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1 Hasse Minkowski Theorem

Theorem 1.1. Let X be a smooth projective n-dimensional variety defined in
Pn+1 by a single homogeneous quadratic polynomial in n+ 2 variables. Then if
X has a point in every completion of Q then it has a point in Q.

The first step is to say that we can bring any homogenous quadratic poly-
nomial to the diagonal form ∑

i

aix
2
i

Now the case n = 0 is trivial (a positive rational number which is a square in
every Qp is a square in Q). The next step of the proof is the reduce all cases
to the case of n = 1. I didn’t write it in the notes but you can find it online.
Hence we shall prove the case of n = 1. By using Hensel lemma and the fact
that the quadratic equation has a real solution we can reduce to the following
claim:

Theorem 1.2. Let a, b, c be pairwise coprime positive integers. Consider the
quadratic form

q(x, y, z) = ax2 − by2 − cz2

Then the equation q(x, y, z) = 0 has a non-trivial solution in Z if and only if it
has a non-trivial solution mod N for every N .

Proof. Let p 6= 2 be a prime dividing abc. Then mod p the form q becomes a
quadratic form in two variables. Since it has a non-trivial zero mod p it has to
split mod p to a product of two linear forms:

ax2 − by2 − cz2 = Lp(x, y, z)Mp(x, y, z) mod p

Hence Lp(x, y, z) = 0 mod p implies that (x, y, z) is a zero of q mod p.
At the prime 2 we separate between two cases. If 2 6 |abc then either a = b (

mod 4) or a = c ( mod 4), other wise a quick check will verify that there isn’t
any solution mod 4 in which at least one of x, y, z is odd. Assume WLOG that
a = b then we take the two linear forms

L1
2(x, y, z) = z
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L2
2(x, y, z) = x− y

and note that if L1
2(x, y, z) = L2

2(x, y, z) = 0 ( mod 2) then q(x, y, z) = 0 (
mod 4).

If 2|abc then assume that 2|a and b, c are odd. Let d = b+c
2 and define

L1
2(x, y, z) = y − z

L2
2(x, y, z) = x− dy

Then a quick check verifies that if L1
2(x, y, z) = 0 mod 4 and L2

2(x, y, z) = 0
mod 2 then actually q(x, y, z) = 0 ( mod 8).

Hence to conclude we find that if (x, y, z) is such that

Lp(x, y, z) = 0 mod p

for all p|abc and
L1
2(x, y, z) = 0 mod 2(or4)

L2
2(x, y, z) = 0 mod 2

then q(x, y, z) = 0 mod 4abc.
We now claim that we can find a non-trivial zero of q in the box B ⊆ Z×Z×Z

defined by the boundaries
|x| < 2

√
bc

|y| <
√

2ac

|z| <
√

2ab

Note that unless a = b = c = 1 (in which clearly there is an integer solution)
we get that this box contains strictly more than 4abc vectors (x, y, z) with
x, y, z ≥ 0. By the bird cage principle there exist two distinct such vectors
(x1, y1, z1), (x2, y2, z2) such that

Lp(x1, y1, z1) = Lp(x2, y2, z2) mod p

for all p|abc and

L1
2(x1, y1, z1) = L1

2(x2, y2, z2) mod 2(or4)

L2
2(x1, y1, z1) = L2

2(x2, y2, z2) mod 2

Define (x0, y0, z0) = (x1, y1, z1)− (x2, y2, z2). Then 0 6= (x0, y0, z0) ∈ B and

Lp(x1, y1, z1) = 0 mod p

for all p|abc,
L1
2(x1, y1, z1) = L2

2(x1, y1, z1) = 0 mod 2

Hence we get that q(x, y, z) = 0 mod 2abc. But (x, y, z) ∈ B and so

4abc < ax2 − by2 − cz2 < 4abc

so ax2 − by2 − cz2 = 0 and we are done.
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2 Counterexamples to the Hasse Principle

2.1 The Brauer-Manin Obstruction

The Brauer-Manin obstruction is a general tool to ”bound” the set of rational
points on a given variety. The idea is as follows:

Let X be a (projective) variety defined over Q. Consider the product

X(A) = X(R)×
∏
p

X(Qp)

We can regard the rational points X(Q) as a subset of X(A) because every
rational points q ∈ X(Q) can be considered as a point in X(Qp) for every p and
X(R) as well via the natural inclusions Q ↪→ Qp and Q ↪→ R.

Now letA be an Azumaya algebra onX. The for every p = (pR, pQ2 , pQ3 , ...) ∈
X(A) we can evaluate A at pQp and get a central simple algebra over Qp. This
algebra is characterized by an element in inv(A, pQp) ∈ Q/Z. Similarly we can
evaluate the algebra at pR and get a central simple algebra over R. This central
simple algebra is either trivial or isomorphic to the quaternion algebra so we
can encode it as an element in the subgroup inv(A, pR) ∈ {0, 1/2} ⊆ Q/Z.

