalences are the 2-categories equivalences and the fibrations
are the 2-isofibrations (that is, functors which are isofibrations on each mapping
category and admit lifts for invertible 1-morphisms in the base). Furthermore, the
trivial fibrations in the Lack model structure are the functors which are surjective
on objects and induce trivial fibrations on the level of mapping categories. We note
that 2-categorical equivalences can be described in a way analogous to Dwyer–
Kan equivalences. In particular, a 2-functor f ∶C → D between 2-categories is a
2-categorical equivalence if and only if it is

● fully-faithful: in the sense that the maps f∗∶MapC(x, y) →MapD(f(x), f(y)) are
categorical equivalences;

● essentially surjective: in the sense that the functor of ordinary categories given
by f∗∶ho(C) → ho(D) is essentially surjective, where for a 2-category E we de-
note by ho(E) the category whose objects are the objects of E and such that
Homho(E)(x, y) ∶= [∗,MapC(x, y)] is the set of homotopy classes of maps from ∗
to MapC(x, y) with respect to the canonical model structure on Cat .

Proposition 1.11. The adjunction (1.21.2) is a Quillen adjunction. Furthermore,
the functor ho∗ preserves weak equivalences.

Proof. We first note that by Lemma 1.91.9 and the analogous description of trivial
fibrations on both side we have that N∗ preserves trivial fibrations, and so ho∗
preserves cofibrations. We will now show that ho∗ preserves weak equivalences (and
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hence in particular trivial cofibrations). First since Lho preserves weak equivalences
(Lemma 1.91.9) we have that ho∗ preserves fully-faithful functors. To finish the proof
it will hence suffice to show that ho∗ preserves essentially surjective functors. Let
f ∶C→D be a map such that f∗∶ho(C) → ho(D) is essentially surjective. Then the

maps [∆0,X] → [∗, Lho(X)] induced by the left Quillen functor Lho∶Set+∆ → Cat
determine a commutative square of ordinary categories

ho(C) //

��

ho(ho∗(C))

��

ho(D) // ho(ho∗(D))
in which the horizontal maps are bijective on vertices. Given an object x in
ho(ho∗(D)), we may then lift it to an object x′ ∈ ho(D). Since the left vertical
map is assumed essentially surjective there exists a y′ ∈ ho(C) and an isomorphism

α∶ f(y′) ≅Ð→ x in ho(D). The images of y′ and α on the right hand side then show
that x is in the essential image of the right vertical map, as desired. �

1.2. Scaled simplicial sets and ∞-bicategories. We now introduce scaled sim-
plicial sets, which form another model for the theory of (∞,2)-categories.

Definition 1.12 ([1616]). A scaled simplicial set is a pair (X,T ) where X is simplicial
set and T is a subset of the set of 2-simplices ofX, called the subset of thin simplices,
containing the degenerate ones. A map of scaled simplicial sets f ∶ (X,TX) → (Y,TY )
is a map of simplicial sets f ∶X → Y satisfying f(TX) ⊂ TY .

The category of scaled simplicial sets will be denoted by Set sc
∆ .

Definition 1.13. Given a simplicial set X we will denote by X♭ = (X,deg2(X)) the
scaled simplicial consisting of X with only degenerate triangles as thin 2-simplices,
and by X♯ = (X,X2) the scaled simplicial set consisting of X with all triangles thin.

Remark 1.14. The category Set sc
∆ admits an alternative description, as the cate-

gory of models of a limit sketch. In particular, it is a reflective localization of a
presheaf category. In fact, we can define a category ∆sc having as set of objects
the set {[k]}k≥0 ∪ {[2]t}, obtained from ∆ by adding an extra object and maps
[2] → [2]t, σit ∶ [2]t → [1] for i = 0,1 satisfying the obvious relations. The category
Set sc

∆ is then the reflective localization of the category of presheaves PSh(∆sc) (of
sets) at the arrow [2]t ∐

[2]
[2]t → [2]t, where we have identified an object of ∆sc

with its corresponding representable presheaf. Equivalently, the local objects are
those presheaves X ∶∆op

sc → Set for which X([2]t) → X([2]) is a monomorphism.
In particular, the category Set sc

∆ is cartesian closed and it is easy to check that the
reflector functor PSh(∆sc) → Set sc

∆ preserves monomorphisms and commutes with
finite products.

Notation 1.15. For simplicity, we will often speak only of the non-degenerate
thin 2-simplices when considering a scaled simplicial set. For example, if X is a
simplicial set and T is any set of triangles in X then we will denote by (X,T ) the
scaled simplicial set whose underlying simplicial set is X and whose thin triangles
are T together with the degenerate triangles. If L ⊆K is a subsimplicial set then we
use T ∣L ∶= T ∩L2 to denote the set of triangles in L whose image in K is contained
in T .
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Definition 1.16. Let S be the set of maps of scaled simplicial sets consisting of:

(1) inner horns inclusions (Λni ,{∆{i−1,i,i+1}}∣Λni ) ⊆ (∆n,{∆{i−1,i,i+1}}) for n ≥ 2
and 0 < i < n.

(2) the map (∆4, T ) → (∆4, T ∪ {∆{0,3,4}, ∆{0,1,4}}), where

T ∶= {∆{0,2,4}, ∆{1,2,3}, ∆{0,1,3}, ∆{1,3,4}, ∆{0,1,2}};

(3) the set of maps (Λn0 ∐
∆{0,1}

∆0,{∆{0,1,n}}∣Λn0 ) → (∆n ∐
∆{0,1}

∆0,{∆{0,1,n}}) for

n ≥ 2.

We call S the set of generating anodyne morphisms, and its saturation is the
class of (scaled) anodyne maps.

Remark 1.17. As observed in Remark 3.1.4 of [1616], the inclusions of scaled simplicial
sets ji∶ (∆3, Ti) → ∆3

♯
, for i = 1,2, where Ti is the collection of 2-simplices of ∆3

containing the i’th vertex, are both anodyne.

Definition 1.18. We will say that a map of scaled simplicial sets X → Y is a scaled
fibration if it has the right lifting property with respect to scaled anodyne maps.

The scaled fibrations whose codomain is a point are of special interest:

Definition 1.19 ([1616]). A weak ∞-bicategory is a scaled simplicial set C which
admits extensions along all scaled anodyne maps.

We observe that the map in the second point of Definition 1.161.16 ensures that mar-
ked 2-simplices of weak ∞-bicategories satisfy a saturation property, while the first
set guarantees, among other things, that the subobject of a weak ∞-bicategory X
spanned by those n-simplices whose 2-dimensional faces are thin is an ∞-category,
which we call the core ∞-category of X. This will be denoted by Xth.

Definition 1.20. Let C be a weak ∞-bicategory. We will say that an edge e∶x→ y
in C is invertible if it is invertible when considered in the core ∞-category Cth

of C, that is, if the corresponding arrow in the homotopy category ho(Cth) is an
isomorphism. In this case we will also say that e∶x→ y is en equivalence in C.

If X is an arbitrary scaled simplicial set then we say that an edge in X is
invertible if its image in C is invertible for any scaled anodyne X ↪ C with C a
weak ∞-bicategory (this does not depend on the choice of such a C).

Remark 1.21. More explicitly, if C is a weak ∞-bicategory then e∶x→ y is invertible
in C if and only if there exist triangles of the form

x x y y

y x

e f
≃

f
≃

e

Indeed, this condition clearly implies that e corresponds to an isomorphism in
ho(Cth), and the implication in the other direction follows by applying Joyal’s
special outer horn theorem ([1212, Theorem 1.3], see also [1717, Proposition 1.2.4.3])
to Cth.

Definition 1.22. The scaled coherent nerve functor Nsc∶Cat+∆ → Set sc
∆ is defined

by letting the underlying simplicial set of Nsc(C) be the coherent nerve of the
simplicially enriched category C (as in Definition 1.1.5.5 of [1717]), and setting its thin
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2-simplices to be those maps f ∶C(∆2) → C that send the unique non-degenerate
1-simplex of C(∆2)(0,2) to a marked 1-simplex in C(f(0), f(2)).

The functor Nsc admits a left adjoint Csc∶Set sc
∆ → Cat+∆, whose explicit description

can be found in Definition 3.1.30 of [1616].

Theorem 1.23 ([1616, Theorem 4.2.7]). There exists a model structure on the cate-
gory Set sc

∆ of scaled simplicial sets, characterized as follows:

● a map f ∶X → Y is a cofibration if and only if it is a monomorphism;
● a map f ∶X → Y is a weak equivalence if and only Csc(f)∶Csc(X) → Csc(Y ) is a

weak equivalence in Cat+∆.

Moreover, the adjoint pair

Set sc
∆

Csc

''

Nsc

gg
⊥ Cat+∆

is a Quillen equivalence with respect to the model structures defined above.

We will refer to the model structure of Theorem 1.231.23 as the bicategorical model
structure. Following [1616] we will refer to the fibrant objects of this model category
as ∞-bicategories, to its weak equivalences as bicategorical equivalences, and to its
fibrations as bicategorical fibrations.

Proposition 1.24 ([1616, 3.1.13]). If f belongs to S then Csc(f) is a trivial cofi-
bration of Set+∆-categories. Therefore, every ∞-bicategory is a weak ∞-bicategory.
Similarly, every bicategorical fibration is a scaled fibration.

We will prove a converse to Proposition 1.241.24 in §55 below (see Theorem 5.15.1).

1.3. Stratified sets. In this subsection we introduce the notion of stratified sets,
and define the model category for complicial sets and other variations such as
n-trivial complicial sets.

Definition 1.25 ([2323]). A stratified set is a pair (X,M) where X is a simplicial
sets and M is a collection of its n-simplices for n > 0 that contains the degenerate
ones. A map f ∶ (X,MX) → (Y,MY ) of stratified sets is a map of simplicial sets
f ∶X → Y such that f(MX) ⊂MY . We denote the category of stratified sets by St.

Remark 1.26. As with the case of scaled simplicial sets, the category of stratified sets
admits a description in terms of a reflective localization of a category of presheaves.

Notation 1.27. If X is a simplicial set and M is any set of simplices in X then we
will denote by (X,M) the stratified set whose underlying simplicial set is X and
whose marked simplices are M ∪ deg(X). If L ⊆ K is a subsimplicial set then we
use M ∣L to denote the set of simplices in L whose image in K is contained in M .

Warning 1.28. Comparing Notation 1.271.27 and Notation 1.151.15 reveals a certain abuse
of notation: given a simplicial set K and a collection of triangles T , the symbol
(K,T ) can either mean the scaled simplicial set whose thin triangles are T plus the
degenerate ones or the stratified set on K whose marked simplices are T plus the
degenerate ones. A similar ambiguity exists between Notation 1.271.27 and 1.21.2. We
believe however that in the way these terms are used in this paper there will be
no place where an actual confusion can arise. We also note that the category Set sc

∆

of scaled simplicial set can be identified with the full subcategory of St consisting
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of those stratified sets for which all non-degenerate marked simplices are of dimen-
sion 2. Under this identification the ambiguity above disappears. This full inclusion
ι∶Set sc

∆ → St is also the left counterpart of the Quillen adjunction we consider in §77.

Remark 1.29. In the specific case of ∆0 we will simplify notation and denote (∆0,∅)
by ∆0, since here there is really no possibility for confusion.

Definition 1.30. Given an integer k we will denote by thk(K) the stratified set
whose underlying simplicial set is K and whose marked simplices are the degenerate
ones and all those in dimension > k. In the case k = 0 we will simply write th(K)
to th0(K). If (X,M) is a stratified set then we will denote by thk(X,M) the
stratified set whose marked simplices consist of M together with all simplices of
dimension > k.

Definition 1.31 ([2323]). Given two stratified sets (X,MX) and (Y,MY ), we define
their join X ∗ Y to be the stratified set whose underlying simplicial set consists of
Joyal’s join of simplicial sets X ∗ Y , and such that an n-simplex (x, y) ∈ (X ∗ Y )n
with x ∈ Xk and y ∈ Yn−k−1 for −1 ≤ k ≤ n is marked if and only if either x is
marked in X or y is marked in Y . Here we employ the convention that X−1 and
Y−1 contain a single element which is not considered as marked for the purpose of
this definition.

We let ∆3
eq be the stratified set whose underlying simplicial set is ∆3, whose

marked 1-simplices are ∆{0,2} and ∆{1,3} and whose n-simplices for n strictly greater
than 1 are all marked.

Definition 1.32 ([2020], [2323]). The class of complicial horns is the saturation of the
set of inclusions

(Λni ,Mi∣Λni ) → (∆n,Mi)
for n ≥ 1 and 0 ≤ i ≤ n, where Mi consists of all the degenerate simplices and all the
simplices which contain the vertices in the set

{i − 1, i, i + 1} ∩ {0, . . . , n} = {j ∈ [n] ∶ ∣j − i∣ ≤ 1},
whose size may be either 2 or 3 depending on i and n.

The class of thinness extensions is the saturation of the set of inclusions of the
form

(∆n,M ′

i) → (∆n,M ′′

i )
with n ≥ 2 where M ′

i contains Mi as above as well as the two (n− 1)-faces opposite
to the vertices i−1 and i+1, while M ′′

i contains Mi and as well as all (n−1)-faces.
The class of k-trivializing morphisms is the saturation of the set of inclusions

(∆n,∅) → (∆n,{∆n})
for n > k. We consider the class of ∞-trivializing morphisms to be the empty class.

Finally, the class of saturation morphisms is the saturation of the set of inclusions
of the form ∆3

eq ∗ (∆n,∅) → th(∆3) ∗ (∆n,∅) for n ≥ −1, where ∆−1 = ∅ by
convention.

The following definition isolates the stratified sets of interest.

Definition 1.33 ([2020], [2323]). A stratified set (X,M) is a complicial set if it has
the right lifting property with respect to complicial horns and thinness extensions.
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A stratified set (X,M) is k-trivial if it has the right lifting property with respect
to k-trivializing morphisms.

A stratified set (X,M) is saturated if it has the right lifting property with respect
to saturation morphisms.

The following result establishes the existence of a model category structure for
(saturated, n-trivial) complicial sets.

Theorem 1.34 ([1919], [2020], [2323]). For every 0 ≤ n ≤ ∞ there exists a model cate-
gory structure on the category St of stratified sets characterized by the following
properties:

● a map f ∶X → Y in St is a cofibration if and only if it is a monomorphism;
● a stratified set (X,M) is fibrant if and only if it is an n-trivial saturated complicial

set.

We denote this model category structure by Stn.

Remark 1.35. The thinness extensions (∆n,M ′

i) → (∆n,M ′′

i ) for n ≥ 4 are already
contained in the weakly saturated closure of the 2-trivializing morphisms. When
working in the model category St2 one can hence restrict attention to the thinness
extensions of dimensions 2 and 3. Concretely, these consists of the following maps:

● for i = 0,1,2 the map (∆2,M(2,i)) → th(∆2) when M(2,i) consists of all faces of

∆2 which contain the vertex i;
● for i = 0,1,2,3 the map (∆3,M(3,i)) → th(∆3) when M(3,i) consists of all faces of

dimension ≥ 2 which contain the vertex i as well as the edge {i−1, i, i+1}∩{0,1,2,3}
in the case i = 0,3.

Remark 1.36. The model category St2 is cartesian closed. This has in particular
the following implication on the collection of marked simplices in a given fibrant
stratified set (X,MX): if h∶ th(∆1) × (∆n,∅) → (X,MX) is a map, which we
consider as encoding a natural equivalence from σ0 ∶= h∣{0}×∆n to σ1 ∶= h∣{1}×∆n ,
then σ0 is marked if and only if σ1 is marked.

