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1 Group Cohomology

Let G be a group. By a G-module we mean an abelian group A with an action
of G on it (i.e. homomorphism G→ Aut(A)). The G-modules form a category
called G-Ab with morphisms being homomorphisms of groups which respect the
G-action.

The category G-Ab is considerably more complicated then the (fairly simple)
category Ab of abelian groups. Hence sometimes it is useful to consider functors
G-Ab → Ab which simplify our G-modules into abelian groups. This functors
will of course forget a lot of the information, but they will provide us with rather
systematic way of understanding G-modules through abelian groups.

Two basic functors which one might consider are the quotient functor

A 7→ A/G = A/ < ga− a|g ∈ G, a ∈ A >

and the invariants functor

A 7→ AG = {a ∈ A|ga = a}

These functors are dual in some sense: formally, they are the left adjoint and
right adjoint of the functor Ab→ G-Ab which sends an abelian group A to the
G-module A with trivial G-action. They are also known as taking the limit
and colimit (respectively) of A with respect to G.

We will see that the first leads to construction of a homology theory while
the latter leads to a dual notion of a cohomology theory. Since we will be
intereseted more in the cohomology setting (which is better suited for galois
groups as we will see later), we will work out the intire formalism for cohomol-
ogy only, and the intereseted reader can make the analogous construction for
homology.

1.1 Derived Functors

Consider a short exact sequence of G-modules:

0 → A
f→ B

p→ C → 0
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Note that exactness of a sequence of G-modules is just the exactness of the
underlining sequence of abelian groups, i.e. the image of each map is the kernel
of the next.

What happens if we try to apply the invariants functor to this sequence? It
is not hard to see that

0 → AG iG

→ BG pG

→ CG

will remain exact, where iG = i|AG , pG = p|BG . Indeed

ker(i|AG) = 0

and
ker(p|BG) = Im(i|AG)

because i is injective. However, the map pG will no longer be onto CG in general,
thus preventing the intire sequence from remaining exact.

Consider some c ∈ CG. We know that p itself is onto, so there exists a b ∈ B
such that p(b) = c. But b might not be G-invariant. However, it is not intirely
general either: since p(b) is G-invariant, we know that p(b) = p(gb) for each
g ∈ G, i.e. gb − b is in ker(p) = Im(i). Thus for each g there exists a unique
(because i is injective) element ag ∈ A such that b− gb = i(ag).

Let ϕb : G → A be the function ϕb(g) = ag. This function measures the
obstruction of the element b from being G-invariant, i.e. it is invariant if and
only if ϕb = 0. But what if we had chosen a different b′ ∈ B such that g(b′) = c
(rememeber that g is not injective)? Then b− b′ whould be in ker(p) = Im(i)
i.e. there would exist an a ∈ A such that b− b′ = i(a). We will then have:

(ϕb − ϕb′)(g) = ga− g

We thus wish to say that our obstruction function ϕb is defined only up to
function of the form ga− a. Let us make this notion precise. The functions ϕb

constructed above all satisfy

ϕb(g · h) = i−1(gh(b)− b) = i−1(gh(b)− g(b) + g(b)− b) = gϕb(h) + ϕb(g)

This relation is called the coycle relation. Define the group of 1-cocycles in A
to be the subgroup of functions ϕ : G→ A satisfying

ϕ(g · h) = gϕ(h) + ϕ(g)

Note that this condition is indeed linear so we get a subgroup which we denote
by Z1(G,A).

