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Let PrL be the ∞-category of presentable ∞-categories and left functors
between them (equivalently, colimit preserving functors). The ∞-category PrL

admits a symmetric monoidal structure such that if C,D ∈ PrL are presentable
∞-categories then C ⊗ D is a presentable ∞-category equipped with a map
p : C × D −→ C ⊗ D satisfying the following property: for every presentable
∞-category E, restriction along p induces a fully-faithful inclusion

FunL(C⊗D,E)
p∗−→ Fun(C×D,E)

whose essential image is spanned by those functors C × D −→ W which pre-
serve colimits in each variable separately. By a tensor ∞-category we shall
mean a commutative algebra object in (PrL,⊗). Alternatively, a tensor ∞-
category is a symmetric monoidal ∞-category C such that C is presentable and
the monoidal product preserves colimits in each variable separately. If C is a
tensor ∞-category and D is a presentable ∞-category, we will say that D is
tensored over C if it carries a structure of a module over C in (PrL,⊗). In this
case we will also say that D carries a C-tensor structure. This means that D car-
ries an action C⊗D −→ D which preserves colimits in each variable separately.
Consequently, for every c ∈ C the functor c⊗ (−) : D −→ D admits a right ad-
joint (−)c : D −→ D (the associated cotensor structure), and for each d ∈ D

the functor (−) ⊗ d : C −→ D admits a right adjoint Hom(d, (−)) : D −→ C

(the associated enriched mapping object). In particular, when D is tensored
over C it is also canonically enriched in C.

Given a tensor∞-category C, any presentable∞-category D can carry many
non-equivalent C-tensor structures. However, in some situations, a C-tensor
structure is unique if is exists. For example, if C = S∗ is the tensor category
of pointed spaces (and smash product) then D is tensored over C if and only
if it is pointed (i.e., the initial and terminal objects of D coincide), in which
case the C-tensor structure is essentially unique. Similarly, if C = MonE∞(S) is
the∞-category of commutative (or E∞) monoids in spaces, then being tensored
over C is the same thing as being semi-additive, i.e., being pointed and having
coproducts which are also products.

The following lemma suggests where one can find tensor∞-categories which
have this uniqueness-of-structure property:
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Proposition 1. Let C be a tensor ∞-category. The following conditions are
equivalent:

1. The forgetful functor ModC(PrL) −→ PrL is fully-faithful.

2. For every C-module D, the structure map C⊗D −→ D is an equivalence.

3. The monoidal product C⊗ C −→ C is an equivalence.

4. C is (−1)-cotruncated as a tensor∞-category, i.e., if D is any other tensor
∞-category then the ∞-category Funten(C,D) of monoidal left functors is
either contractible or empty.

Definition 2. Following T. Schlank we define a mode to be a tensor ∞-
category satisfying the equivalent conditions of Proposition 1. If C is a mode
then we will say that C classifies the property of being tensored over C.

Remark 3. The notion of a mode can be considered as a categorification of the
notion of a solid ring. Indeed, a module structure over a solid ring is unique
as soon as it exists.

Examples 4.

1. The tensor∞-category S∗ of pointed spaces is a mode, which classifies the
properties of being pointed.

2. The tensor ∞-category MonE∞(S) and commutative monoids is a mode,
which classifies the property of being semi-additive.

3. For each n, the tensor ∞-category S≤n of n-truncated spaces is a mode,
which classifies the property of being an (n+ 1)-presentable category.
In particular, the category of sets is a mode which classifies the property
of being an ordinary presentable category.

4. The tensor ∞-category of spectra is a mode, which classifies the property
of being stable.

5. For every field k, the tensor category of k-vector spaces is a mode, which
classifies the property of being k-linear.

6. If C is a mode and D is a symmetric monoidal accessible localization of C
then D is a mode. This follows from characterization (4) above since the
localization (tensor) functor L : C −→ D is (−1)-cotruncated.

By Proposition 1 the full subcategory of CAlg(PrL) spanned by modes is a
poset, i.e., the space of symmetric monoidal left functors between each two is
either empty or contractible. We will say that a mode C is minimal if every
symmetric monoidal left functor out of C is an equivalence. The problem of clas-
sifying all minimal modes is a very interesting open question in higher category
theory. We may consider such modes as the closed points of the “spectrum” of
PrL.
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In this talk we will focus on the first two examples above, namely S∗ and
MonE∞(S). We claim that these form the first two steps in an infinite sequence
of modes, which can be considered as higher versions of the notion of com-
mutative monoids. Consider a space X. The structure of an E∞-monoid on X
can be informally described as a rule which associates to each finite collection of
points x1, ..., xn in X their sum x1+ ...+xn ∈ X. Using what may appear as an
artificial analogy at this point, we can encode the collection x1, ..., xn as a map
f : S −→ X where S is a finite (possibly empty) set, and write