2. Outer cartesian fibrations

In the (∞,2)-categorical setting one often encounters (∞,2)-categories which
are fibered into (∞,1)-categories over a given base. To describe such situations
effectively one requires a robust theory which encompasses the four types of variance
such a fibration may encode. One such type, which we will call inner cocartesian
fibration, was studied in [1616]. It corresponds to the situation where the fiber Dx

depends covariantly on both 1-morphisms and 2-morphisms. If π∶C→D is an inner
cocartesian fibration then πop∶Cop → Dop is an inner cartesian fibration (whose
fibers are the opposites of the fibers of π). These correspond to the situation where
Dx depends contravariantly on both 1-morphisms and 2-morphisms. The reason
we use the term “inner” to describe these two types of fibrations is that they are
inner fibrations in the sense of Lurie–Joyal on the level of the underlying simplicial
sets. By contrast, the fibrations which describe a dependence which is covariant
in 1-morphisms and contravariant in 2-morphisms (or the other way around) are
generally not inner fibrations. Instead, we call them outer (co)cartesian fibrations.
To our knowledge these type of fibrations have not yet appeared in the literature.

In this section we introduce the notion of outer cartesian fibration and investigate
its basic properties. We will begin in §2.12.1 by presenting the main definitions.
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The prototypical example we have in mind is that of the outer cartesian fibration
represented by a given object. We will construct this fibration using the slice
construction in §2.22.2 and show that its fibers model the corresponding mapping
∞-categories in §2.32.3. Finally, in §2.42.4 we will show that outer cartesian fibrations
satisfy a lifting property for natural transformations — a key feature which we will
exploit in later parts of the paper.

2.1. Outer fibrations and cartesian edges. We begin by introducing the basic
definitions.

Definition 2.1. We will say that a map of scaled simplicial sets X → Y is a weak
fibration if it has the right lifting property with respect to the following types of
maps:

(1) All scaled inner horn inclusions of the form

(Λni ,{∆{i,i−1,i}}∣Λni ) ⊆ (∆n,{∆{i,i−1,i}})
for n ≥ 2 and 0 < i < n.

(2) The scaled horn inclusions of the form:

(Λn0 ∐
∆{0,1}

∆0,{∆{0,1,n}}∣Λn0 ) ⊆ (∆n ∐
∆{0,1}

∆0,{∆{0,1,n}})

for n ≥ 2.
(3) The scaled horn inclusions of the form:

(Λnn ∐
∆{n−1,n}

∆0,{∆{0,n−1,n}}∣Λnn) ⊆ (∆n ∐
∆{n−1,n}

∆0,{∆{0,n−1,n}})

for n ≥ 2.

Remark 2.2. The maps of type (1)-(3) in Definition 2.12.1 are trivial cofibrations
with respect to the bicategorical model structure: indeed, the first two are scaled
anodyne and the third is the opposite of a scaled anodyne map. It follows that
every bicategorical fibration is a weak fibration.

Definition 2.3. Let p∶X → Y be a weak fibration. We will say that an edge
e∶∆1 →X is p-cartesian if the dotted lift exists in any diagram of the form

(Λnn,{∆{0,n−1,n}}∣Λnn)
σ //

��

(X,TX)

p

��

(∆n,{∆{0,n−1,n}})

66

// (Y,TY )

with n ≥ 2 and σ∣∆n−1,n = e.

Definition 2.4. Let p∶X → Y be a weak fibration. We will say that p is an outer
fibration if

(1) p detects thin simplices, that is, a triangle in X is thin if and only if its image
in Y is thin;

(2) the map of simplicial sets underlying X → Y satisfies the right lifting property
with respect to the inclusions

Λn0 ∐
∆{0,1}

∆0 ⊆ ∆n ∐
∆{0,1}

∆0 and Λnn ∐
∆{n−1,n}

∆0 ⊆ ∆n ∐
∆{n−1,n}

∆0

for n ≥ 2.
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Remark 2.5. If p∶X → Y is a weak fibration and detects thin triangles then p is
a scaled fibration (Definition 1.181.18). In particular, every outer fibration is a scaled
fibration.

Definition 2.6. Let p∶X → Y be a map scaled simplicial sets. We will say that p
is an outer cartesian fibration if the following conditions hold:

(1) The map p is an outer fibration.
(2) For every edge e∶ y → y′ in Y and every x′ ∈X such that p(x′) = y′ there exists

a p-cartesian edge f ∶x→ x′ such that p(f) = e.
Dually, we will say that p∶X → Y is an outer cocartesian fibration if pop∶Xop → Y op

is an outer cartesian fibration.

Remark 2.7. The classes of weak fibrations, outer fibrations and outer (co)cartesian
fibrations are all closed under base change.

Remark 2.8. It follows from Remarks 2.52.5 and 2.72.7 that if X → Y is an outer fibration
then for every y ∈ Y the fiber Xy is a weak ∞-bicategories in which every triangle is
thin. Forgetting the scaling, we may simply consider these fibers as ∞-categories.

Remark 2.9. Let p∶X → Y be an outer cartesian fibration and assume in addi-
tion that Y is a weak ∞-bicategory. Then X is a weak ∞-bicategory as well
by Remark 2.52.5. The condition that p detects thin triangles then implies that
Xth = X ×S Y th, and so the induced map pth∶Xth → Y th is a cartesian fibration
of ∞-categories. In particular, pth is a categorical fibration (see [1717]) and so an
isofibration. We may hence conclude that every outer cartesian fibration is an
isofibration, that is, admits lifts for equivalences.

Remark 2.10. Let p∶X → Y be a weak fibration between weak ∞-bicategories. If
e∶x → y is a p-cartesian edge of X then it is also cartesian with respect to the
inner fibration of ∞-categories Xth → Y th. This implies, in particular, that any
p-cartesian edge which lies above an equivalence in Y is necessarily an equivalence
in X.

Our approach is that outer cartesian fibrations encode the data of functors from
Y to Cat∞ which are contravariant on the level of 1-morphisms but covariant on
the level of 2-morphisms. Similarly, outer cocartesian fibration encode functors
which are covariant on the level of 1-morphisms but contravariant on the level of
2-morphisms. For example, we will see below how one can encode in this man-
ner representable functors using a suitable slice construction (see §2.32.3). A more
comprehensive treatment and justification of this approach will appear in [99].

2.2. The join and slice constructions. Let C be a weak ∞-bicategory and let
y ∈ C be a vertex. Define a scaled simplicial set C/y as follows. The n-simplices of

C/y are given by (n + 1)-simplices ∆n+1
♭

→ C of C which send ∆{n+1} to y, and a

triangle in C/y, corresponding to a 3-simplex σ∶∆3
♭
→ C, is declared to be thin C/y

if σ∣∆{0,1,2} is thin in C. The scaled simplicial set C/y admits a natural map C/y → C

sending σ∶∆n+1
♭

→ C to σ∣∆{0,...,n} . If all the triangles in C are thin (that is, if C is

actually an ∞-category) then the same holds for C/y and the projection C/y → C is
a right fibration which classifies the presheaf on C represented by y. In this section
we will show that for a general weak ∞-bicategory C the projection C/y → C is an
outer cartesian fibration. In §2.32.3 we will show that the fibers of these fibrations are
models for the mapping ∞-categories in C with target y.
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In what follows it will be useful to work in a setting where both marking and
scaling are allowed.

Definition 2.11. A marked-scaled simplicial set is a triple (X,E,T ) where X is
a simplicial set, E ⊆ X1 is a collection of edges containing all the degenerate edges
and T ⊆ X2 is collection of 2-simplices containing all the degenerate 2-simplices.
In particular, if (X,E,T ) is a marked-scaled simplicial set then (X,E) is a mar-
ked simplicial set and (X,T ) is a scaled simplicial set. A map of marked-scaled
simplicial sets f ∶ (X,EX , TX) → (Y,EY , TY ) is a map of simplicial sets f ∶X → Y
satisfying f(EX) ⊆ EY and f(TX) ⊆ TY .

The collection of scaled simplicial sets and their morphisms forms a category
which will be denoted as in [1616] by Set+,sc∆ . It is fairly standard to check that the

category Set+,sc∆ has all small limits and colimits.

Notation 2.12. Given a simplicial set K, a set E of edges in K and a set T of
triangles in K we will denote by (K,E,T ) the marked-scaled simplicial set whose
underlying simplicial set is K, whose marked edges are the degenerate ones and
those contained in E and whose thin triangles are the degenerate ones and those
contained in T . As in Notation 1.151.15, if L ⊆ K is a subsimplicial set then we use
E∣L and T ∣L to denote the set of edges and triangles respectively in L whose image
in K is contained in E and T respectively.

Given a scaled simplicial set S we will denote by (Set+,sc∆ )/S the category of
marked-scaled simplicial sets (X,EX , TX) equipped with a map of scaled simplicial
sets (X,TX) → S.

Definition 2.13. Let S be a scaled simplicial set. We will denote by AS the
smallest weakly saturated class of maps in the category (Set+,sc∆ )/S containing the
following maps:

(1) The inclusion (Λni ,∅,{∆{i−1,i,i+1}}∣Λni ) ⊆ (∆n,∅,{∆{i−1,i,i+1}}) for 0 < i < n
and every map (∆n,{∆{i−1,i,i+1}}) → S.

(2) The inclusion (Λnn,{∆{n−1,n}}∣Λnn ,∅) ⊆ (∆n,{∆{n−1,n}},∅) for every n ≥ 1 and
every map ∆n

♭
→ S.

(3) The inclusion (Λn0 ∐
∆{0,1}

∆0,∅,∅) ⊆ (∆n ∐
∆{0,1}

∆0,∅,∅) for every n ≥ 2 and

every map ∆n
♭

∐
∆{0,1}

∆0 → S.

(4) The inclusion ∆2 ⊆ (∆2,∅,{∆2}) for every ∆2
♯
→ S.

Proposition 2.14. Let S be a scaled simplicial set, (X,EX , TX) a marked-scaled
simplicial set and p∶ (X,TX) → S a map of scaled simplicial sets. If the object of
(Set+∆)/S determines by p has the right lifting property with respect to the set AS
of Definition 2.132.13 then p is an outer cartesian fibration and every marked edge is
p-cartesian.

Proof. Since every degenerate edge in X belongs to EX the right lifting property
with respect to the generating maps of type (1),(2), (3) and (6) implies that p is an
outer fibration. The lifting property against maps of type (2) further implies that
any marked edge in X is in particular p-cartesian, and the case n = 1 of maps of
type (2) implies that for every arrow f ∶x → y in S and for every y′ ∈ X such that
p(y′) = y there exists a marked edge e′∶x′ → y′ in X such that p(e′) = e. We may
hence conclude that p∶ (X,TX) → S is an outer cartesian fibration, and that all the
marked edges are p-cartesian. �
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Definition 2.15. Let (Z,EZ , TZ) be a marked-scaled simplicial set and (K,TK)
a scaled simplicial set. We define the join (Z ∗K,TZ∗K) to be the scaled simplicial
set whose underlying simplicial set is the ordinary join of simplicial sets Z ∗K and
whose thin triangles TZ∗K are given by the subset

TZ∐[EZ ×K0]∐∅∐TK

of the set
Z2∐[Z1 ×K0]∐[Z0 ×K1]∐K2 = (Z ∗K)2.

For a fixed scaled simplicial set (K,TK) we may consider the association given by
(Z,EZ , TZ) ↦ (Z ∗K,TZ∗K) as a functor Set+,sc∆ → Setsc

(K,TK)/
. As such, it becomes

a colimit preserving functor which admits a right adjoint Setsc
(K,TK)/

→ Set+,sc∆ by
the adjoint functor theorem.

Definition 2.16. Given a map of scaled simplicial sets f ∶ (K,TK) →X, considered
as an object of Setsc

(K,TK)/
, we will denote by X/f the marked-scaled simplicial set

obtained by applying the above mentioned right adjoint. In particular, the marked-
scaled simplicial set X/f is characterized by a mapping property of the form

Hom((Z,EZ , TZ),X/f) = Hom((Z ∗K,TZ∗K),X).
We will denote by X/f the scaled simplicial set underlying X/f .

Lemma 2.17. Let f ∶ (X,EX , TX) → (Y,EY , TY ) be a map of marked-scaled sim-
plicial sets and g∶ (A,TA) → (B,TB) a map of scaled simplicial sets. If f belongs to
AS and g is a monomorpohism then the map of scaled simplicial sets

(2.1) (X ∗B,TX∗B) ∐
(X∗A,TX∗A)

(Y ∗A,TY ∗A) → (Y ∗B,TY ∗B)

is in the weakly saturated closure of maps of type (1) and (3) in Definition 1.161.16.
In particular, it is scaled anodyne.

Proof. It suffices to check the claim on generators, and so we may assume that
g is either the inclusion ∂∆n ↪ ∆n, the inclusion ∆2 ↪ ∆2

♯
, and f is one of the

generating maps appearing in Definition 2.132.13. We first note that when g is the
map ∆2 ↪ ∆2

♯
then (2.12.1) is an isomorphism. We may hence assume that g is the

inclusion ∂∆n ↪ ∆n for some n ≥ 0. Let us now consider the various possibilities
for f case by case.

(1) When f is the inclusion (Λmi ,∅,{∆{i−1,i,i+1}}∣Λmi ) ⊆ (∆m,∅,{∆{i−1,i,i+1}}) for
0 < i <m the map (2.12.1) is isomorphic to the map

(Λ
[m]∗[n]
i ,{∆{i−1,i,i+1}}) → (∆[m]∗[n],{∆{i−1,i,i+1}})

which is a map of type (1) in Definition 1.161.16.

(2) When f is the inclusion (Λmm,{∆{m−1,m}}∣Λmm ,∅) ⊆ (∆m,{∆{m−1,m}},∅) for
m ≥ 1 the map (2.12.1) is isomorphic to the map

(Λ
[m]∗[n]
k ,{∆{m−1,m,m+1}}∣Λ[m]∗[n]) → (∆[m]∗[n],{∆{m−1,m,m+1}})

which is a map of type (1) in Definition 1.161.16.
(3) When f is the inclusion (Λm0 ∐

∆{0,1}
∆0,∅,∅) ⊆ (∆m ∐

∆{0,1}
∆m,∅,∅) for m ≥ 2

the map (2.12.1) is isomorphic to the map

(Λ
[m]∗[n]
0 ∐

∆{0,1}∗[n]
∆[0]∗[n],∅) → (∆[m]∗[n] ∐

∆{0,1}∗[n]
∆[0]∗[n],∅)
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which is a pushout of a map type (3) in Definition 1.161.16.
(4) When f is the inclusion ∆2 ⊆ (∆2,∅,{∆2}), then the map (2.12.1) is an isomor-

phism. �

Corollary 2.18. Let X be a scaled simplicial set which satisfies the extension
property with respect to maps of type (1) and (3) in Definition 1.161.16. Given a map

f ∶ (K,TK) →X of scaled simplicial sets, the map q∶X/f →X is an outer cartesian
fibration and every edges which is marked in X/f is q-cartesian.

Proof. Combine Proposition 2.142.14 and Lemma 2.172.17. �

In the situation of Corollary 2.182.18, if K is a point and the image of f is the vertex
y ∈ X then we will denote X/f and X/f simply by X/y and X/y, respectively. In

particular, the outer cartesian fibration q∶X/y → X is the one we alluded to in the
beginning of this section. We consider q as the outer cartesian fibration represented
by y. A partial justification to this point of view will be offered in Proposition 2.242.24
below.

Remark 2.19. Let X be a scaled simplicial set and let y ∈ X a vertex. Then for
i = 1,2, if the scaled simplicial set X satisfies the extension property with respect
to the inclusion (∆3, Ti) → ∆3

♯
(where Ti denotes all triangles which contain the

vertex i) then the marked-scaled simplicial set X/y satisfies the extension property

with respect to the inclusions (∆2,Ei,{∆2}) → (∆2,∆2,{∆2}) (where Ei denotes
all edges containing i). In particular, if X is a weak ∞-bicategory and σ∶∆2 →X/y

is a thin triangle such that σ∣∆{1,2} is marked then σ∣∆{0,1} is marked if and only if
σ∣∆{0,2} is marked (see Remark 1.171.17).