We now wish to formalize the equivalence relation we had between ϕb and
ϕb′ . Define the group of 1-coboundries in A to be the subgroup of functions
ϕ : G→ A of the form

ϕ(g) = ga− a

for some a ∈ A. This condition also defines a subgroup which we call B1(G,A).
It is straight forward to verify that B1(G,A) ⊆ Z1(G,A). We define the first
cohomology group of G with coefficients in A to be the group

H1(G,A) = Z1(G,A)/B1(G,A)
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Our construction above associates to each c ∈ CG a well defined object [ϕb] ∈
H1(G,A) which measures the obstruction of c from being in the image of pG.
This construction actually gives us a homomorphism ∂ : CG → H1(G,A) and
we get that the kernel of ∂ is exactly the image of pG. This allows us to naturally
continue the sequence

0 → AG → BG → CG ∂→ H1(G,A)

In fact, the construction of H1(G,A) is easily seen to be functorial in A, i.e. we
can think of H1(G,−) as a functor from G-Ab to Ab. This functor can be shown
to be exact in the middle, i.e. when we apply it to a short exact sequence the
middle map remains exact. This means that we can even continue the above
sequence to:

0 → AG → BG → CG ∂→ H1(G,A) → H1(G,B) → H1(G,C) →?

It turns out that we can define functors Hn(G,−) for each n ≥ 0 such that
H0(G,A) = AG, H1(G,A) is what we defined above and in such a way that we
get a (functorial) long exact sequence

0 → H0(G,A) → H0(G,B) → H0(G,C) →

H1(G,A) → H1(G,B) → H1(G,C) →
H2(G,A) → H2(G,B) → H2(G,C) → ...

These functors are called the right derived functors of the invariants functor,
and for each G-module A the abelian group Hn(G,A) is called the n’th coho-
mology group of G with coefficients in A. The concrete construction of these
functors is as follows:

Let A be a G-module. Define Ck(G,A) to be the group of all (set-theoretic)
functions from Gk to A. These functions are called k-cochains with coefficients
in A. For k = 0 we set Ck = A. Define the map dk : Ck → Ck+1 by:

dk(ϕ)(g1, ..., gk+1) =

g1(ϕ(g2, ..., gk+1)) +
k∑

i=1

(−1)iϕ(g1, ..., gigi+1, ..., gk) + (−1)k+1ϕ(g1, ..., gk)

In particular we see that
d0(a)(g) = ga− a

so that ker(d0) = AG. Further we get that

d1(ϕ)(g1, g2) = g1(ϕ(g2))− ϕ(g1g2) + ϕ(g1)

Note that our cocycle condition on ϕ defined above can be rephrased now by
requiring that d1(ϕ) = 0. Thus we see that the first cohomology group we
defined can be written as

H1(G,A) = ker(d1)/Im(d0)
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By setting C−1 = 0 and d−1 = 0 we can also write H0(G,A) like that:

H0(G,A) = ker(d1)/Im(d0)

This calls for the general definition to be

Hn(G,A) = ker(dn)/Im(dn−1)

For each short exact sequence 0 → A → B → C → 0 one can show that there
exist boundary maps ∂n : Hn(G,C) → Hn+1(G,A) which give the long exact
sequence in the cohomology groups.

If we take A = Z with the trivial G-action then the cohomology groups
H1(G,A) are called the cohomology groups of G and are sometimes written
Hn(G). Note that whenever A is a trivial G-module the cohomology group
H1(G,A) can be identified with the group of homomorphisms from G to A. In
particular the group H1(G) is the dual of the abelization of G.

1.2 The meaning of H1

Let us see what group-theoretic information does H1(G,A) encode.
First let A be just an abelian group. By a principle homogenious (PH

for short) A-space we mean a set X with a a transitive and free action of A on
it. Since A is abelian we shall usually write this action of the element a ∈ A on
a point x ∈ X by x 7→ x + a. Note that A acts on itself by translations, and
this action is both transitive and free, so A itself has a natural structure of a
PH A-space. Let us denote it by Â.

Now if X is any PH A-space, then X is non-naturally isomorphic to Â
by choosing any point x ∈ X and considering the mapping a 7→ x + a as an
isomorphism of PH A-spaces from Â to X.