Summing up all these elements we get a new element inv(A, p) ∈ Q/Z. If p
was actually inX(Q) then the Hasse-Neother theorem tells us that inv(A, p) = 0.
Hence every Azumaya algebra gives us an ”equation” on X(A) which is satisfied
by the subset of rational points. In particular X(Q) is contained in the set XBr

which is defined as set of all the points p ∈ X(A) which satisfy inv(A, p) = 0 for
all Azumaya algebras A. Hence the subset XBr can be considered as a sort of
bound on X(Q). In particular if XBr is empty then so is X(Q).

Examples:

1. Consider the affine curve

y2 = h(x) = −(x2 + 1)(x3 + x2 + 2x+ 1)(x3 + 2x2 + x+ 1)

We first claim that C has a point in every completion of Q. For that note
h(−1)h(0)h(1) = 100 is a square which is coprime to every p 6= 2, 5. Hence
at R and every Qp for p 6= 2, 5 at least one of h(−1), h(0) and h(1) are
squares. For p = 2 we note that h(2) = 1 mod 8 and so is a square in Q2

and h(0) = −1 is a square in Q5.

We now want to show that C doesn’t have rational points. Let

f(x) = x2 + 1

g(x) = −(x3 + x2 + 2x+ 1)(x3 + 2x2 + x+ 1)

We can then define an Azumaya algebra on C by setting it to be the
quaternion algebra (2, f(x)) when f(x) 6= 0 and (2, g(x)) when g(x) 6= 0.
This Azumaya algebra is trivial at every real point because 2 > 0. Now
consider a point (x, y) ∈ C(Qp).
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We claim that f(x) must have an even valuation: if νp(x) < 0 then
νp(f(x)) = 2νp(x). If νp(x) ≥ 0 and νp(f(x)) is odd then νp(g(x)) is
odd and so f(x) = g(x) = 0 mod p. But the resultant of f and g is 1 and
so f, g can’t have a common root mod any p, so we get a contradiction.
Hence νp(x) is even.

This means that unless p = 2 the Azumaya algebra A is trivial at (x, y).
Now if (x, y) ∈ C(Q2) then by checking all the possibilities one sees that
f(x) = 5u2 ∈ Q2. But the equation −2t2+5s2 = 1 doesn’t have a solution
in Q2 because 1− 5s2 can’t have an odd valuation. Hence we get that for
every Adelic point q ∈ X(A) we have inv(A, q) = 1/2 6= 0 and so XBr = ∅
which means that X(Q) = ∅

2. Consider the affine surface X given by the equation

y2 + z2 = h(x) = (x2 − 2)(3− x2)

and set
f(x) = x2 − 2

g(x) = 3− x2

We first show that this surface has a point in every completion of Q. We
have the real point (

√
2, 0, 0) ∈ X(R) and for every p 6= 2 then number

h(1) = −2 is a sum of two squares. In p = 2 we have that h(4) = 2 mod 8
is a sum of two squares mod 8 and hence in Q2.

We shall now show that there isn’t any rational point using the Brauer-
Manin obstruction. Consider the quaternion Azumaya algebra A given
by (−1, f(x)) when f(x) 6= 0 and (−1, g(x)) when f(x) 6= 0. This is well
defined because when f(x) 6= 0 and g(x) 6= 0 we have that

r =
f(x)

g(x)
=

y2

g2(x)
+

z2

g2(x)

is a sum of two squares and so (−1, r) is trivial and

(−1, f(x)) ∼= (−1, f(x)r) = (−1, g(x))

Now let (x, y, z) ∈ X(R). Then a quick check verifies that x2−2 and 3−x2
can’t both be negative and so must both be positive. Hence A is trivial
at (x, y, z). Now let (x, y, z) ∈ X(Qp) for p 6= 2. Then as before since
the resultant of f, g is 1 we see that f(x) must have an even valuation
and so is a sum of two squares. If (x, y, z) ∈ X(Q2) then a quick check
verifies that if ν2(x) ≥ 2 so f(x) = 6 mod 8 is not a sum of two squares
mod 8 and so not a sum of two squares in Q2. Hence A is non-trivial at
(x, y, z). This means that for every q ∈ X(A) we have inv(A, q) = 1/2 and
so XBr = ∅ and X(Q) = ∅.
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How did we find these Azumaya algebras? In principle this is obtained by the
relevant theory in arithmetic algebraic geometry which studies Brauer groups
of varieties. We can how ever explain a simple construction which can be used
in both the examples above.

Let X be a variety defined over Q and let f be a rational function on X
which is defined over Q. Suppose that there is a quadratic extension K = Q(

√
a)

of Q and a divisor D on X defined over K such that

D + σ(D) = div(f)

where σ ∈ Gal(K/Q) is the non-trivial element. We claim that we can construct
from this an Azumaya algebra. Cover X by open sets Uα (defined over Q) such
that on every Uα there exists a rational function fα defined over K satisfying

div(fα)|Uα = D|Uα

div (fασ(fα)) |Uα = (D +Dα)|Uα = div(f)|Uα
which means that

gα =
f

fασ(fα)

is a no-where vanishing regular function on Uα. Define the quaternion Azumaya
algebra by setting it to be (a, gα) on Uα. Note that on the intersection Uα ∩Uβ
the difference

gα
gβ

=
fβσ(bβ)

fασ(fα)
= NK/Q

(
fβ
fα

)
which means that (a, gα) ∼= (a, gβ). The relevant f was called f in both the
examples above.
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