Corollary 2.182.18 admits the following generalization, which can be deduced from
Proposition 2.142.14 and Lemma 2.172.17 in the same manner:

Corollary 2.20. Let p∶X → S be a map of scaled simplicial sets which satisfies the
right lifting property with respect to maps of type (1) and (3) in Definition 1.161.16.
Let f ∶ (K,TK) → X be a map of scaled simplicial sets and let i∶ (L,TL) ↪ (K,TK)
be an inclusion of scaled simplicial sets. Then the map

q∶X/f →X/fi ×S/pfi
S/pf

is an outer fibration, the marked edges of X/f are q-cartesian, and the base change
of q to the marked core of X/fi ×S/pfi

S/pf is an outer cartesian fibration.

2.3. Mapping categories. Let C be a weak ∞-bicategory with underlying simpli-
cial set C and let x, y ∈ C be two vertices. Recall the following explicit model for the
mapping ∞-category from x to y in C constructed in [1616, §4.2]). Let HomC(x, y)
be the marked simplicial set whose n-simplices are given by maps f ∶∆1 ×∆n → C

such that f ∣{0}×∆n is constant on x, f ∣{1}×∆n is constant on y, and the triangle
f ∣∆{(0,i),(1,i),(1,j)} is thin for every 0 ≤ i ≤ j ≤ n. The marked edges HomC(x, y) are

the edges corresponding to those maps ∆1 × ∆1 → C which send both triangles
of ∆1 × ∆1 to thin triangles. As shown in [1616, §4.2], the assumption that C is a
weak ∞-bicategory implies that the marked simplicial set HomC(x, y) is fibrant in
the marked categorical model structure, that is, it is an ∞-category whose marked
edges are exactly the equivalences.

This construction can also be understood in terms of the Gray product of scaled
simplicial sets, which we will further study in [99]. For our purpose here let us
consider the following limited variant:
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Definition 2.21. Let K and L be two simplicial sets. The Gray product K ×gr L
is the scaled simplicial set whose underlying simplicial set is the cartesian product
K ×L and such that a 2-simplex σ∶∆2 → K ×L is thin if and only if the following
conditions hold:

(1) The image of σ in both K and L is degenerate.
(2) Either σ∣∆{1,2} maps to a degenerate edge in K or σ∣∆{0,1} maps to a degenerate

edge in L.

In terms of this Gray product we can describe the n-simplices in HomC(x, y) as
maps f ∶∆1×gr ∆n → C such that f ∣{0}×∆n is constant on x and f ∣{1}×∆n is constant

on y. An edge ∆1 ×gr ∆1 → C is marked exactly when it factors through the map
∆1 ×gr ∆1 →∆1

♭
×∆1

♭
.

Now recall from §2.22.2 that for y ∈ C, the map of scaled simplicial sets p∶C/y → C

is an outer cartesian fibration (Corollary 2.182.18) and all the marked edges of C/y are

p-cartesian. If x ∈ C is then another vertex then by Remark 2.82.8 the fiber (C/y)x
is a weak ∞-bicategory in which all triangles are thin, and every marked edge in
(C/y)x is an equivalence. Forgetting the scaling, we will denote by Hom▷

C (x, y)
the underlying marked simplicial set of (C/y)x. In particular, Hom▷

C (x, y) is an
∞-category endowed with a marking, and all marked edges are equivalences.

Construction 2.22. We construct a natural map of marked simplicial sets

(2.2) i∶Hom▷

C (x, y) → HomC(x, y).

Explicitly the n-simplices of Hom▷

C (x, y) are given by maps

g∶ (∆n ∗∆0)♭ = ∆n+1
♭
→ C

which send ∆{0,...,n} to x and ∆{n+1} to y (where an edge is marked exactly when it
corresponds to a thin triangle), while the n-simplices of HomC(x, y) correspond to
maps ∆1×gr ∆n → C (where an edge ∆1×gr ∆1 → C is marked exactly with it factors
through ∆1

♭
×∆1

♭
). The map 2.22.2 is then obtained by pulling back along the unique

map ∆1 ×gr ∆n → (∆n ∗∆0)♭ = ∆n+1
♭

which on vertices sends (i,0) to i and (i,1)
to n + 1 (this map indeed sends the thin triangles ∆{(0,i),(1,i),(1,j)} of ∆1 ×gr ∆n

to degenerate triangles). It is straightforward to verify that this association is
compatible with face and degeneracy maps, and with the markings on both sides.

Remark 2.23. Inspecting Construction 2.222.22 we see that the map (2.22.2) detects mar-
ked edges. Since the marked edges in HomC(x, y) are exactly the equivalences it

follows that every equivalence in Hom▷

C (x, y) is marked. In particular, the marked

edges in Hom▷

C (x, y) are exactly the equivalence and Hom▷

C (x, y) is fibrant with
respect to the marked categorical model structure.

Proposition 2.24. Let C be a weak ∞-bicategory. Then the map

i∶Hom▷

C (x, y) → HomC(x, y)

of Construction 2.222.22 is a marked categorical equivalence of fibrant marked simplicial
sets for every x, y ∈ C.

The proof of Proposition 2.242.24 will require the following lemma:
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Lemma 2.25. Let C be a weak ∞-bicategory and for m ≥ 2 suppose given a diagram
of marked simplicial sets

(2.3) (∂∆{1,...,m},∅)� _

��

f0 // Hom▷

C (x, y)

��

(Λm0 ,{∆{0,1}}) h0 // HomC(x, y)

where ∂∆{1,...,m} and Λm0 are considered as sub simplicial sets of ∆m = ∆{0,...,m}.
Then there exists an extension of (2.32.3) to a diagram the form

(2.4) (∂∆{1,...,m},∅)� _

��

� � // (∆{1,...,m},∅)� _

��

f
// Hom▷

C (x, y)

��

(Λm0 ,{∆{0,1}}) �
�

// (∆m,{∆{0,1}}) h // HomC(x, y)

Proof. Let

Z0 ∶= ∆1 ×gr Λm0 ∐
∂∆1×grΛm0

∂∆1 ×gr ∆m ⊆ ∆1 ×gr ∆m.

Unwinding the definitions, what we need to prove amounts to solving an extension
problem of the form

Z0
g0 //

��

C

∆1 ×gr ∆m

g

::

under the assumptions that

(i) the map g0 sends ∆{0} ×gr ∆m to the vertex x and ∆{1} ×gr ∆m to the vertex y;

(ii) the restriction of g0 to ∆1 ×gr ∂∆{1,...,m} factors through ∂∆{1,...,m} ∗∆0; and

(iii) the map g0 sends ∆{(0,0),(0,1),(1,1)} to a thin triangle in C;

and with the additional constraint that

(∗) the restriction of g to ∆1 ×gr ∆{1,...,m} factors through ∆{1,...,m} ∗∆0.

Let τi∶∆m → ∆1 ×∆{1,...,m} for i = 0, ...,m − 1 be the m-simplex given on vertices
by the formula:

τi(j) = {(0, j + 1) j ≤ i
(1, j) j > i .

In particular, for i = 0, ...,m − 2 our constraint (∗)(∗) above requires that the desired
lift g sends σi to the degenerate m-simplex in C whose image is the (i+ 1)-simplex

(g0 ○σi)∣∆{0,...,i+1} . Let Z1 ⊆ ∆1×gr ∆{1,...,m} be the union of Z0 and the simplices σi
for i ≤m−2. We may then define g1∶Z1 → C to be the unique map whose restriction
to Z0 is g0 and which such that g1○σi is the composition ∆{0,...,m} →∆{0,...,i+1} → C,
where the first map collapses i + 1, ...,m to i + 1 and the second is given by the
restriction of g0 ○ σi. This is indeed well-defined since g0 is assumed to satisfy (ii)(ii).
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We are hence left with solving the unconstrained extension problem

Z1
g1 //

��

C

∆1 ×gr ∆m

g

::

For i = 1, ...,m+ 1 let σi∶∆m+1 →∆1 ×∆m be the (m+ 1)-simplex given on vertices
by the formula:

σi(j) = { (0, j) j < i
(1, j + 1) j ≥ i .

For j = 2, ...,m + 2 let Zj ⊆ ∆1 ×gr ∆m be the union of Z1 and the simplices σi for
i < j. We then observe that Zm+2 = ∆1 ×gr ∆m and that for j = 1, ...,m we have a
pushout square

(Λm+1
j ,{∆{j−1,j,j+1}}) //

��

Zj

��

(∆m+1,{∆{j−1,j,j+1}}) // Zj+1

In particular Zj → Zj+1 is scaled anodyne for j = 1, ...,m and since C is a weak
∞-bicategory we may extend g1 to a map gm+1∶Zm+1 → C. Finally, we observe that
we have a pushout square

(Λm+1
0 )♭ //

��

Zm+1

��

∆m+1
♭

// Zm+2

and by (i)(i) above gm+1 ○ σm+1∶Λm+1
0 → C sends ∆{0,1} to degenerate edge. Now the

vertical maps in the above square are not scaled anodyne. Nonetheless, since the
map (Λm+1

0 ∐∆{0,1} ∆0,{∆{0,1,m+1}}) → (∆m+1∐∆{0,1} ∆0,{∆{0,1,m+1}}) is scaled
anodyne we could finish the proof if we showed that gm+1 ○ σm+1∶Λm+1

0 → C sends

∆{0,1,m+1} to a thin triangle, or, equivalently, that gm+1 sends ∆{(0,0),(0,1),(1,m)}

to a thin triangle. Indeed, since the map gm+1 sends the triangle ∆{(0,0),(0,1),(1,1)}

to a thin triangle by (iii)(iii), sends every triangle of the form ∆{(0,i),(1,i),(1,j)} to a
thin triangle by the definition of the Gray product and sends {1} ×∆m to a point

it suffices to apply Remark 1.171.17 to the 3-simplex gm+1(∆{(0,0),(1,0),(1,1),(1,m)}) to

deduce that gm+1 sends ∆{(0,0),(1,1),(1,m)} to a thin triangle and then to apply
Remark 1.171.17 to the 3-simplex gm+1(∆{(0,0),(0,1),(1,1),(1,m)}) to deduce that gm+1

sends ∆{(0,0),(0,1),(1,m)} to a thin triangle, as desired. �

Proof of Proposition 2.242.24. We first note that the map i∶Hom▷

C (x, y) → HomC(x, y)
is bijective on vertices. It will hence suffice to show that it is fully-faithful.

Given vertices α,β ∈ Hom▷

C (x, y), let Xα,β = ([Hom▷

C (x, y)]/α)β and similarly
Yα,β = (HomC(x, y)/α)β . As established in [1717] these are Kan complexes which
model the correponding mapping spaces on both sides. We hence need to show
that the map

Xα,β → Yα,β



ON THE EQUIVALENCE OF ALL MODELS FOR (∞,2)-CATEGORIES 21

is a homotopy equivalence of Kan complexes. Applying lemma 2.252.25 for diagrams
of the form (2.32.3) for which f0 sends ∆{1,...,m−1} to α and ∆{m} to β and h0 sends

∆{0,...,m−1} to α we may conclude that for m ≥ 2 every diagram of the form

∂∆{1,...,m−1}
� _

��

f0 // Xα,β

��

Λm−1
0

h0 // Yα,β

extends to a diagram of the form

∂∆{1,...,m−1}
� _

��

� � // ∆{1,...,m−1}
� _

��

f
// Xα,β

��

Λm−1
0
� � // ∆m−1 h // Yα,β

It then follows that all the homotopy fibers of Xα,β → Yα,β are contractible, and so
the desired result follows. �

2.4. Cartesian lifts of natural transformations. Our goal in this subsection is
to prove the following:

Proposition 2.26 (Lifting natural transformations). Let p∶X → Y be a weak fibra-
tion of scaled simplicial sets and let A ⊆ B an inclusion of simplicial sets. Consider
a lifting problem of the form

∆{1} ×B♭ ∐
∆{1}×A♭

∆1
♭
×A♭

f
//

��

X

p

��

∆1
♭
×B♭

H //

H̃

77

Y

such that f sends every edge of the form ∆1 ×{a} (for a ∈ A) to a p-cartesian edge.

Suppose that for every b ∈ B there exists a p-cartesian edge with target f(∆{1}×{b})
which lifts H(∆1 × {b}). Then the dotted lift H̃ ∶∆1

♭
×B → X exists. Furthermore,

H̃ can be chosen so that the edges H̃(∆1 × {b}) are any prescribed collection of
p-cartesian lifts.

In the proof of Proposition 2.262.26 we will make use of the following type of filtra-
tion, which will also employ in several other proofs later on:

Construction 2.27. For i = 0, ..., n, let Ti be the collection of all triangles in ∆n+1

which are either degenerate or contain the edge ∆{i,i+1}, and let

τi∶ (∆n+1, Ti) →∆1
♭
×∆n

♭

be the map given on vertices by the formula

τi(m) = { (0,m) m ≤ i
(1,m − 1) m > i

For k = 0, ..., n+1 let Zk ⊆ ∆1
♭
×∆n

♭
be the union of [∆1

♭
×∂∆n

♭
]∐∆{0}×∂∆n

♭

[∆{0}×∆n
♭
]

and the simplices τi for i ≥ k. We then have an ascending filtration of scaled
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simplicial sets

(2.5) [∆1
♭
× ∂∆n

♭
] ∐

∆{0}×∂∆n
♭

[∆{0} ×∆n
♭
] = Zn+1 ⊆ Zn ⊆ ... ⊆ Z0 = ∆1

♭
×∆n

♭

and for each k = 0, ..., n we have a pushout square of scaled simplicial sets

(Λn+1
k , Tk ∣Λn+1

k
) //

��

Zk+1

��

(∆n+1, Tk) // Zk

where the composed map (∆n+1, Tk) → Zk →∆1
♭
×∆n

♭
is the simplex τk.

Dually, for k = 0, ..., n + 1 let Zk ⊆ ∆n
♭
×∆1

♭
be the union of

[∆1
♭
× ∂∆n

♭
] ∐

∆{1}×∂∆n
♭

[∆{1} ×∆n
♭
]

and the simplices τi, for i < k. We then have an ascending filtration of scaled
simplicial sets

(2.6) [∆1
♭
× ∂∆n

♭
] ∐

∆{1}×∂∆n
♭

[∆{1} ×∆n
♭
] = Z0 ⊆ Z1 ⊆ ... ⊆ Zn+1 = ∆1

♭
×∆n

♭

and for each k = 0, ..., n we have a pushout square of scaled simplicial sets

(Λn+1
k+1 , Tk ∣Λn+1

k+1
) //

��

Zk

��

(∆n+1, Tk) // Zk+1

where the composed map (∆n+1, Tk) → Zk →∆1
♭
×∆n

♭
is the simplex τk.

Proof of Proposition 2.262.26. Arguing simplex by simplex it will suffice to prove the
claim for L ⊆ K being the inclusion ∂∆n ⊆ ∆n. In the case n = 0 the claim is
tautological, since we assume the existence of cartesian lifts. In the case n ≥ 1 the
map ∂∆n ⊆ ∆n is bijective on vertices and so we just need to construct a lift without
the additional constraints on the edges. In this case we use the filtration (2.62.6) of
Construction 2.272.27 to construct the lift step by step, where in the last step of the
filtration we use the assumption that every edge ∆1×∆{i} is mapped to a p-cartesian
edge of X. �

3. Thin triangles in weak ∞-bicategories

In this section we will establish some useful properties of thin triangles which
we will need in the subsequent sections. We begin with the following lemma which
turns an arbitrary 2-simplex into a 2-morphism:
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Lemma 3.1. Given a 2-simplex α in a weak ∞-bicategory C, there exists a 3-
simplex of the form:

0

1 2

3

f

gf

h

=

α

0

1 2

3

f

gh′

h

α̂

≃

Υα

in C.