Now suppose that A is not just an abelian group, but also a G-module. We
say that X is a G-PH A-space if it is a PH A-space together with an action of
G on it, such that

g(x+ a) = g(x) + g(a)

for each x ∈ X, a ∈ A and g ∈ G. Now the situation is more complicated,
and not every two G-PH A-spaces are isomorphic (as G-PH A-spaces). Their
isomorphism types are classified exactly by the group H1(G,A).

First of all, why is it natural that the isomorphism types will be classified by
a group? The answer is that we have a natural operation of tensor product
(over A) between two G-PH A-spaces which induces a group operation on the
isomorphism classes. In order to describe it we first consider PH A-spaces
without G-action.

Let X,Y be two PH A-spaces. Define the set Z to be X × Y modolu the
relations

(x, y) ∼ (x+ a, y − a)

for each a ∈ A. Now the action of the element a ∈ A on an equivalence class
[(x, y)] is defined by

[(x, y)] 7→ [(x+ a, y)]
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Note that this is indeed well defined on equivalence classes. This action is
easily checked to be transitive and free, so Z is indeed an A-space. We denote
it by Z = X ⊗A Y and call it the tensor product of PH A-spaces. Tensor
product is a commutative operation with an inverse which can be described
by X∗ = HomPH(X, Â). By considering homomorphism classes we obtain a
group, which we saw is trivial.

But what happens if we consider G-PH A-spaces? The tensor product op-
eration is still defined in the same way and we have a natural action of G on
X ⊗A Y by setting

g([(x, y)]) = [(g(x), g(y))]

Now the tensor product induces a commutative group structure on the isomor-
phism classes of G-PH A-spaces, so it makes sense that we can classify it by an
abelian group.

Let us describe now the correspondence between elements in H1(G,A) and
isomorphism classes of G-PH A-spaces. First given an element in H1(G,A),
describe it by a 1-cycle ϕ : G → A. Define Xϕ = Â with the action of g ∈ G
given by

x 7→ g(x) + ϕ(g)

The cycle condition will now make this into a G-action. If we would choose a
different ϕ′ which describes the same cohomology class, then there would be an
a ∈ A such that ϕ(g) − ϕ′(g) = ga − a and then the map x 7→ x + a would
induce an idomorphism of G-PH A-spaces from Xϕ to Xϕ′ .

In the other direction, given a G-PH A-space X, choose a some point x ∈ X
and define ϕx(g) to be the unique element a ∈ A whihc satisfies x + a = g(x).
This defines a map ϕx : G → A which can easily be checked to be a cocycle.
If we would choose a different x′ ∈ X then the element a ∈ A which satisfies
x+ a = x′ would satisfy also

ϕx(g)− ϕx′(g) = ga− a

and thus ϕx and ϕx′ reduce to the same cohomology class in H1(G,A).
Exercises:

1. Show that the maps given above define a bijective correspondence between
H1(G,A) and isomorphism classes of G-PH A-spaces.

2. Show that addition of cocycles corresponds to tensor product over A.

3. Show that a G-PH A-space X corresponds to the trivial element if and
only if there exists an x ∈ X such that g(x) = x for every g ∈ G.

Remark: The definition of H1(G,A) can be generalized to the case where
A is not abelian (with the same construction using 1-cocycles). In that case
H1(G,A) will no longer be a group but only a pointed set. The notion of
a G-PH A-space can still be defined and the elements of H1(G,A) will still
correspond to isomorphism classes of G-PH A-space. As for Hn(G,A) for n ≥ 2
the right way to generalize them to non-commutative groups A (if there is one)
is still an open question.
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1.3 The meaning of H2

We will not go into this in any detail, but just to name names, the second
cohomology group H2(G,A) classifies group extensions of the form

1 → A
i→ H

p→ G→ 1

For which the action of G on A coincides with the one induced by conjugation
inside H.

