1 Hasse Minkowski Theorem

Theorem 1.1. Let X be a smooth projective n-dimensional variety defined in \mathbb{P}^{n+1} by a single homogeneous quadratic polynomial in $n+2$ variables. Then if X has a point in every completion of \mathbb{Q} then it has a point in \mathbb{Q}.

The first step is to say that we can bring any homogenous quadratic polynomial to the diagonal form

$$\sum_i a_i x_i^2$$

Now the case $n = 0$ is trivial (a positive rational number which is a square in every \mathbb{Q}_p is a square in \mathbb{Q}). The next step of the proof is the reduce all cases to the case of $n = 1$. I didn’t write it in the notes but you can find it online. Hence we shall prove the case of $n = 1$. By using Hensel lemma and the fact that the quadratic equation has a real solution we can reduce to the following claim:

Theorem 1.2. Let a, b, c be pairwise coprime positive integers. Consider the quadratic form

$$q(x, y, z) = ax^2 - by^2 - cz^2$$

Then the equation $q(x, y, z) = 0$ has a non-trivial solution in \mathbb{Z} if and only if it has a non-trivial solution mod N for every N.

Proof. Let $p \neq 2$ be a prime dividing abc. Then mod p the form q becomes a quadratic form in two variables. Since it has a non-trivial zero mod p it has to split mod p to a product of two linear forms:

$$ax^2 - by^2 - cz^2 = L_p(x, y, z)M_p(x, y, z) \mod p$$

Hence $L_p(x, y, z) = 0 \mod p$ implies that (x, y, z) is a zero of q mod p.

At the prime 2 we separate between two cases. If 2 $\not| abc$ then either $a = b$ (mod 4) or $a = c$ (mod 4), other wise a quick check will verify that there isn’t any solution mod 4 in which at least one of x, y, z is odd. Assume WLOG that $a = b$ then we take the two linear forms

$$L_2^1(x, y, z) = z$$

0
\[L_2^2(x, y, z) = x - y \]
and note that if \(L_2^1(x, y, z) = L_2^2(x, y, z) = 0 \pmod{2} \) then \(q(x, y, z) = 0 \pmod{4} \).

If \(2 | abc \) then assume that \(2 | a \) and \(b, c \) are odd. Let \(d = \frac{b + c}{2} \) and define
\[
L_1^1(x, y, z) = y - z
\]
\[
L_2^2(x, y, z) = x - dy
\]
Then a quick check verifies that if \(L_1^1(x, y, z) = 0 \pmod{4} \) and \(L_2^2(x, y, z) = 0 \pmod{2} \) then actually \(q(x, y, z) = 0 \pmod{8} \).

Hence to conclude we find that if \((x, y, z) \) is such that
\[
L_p(x, y, z) = 0 \pmod{p}
\]
for all \(p | abc \) and
\[
L_1^1(x, y, z) = 0 \pmod{2 (or 4)}
\]
\[
L_2^2(x, y, z) = 0 \pmod{2}
\]
then \(q(x, y, z) = 0 \pmod{4abc} \).

We now claim that we can find a non-trivial zero of \(q \) in the box \(B \subseteq \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \) defined by the boundaries
\[
|x| < 2\sqrt{bc}
\]
\[
|y| < \sqrt{2ac}
\]
\[
|z| < \sqrt{2ab}
\]
Note that unless \(a = b = c = 1 \) (in which clearly there is an integer solution) we get that this box contains strictly more than \(4abc \) vectors \((x, y, z) \) with \(x, y, z \geq 0 \). By the bird cage principle there exist two distinct such vectors \((x_1, y_1, z_1), (x_2, y_2, z_2) \) such that
\[
L_p(x_1, y_1, z_1) = L_p(x_2, y_2, z_2) \pmod{p}
\]
for all \(p | abc \) and
\[
L_1^1(x_1, y_1, z_1) = L_1^1(x_2, y_2, z_2) \pmod{2 (or 4)}
\]
\[
L_2^2(x_1, y_1, z_1) = L_2^2(x_2, y_2, z_2) \pmod{2}
\]
Define \((x_0, y_0, z_0) = (x_1, y_1, z_1) - (x_2, y_2, z_2) \). Then \(0 \neq (x_0, y_0, z_0) \in B \) and
\[
L_p(x_0, y_0, z_0) = 0 \pmod{p}
\]
for all \(p | abc \),
\[
L_1^1(x_0, y_0, z_0) = L_1^1(x_1, y_1, z_1) = 0 \pmod{2}
\]
Hence we get that \(q(x, y, z) = 0 \pmod{2abc} \). But \((x, y, z) \in B \) and so
\[
4abc < ax^2 - by^2 - cz^2 < 4abc
\]
so \(ax^2 - by^2 - cz^2 = 0 \) and we are done.
2 Counterexamples to the Hasse Principle