Proof. We first construct a thin triangle ∆
{1,2,3}
♯

→ C by extending the 2-dimensio-
nal horn (f, g)∶Λ2

1 → C along the scaled anodyne map Λ2
1 ⊆ ∆2

♯
, thus obtaining the

bottom right triangle in the right square above. This triangle together with α and
the degenerate triangle in the left square determine a map h∶ (Λ3

2,{∆{1,2,3}}) → C.
Extending along the scaled anodyne inclusion

(Λ3
2,{∆{1,2,3}}) ⊆ (∆3,{∆{1,2,3}})

we get the desired 3-simplex Υα. �

Remark 3.2. We identify α̂ with an edge [α̂] in the marked simplicial set (C/α(2))α(0),
which in turn is weakly equivalent to the mapping ∞-category HomC(α(0), α(2))
by Proposition 2.242.24. It follows from Remark 1.171.17 that α is thin if and only if α̂ is
thin, that is, if and only if the edge [α̂] is marked.

Proposition 3.3. Let f ∶C→D be a bicategorical equivalence of weak ∞-bicategories
and let σ∶∆2 → C be a triangle. Then σ is thin in C if and only if fσ is thin in D.

Proof. Let us depict σ as a diagram

y
g

��
x

f
??

h
//

α
KS

z

which is commutative up to a (not-necessarily-invertible 2-cell) α∶h⇒ fg. Applying
Lemma 3.13.1 and Remark 3.23.2 we may reduce to the case where f is degenerate. In
this case we may consider α is encoding an edge in Hom▷

C (x, z), which is marked
if and only if α is thin. Since f is a bicategorical equivalence it is in particular
fully-faithful, and hence Proposition 2.242.24 implies that the map

(3.1) Hom▷

C (x, z) → Hom▷

D(f(x), f(z))

is a marked categorical equivalence. Since Hom▷

C (x, z) and Hom▷

D(f(x), f(z)) are
fibrant marked simplicial sets (see Remark 2.232.23) their marked edges are exactly
the respective equivalences, and hence (3.13.1) detects marked edges. We may then
conclude that α is thin in C if and only if fα is thin in D, as desired. �

Proposition 3.4. Let C be a weak ∞-bicategory and σ∶ (∆3, T ) → C a map of scaled

simplicial sets, where T = {∆{0,1,3},∆{0,2,3}}. If σ(∆{0,1}) is an equivalence and

σ(∆{0,1,2}) is thin then σ(∆{1,2,3}) is thin. Dually, if σ(∆{2,3}) is an equivalence

and σ(∆{1,2,3}) is thin in C then σ(∆{0,1,2}) is thin.
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Proof. We prove the first claim. The proof of the second is completely analogous.
Since Csc ⊣ Nsc is a Quillen equivalence there exists a fibrant Set+∆-enriched category
E equipped with a bicategorical equivalence f ∶C → Nsc(E). By Proposition 3.33.3 we
have that σ∣∆{1,2,3} is thin in C if and only if fσ∣∆{1,2,3} is thin in Nsc(E). We may
hence reduce to the case where C = Nsc(E). Let σad∶Csc(∆3, T ) → E be the adjoint

map. Then the restriction of σad to Csc(∆{1,2,3}
♭

) determines a diagram in E of the
form

y
f2,3

��
x

f1,2

??

f1,3

//

α
KS

z

where the α corresponds to an edge in the marked simplicial set MapE(x, z) going
from f1,3 to f2,3○f1,2. To show that σ∣∆{1,2,3} is thin in Nsc(E) we need to show that
α is a marked edge of MapE(x, z). Now since σ∣∆{0,1} is an equivalence in Nsc(E)
we have that the edge f0,1∶x′ → x in E determined by σad∣C(∆{0,1}) is an equivalence
in E, i.e., admits an inverse up to homotopy. This implies that the pre-composition
map

MapE(x, z) MapE(x′, z)
f∗0,1

is a categorical equivalence of (fibrant) marked simplicial sets. Such an equivalence
detects marked edges (which coincide in this case with the collection of equiva-
lences), and hence it will suffice to show that the edge f∗0,1α∶∆1 → MapE(x′, z) is

marked. Now the map σad
∗
∶MapCsc(∆3,T )

(0,3) →MapE(x′, z) determines a commu-
tative square of the form

(3.2) f0,3
//

��

f1,3 ○ f0,1

f∗0,1α

��

f2,3 ○ f0,2
// f2,3 ○ f1,2 ○ f0,1

in the marked simplicial set MapE(x′, z). Since σ sends the triangles ∆{0,1,3},∆{0,2,3}

and ∆{0,1,2} to thin triangles in Nsc(E) it follows that the two horizontal arrows and
the left vertical arrow in (3.23.2) are marked. Since MapE(x′, z) is fibrant it follows
that f∗0,1α is marked as well, and so the proof is complete. �

Corollary 3.5. Let C be a weak ∞-bicategory and let ρ0, ρ1∶∆2 → C be two triangles.
Let h∶ρ0 → ρ1 be a natural transformation from ρ0 to ρ1, i.e., a map h∶∆1

♭
×∆2

♭
→ C

such that h∣∆{i}×∆2 = ρi. Then the following holds:

(1) If h∣∆1×{0} is an equivalence in C and ρ0 is thin then ρ1 is thin.
(2) If h∣∆1×{2} is an equivalence in C and ρ1 is thin then ρ0 is thin.

Proof. For i = 0,1,2,3 let αi∶∆2 →∆1 ×∆2 be the 2-simplex given by

αi(j) = {(0, j) j < i
(1, j) j ≥ i

By the definition of the cartesian product of scaled simplicial sets all the triangles
in ∆1

♭
×∆2

♭
are thin except the αi’s. To prove (1), assume that ρ0 = h∣α3 is thin in

X. Applying Remark 1.171.17 to the 3-simplex ∆{(0,0),(0,1),(0,2),(1,2)} we get that h∣α2

is thin. Applying Remark 1.171.17 to the 3-simplex ∆{(0,0),(0,1),(1,1),(1,2)} we get that
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h∣α1 is thin. Finally, applying Proposition 3.43.4 to the 3-simplex ∆{(0,0),(1,0),(1,1),(1,2)}

we get that ρ1 = h∣α0 is thin. To prove (2), assume that ρ1 = h∣α0 is thin in X.

Applying Remark 1.171.17 to the 3-simplex ∆{(0,0),(1,0),(1,1),(1,2)} we get that h∣α1 is

thin. Applying Remark 1.171.17 to the 3-simplex ∆{(0,0),(0,1),(1,1),(1,2)} we get that h∣α2

is thin. Finally, applying Proposition 3.43.4 to the 3-simplex ∆{(0,0),(0,1),(0,2),(1,2)} we
get that ρ0 = h∣α3 is thin. �

4. The moving lemma

Throughout this section let us fix a surjective map of simplices ρ∶∆n →∆m and
a section σ∶∆m →∆n such that σ(i) is minimal in ρ−1(i) for every i ∈ [m]. We will
denote such a pair by σ ⊣ ρ, since we can think of it as an adjunction between the
posets [n] and [m].

Definition 4.1. Let A ⊆ ∆n be a subsimplicial set. We will say that A is
(σ ⊣ ρ)-admissible if it satisfies the following two properties:

● The image σρ(A) is contained in A.
● If A contains a vertex i ∈ [n] which is not in the image of σ then A contains every

face of ∆n which has i as a terminal vertex.

We will refer to non-degenerate simplices in A via the corresponding subset I ⊆ [n].
Similarly, we will refer to the simplices in ∆1 × A via the corresponding sub-
set J ⊆ [1] × [n]. Given such a J we denote J0 ∶= {j ∈ [n] ∣ (0, j) ∈ J} and
J1 ∶= {j ∈ [n] ∣ (1, j) ∈ J}.

Definition 4.2. Let (X,TX) be a scaled simplicial set and A ⊆ ∆n a (σ ⊣ ρ)-ad-
missible subsimplicial set. By a (σ ⊣ ρ)-transformation we will mean a map of
simplicial sets h∶∆1 ×A→X which satisfies the following properties:

(1) Suppose that J ⊆ [1] × [n] is such that J0 ≠ ∅, ∆J0 ⊆ A, i ∶= max(J0) is in
the image of σ and J1 = {(1, i)}. Then h∣∆J factors through the retraction

∆J →∆J∖{(0,i)} which maps (0, i) to (1, i).
(2) Suppose that J ⊆ [1] × [n] is such that J0 ≠ ∅, ∆J0 ⊆ A, i ∶= max(J0) is not

in the image of σ,J0 contains i − 1, and J1 is either ∅ or {(1, i)}. Then h∣∆J

factors through the retraction ∆J →∆J∖{(0,i)} which maps (0, i) to (0, i − 1).
(3) For each edge ∆{i,j} ⊆ A the triangle h(∆{(0,i),(1,i),(1,j)}) is thin in C.

Remark 4.3. Condition (1)(1) implies in particular that the map h sends the edge
∆1 × {σ(i)} ⊆ ∆1 ×A to a degenerate edge in X for every i ∈ [m].

Remark 4.4. Given an ∞-bicategory C ∶= (C, TC), the notion of a (σ ⊣ ρ)-transformation

h∶∆1 ×A → C is weaker than that of a natural transformation in C, as h may fail
to extend to a map of scaled simplicial sets ∆1

♭
× A♭ → C. Nonetheless, by Con-

dition (3)(3) h sends every triangle of the form ∆{(0,i),(1,i),(1,j)} to a thin triangle in
C, and hence extends to a scaled map ∆1 ×gr A → C. We consequently consider it
as a lax natural transformations, a concept we will investigate further in [99]. We
note that this lax natural transformation is of a rather special kind, due to the
degeneracy conditions imposed by Conditions (1)(1) and (2)(2). These conditions imply,

in particular, that for an edge ∆{i,j} ⊆ A, if either j is in the image of σ or j = i+ 1
and ρ(i) = ρ(j) then the triangle h(∆{(0,i),(0,j),(1,j)}) is degenerate and hence thin

as well, so that h∣∆1×∆{i,j} extends to a natural transformation ∆1
♭
×∆

{i,j}
♭

→ C.
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Notation 4.5. Given a (σ ⊣ ρ)-admissible simplicial set A ⊆ ∆n, we shall denote by

LA the collection of triangles of ∆1×A which are either of the form ∆{(0,i),(1,i),(1,j)}

for i < j ∈ [n] or of the form ∆{(0,i),(0,j),(1,j)} if either j is in the image of σ or
j = i + 1 and ρ(i) = ρ(j). In particular, if (X,TX) is a scaled simplicial set then by
Remark 4.44.4 every (σ ⊣ ρ)-transformation h∶∆1 ×A→X extends to a map of scaled
simplicial sets (∆1 ×A,LA) → (X,TX).
Remark 4.6. By induction, Condition (1)(1) implies, for example, that for every
j ∈ [m] the simplex g∣∆{0}×ρ−1

(j) degenerates to a point, provided max(ρ−1(j)) ∈ A.
We warn the reader however that the map g∣{0}×A does not in general factor through
the image of A in ∆m.

Remark 4.7. Let σ ⊣ ρ be as above and assume that n ≥ 2. Since ∆n ⊆ ∆n is always
(σ ⊣ ρ)-admissible we may consider the set of triangles L∆n of ∆1 ×∆n defined in
Notation 4.54.5. Since n ≥ 2 all these triangles are contained in ∆1 × ∂∆n, and so we
also have L∂∆n = L∆n . Consider the filtration

[(∆1 × ∂∆n, L∆n)] ∐
∆{0}×∂∆n

[∆{0} ×∆n
♭
] = Zn+1 ⊆ Zn ⊆ ... ⊆ Z0 = (∆1 ×∆n, L∆n)

whose underlying filtration of simplicial sets is as in the filtration (2.52.5) of Con-
struction 2.272.27, and the scaling on Zk is given by L∆n . Since L∆n contains every
triangle of the form ∆{(0,i),(0,i+1),(1,i+1)} we have that the inclusion Zk+1 ⊆ Zk is an
inner scaled anodyne map for k ∈ {1, ..., n}. In the last step of the filtration, since

L∆n contains all the triangles ∆{(0,0),(1,0),(1,i)} we obtain a pushout square of the
form

(Λn+1
0 , T0) Z1

(∆n+1
0 , T0) Z0

where T0 is the set of all triangles which contain the edge ∆{0,1}. Since 0 is always
in the image of σ it then follows, for example, that if C = (C, TC) is a weak ∞-

bicategory and h∶∆1 × ∂∆n → C is a (σ ⊣ ρ)-transformation (so that the edge
h∣∆1×{0} is degenerate by Remark 4.34.3), then any extension of h∣∆{0}×∂∆n to {0}×∆n

can be prolonged to an extension of h to ∆1 ×∆n.

The following is the key lemma of this section. Unlike the situation in Re-
mark 4.74.7, it allows us to extend an (σ ⊣ ρ)-transformations given an extension of
its value at 1 (as apposed to 0). The combination of Remark 4.74.7 and Lemma 4.84.8 is
what gives the notion of an (σ ⊣ ρ)-transformation its power in practice.

Lemma 4.8 (The moving lemma). Let (σ ⊣ ρ) be as above and let A ⊆ B ⊆ ∆n be

an inclusion of (σ ⊣ ρ)-admissible subsimplicial sets of ∆n. Let C = (C, TC) be a
scaled simplicial set which satisfies the right lifting property with respect to scaled
inner horn inclusions (that is, the horn inclusions of type (1) in Definition 1.161.16).
Suppose that we are given a map

g∶∆1 ×A ∐
{1}×A

{1} ×B → C

whose restriction to ∆1 × A is a (σ ⊣ ρ)-transformation. Then g extends to a

(σ ⊣ ρ)-transformation h∶∆1 ×B → C.
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Remark 4.9. Considering for simplicity the case where A is empty, Lemma 4.84.8
enables one to take a given map B → C and modify it in such a way that it becomes
degenerate in certain specific ways (see, e.g., Remark 4.64.6). We will use this “moving
trick” in the proofs of Proposition 5.35.3 and Lemma 7.57.5 below.

Remark 4.10. Though we formulate Lemma 4.84.8 in a rather generic manner, we will
only apply it in cases where B is either ∆n, ∂∆n or Λn0 and A is either ∅, ∂∆n

or Λn0 . The reader who wishes to have a concrete picture in mind while reading the
proof below is invited to take A = ∅ and B = ∆n.

Proof of Lemma 4.84.8. Let B be the collection of non-degenerate simplices of ∆1×B
which are not contained in ∆1 ×A∐{1}×A{1}×B. Adopting the notation of Defini-

tion 4.14.1 we will refer these simplices simply by their subset of vertices J ⊆ [1] × [n]
and will denote J0, J1 ⊆ [n] as in that definition. We call m(J) ∶= max(J0) the
index of J . Let B0 ⊆ B be the subset of those simplices J ⊆ [1] × [n] belonging to
one of the following mutually exclusive cases:

(i) The index m(J) belongs to the image of σ and J1 = {m(J)}.
(ii) The index m(J) does not belong to the image of σ, J contains (0,m(J) − 1)

and J1 ⊆ {m(J)}.
(iii) ∣J1∣ ≥ 2 and J contains the edge {(0,m(J)), (1,m(J))}.