2 Galois Cohomology

We now wish to apply this general theory to the case where G is the galois
group of a field extension K/K where K is the algebraic closure of K. Note
that in this situation G is a profinite group and carries naturally the profinite
topology. Thus in order to apply the theory in a meaningful manner we need
to modify it a bit so it would suit the category of topological groups.

This modification is quite simple. An A-module is now a topological abelian
group together with a continuous action of G on it. When constructing the
cohomology groups we inforce that all the cochains will be continous functions.

Now the situation here is not the most general one. Most galois modules
(G-modules when G is a galois group) we will encounter will carry the discrete
topology. This simplifies matters a bit as one can show that an action of a
profinite group G on a discrete group A is continuous if and only if the orbit
of each a ∈ A is finite. This will be the standard case for us, as we will always
derive our galois action from the galois action on algebraic field extensions which
clearly poseses this property.

2.1 K-forms and H1

Fix a field K and set G = Gal(K/K). Let X be an algebraic variety defined
over K. Let

AX,X = IsoK(X,X)

be the group of automorphisms of X over K. Similarily for each variety Y which
is isomorphic to X over K consider

AX,Y = IsoK(X,Y )

which is the set of isomorphisms from X to Y defined over K. Then AX,Y is
PH AX,X -space where the action of AX,X is given by composition.

We claim that both AX,X and AX,Y admit an action of the galois group G
which is given by conjugation, i.e.

σ(ψ) 7→ σ−1 ◦ ψ ◦ σ

This makes AX,X into a (not necessarily commutative) G-module and AX,Y

into a G-PH A-space.

6



When is Y isomorphic to X over the base field K? This is equivalent to the
existence of an isomorphism ψ ∈ AX,Y which is galois invariant. From exercise 3
in the previous section we see that this is equivalent to the fact that AX,Y is the
trivial G-PH AX,X -space. In fact, one can show that H1(G,A) is in a bijective
correspondence with the set of K-isomorphism classes of varieties which are
isomorphic to X over K. The K-isomorphism types of varieties K-isomorphic
to X are called K-forms of X, or sometimes K-twists of X.

Example:
Let X ⊆ A2 be defined over C by the equation

xy = 1

X is actually isomorphic to the algebraic group Gm.
Now consider the subfield R ⊆ C. Since the equation above has coefficients

in R this gives us a specific R-structure (R-form) on X. The automorphisms of
X are all of the form

ψa,ε(x, y) = (a · xε, a−1y−ε)

for a ∈ C∗, ε ∈ {−1, 1}. The galois group is

G = Gal(C/R) = Z/2

and the non-trivial element is complex conjugate. This element σ acts on AX,X

as follows:
σ(ψa,ε) = ψa,ε

Thus AX,X fits in the following exact sequence of galois modules:

0 → C∗ → AX,X → Z/2 → 0

It is a well known theorem that H1(G,C∗) = 0 so we get that H1(G,AX,X) is
embedded in H1(G,Z/2) ∼= Z/2. In order to show that it is actually equal to
Z/2 we shall denostrate a non-trivial R-twist of X.

Define Y ⊆ A2 over C by the equation

x2 + y2 = 1

Y is isomorphic to X over C by the map φ : Y → X given by

φ(x, y) = (x+ iy, x− iy)

This isomorphism is not defined over R as it uses the element i which is not in
R. Indeed X and Y are not isomorphic over R since the set of R points in Y is
compact while the set of R points in X isn’t. Not surprisingly, Y is called the
compact R-form of Gm and X is called the non-compact form.

2.2 The Meaning of H2

Again we will not go into this in any detail, but just to name names, the second
cohomology group H2(G,K

∗
) classifies isomorphism classes of division algebras

over K, and is called the brauer group of K. This group is very important in
number theory and espcially in class field theory.
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3 Applications to Elliptic Curves

We now arrive finally to our main interest of elliptic curves. Let E be an elliptic
curve defined over Q and G = Gal(Q/Q). In particular we mean that the unit
element e ∈ E is a rational point. We shall use the notation Hn(K,E) to denote
Hn(Gal(K/K), E(K)) where K is some field containing Q.