2.1 The Brauer-Manin Obstruction

The Brauer-Manin obstruction is a general tool to "bound" the set of rational points on a given variety. The idea is as follows:

Let X be a (projective) variety defined over \mathbb{Q}. Consider the product $X(A) = X(\mathbb{R}) \times \prod_p X(\mathbb{Q}_p)$.

We can regard the rational points $X(\mathbb{Q})$ as a subset of $X(A)$ because every rational point $q \in X(\mathbb{Q})$ can be considered as a point in $X(\mathbb{Q}_p)$ for every p and $X(\mathbb{R})$ as well via the natural inclusions $\mathbb{Q} \hookrightarrow \mathbb{Q}_p$ and $\mathbb{Q} \hookrightarrow \mathbb{R}$.

Now let A be an Azumaya algebra on X. For every $p = (p_\mathbb{R}, p_{\mathbb{Q}_2}, p_{\mathbb{Q}_3}, \ldots) \in X(A)$ we can evaluate A at $p_{\mathbb{Q}_p}$ and get a central simple algebra over \mathbb{Q}_p. This algebra is characterized by an element in $\text{inv}(A, p_{\mathbb{Q}_p}) \in \mathbb{Q}/\mathbb{Z}$. Similarly we can evaluate the algebra at $p_\mathbb{R}$ and get a central simple algebra over \mathbb{R}. This central simple algebra is either trivial or isomorphic to the quaternion algebra so we can encode it as an element in the subgroup $\text{inv}(A, p_{\mathbb{R}}) \subseteq \{0, 1/2\} \subseteq \mathbb{Q}/\mathbb{Z}$.

Summing up all these elements we get a new element $\text{inv}(A, p) \in \mathbb{Q}/\mathbb{Z}$. If p was actually in $X(\mathbb{Q})$ then the Hasse-Neother theorem tells us that $\text{inv}(A, p) = 0$.

Hence every Azumaya algebra gives us an "equation" on $X(A)$ which is satisfied by the subset of rational points. In particular $X(\mathbb{Q})$ is contained in the set X^{Br} which is defined as set of all the points $p \in X(A)$ which satisfy $\text{inv}(A, p) = 0$ for all Azumaya algebras A. Hence the subset X^{Br} can be considered as a sort of bound on $X(\mathbb{Q})$. In particular if X^{Br} is empty then so is $X(\mathbb{Q})$.

Examples:

1. Consider the affine curve $y^2 = h(x) = -(x^2 + 1)(x^3 + x^2 + 2x + 1)(x^3 + 2x^2 + x + 1)$

We first claim that C has a point in every completion of \mathbb{Q}. For that note $h(-1)h(0)h(1) = 100$ is a square which is coprime to every $p \neq 2, 5$. Hence at \mathbb{R} and every \mathbb{Q}_p for $p \neq 2, 5$ at least one of $h(-1), h(0)$ and $h(1)$ are squares. For $p = 2$ we note that $h(2) = 1 \mod 8$ and so is a square in \mathbb{Q}_2 and $h(0) = -1$ is a square in \mathbb{Q}_5.

We now want to show that C doesn’t have rational points. Let

$$f(x) = x^2 + 1$$
$$g(x) = -(x^3 + x^2 + 2x + 1)(x^3 + 2x^2 + x + 1)$$

We can then define an Azumaya algebra on C by setting it to be the quaternion algebra $(2, f(x))$ when $f(x) \neq 0$ and $(2, g(x))$ when $g(x) \neq 0$. This Azumaya algebra is trivial at every real point because $2 > 0$. Now consider a point $(x, y) \in C(\mathbb{Q}_p)$.
We claim that $f(x)$ must have an even valuation: if $\nu_p(f(x)) < 0$ then
$\nu_p(f(x)) = 2\nu_p(x)$. If $\nu_p(f(x)) \geq 0$ and $\nu_p(f(x))$ is odd then $\nu_p(g(x))$ is
odd and so $f(x) = g(x) = 0 \mod p$. But the resultant of f and g is 1 and
so f, g can’t have a common root mod any p, so we get a contradiction.
Hence $\nu_p(x)$ is even.