Choose a total ordering on B0 such that J ′ < J whenever the dimension of J ′ is
smaller than that of J , or whenever they have the same dimension but the index
of J ′ is smaller than that of J , or whenever they have the same dimension and
the same index but ∣J ′1∣ < ∣J1∣. More precisely, we arbitrarily extend to a total
order that set of relations, by choosing a total order on those simplices who have
the same dimension, index and cardinality of vertices at height 1. For J ∈ B0 let
Z<J ⊆ ∆1 ×B be the subsimplicial set given by the union of ∆1 ×A∐{1}×A{1} ×B
with all the simplices J ′ ∈ B0 such that J ′ < J , and similarly let Z≤J ⊆ ∆1×B be the
subsimplicial set given by the union of ∆1 ×A∐{1}×A{1}×B with all the simplices
J ′ ∈ B0 such that J ′ ≤ J

We note that out of the simplices in B, Conditions (1)-(3) of Definition 4.24.2
only concern simplices which are in B0 (more specifically, Condition (1) concerns
simplices of type (i), Condition (2) simplices of type (ii) and Condition (3) simplices
of type (iii)). We now show by induction that for every J ∈ B0 the map g extends

to a map g≤J ∶ZJ → C such that Conditions (1)-(3) hold for the simplices in Z≤J .
We note that every simplex in B which is not in B0 is a face of a simplex in B0

and so Z≤J = ∆1 ×B when J is the maximal element of B0.
Let now J be a simplex in B0 and assume we have already extended the map g

to a map g<J ∶Z<J → C in a way that Conditions (1)-(3) of Definition 4.24.2 hold. To

extend g<J to a map g≤j ∶Z≤J → C we deal with each of the cases (i)-(iii) separately:

(1) Suppose that J is a simplex of type (i) and index i ∶=m(J). We first note that
Z<J already contains all the maximal face of J except the face opposite to the
vertex (1, i). Indeed, the faces opposite to vertices of the form (0, j) for j < i
are either in ∆1 ×A or are simplices in B0 of type (i) of lower dimension. The
face opposite to the vertex (0, i) is either in {1} ×B or is a maximal face of a
simplex J ′ in B0 of type (iii) and of index j = max(J0 ∖ {i}) < i, and is hence
contained in Z<J . On the other hand, the face opposite (1, i) cannot belong to
∆1×A nor to {1}×B, does not belong to B0, and is a maximal face of a unique
simplex in B0, namely J . It is hence not contained in Z<J .
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To respect Condition (1)(1) we now define h≤J ∶Z≤J → C by mapping ∆J in

a degenerate manner via the retraction ∆J → ∆J∖{(0,i)} which maps (0, i) to
(1, i) (so that (h≤J)∣∆J is determines by (h<J)∣∆J∖{(0,i)}). We note that this
definition is compatible with all the faces which are already in Z<J : this is
automatically true for the face opposite (0, i), and holds for the other ones
thanks to our assumption that g<J satisfies Condition (1)(1).

(2) Suppose that J is a simplex of type (ii) and index i ∶= m(J). Then we claim
that Z<J already contains all the maximal face of J except the one opposite
to the vertex (0, i − 1). Indeed, the faces opposite to vertices of the form (0, j)
for j < i − 1 are either in ∆1 × A or are simplices in B0 of type (ii) of lower
dimension. The face opposite (1, i) (if (1, i) ∈ J) is itself a simplex of type (ii)
and a lower dimension. For the face opposite the vertex (0, i), if J1 = {(1, i)}
then this face is also a maximal face of a simplex in B0 of type (iii) and of a
index i− 1. If J1 = ∅ then we argue as follows: if i− 1 is in the image of σ then
we view this face as the one opposite to (1, i − 1) in J ∖ {(0, i)} ∪ {(1, i − 1)},
which is of type (i) and smaller index than J . If i − 1 is not in the image of σ
and i− 2 ∈ J0, then we view this face as the one opposite the vertex (1, i− 1) of
J ∖{(0, i)}∪{(1, i−1)}, which is of type (ii) and smaller index than J . Finally,
if i− 1 is not in the image of σ and i− 2 ∉ J0, then we view this face as the one
opposite to the vertex (0, i− 2) in J ∖{(0, i)}∪ {(0, i− 2)}, which is of type (ii)
and a smaller index than J .

On the contrary, the face opposite to (0, i− 1) cannot belong to {1} ×B nor
to ∆1 × A (indeed, since A is (σ ⊣ ρ)-admissible, if A contained the simplex
spanned by J0 ∖ {i − 1} then it would contain J0), and is not an element of
B0. If we consider which simplices in B0 other than J contain this face as a
maximal face we see that they must either be of type (iii) and the same index
as J or of type (ii) and a bigger index. They are hence necessarily bigger than
J in the total order we chose, and hence this face is not contained in Z<J .

To respect Condition (2) we now define h≤J ∶Z≤J → C by mapping ∆J in

a degenerate manner via the retraction ∆J → ∆J∖{(0,i)} which maps (0, i) to
(0, i−1). We note that this definition is compatible with all the faces which are
already in Z<J : this is automatically true for the face opposite (0, i), and holds
for the other ones thanks to our assumption that g<J satisfies Condition (2)(2).

(3) Suppose that J is a simplex of type (iii) and index i ∶= m(J). We first note
that Z<J already contains all the maximal face of J except the face opposite
to the vertex (1, i). Indeed, the faces opposite vertices of the form (0, j) for
j < i are either in ∆1 ×A or are simplices of type (iii) of a smaller dimension,
and the same holds for faces opposite vertices of the form (1, j) for j > i such
that (1, j) is not maximal in J . The face opposite to the vertex (0, i) is either
in {1} × B or is a maximal face of a simplex in B0 of type (iii) and of index
j = max(J0 ∖ {i}) < i, and is hence contained in Z<J . Finally, if (1, j) is the
maximal vertex in J , then the face opposite (1, j), if it is not in ∆1 × A and
not in B0 then it must be that the index i is not in the image of σ, J0 does
not contain i − 1 and J1 = {(1, i), (1, j)}. In this case, the face opposite (1, j)
is the maximal face of the simplex (J ∖ {(1, j)}) ∪ {(0, i − 1)}, which belongs
to B0 since B is (σ ⊣ ρ)-admissible, is of the same index and dimension as J
but is still smaller than J with respect to our linear order since its intersection
with {1} × [n] has less elements than that of J . We may then conclude that
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this face is also contained in Z<J . On the other hand, the face opposite (1, i) is
not in B0 and is the maximal face of exactly two simplices in B0, the simplex
J and another simplex of type (iii) whose index is min(J1 ∖ i) > i. This face
is consequently not contained in Z<J . We may thus conclude that we have a
pushout square of simplicial sets of the form

ΛJ
(1,i)

//

��

Z<J

��

∆J // Z≤J

where the vertical map is an inner horn inclusion since (1, i) is not maximal
nor minimal in J . Now if ∣J ∣ = 3 then, by our assumption on C, we can extend
g<J to g≤J in such a way that ∆J is sent to a thin triangle, thus assuring
that Condition (3)(3) continues to hold for g<J . On the other hand, if ∣J ∣ > 3
then, since we assumed that g<J satisfies Condition (3)(3), we have that g<J maps

∆{(0,i),(1,i),(1,j)} to a thin triangle, where j = min(J1 ∖ i). By our assumption

on C we can then extend g<J to a map g≤J ∶Z≤J → C. �

Corollary 4.11. Let (σ ⊣ ρ) and A ⊆ B ⊆ ∆n be as in the previous lemma and

LA, LB as in Notation 4.54.5. Let C = (C, TC) be a scaled simplicial set which satisfies
the right lifting property with respect to the maps of type (1) in Definition 1.161.16.
Suppose that we are given a map

g∶ (∆1 ×A,LA) ∐
{1}×A♭

{1} ×B♭ → C

such that the underlying simplicial map of its restriction to ∆1 × A is a (σ ⊣ ρ)-
transformation. Then g extends to a map of scaled simplicial sets. h∶ (∆1×B,LB) → C

whose underlying simplicial map is a (σ ⊣ ρ)-transformation.

Proof. Combine the Lemma 4.84.8 and Remark 4.44.4. �

5. Weak ∞-bicategories are ∞-bicategories

Our goal in this section is to prove the following result:

Theorem 5.1. Let C be a weak ∞-bicategory. Then C is an ∞-bicategory, i.e., C

is fibrant in Setsc
∆.

We advance towards Theorem 5.15.1 in a sequence of lemmas.

Lemma 5.2 (Special outer horns). Let C and D be weak ∞-bicategories and let

p∶C→D

be a map which satisfies the right lifting property with respect to maps of type (1)
and (3) in Definition 1.161.16. Let T be the collection of all triangles in ∆n which are

either degenerate or contain the edge ∆{0,1}, and let T0 ⊆ T be the subset of those
triangles which are contained in Λn0 . Then the dotted lift exists in any square of the
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form

(5.1) (Λn0 , T0)
f
//

��

C

p

��

(∆n, T )

;;

g
// D

such that f ∣∆{0,1} is an equivalence in C.

Proof. Let f0 ∶= f ∣∂∆{2,...,n} and let f1 ∶= f ∣∆{2,...,n} . By Corollary 2.202.20 the projection

q∶C/f1
→ C/f0

×
D/pf0

D/pf1

is an outer fibration whose base change to the marked core of C/f0
×D/pf0

D/pf1

is an outer cartesian fibration. Unwinding the definitions, we see that finding a
solution to the lifting problem (5.15.1) is equivalent to finding a lift in a diagram of
marked-scaled simplicial sets of the form

(5.2) ∆{0} //

��

C/f1

q

��

(∆1,{∆1},∅) η
// C/f0

×D/pf0
D/pf1

where η is a marked edge of C/f0
×D/pf0

D/pf1
whose image in C is an equivalence.

By Corollary 2.182.18 the map

qC∶C/f0
→ C

is an outer cartesian fibrations and the edge eη of C/f0
determined by the correspon-

ding component of η is qC-cocartesian (since it is marked in C/f0
). By Remark 2.52.5

we have that C/f0
is a weak ∞-bicategory and by Remark 2.102.10 the edge eη is an

equivalence. Similarly, the map C/f0
×
D/pf0

D/pf1
→ C/f0

, which is a base change

of D/pf1
→ D/pf0

, is an outer fibration such that the edges which are marked in

C/f0
×D/pf0

D/pf1
are cartesian. By Remark 2.52.5 we then have that C/f0

×
D/pf0

D/pf1

is a weak ∞-bicategory and by Remark 2.102.10 we may conclude that the edge η is an
equivalence.

Now by Remark 2.192.19 the marked edges in C/f0
×D/pf0

D/pf1
are closed under

composition, and so the marked core of C/f0
×D/pf0

D/pf1
is also a weak ∞-bicategory.

Since the base change of q to this marked core is an outer cartesian fibration this
base change is also an isofibration by Remark 2.92.9. We may thus conclude that the
dotted lift in (5.25.2) exists, as desired. �

Proposition 5.3. Let p∶C→D be a bicategorical equivalence of weak ∞-bicategories
and suppose given a square of the form

∂∆n
♭

f
//

��

C

p

��

∆n
♭

g
// D
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with n ≥ 1. Then there exists an extension f ∶∆n
♭
→ C and a natural transformation

T ∶∆1
♭
×∆n

♭
→D from g to pf whose restriction to ∂∆n

♭
is the identity transformation

on pf (in particular, T is a levelwise equivalence since n ≥ 1).

Proof. If n = 1 the claim amounts to the induced maps of (naturally marked) ∞-
categories HomC(−,−) → HomD(p(−), p(−)) being essentially surjective. We may
hence assume that n ≥ 2.

Let x = f(0) ∈ C and y = f(n) ∈ C. Our first step is to “move” f so that it sends

all the vertices except the last one to x. Let C be the underlying simplicial set of
C. Applying Corollary 4.114.11 with A = ∅,B = ∂∆n and ρ∶∆n → ∆1 the map which
sends {0, ..., n − 1} to 0 and n to 1 we may find a map of scaled simplicial sets

(5.3) h∶ (∆1 × ∂∆n, L∂∆n) → C,

whose underlying simplicial map ∆1 × ∂∆n → C is a (σ ⊣ ρ)-transformation, and
such that h∣{1}×∂∆n

♭

= f (here the scaling L∂∆n is as in Notation 4.54.5). In addition,

by the definition of a (σ ⊣ ρ)-transformation we have that h∣∆1×{0} and h∣∆1×{n}

are degenerate (see Remark 4.34.3) and h∣
{0}×∆

{0,...,n−1}
♭

is degenerate on x (see Re-

mark 4.64.6). Let us set f ′ ∶= h∣{0}×∂∆n
♭

. The map f ′ then determines a commutative
square of scaled simplicial sets

(5.4) ∂∆
{0,...,n−1}
♭

//

��

C/y

πC

��

∆
{0,...,n−1}
♭

// C

in which the bottom horizontal map is given by the restriction of f ′ to {0}×∆
{0,...,n−1}
♭

,
and is in particular constant with image the vertex x. The top horizontal map

in (5.45.4) then determines a map f ′x∶∂∆
{0,...,n−1}
♭

→ (C/y)x. Projecting down to D we
may now consider the map

(5.5) (∆1 × ∂∆n, L∂∆n) ∐
∆{1}×∂∆n

♭

∆{1} ×∆n
♭
→D

determined by ph and g. Applying again Corollary 4.114.11 with respect to A = ∂∆n

and B = ∆n we may extend (5.55.5) to a map

H ∶ (∆1 ×∆n, L∆n) →D,

whose underlying simplicial map is a (σ ⊣ ρ)-transformation, so that, in particular,

H maps {0} × ∆{0,...,n−1} to p(x). Let us denote by g′ the restriction of H to

{0} ×∆n. The map g′ now allows us to extend the map f ′x∶∂∆{0,...,n−1} → (C/y)x
above to a commutative square

(5.6) ∂∆
{0,...,n−1}
♭

f ′x //

��

(C/y)x

p∗

��

∆
{0,...,n−1}
♭

g′x // (D/p(y))p(x)

Since p∶C→D is a bicategorical equivalence of weak ∞-bicategories Proposition 2.242.24
implies that the map (C/y)x → (D/p(y))p(x) is a an equivalence of ∞-categories (or,
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more precisely, of ∞-bicategories in which every triangle is thin). It then follows
that in the square of Kan complexes

Fun≃(∆{0,...,n−1}
♭

, (C/y)x) //

��

Fun≃(∆{0,...,n−1}
♭

, (D/p(y))p(x))

��

Fun≃(∂∆
{0,...,n−1}
♭

, (C/y)x) // Fun≃(∂∆
{0,...,n−1}
♭

, (D/p(y))p(x))

the horizontal maps are equivalences and the vertical maps are categorical fibrati-
ons, which implies that this square induces equivalences on vertical fibers. We may

therefore conclude that the map f ′x∶∂∆
{0,...,n−1}
♭

→ (C/y)x extends to a map

f
′

x∶∆
{0,...,n−1}
♭

→ (C/y)x,

such that we have an invertible natural transformation ηx∶∆1
♭
×∆n−1

♭
→ (D/p(y))p(x)

from g′x to p∗f
′

x, whose restriction to ∂∆n−1
♭

is the identity on p∗f
′

x. The map f
′

x

then corresponds to a map f
′∶∆n

♭
→ C and the natural equivalence ηx determines a

natural equivalence η∶∆1
♭
×∆n

♭
→D from g′ to pf

′

, whose restriction to ∂∆n
♭

is the
identity on pf ′. Before continuing let us introduce the shorthand notation

X ∶= ∆{0} ×∆n
♭

∐
∆{0}×∂∆n

♭

(∆1 × ∂∆n, L∂∆n) → (∆1 ×∆n, L∆n) ∶= Y.

The map h of (5.35.3) together with f
′

above then determine a map ϕ∶X → C which
sends the edge ∆1×{0} to a degenerate edge (see Remark 4.34.3). Using the filtration
of Remark 4.74.7 we now see that the map X∐∆1

♭
×{0} ∆0 → Y ∐∆1

♭
×{0} ∆0 is scaled

anodyne and hence the map ϕ extends to a map ϕ∶Y → C. Projecting to D we
now obtain two different maps pϕ,H ∶Y →D, whose restriction to X gives the two
maps pϕ,H ∣X ∶X → D. By construction, the map pϕ is determined by the pair

(pf ′, ph), while the map H∣X is determined by the pair (g′, ph). These two maps

are related via a levelwise invertible natural transformation η∶∆1
♭
×X → D whose

value on ∆{0} ×∆n
♭
⊆X is η, and which is constant on (∆1 × ∂∆n

♭
, L∂∆n) ⊆X. We

may hence consider the resulting extension problem

(5.7)

∂∆1 × Y ∐
∂∆1×X

∆1
♭
×X D

∆1
♭
× Y

((H,pϕ),η)

.