As we saw above, the group H1(Q, E) classifies G-PH E-spaces. In fact, if
we have a cohomology class represented by a 1-cocycle ϕ : G → E then the
corresponding G-PH A-space will be an algebraic curve C defined over over Q
which admits a Q-isomorphism

ψ : E → C

satisfying the property

σ−1(ψ−1(σ(ψ(P )))) = P + ϕ(σ)

for all P ∈ E, when by + we mean the group operation of E. The action of E
on C can then be defined via the addition in E conjugated by ψ. Given such a
curve C, we see that C has a rational point if and only if it corresponds to the
trivial element in H1(Q, E).

3.1 The Tate-Shafarevich Group

For each prime p let Qp be the field of p-adic numbers and Q∞ = R the archime-
dian completion. Note that for each 2 ≤ p ≤ ∞ we have the natural inclusions
Q ↪→ Qp which induce maps from the galois groups

Gal(Qp/Qp) → Gal(Q/Q)

These maps are in fact inclusions for each p. In the other direction we get maps

E(Q) → E(Qp)

The maps in both direction together induce maps on the cohomology groups

Hn(Q, E) → Hn(Qp, E)

We define the Tate-Shafarevich group to be

ker(H1(Q, E) →
∏

p≤∞

H1(Qp, E))

and is denoted by sha1(Q, E). In the language of the previous section we see
that sha1(Q, E) classifies the PH E-spaces which have a point in every Qp. It is
a big conjecture (and one can say that it is part of the BSD conjecture as well)
that sha1(Q, E) is finite.

Now one can say that the obstruction to the existence of a rational point on
a PH E-space X is divided into two parts - first of all X has to have a point over
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every Qp and second of all we get an obstruction element in the (conjecturally
finite) group sha1(Q), E) which must vanish.

Although it hasn’t been proved that the Tate-Shafarevich group is finite, it
is quite easy to show that for each n, its n-torsion part is finite. Let us try to
illustrate how this is done. For simplicitely let us work with n = 2 and with an
elliptic curves E given by a Weierstrass equation of the form

y2 = (x− e1)(x− e2)(x− e3) = x3 +Ax+B

where e1, e2, e3 ∈ Z.
Consider the short exact sequence

0 → E[2] → E
·2→ E → 0

We get a long exact sequence in the galois cohomology groups. Since assumed
that e1, e2, e3 are rational we get that E[2] is rational, so we can write

0 → E[2] → E(Q) ·2→ E(Q) →

H1(Q, E[2]) → H1(Q, E) ·2→ H1(Q, E) → ...

From this sequence we get the short exact sequence

0 → E(Q)/2E(Q) → H1(Q, E[2]) → H1(Q, E)[2] → 0

Let us try to understand how do elements in H1(Q, E[2]) look like. Since
E[2] ∼= Z/2⊕Z/2 and since E[2] has only rational points we see thatH1(Q, E[2])
is the group of homomorphisms from the galois group G to Z/2⊕Z/2. It is not
hard to show that such homomorphisms are in one to one correspondense the
group

Q∗/Q∗2 ×Q∗/Q∗2

where if we represent an element in this group by a pair (a1, a2) ∈ Q∗×Q∗ then
the homomorphism ϕ : G→ {−1, 1} × {−1, 1} is given by

ϕ(σ) =
(
σ(a1)
a1

,
σ(a2)
a2

)
It will be more covinient for us to describe this group as

{(a1, a2, a3) ∈
(
Q∗/Q∗2)3 |a1a2a3 = 1}

What is the element inH1(Q, E) which is the image of the element (a1, a2, a3) ∈
H1(Q, E[2])? This can be given a nice geometric description (see the book of
Washington).