This means that unless $p = 2$ the Azumaya algebra A is trivial at (x, y).
Now if $(x, y) \in C(Q_2)$ then by checking all the possibilities one sees that
$f(x) = 5u^2 \in Q_2$. But the equation $-2t^2 + 5s^2 = 1$ doesn’t have a solution
in Q_2 because $1 - 5s^2$ can’t have an odd valuation. Hence we get that for
every Adelic point $q \in X(A)$ we have $inv(A, q) = 1/2 \neq 0$ and so $X^{Br} = \emptyset$
which means that $X(Q) = \emptyset$.

2. Consider the affine surface X given by the equation
$$y^2 + z^2 = h(x) = (x^2 - 2)(3 - x^2)$$
and set
$$f(x) = x^2 - 2$$
$$g(x) = 3 - x^2$$

We first show that this surface has a point in every completion of Q. We
have the real point $(\sqrt{2}, 0, 0) \in X(R)$ and for every $p \neq 2$ then number
h(1) = -2 is a sum of two squares. In $p = 2$ we have that $h(4) = 2 \mod 8$ is
a sum of two squares mod 8 and hence in Q_2.

We shall now show that there isn’t any rational point using the Brauer-
Manin obstruction. Consider the quaternion Azumaya algebra A given
by $(-1, f(x))$ when $f(x) \neq 0$ and $(-1, g(x))$ when $f(x) \neq 0$. This is well
defined because when $f(x) \neq 0$ and $g(x) \neq 0$ we have that
$$r = \frac{f(x)}{g(x)} = \frac{y^2}{g^2(x)} + \frac{z^2}{g^2(x)}$$
is a sum of two squares and so $(-1, r)$ is trivial and
$$(-1, f(x)) \cong (-1, f(x)r) = (-1, g(x))$$

Now let $(x, y, z) \in X(R)$. Then a quick check verifies that $x^2 - 2$ and $3 - x^2$
can’t both be negative and so must both be positive. Hence A is trivial
at (x, y, z). Now let $(x, y, z) \in X(Q_p)$ for $p \neq 2$. Then as before since
the resultant of f, g is 1 we see that $f(x)$ must have an even valuation
and so is a sum of two squares. If $(x, y, z) \in X(Q_2)$ then a quick check
verifies that if $\nu_2(x) \geq 2$ so $f(x) = 6 \mod 8$ is not a sum of two squares
mod 8 and so not a sum of two squares in Q_2. Hence A is non-trivial at
(x, y, z). This means that for every $q \in X(A)$ we have $inv(A, q) = 1/2$ and
so $X^{Br} = \emptyset$ and $X(Q) = \emptyset$.

4
How did we find these Azumaya algebras? In principle this is obtained by the relevant theory in arithmetic algebraic geometry which studies Brauer groups of varieties. We can however explain a simple construction which can be used in both the examples above.

Let X be a variety defined over \mathbb{Q} and let f be a rational function on X which is defined over \mathbb{Q}. Suppose that there is a quadratic extension $K = \mathbb{Q}(\sqrt{a})$ of \mathbb{Q} and a divisor D on X defined over K such that

$$D + \sigma(D) = \text{div}(f)$$

where $\sigma \in \text{Gal}(K/\mathbb{Q})$ is the non-trivial element. We claim that we can construct from this an Azumaya algebra. Cover X by open sets U_α (defined over \mathbb{Q}) such that on every U_α there exists a rational function f_α defined over K satisfying

$$\text{div}(f_\alpha)|_{U_\alpha} = D|_{U_\alpha}$$

$$\text{div} (f_\alpha \sigma(f_\alpha)) |_{U_\alpha} = (D + D_\alpha)|_{U_\alpha} = \text{div}(f)|_{U_\alpha}$$

which means that

$$g_\alpha = \frac{f}{f_\alpha \sigma(f_\alpha)}$$

is a no-where vanishing regular function on U_α. Define the quaternion Azumaya algebra by setting it to be (a, g_α) on U_α. Note that on the intersection $U_\alpha \cap U_\beta$ the difference

$$\frac{g_\alpha}{g_\beta} = \frac{f_\beta \sigma(b_\beta)}{f_\alpha \sigma(f_\alpha)} = N_{K/\mathbb{Q}} \left(\frac{f_\beta}{f_\alpha} \right)$$

which means that $(a, g_\alpha) \cong (a, g_\beta)$. The relevant f was called f in both the examples above.