By the above, the top horizontal map sends ∆1
♭
× ∆1

♭
× {0} ⊆ ∆1

♭
×X to a point.

Since the map X∐∆1
♭
×{0} ∆0 → Y ∐∆1

♭
×{0} ∆0 is scaled anodyne and scaled anodyne

are closed under pushout-products with arbitrary inclusions [1616, Prop.3.1.8] the
extension problem (5.75.7) admits a solution ψ∶∆1

♭
× Y → D. Restricting the map

ϕ∶Y → C and the natural transformation ψ∶∆1
♭
×Y →D to ∆{1}×∆n

♭
⊆ Y now yields

an extension f ∶∆n
♭
→ C of the original map f ∶∂∆n

♭
→ C and a natural transformation

from g∶∆n
♭
→ D to pf ∶∆n

♭
→ D, whose restriction to ∂∆n

♭
is the identity on pf , as

desired. �
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Proposition 5.4. Let p∶C→D be a bicategorical equivalence of weak ∞-bicategories
and let j∶A → B an injective map of scaled simplicial sets. Suppose that we are
given a commutative diagram of the form

(5.8) ∆{1} ×A

j

��

r0 // C

i

��

∆{0} ×B ∐
∆{0}×A

∆1
♭
×A h0 // D

such that (h0)∣∆1×{a} is an equivalence in D for every a ∈ A. Then (5.85.8) extends to
a diagram of the form

(5.9) ∆{1} ×A

j

��

// ∆{1} ×B r //

��

C

i

��

∆{0} ×B ∐
∆{0}×A

∆1
♭
×A // ∆1

♭
×B h // D

whose external rectangle is (5.85.8) and such that h∣∆1×{b} is an equivalence in D for
every b ∈ B.

Proof. Working simplex by simplex, it will suffice to prove the case where the
map j∶A ↪ B is one of the inclusions jn∶∂∆n

♭
⊆ ∆n

♭
or the inclusion ∆2

♭
⊆ ∆2

♯
.

We then note that for j0∶ ∅ ⊆ ∆0 the desired statement is equivalent to p being
essentially surjective. When j is the inclusion ∆2

♭
⊆ ∆2

♯
the horizontal maps in

the left square of (5.95.9) are both isomorphisms on the underline simplicial sets.
In this case the result can be obtained by invoking the fact that p detects thin
triangles (Proposition 3.33.3) and that the collection of thin triangles is closed under
levelwise invertible natural transformations (Corollary 3.53.5). We may hence assume
that j = jn for some n ≥ 1.

Let

(5.10) [∆1
♭
× ∂∆n

♭
] ∐

∆{0}×∂∆n
♭

[∆{0} ×∆n
♭
] = Zn+1 ⊆ Zn ⊆ ... ⊆ Z0 = ∆1

♭
×∆n

♭

be the filtration (2.52.5) of Construction 2.272.27. Then the inclusions Zk+1 ⊆ Zk are scaled
anodyne for k ≥ 1 and so we may extend the map h0 along the filtration (5.105.10) all
the way to a map h′∶Z1 →D. In the last filtration step we have a pushout diagram
of the form

(Λn+1
0 , T0∣Λn+1

0
) //

��

Z1

��

(∆n+1, T0) // Z0

where the composed map ∆n+1 → Z0 → ∆n
♭
× ∆1

♭
is the simplex τ0. Our assump-

tion that h0∣{0}×∆1 is an equivalence in D implies that h′ ○ τ0∶Λn+1
0 sends ∆{0,1}

to an equivalence and hence by Lemma 5.25.2 we may extend h′∶Z1 → D to a map
h∶Z0 = ∆1

♭
× ∆n

♭
→ D. We have thus constructed a natural transformation from

h0∣{0}×∆n
♭

to some n-simplex σ∶∆n
♭
→ D, extending the given natural transforma-

tion on ∂∆n
♭
⊆ ∆n

♭
. In particular, σ∣∂∆n

♭

lifts to C. Applying Proposition 5.35.3 we
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may conclude that σ admits a natural transformation (constant on ∂∆n and in
particular levelwise invertible) to an n-simplex which lifts to C. Composing this
natural transformation with h we may as well assume that σ itself lifts to C, as
desired. �

Proof of Theorem 5.15.1. Let C be a weak ∞-bicategory. Choose a trivial cofibration
p∶C↪D where D is fibrant. Then in particular D is a weak ∞-bicategory. Applying
Proposition 5.45.4 to the diagram

C ×∆{1} ≅ //

��

C

p

��

D ∐
C×∆{0}

∆1 × C // D

in which the bottom map restricts to the identity on D and to the identify transfor-
mation from p to itself on ∆1 ×C, we may conclude that C is a deformation retract
of D and hence in particular fibrant. �

Since the notion of a bicategorical equivalence is invariant under the duality
operator (X,TX) ↦ (Xop, TX), Theorem 5.15.1 implies that the notion of a weak
∞-bicategory is self-dual. We may summarize the situation as follows:

Corollary 5.5. Let (X,TX) be a scaled simplicial set. Then the following conditi-
ons are equivalent:

(1) (X,TX) is a weak ∞-bicategory.
(2) (Xop, TX) is a weak ∞-bicategory.
(3) (X,TX) is fibrant in Set+∆.

In addition, when these equivalent conditions hold the map (X,TX) →∆0 is a weak
fibration.

6. The Cisinski model structure for ∞-bicategories

In this section, we give a different construction of Lurie’s model structure for
∞-bicategories on the category Set sc

∆ of scaled simplicial sets using the machinery
of Cisinski–Olschok recalled in the appendix. We choose as our subset of mono-
morphism the set S the generating anodyne maps of Definition 1.161.16. As inter-
val, we choose J♯, whose underlying simplicial set is the 1-categorical nerve of the
free living groupoid on an invertible arrow (alternatively, it can be described as
J = Cosk0({0,1})), i.e., the 0-coskeleton of the set with two elements, whose two
non-degenerate 2-simplices are marked. The pair (J♯,{0,1} → J♯) is then indeed a
cylinder object in the sense of Definition A.3A.3, see also Remark A.4A.4.

Definition 6.1. We will call the Cisinski model structure on Setsc
∆ the model struc-

ture of Theorem A.6A.6 associated to the set of maps S and the interval object J♯.
Note that Assumption A.1A.1 holds for Setsc

∆ thanks to Remark 1.141.14 and Remark A.2A.2.

By definition, the cofibrations of the Cisinski model structure on Setsc
∆ are the

monomorphisms, and the fibrant objects are the scaled simplicial sets X which
admit extensions for the generating anodyne maps of Notation A.5A.5. The following
result justifies our choice of an interval object:



ON THE EQUIVALENCE OF ALL MODELS FOR (∞,2)-CATEGORIES 35

Proposition 6.2. The inclusions i0∶ {0} → J♯ and i1∶ {1} → J♯ are ∞-bicategorical
equivalences of ∞-bicategories.

Proof. It will suffice to show that the terminal map J♯ →∆0 is a trivial fibration, i.e.,
satisfies the right lifting property with respect to all inclusions of scaled simplicial
sets. Since every triangle in J♯ is thin it will suffice to check that the underlying
simplicial set J satisfies the right lifting property with respect to all inclusions of
simplicial sets. Better yet, since J is defined to be the 0-coskeleton of {0,1} it
will suffice to check that {0,1} has the right lifting property with respect to all
inclusions of sets. Indeed, every set has this property. �

Corollary 6.3. The class of fibrant objects in the Cisinski model structure contains
all ∞-bicategories and is contained in the class of all weak ∞-bicategories. It thus
coincides with the class of ∞-bicategories by Theorem 5.15.1.

Proof. Since S generates the class of scaled anodyne maps it follows that every
Cisinski-fibrant object is a weak ∞-bicategory. On the other hand, combining the
previous Proposition with the fact that Lurie’s model structure on scaled simplicial
sets is cartesian (see [1616, Proposition 3.1.8] and [1616, Lemma 4.2.6]) we may conclude
that every generating anodyne in the Cisinski model structure is a trivial cofibration
in the bicategorical model structure, and hence every ∞-bicategory is Cisinski-
fibrant.

�

Since model structures are determined by the class of cofibrations and fibrant
objects ([1313], Proposition E.1.10) we may conclude that:

Corollary 6.4. The Cisinski model structure on the category Set sc
∆ of scaled sim-

plicial sets with generating set S and interval given by J♯ coincides with Lurie’s
model structure for ∞-bicategories.

7. The main equivalence

In this section we define an adjunction of the form:

Set sc
∆

ι
&&

U

ff
⊥ St2

which we show to be a Quillen one. After having established this, we prove it is
a Quillen equivalence by making use, among other things, of an explicit fibrant
replacement for ιX, when X is an ∞-bicategory.

Definition 7.1. Define the functor ι∶Set sc
∆ → St by sending a scaled simplicial set

(X,TX) to the stratified set ι(X,TX) ∶= (X,TX ∪ deg(X)). By definition, this is a
stratified set whose only non-degenerate marked n-simplices have n = 2.

We observe that this functor can be equivalently described as the following left
Kan extension:

∆sc St2

Set sc
∆

i

y
Lany(i)≅ ι
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where i∶∆sc → St2 is defined by setting:

⎧⎪⎪⎨⎪⎪⎩

i([n]) ∶= (∆n,∅)
i([2]t) ∶= (∆2,{∆2})

It thus follows that ι admits a right adjoint U ∶St2 → Set sc
∆ . Explicitly, U forgets all

the marking except in dimension 2, and preserves the underlying simplicial set. We
will call U(X,M) the underlying scaled simplicial set of the stratified set (X,M).

Lemma 7.2. The functor ι∶Set sc
∆ → St2 is fully faithful, preserves monomorphisms

and preserves pushouts. In addition, ι preserves products and pushout-products up
to homotopy.

By “preserves products up to homotopy” we mean that the natural map

ι(X × Y ) → ιX × ιY
is an anodyne extension in St2, and similarly for pushout-products.

Proof. We first note that monomorphisms of stratified sets are detected on the
level of the underlying simplicial sets, and hence also on the level of the underlying
scaled simplicial sets. The first part is then a consequence of the fact that ι is a
left adjoint functor and the associated unit map X → U(ι(X)) is an isomorphism.
Since U preserves products this also shows that ι(X × Y ) and ιX × ιY have the
same underlying scaled simplicial set, so that the marking of ι(X ×Y ) and ιX × ιY
only differs in dimension strictly greater than 2. The comparison map (both for
the case of products and pushout-products) is therefore in the saturation of the set
{(∆n,∅) → (∆n,{∆n})}n>2, and is hence an anodyne extension. �

The previous lemma tells us that ι preserves cofibrations, since they coincide
with monomorphisms for both model structures involved. Hence, this proves half
of the Proposition 7.47.4. Before completing its proof, we need a preliminary lemma.
Given a stratified set X ∈ St denote by eqX the set of equivalences of X, i.e.,
1-simplices v∶x→ y that admit extensions to th1E2, as displayed below.

x x y y

y x

v w
≃ w ≃

v

Here, E2 denotes the 2-skeleton of the simplicial set J = Cosk0({0,1}) (where we
adopt the notation of [2323]). Clearly, the set of equivalences of a stratified set only
depends on the underlying scaled simplicial set.

Lemma 7.3. Given an ∞-bicategory (X,TX) in Set sc
∆ we have that

X̃ ∶= th2(X,TX ∪ eqX)

is a 2-trivial saturated complicial set and the map ι(X,TX) → X̃ is a trivial cofi-

bration of stratified sets. In particular, X̃ is a fibrant replacement of ι(X,TX).

Proof. We begin by showing that the inclusion ι(X,TX) → X̃ is an anodyne exten-
sion. We can factor it as the composite of the obvious maps

ι(X,TX) → th2ι(X,TX) → X̃,



ON THE EQUIVALENCE OF ALL MODELS FOR (∞,2)-CATEGORIES 37

the first one clearly being an anodyne morphism. Turning to the second one, we will
show that it belongs to the saturation of the set of maps given by {∆3

eq → th(∆3)}.
For every equivalence v ∈ X1 pick a witness αv ∶ th1(E2) → th2ι(X,TX), and consi-
der the inner horn Λ3

2 →X given by:

0

1 2

3

v

w

v

v

≃

=

0

1 2

3

v

w

v

v

≃

α̂v

where the 2-simplices denoted by “≃” are those that constitute αv. These data
admit an extension to a 3-simplex α̂v, since (X,TX) is an ∞-bicategory, and the
resulting 2-simplex α̂v ∣∆{0,1,3} has to be marked, thanks to Remark 1.171.17. We thus get

a map α♯v ∶∆3
eq → th2ι(X,TX). We now observe that the inclusion th2ι(X,TX) → X̃

is obtained as a transfinite composite of pushouts of the maps α♯v along the map
∆3

eq → th(∆3), as v varies through all the equivalences of (X,TX), and is thus an
anodyne map.

Let us now show that X̃ is fibrant, i.e., admits all lifts against generating ano-
dyne morphisms (Definition 1.321.32). Since X̃ is 2-trivial by construction and is
marked by its equivalences, [2323, Theorem 56] tells us that it is enough to check
that X admits lifts against inner complicial horn inclusions, inner thinness ex-
tensions of dimension ≥ 3 and saturation maps. Now for complicial inner horns
(Λn,Mi∣Λni ) → (∆n,Mi), these lifts already exist at the level of the underlying

scaled simplicial set (X,TX) = U(X̃) since it is assumed to be an ∞-bicategory.
Turning to inner thinness extensions in dimension ≥ 3, we only have to check

it for (∆3,M ′

i) → (∆3,M ′′

i ) since X̃ is 2-trivial. In this case, the existence of a
lift follows from Remark 1.171.17, which ensures it already exists at the level of the
underlying scaled simplicial set, as above.

Let us now show X̃ is saturated. Since all the simplices of dimension ≥ 3 in
X̃ are marked it will suffice to show that X̃ admits extensions against the maps
∆3

eq → th(∆3) and ∆3
eq ∗ ∆0 → th(∆3) ∗ ∆0; indeed, for any m > 0, a marked 2-

simplex of ∆3
eq∗∆m (resp. th(∆3)∗∆m) lives inside a stratified sub-simplicial set of

the form ∆3
eq ∗∆{k} (resp. th(∆3) ∗∆{k}), for some k ∈ {0,1, ...,m}. In the former

case, we observe that, since both ∆3
eq and th(∆3) are 1-trivial by definition, any

map ∆3
eq → X̃ factors through its core ∞-category. Therefore, a lift exists by the

2-out-of-6 property of equivalences in an ∞-category. For ∆3
eq ∗∆0 → th(∆3) ∗∆0,

consider the following diagram of stratified sets (omitting the functor ι for sake of
simplicity):

(∆4, T ) (∆4, T ′)

∆3
eq ∗∆0 th(∆3) ∗∆0

X̃
f

where
T ∶= {∆{0,2,4}, ∆{1,2,3}, ∆{0,1,3}, ∆{1,3,4}, ∆{0,1,2}}
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and
T ′ ∶= T ∪ {∆{0,3,4},∆{0,1,4}}.