Represent this element by a triplet a1, a2, a3 ∈ Q∗ such that a1a2a3 is a
square in Q. Define the curve Ca1,a2,a3 ⊆ P3 via the homogenization of the
following affine model:

a1u
2
1 − a2u

2
2 = e2 − e1
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a1u
2
1 − a3u

2
3 = e3 − e1

We have a Q-map ψ : E → C defined by

ψ(x, y) = (f1(x, y), f2(x, y), f3(x, y))

where

fi(x, y) =
x2 − 2eix+

(
A+ 2B

ei

)
2
√
aiy

It is a bit tidious, but one can check that

aif
2
i = F2 − ei

where

F2(x, y) =
x4 − 2Ax2 − 8Bx+A2

4y2

is the rational function P 7→ x(2P ) obtained by taking the x-coordinate of 2P .
In particular we see that

a1f
2
1 − a2f

2
2 = e2 − e1

a1f
2
1 − a3f

2
3 = e3 − e1

so these polynomials induce a map from E to C. Of course we need to homog-
enize this map and show that everything works but we won’t do this here.

We also have a map in the other direction, which is not hard to see as the
fi’s are linearly independent and so we can take linear combinations of them
(over Q) to obtain x

y and 1
y (from which we obtain can obtain the functions x

and y).
This ψ induces a structure of a PH E-space on C. In particular, it is easy to

show that if we would change a1, a2, a3 by multiplying them with squares then
the resulting PH E-space would be isomorphic. This construction is a geometric
realization of the map H1(Q, E[2]) → H1(Q, E).

Let us try to explain what is going on here and where did these maps come
from. Let

D = [0] + [(e1, 0)] + [(e2, 0)] + [(e3, 0)]

be the divisor which is the sum of the two torsion points. Let L(D) be the
vector apce of all rational functions f which satisfy

div(f) +D ≥ 0

i.e. the functions that are allowed to have poles of degree at most 1 in the two
torsion points. L(D) is 4 dimensional and is spanned over Q by 1, f1, f2, f3.
The galois group acts on these functions by conjugation (which more concretely
means acting on the coefficients) by

σ(fi) =
σ(
√
ai)

ai
fi = ±fi
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Note that L(D) is closed under the action of E[2] (the 2-torsion points pf E)
by translation. Let us denote this action by P ∗fi for P ∈ E[2]. In particular,
since af2

i = P2 − ei and the rational function P2 is invariant under translation
by an element of E[2], we get that

P ∗fi = ±fi

and this sign does not depend on the choice of the ai’s. Our 1-cocycle will be a
map ϕ : G→ E[2] ⊆ E such that

σ(fi) = ϕ(σ)∗fi

for i = 1, 2, 3.
Nose the important fact that since the map H1(Q, E[2]) → H1(Q, E)[2] is

surjective, it follows that this geometric description describes all possible PH
E-spaces which are 2-torsion. This is a geometric fact for which I can’t see any
direct geoemtric proof not using galois cohomology.

Exercises:

1. Show that the map boundary map E(Q) → H1(Q, E[2]) associates with
the element (x, y) the element (a1, a2, a3) (mod squares) given by

a1 = x− e1

a2 = x− e2

a3 = x− e3

Hint: apply the functions f1, f2, f3 to the set {P |2P = (x, y)} in order to
calculate how the galois group acts on them versus how E[2] acts on them
(use the property aif

2
i = F2 − ei satisfied by the fi’s).

2. Our PH E-space corresponds to a 2-torsion element in H1(Q, E). Show
that this means that there exists a Q-map π : C → E such that π ◦ ψ is
multiplication by 2. Construct this map.

3. Show that if C has a point in Qp and if p appears in an odd degree in at
least one of a1, a2, a3, then p divides the discriminant

∆ = (e2 − e1)(e3 − e1)(e3 − e2)

Conclude that there are only finitely many 2-torsion elements in sha1(Q, E).

4. Conclude that E(Q)/2E(Q) is finite.
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