The precomposition of f with (∆4, T ) → ∆3
eq ∗∆0 admits the dotted extension to

(∆4, T ′), since (X,TX) is an ∞-bicategory and (∆4, T ) → (∆4, T ′) is a generating
anodyne map for the model structure for ∞-bicategories. We hence obtain an
extension of f to a map g∶W → X̃, where W ∶= (∆4, T ′) ∐

(∆4,T )

∆3
eq ∗∆0. Since X̃

admits extensions against ∆3
eq ⊆ th(∆3) as we saw above we may further extend g

to a map g′∶W ′ → X̃, where W ′ ∶=W ∐∆3
eq

th(∆3).
We now claim that the map g′ extends to all of th(∆3) ∗∆0. To see this, note

that W ′ and th(∆3)∗∆0 have the same underlying simplicial set ∆4 and the same

marked edges, and that all the triangles contained in ∆{0,1,2,3} are marked in W ′.
Out of the six triangles in ∆4 which contain the vertex 4 we have that exactly four
are marked in W ′: ∆{0,2,4},∆{1,3,4},∆{0,1,4} and ∆{0,3,4}, where as in th(∆3) ∗∆0

all six are marked. Now since the marked edges in X̃ are exactly those which are
equivalences in the ∞-bicategory (X,TX) we get that g′ sends the edges ∆{0,1}

and ∆{1,2} to equivalence. Applying Proposition 3.43.4 to the 3-simplex g′∣∆{0,1,2,4}

we may now conclude that g′(∆{1,2,4}) is in TX , and the same lemma applied to

the 3-simplex g′∣∆{1,2,3,4} shows that g′(∆{2,3,4}) is in TX . We may hence conclude
that g′ extends to th(∆3) ∗∆0, as desired. �

Proposition 7.4. The adjunction

Set sc
∆

ι
&&

U

ff
⊥ St2

is a Quillen adjunction between the model structure for ∞-bicategories and that of
2-trivial saturated complicial sets.

The proof of Proposition 7.47.4 will require the following two lemmas.

Lemma 7.5. For n ≥ 3 the map

in∶ (Λn0 ,{∆{0,1},∆{0,1,n}}) → (∆n,{∆{0,1},∆{0,1,n}})
is a trivial cofibration in St2.

Proof. It suffices to show that in has the left lifting property with respect to all
fibrations between fibrant objects p∶ (E,ME) → (B,MB). We therefore consider a
lifting problem of the form

(7.1) (Λn0 ,{∆{0,1},∆{0,1,n}}) f
//

��

(E,ME)

p

��

(∆n,{∆{0,1},∆{0,1,n}}) g
//

66

(B,MB)

Since E is fibrant its underlying scaled simplicial set (E,ME ∩E2) admits filler for
scaled inner horns (as those are also anodyne maps up to marking in dimension ≥ 3
in the context of stratified sets, see Definition 1.321.32). By Lemma 4.84.8 we may thus
find a (σ ⊣ ρ)-transformation h∶∆1 ×Λn0 → E with respect to the scaling ME ∩E2,
where ρ∶∆n → ∆2 is the surjective map with ρ−1(0) = {0}, ρ−1(1) = {1, ..., n − 1}
and ρ−1(2) = {n} and σ∶∆2 →∆n is the associated minimal section. Let M be the
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set of simplices of ∆1 ×Λn0 containing the degenerate simplices and the simplices of
the following form:

● the simplices ∆{1} ×∆{0,1} and ∆{1} ×∆{0,1,n};
● the edges of the form ∆1 × {i} for i = 0,1, n;

● the triangles of the form ∆{(0,i),(1,i),(1,j)} for every i, j ∈ [n];
● the triangles of the form ∆{(0,i),(0,j),(1,j)} whenever j = 0,1, n or j = i + 1 and
i, j ∈ {1, ..., n − 1};

● the triangles ∆{0} ×∆{0,1,i} for i ∈ {2, ..., n − 1};
● all the simplices of dimension ≥ 3;

By the definition of (σ ⊣ ρ)-transformation and since (E,ME) is 2-trivial we have
that h extends to a map of stratified sets (∆1 ×Λn0 ,M) → (E,ME). In particular,
the second to last subset of M from the previous list is sent to thin triangles since,
by point (2) in Definition 4.24.2 and by downward induction on i, we have that the

whole simplex h(∆{0}×∆{0,1,...n−1}) degenerates to h(∆{0}×∆{0,1}). Let M ′ be the

union of M with the simplices ∆{0} ×∆{0,1} and ∆{0} ×∆{0,1,n}. By Remark 1.361.36
we see that h extends to a map of stratified sets h∶ (∆1 ×Λn0 ,M

′) → (E,ME).
Now consider the composed map ph∶ (∆1 × Λn0 ,M

′) → (B,MB). Since the sca-
led simplicial set (B,MB ∩ B2) also admits fillers for scaled inner horns we may
apply Lemma 4.84.8 again to extend the (σ ⊣ ρ)-transformation ph to a (σ ⊣ ρ)-
transformation H ∶ (∆1 ×∆n,M ′) → (B,MB). restricting h and H to ∆{0} ⊆ ∆1 we
now obtain a modified lifting problem of the form

(7.2) (Λn0 ,M ′

0∣Λn0 )
f ′
//

��

(E,ME)

p

��

(∆n,M ′

0)
g′
//

h′
88

(B,MB)

where M ′

0 ∶=M ′∣∆{0}×∆n coincides with the set of all faces of ∆n which contain the

edge ∆{0,1}. Since the left vertical map in (7.27.2) is an anodyne extension and the
right vertical map is a fibration the dotted lift h′ exists. The maps h′, h and H now
determine a commutative diagram of the form

(7.3) (∆{0} ×∆n,M ′

0) ∐
∆{0}×Λn0

(∆1 ×Λn0 ,M
′) //

��

(E,ME)

p

��

(∆1 ×∆n,M ′) H //

55

(B,MB)

We now claim that the left vertical map in (7.37.3) is an anodyne extension, and
hence the lifting problem has a solution. To see this, first we note that ∆n contains
two non-degenerate faces that are not in Λn0 , the simplex ∆{0,...,n} and the simplex

∆{1,...,n}. Furthermore, by the choice of σ ⊣ ρ the restriction of H ∶∆1 × ∆n → B
to ∆1 × ∆{1,...,n} is a (σ′ ⊣ ρ′)-transformation, where ρ′∶∆{1,...,n} → ∆{1,2} and

σ′∶∆{1,2} → ∆{1,...,n} are the restrictions of ρ and σ, respectively. We can then
factor the left vertical map as a composition of two maps, each of which is a pushout
of a map of the form

(7.4) (∆{0} ×∆m,M) ∐
∆{0}×∂∆m

(∆1 × ∂∆m,M) → (∆1 ×∆m,M)
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with m = n−1, n, where the marking M includes the edge ∆1×{0}, all the triangles

of the form ∆{(0,i),(1,i),(1,j)} and all the triangles of the form ∆{(0,i),(0,i+1),(1,i+1)}.
We may then factor (7.47.4) into a sequence of anodyne extensions using the filtration
of Remark 4.74.7. The dotted lift in (7.37.3) then yields a lift in (7.17.1), by restricting to
{1} ×∆n as desired. �

Lemma 7.6. Let j∶ (∆4, T ) → (∆4, T ′) be the generating scaled anodyne appearing
second in the list in Definition 1.161.16. Then j is sent by ι∶Set sc

∆ → St2 to a trivial
cofibration in St2.

Proof. It is enough to show that every fibration between fibrant objects satisfies
the right lifting property against ι(j). In fact, it is enough to check the lifting
property against fibrant objects, since the underlying simplicial map of j is an
isomorphism. Let us hence suppose that X is a fibrant stratified set with underlying
scaled simplicial set X ′ ∶= U(X) and let σ∶ (∆4, T ) → X ′ be a map. Set x ∶= σ(0)
and y ∶= σ(4). Taking into account Lemma 7.57.5 above we see that X ′ satisfies the
extension property with respect to maps of type (1) and (3) in Definition 1.161.16. It

then follows from Corollary 2.182.18 that the map of scaled simplicial sets p∶X ′
/y →X ′

is an outer cartesian fibration and every edge which is marked in X ′

/y is p-cartesian.

Since σ sends the triangles ∆{1,2,3},∆{0,1,3} and ∆{0,1,2} to thin triangles and X
admits fillers for thinness extensions it follows that σ must send ∆{0,2,3} to a thin
triangle as well. We may therefore consider the 4-simplex σ as encoding a 3-simplex
τ ∶∆3

♯
→ X ′

/y such that pτ ∶∆3
♯
→ X ′ coincides with σ∣∆{0,1,2,3} . Since σ sends the

triangles ∆{0,2,4} and ∆{1,3,4} to thin triangles in X ′ it follows that τ sends the
edges ∆{0,2} and ∆{1,3} to edges which are marked in X ′

/y.

Let H ∶∆1
♭
× ∆3

♯
→ X ′ be the natural transformation from the constant map

on x to pτ induced by the unique natural transformation ∆1
♭
×∆3

♯
→ ∆3

♯
from the

constant map on 0 to the identity. By Proposition 2.262.26 we may lift H to a pointwise
p-cartesian natural transformation H̃ ∶∆1

♭
×∆3

♯
→ X ′

/y from some τ ′ to τ . In fact,
Corollary 2.182.18 also tells us that every edge inX ′ has a marked p-cartesian lift, and so
by Proposition 2.262.26 we may assume that H̃ is pointwise marked. By Remark 2.192.19 we
have that the collection of marked edges in X ′

/y satisfies a certain closure property:

if σ∶∆2 → X ′
/y is a thin triangle such that σ∣∆{1,2} is marked in X ′

/y then σ∣∆{0,1}

is marked if and only if σ∣∆{0,2} is marked. It then follows that τ ′∶∆3
♯
→ X ′

/y

also sends the edges ∆{0,2} and ∆{1,3} to marked edges in X ′

/y. In addition the

image of τ ′ lies by construction in the fiber (X ′

/y)x above x. This means that τ ′

corresponds to a 4-simplex σ′∶ (∆4, T ) → X ′ such that σ′∣∆{0,1,2,3} degenerates to
the point. It then follows that σ′ determines a map of stratified sets of the form
σ′′∶∆3

eq ∗ ∆0 → X. Since X is fibrant σ′′ extends to a map th(∆3) ∗ ∆0 → X,

which implies in particular that σ′ sends the triangles ∆{0,1,4} and ∆{0,3,4} to thin
triangles in X ′, and so τ ′∶∆3

♯
→ X ′

/y sends the edges ∆{0,1} and ∆{0,3} to marked
edges in X ′

/y. By the closure property for marked edges invoked above we get that

the same holds for τ . This, in turn, means that σ∶ (∆4, T ) →X ′ also sends ∆{0,1,4}

and ∆{0,3,4} to thin triangles and hence extends to a map (∆4, T ′) → X ′, yielding
an extension ι(∆3, T ′) →X, as desired. �

Proof of Proposition 7.47.4. We have already observed that ι preserves cofibrations
in Lemma 7.27.2, so we are left with proving it preserves trivial cofibrations. By
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Proposition A.10A.10 and Remark A.11A.11 (or Remark A.9A.9) it is enough to check this
for maps which are pushout-products of maps in S ∪ {im∶ {m} ↪ J♯}m=0,1 and
cofibrations. Better yet, by Proposition 7.27.2 we have that ι preserves pushout-
products up to homotopy, and since St2 is cartesian closed, it will just suffice to
show that ι sends S ∪ {im∶ {m} ↪ J♯}m=0,1 to trivial cofibrations. We now verify
this claim case by case:

● for the map (Λni ,{∆{i−1,i,i+1}}∣Λni ) → (∆n,{∆{i−1,i,i+1}}) with 0 < i < n, we note
that it is sent by ι to an (inner) complicial horn inclusion (Definition 1.321.32) up to
marking in dimension greater than 2, and is hence a trivial cofibration;

● for the map j∶ (∆4, T ) → (∆4, T ′), this follows from Lemma 7.67.6;

● for the map (Λn0 ∐
∆{0,1}

∆0,{∆{0,1,n}}∣Λn0 ) → (∆n
0 ∐

∆{0,1}
∆0,{∆{0,1,n}}) with n ≥ 1,

when n = 1,2 this map becomes, after marking all simplices in dimension ≥ 3, a
pushout of an outer complicial horn inclusion and is hence a trivial cofibration.
When n ≥ 3 it is instead a pushout of the map appearing in Lemma 7.57.5, and is
hence again a trivial cofibration;

● for the maps im∶ {m} ↪ J♯ with m = 0,1, Lemma 7.37.3 shows that a fibrant re-
placement of ιJ♯ is given by the fully marked walking isomorphism E, which
is shown to be an interval object for the model structure on stratified sets in
Observation 43 of [2323]. �

We now are in a position to prove the following main result.

Theorem 7.7. The adjunction

Set sc
∆

ι
&&

U

ff
⊥ St2

is a Quillen equivalence.

Proof. By Lemma 7.37.3 the derived unit of this adjunction can be represented by
an isomorphism (X,TX) → UX̃ = (X,TX) whenever (X,TX) is fibrant, and so it
will suffice to show that the derived counit is a weak equivalence. Given a fibrant
stratified set (Y,M), we can factor its counit map as the composite

ι(Y,M ∩ Y2)
fÐ→ Ỹ

gÐ→ (Y,M)

where Ỹ is the fibrant replacement of ι(Y,M ∩Y2) constructed in Lemma 7.37.3. Since
f is an anodyne extension by Lemma 7.37.3 it will suffice to show that g is a weak
equivalence. We now observe that since the counit and f are both isomorphisms at
the level of the underlying scaled simplicial set, the same holds for g. In addition,
the stratified sets Ỹ and (Y,M) have the same marked simplices in dimension ≥ 2
by construction (and since (Y,M) is assumed 2-trivial). It will hence suffice to show

that Ỹ and (Y,M) have the same marked 1-simplices. In other words, we need to
show that any marked edge in (Y,M) is an equivalence. Indeed, this follows from
the fact that the map of stratified sets th(∆1) → th(J) is an anodyne map, see [2323,
Observation 43]. �

The following corollary gives a pointwise characterization of natural equivalences,
and we frame here for future use:
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Corollary 7.8. Let X,Y be scaled simplicial sets and let h∶∆1
♭
× X → Y be a

map such that h∣∆1×{x} is an equivalence in Y for every 0-simplex x ∈ X0. Then
h0∶X → Y is a bicategorical equivalence if and only if h1∶X → Y is. Moreover, if
X and Y are ∞-bicategories, then h extends to a map h∶J♯ ×X → Y .

Proof. Let j∶X → X̃ and φ∶Y → Ỹ be fibrant replacement maps consisting of
anodyne morphisms. Say that a natural transformation of scaled simplicial sets
h∶∆1

♭
×W → Z satisfies Property (P ) if h∣∆1×{w} is an equivalence for every vertex

w ∈W . By solving the lifting problem depicted below, we get a map h̃∶∆1
♭
× X̃ → Ỹ

which again satisfies P , since j and φ do not alter the set of 0-simplices.

∆1
♭
×X Y Ỹ

∆1
♭
× X̃

h

∆1
×j

φ

h̃

Suppose the statement holds true for every pair of ∞-bicategories X,Y , then thanks
to the following commutative square (for i = 0,1):

X Y

X̃ Ỹ

j

hi

φ

h̃i

we obtain that it also holds for arbitrary scaled simplicial sets X,Y . Therefore, we
can assume without loss of generality that X and Y are ∞-bicategories.

Consider the following diagram, where ι∶Set sc
∆ → St2 is the left Quillen equiva-

lence of §77 and for a scaled simplicial set W the term ι(W )f denotes the explicit
fibrant replacement of ι(W ) of Lemma 7.37.3:

ι(∆1
♭
×X) ι(Y ) ι(Y )f

ι(∆1
♭
) × ι(X)

ι(∆1
♭
) × ι(X)f

th(∆1) × ι(X)f

th(J) × ι(X)f

≃

ι(h) ≃

≃

H

≃

H′

H′′

A lift H exists since the left-hand side composite is an anodyne morphism (thanks to
Lemma 7.37.3). A liftH ′′ exists since the inclusion th(∆1

♭
) → th(J) is an anodyne map,

as shown in [2323, Observation 43]. The lift denoted by H ′ exists by our assumption of
Property (P ): this amount to showing that given a map q∶ ι(∆1

♭
)×th(∆1) →W with

W fibrant in St2, if q∣∆1×{i} is marked inW for every i = 0,1, then q extends to a map

from th(∆1)×th(∆1). This is a straightforward verification, which thus guarantees
the existence of the natural transformation H ′′, which again satisfies (P ). Since
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U(ιW )f = W for every ∞-bicategory W , we get a map U(H ′′)∶J♯ ×X → Y from
h0 to h1, which proves the claim, since J♯ is a contractible ∞-bicategory (see the
proof of Proposition 6.26.2). �

8. The homotopy 2-category and the scaled 2-nerve

In this section we construct a Quillen adjunction:

Set sc
∆

ho2
&&

N2

ff
⊥ 2-Cat

and prove the right adjoint N2 is homotopy fully faithful, i.e., fully faithful in the
∞-categorical sense. We then prove that if C is an ∞-bicategory then the unit map
C→ Nscho2(C) is 2-conservative in the sense that it detects thin triangles.

Recall that in [2121], Street defines the free ω-category on the n-simplex, called
the n-th oriental and denoted by On, which extends to a cosimplicial ω-category
O●∶∆ → ω-Cat . We may then apply to it the “intelligent” truncation functor
τ≤2∶ω-Cat → 2-Cat which sends an ω-category X to the 2-category having the
same 0-cells and 1-cells, and whose 2-cells are equivalence classes [x] of 2-cells in
X, where [x] = [y] if there is a zig-zag of 3-cells connecting x and y. The resulting
2-categories then admit an explicit description (see, e.g., [22, Corollary A.6]): the
objects of O≤2

n ∶= τ≤2On are the elements of ordered set [n], and given i, j ∈ [n], the
category Homτ≤2On(i, j) is the partially ordered set of subsets S ⊆ [n] such that
min(S) = i and max(S) = j.

Definition 8.1. We define the scaled 2-nerve N2(D) of a 2-category D by the
formula

N2(D) ∶= (Hom2-Cat(O≤2
●
,D), TD) ∈ Set sc

∆ ,

where TD denotes the triangles corresponding to those maps O≤2
2 → D which send

the unique non-identity morphism in HomO≤22
(0,2) to an isomorphism.

The cosimplicial object O≤2
●

can be extended to the category ∆sc (see Remark 1.141.14)
by sending [2]t to the 2-category obtained from O≤2

2 by universally inverting its
unique non-invertible 2-cell. This results in a 2-category with objects 0,1,2 and
with the same mapping categories as O≤2

2 except that HomO≤22
(0,2) is the “wal-

king isomorphism”, that is the trivial groupoid on two objects. By general con-
siderations the functor N2 then admits a left adjoint given by left Kan extending
O≤2
●
∶∆sc → 2-Cat along ∆sc → Set sc

∆ . We denote this left adjoint by

ho2∶Set sc
∆ → 2-Cat .

We then have the following:

Proposition 8.2. The functor ho2 is naturally isomorphic to the composite

Set sc
∆

Csc

Ð→ Set+∆-Cat
ho∗Ð→ 2-Cat .

In particular, ho2 is a weak equivalences preserving left Quillen functor, being a
composite of such (see Proposition 1.111.11). Consequently, by uniqueness of adjoints
the scaled 2-nerve N2 identifies with the composition Nsc ○N∗.
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Proof. Both ho2 and the composite ho∗C are left Kan extensions of their restriction
to ∆sc, and so it will suffice to construct a natural isomorphism on their restriction
to ∆sc. Let us first consider the further restriction to the subcategory ∆ ⊆ ∆sc, so
that we are dealing with the simplicial objects O≤2

●
and ho∗∆●. Both these simplicial

objects admit natural extensions from ∆ to the category of all partially ordered sets,
and these extensions coincide since they admit exactly the same explicit formula
(see [22, Corollary A.6] and [1616, Remark 3.7.5]).

To extend this natural isomorphism to ∆sc we observe that ∆sc is obtained
from ∆ by freely adding the object [2]t and factorizing the all degeneracy maps
from [2] to [0], [1] through [2]t in a compatible manner. The desired extension
of the natural isomorphism now follows from the fact that in both cases the arrow
[2] → [2]t is sent to the universal inversion of the unique non-invertible 2-cell, while
the 2-categories associated to [0] and [1] have all their 2-cells invertible. �

We now show the scaled 2-nerve is homotopy fully faithful.

Proposition 8.3. The counit εC∶ho2N2C → C is an equivalence of 2-categories.
More precisely, it is bijective on objects and an equivalence on hom-categories.

Proof. By Proposition 8.28.2 the adjunction ho2 ⊣ N2 can be identified with the com-
position of the adjunctions C ⊣ Nsc and ho∗ ⊣ N. It follows that the counit map εC
factors as a composition

(8.1) ho∗CNscN∗(C) → ho∗N∗(C) → C

where the first map is induced by the counit of the adjunction C ⊣ Nsc and the
second is the counit of ho∗ ⊣ N∗. Since C ⊣ Nsc is a Quillen equivalence and
N∗(C) is fibrant (since all objects in 2-Cat are fibrant) the first map in (8.18.1) is the
image under ho∗ of a weak equivalence, and is hence a 2-categorical equivalence by
Proposition 1.111.11. To show that the second map is a 2-categorical equivalence we
note that it is bijective on objects by construction, and it will hence suffice to check
that it is fully-faithful. Indeed, the counit of Lho ⊣ N+ι is an isomorpism since by
ι∶Cat → RCat and N+∶RCat → Set+∆ are fully-faithful right adjoints. �

We now address the counit map of ho2 ⊣ N2.

Theorem 8.4. Let C be an ∞-bicategory. Then the counit map

C→ N2ho2(C)
is 2-conservative in the sense that a triangle in C is thin if and only if its image in
N2ho2(C) is thin.

Remark 8.5. Triangles in N2ho2(C) correspond to 2-functors O≤2
2 → ho2(C), and

hence to lax commutative triangles

y
g

��
x

f
??

h
//

α
KS

z

in ho2C. By definition, such a triangle is thin in N2ho2(C) if and only if the 2-
cell α is invertible. We then interpret Theorem 8.48.4 as saying that the homotopy
2-category detects invertibility of 2-cells.
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Before we come to the proof of Theorem 8.68.6 let us recall its (∞,1)-categorical
analogue:

Proposition 8.6. Let C♮ = (C,Eq(C)) be a fibrant marked simplicial set, that is

an ∞-category C marked by its equivalences. Then the unit map C♮ → N+ho(C♮)
detects marked edges.

Proof. Since all marked edges are equivalences we have that hIm(C♮) ⊆ ho(C) con-

sists of isomorphisms and hence ho(C♮) = L(ho(C),hIm(C♮)) ≅ ho(C). The desired
claim is then equivalent to saying that an arrow in C is an equivalence if and only
if its corresponding arrow in ho(C) is an isomorphism. Indeed, this is simply the
definition of equivalences. �

Proof of Theorem 8.48.4. We first argue that in order to prove the claim for C we
may replace C by any equivalent model. To see this, suppose that f ∶C → D is a
bicategorical equivalence of ∞-bicategories and consider the commutative square

C
≃ //

��

D

��

N2ho2C
≃ // N2ho2D

Since the left Quillen functor ho2 preserves weak equivalences By Proposition 8.28.2
and the right Quillen functor Ñ2 preserves weak equivalences since every 2-category
is fibrant we have that the bottom horizontal map is a weak equivalence. By
Proposition 3.33.3 it now follows that both horizontal maps detect thin triangles. The
desired claim for D hence implies the same for C. We may consequently assume
without loss of generality that C is of the form Nsc(E) for some fibrant marked-
simplicial category E. Now in this case the counit map

CscNsc(E) → E

is a weak equivalence of marked-simplicial categories. Consider the commutative
diagram

Nsc(E)

��

NscCscNsc(E) //

��

Nsc(E)

��

NscN∗ho∗C
scNsc(E) // NscN∗ho∗(E)

in which the top left vertical map is induced by the unit of C ⊣ Nsc, the two
horizontal maps by the counit of C ⊣ Nsc and the two bottom vertical maps by
the unit of ho∗ ⊣ N∗. The diagonal equality is then a consequence of the tri-
angle identities, and the composed vertical map is the one we wish to show de-
tects thin triangles (see Proposition 8.28.2). We may hence show instead that the
right vertical map detects thin triangles. But this map is obtained by applying
Nsc to the unit map E → N∗ho∗E. By the definition of thin triangles in sca-
led nerves of marked it will now suffice to show that for every x, y ∈ E the map
MapE(x, y) → MapN∗ho∗E(x, y) = N+ho MapE(x, y) detects marked edges. Indeed,
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since E is fibrant each MapE(x, y) is fibrant as a marked simplicial set and so the
desired result follows from Proposition 8.68.6. �

Appendix A. Recollections on Cisinski’s and Olschok’s theory

Let K be a locally presentable category. Recall that an arrow f ∶X → Y in K is
called a monomorphism if HomK(Z,X) → HomK(Z,Y ) is injective for every Z ∈K.
We will fix the following standing assumption:

Assumption A.1. The class of monomorphisms in K is weakly saturated, and is
generated as a weakly saturated class by a set M of monomorphisms. In addition,
the map ∅ →X from the initial object to any other object is a monomorphism.

Remark A.2. Assumption A.1A.1 holds for any presheaf category and more generally
any topos. Furthermore, if Assumption A.1A.1 holds for K and A ⊆ K is a reflective
subcategory such that the reflector r∶K → A preserves monomorphisms then As-
sumption A.1A.1 also holds for A.

We call trivial fibration any arrow of K which has the right lifting property with
respect to all monomorphisms of K. A class of arrows W is a localiser if it satisfies
the following conditions:

(1) the class W has the 2-of-3 property;
(2) the class W is closed under retracts;
(3) the class W contains all trivial fibrations;
(4) the class of monomorphisms which are also elements of W is closed under pus-

hout and transfinite compositions.

In this appendix, we shall review some basic elements of the theory developed
by Cisinski [77] and Olschok [1818] which studies the conditions under which, given a
small set S of monomorphisms of K, there is a model category structure on K where
the cofibrations are the monomorphisms and the class W(S) of weak equivalences
is the smallest localiser containing the set S (notice that localisers are closed under
intersection). This theory can be made more general than how it is presented here,
but we shall limit ourselves to the simpler framework in which our interest and
examples lie.

Definition A.3. Let K be a locally presentable category with terminal object e.
A cylinder of K is a pair I = (I, ∂) where I is an object of K and ∂∶ e∐ e → I is
a monomorphism of K; for ε = 0,1 we denote by ∂ε∶ e → I the composition of ∂
with each of the two canonical maps e → e∐ e (which are always monos by our
assumption A.1A.1). This pair is subject to the following axioms:

(1) the functor I × −∶K → K has a right adjoint K(I,−)∶K → K, called the path
functor ;

(2) for any monomorphism i of K, the arrows ∂ε ◻ i, ε = 0,1, and ∂ ◻ i are mono-
morphisms.

Remark A.4. Conditions (1) and (2) above hold for any monomorphism ∂∶ e∐ e→ I
if, for example, K is cartesian closed and the collection of monomorphisms is closed
under pushout-products.

Notation A.5. Let K be a locally presentable category, S a set of monomorphisms
of K and I = (I, ∂) a cylinder. For any set T of arrows of K we denote by Λ(T )
the set of arrows of the form ∂ ◻ f , for f in T . We set
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(0): Λ0
I(S) = S,

(i): Λi+1
I (S) = Λ(ΛiI), i > 0,

(∞): Λ∞

I (S) = ⋃i≥0 ΛiI
and finally

(A.1) ΛI(S) = Λ∞

I (S) ∪ {∂ε ◻ i ∶ ε = 0,1 and i ∈M}.
We shall say that ΛI(S) is a set of generating (I, S)-anodyne maps, or simply
generating anodyne maps, and the smallest saturated class of K containing ΛI(S)
will be denoted by AnI(S), or simply An, and called the class of (I, S)-anodyne
maps, or simply anodyne maps.

Theorem A.6 ([77], [1818]). Let K be a locally presentable category, I = (I, ∂) a
cylinder and S a subset of monomorphisms of K. Then there exists a model category
structure on K having the monomorphisms as cofibrations and such that the fibrant
objects are precisely the objects of K injective (i.e., weakly right orthogonal) with
respect to the set ΛI(S). Moreover, the fibrations between fibrant objects are the
arrows having the right lifting property with respect to the set ΛI(S) and the class
of weak equivalences W(S) is the smallest localiser of K containing S.

This is proven as Theorem 1.3.22 of [77] when K is a presheaves category and in
general it is a particular case of Theorem 3.16 of [1818]; see also Theorem 2.5 of [1010].

Remark A.7. The weak equivalences of the model category structure described
above are the morphisms p∶X → Y of K such that for any fibrant object Z we have
that the induced function p∗∶K(Y,Z) → K(X,Z) becomes a bijection when mod
out by the usual relation of I-homotopy given by the interval I × −.

Remark A.8. In the proof of the above theorem, a careful analysis of the small
object argument is needed. In particular, one shows that the small object argument
applied to ΛI(S) gives a fibrant replacement functor L∶K → K with the following
properties: for any object X of K the morphism X → L(X) is a (I, S)-anodyne map
and a morphism f ∶X → Y of K is a weak equivalence if and only if the morphism
L(f)∶L(X) → L(Y ) is a I-homotopy equivalence.

Remark A.9. If K is a category of presheaves, or more generally a reflective subca-
tegory A of a category of presheaves K closed under coproducts and such that the
reflector r∶K→ A preserves monomorphisms, it is possible to show that the functor
L preserves monomorphisms, so that f is a trivial cofibration if and only if L(f) is
a (I, S)-anodyne map (see [77, Proposition 1.2.35]).

Proposition A.10. Let K be a locally presentable category, I a cylinder, S a
subset of monomorphisms of K and suppose that the fibrant replacement L∶K → K

preserves monomorphisms. Consider a model category M and a functor F ∶K→M

preserving small colimits and mapping monomorphisms of K to cofibrations of M.
Then F is a left Quillen functor if and only if it maps (I, S)-anodyne maps to
trivial cofibrations; the latter property is further equivalent to ask that F maps
every generating (I, S)-anodyne map to a trivial cofibration of M

Proof. This is Proposition 2.4.40 of [88]. �

Remark A.11. The above proposition holds true with weaker assumptions. In fact,
it not necessary to assume that the fibrant replacement L∶K→ K preserves mono-
morphisms. Indeed, the functor F maps (I, S)-anodyne maps to trivial cofibrations
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if and only if its right adjoint R maps fibrations between fibrant objects of M to
fibrations of K. By virtue of [1313, Proposition E.2.14], this is equivalent to the fact
that (F,G) is a Quillen pair.
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Institute of Mathematics CAS, Žitná 25, 115 67 Praha 1, Czech Republic

E-mail address: edoardo.lanari.el@gmail.com

URL: https://sites.google.com/view/edoardo-lanari


	Introduction
	Acknowledgements
	Notation
	1. Preliminaries
	1.1. Marked simplicial sets and marked-simplicial categories
	1.2. Scaled simplicial sets and oo-bicategories
	1.3. Stratified sets

	2. Outer cartesian fibrations
	2.1. Outer fibrations and cartesian edges
	2.2. The join and slice constructions
	2.3. Mapping categories
	2.4. Cartesian lifts of natural transformations

	3. Thin triangles in weak oo-bicategories
	4. The moving lemma
	5. Weak oo-bicategories are oo-bicategories
	6. The Cisinski model structure for oo-bicategories
	7. The main equivalence
	8. The homotopy 2-category and the scaled 2-nerve
	Appendix A. Recollections on Cisinski's and Olschok's theory
	References