∫
S
f = x1+...+xn

for the sum. The condition of being pointed can be considered as a similar “in-
tegral” operation, but defined only for sets S with |S| ≤ 1. More precisely if
(X,x0) is a pointed space, then for S = {∗} a singleton the integral is given by∫
S
f = f(∗), and if S = ∅ then the integral of the unique map S −→ X is the

base point x0. We hence see that the structure of pointedness is naturally asso-
ciated with the category of (−1)-truncated sets (or spaces), while the structure
of a commutative monoid is associated with the category of finite sets (or finite
0-truncated spaces). We may hence contemplate a generalization of this idea
when we replace S with, say, n-truncated spaces, satisfying suitable finiteness
conditions. More precisely, we will consider the following types of spaces:

Definition 5. Let X be a space. For n ≥ 0 we say that X is n-truncated if
πi(X,x) = 0 for every i > n and every x ∈ X. We will say that X is (−1)-
truncated if it is either empty of contractible and that X is (−2)-truncated
if it is contractible. We will say that a map f : X −→ Y is n-truncated
if the homotopy fiber of f over every point of Y is n-truncated. Let X be a
space. Then X is said to be π-finite if it is n-truncated for some n and all its
homotopy groups/sets are finite. We will denote by Kn a set of representatives
for the equivalence types of π-finite n-truncated spaces.

In order to properly define our higher notion of a monoid we will need to
consider suitable∞-categories of spans. Let S denote the∞-category of spaces
and let Span(S) denote the ∞-category whose objects are spaces and such that
the mapping space from X to Y is the classifying space of spans
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Composition of spans is given by the formation of pullbacks, see, e.g., [1], [2] for
rigorous constructions. Given integers −2 ≤ m ≤ n we let Smn ⊆ Span(S) denote
the subcategory spanned by those objects X ∈ Span(S) which are π-finite and
n-truncated as spaces and those spans as in 0.1 for which p is m-truncated.
When m = −2 we will also denote by Sn = S−2n , noting that Sn is just the
∞-category of n-truncated π-finite spaces and ordinary maps between them.

Definition 6. Let m ≥ −1 be an integer and let D be an∞-category admitting
Km-indexed limits. An m-commutative monoid in D is functor F : Sm−1m −→
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D with the following property: for every X ∈ Sm−1m the collection of maps
F(i∗x) : F(X) −→ F(∗) exhibits F(X) as the limit in D of the constant X-indexed
diagram with value F(∗). We will denote by CMonm(D) ⊆ Fun(Sm−1m ,D) the
full subcategory spanned by those functors which are m-commutative monoids.

Example 7. If m = −1 then Sm−1m = S−2−1 = S−1 is the ∞-category of (−1)-
truncated spaces and ordinary maps between them. In particular, we may
identify S−1 with the category consisting of two objects ∅, ∗ and a unique non-
identity morphism ∅ −→ ∗. An ∞-category D admits K−1-indexed limits ex-
actly when it has a final object. A functor S−1 −→ D is completely determined
by the associated morphism F(∅) −→ F(∗) in D. By definition such a functor
F is a (−1)-commutative monoid if and only if F(∅) is a terminal object of
D. We may hence identify CMon−1(D) with the full subcategory of the arrow
category of D spanned by those arrows A −→ B for which A is a final object.
In particular, if we fix a particular final object ? ∈ D then we may form an
equivalence CMon−1(D) ' D?/. In other words, we may identify CMon−1(D)
with the ∞-category of pointed objects D.

Example 8. If m = 0 then we may identify Sm−1m = S−10 with the category
whose objects are finite sets, and such that a morphism from a finite set A to
a finite set B is a pair (C, f) where C is a subset of A and f : C −→ B is a
map. In particular, S−10 is equivalent to the nerve of a discrete category. By
sending a finite set A to the pointed set A+ = A

∐
{∗} and sending a map

(C, f) to the map f ′ : A+ −→ B+ which restricts to f on C and sends A \ C to
the base point of B+ we obtain an equivalence S−10 ' Fin∗, where Fin∗ is the
category of finite pointed sets. To say that an ∞-category D has K0-indexed
limits is to say that D admits finite products. Unwinding the definitions we
see that a functor S−10 −→ D is a 0-commutative monoid object if and only if
the corresponding functor Fin∗ −→ D is a commutative monoid object in the
sense of [4, Definition 2.4.2.1], also known as an E∞-monoid. When D is the
∞-category of spaces this notion of commutative monoids was first developed
by Segal under the name special Γ-spaces.

To get a feel for what these higher commutative monoids are, let us consider
the example of the ∞-category S of spaces. Let F : Sm−1m −→ S be an m-
commutative monoid object and let us refer to M = F(∗) as the underlying
space of F. We may then identify two types of morphisms in Sm−1m . The first
type are morphisms of the form

X

Id

  A
AA

AA
AA

A
f

~~~~
~~
~~
~~

Y X

where f is (m − 1)-truncated, which we shall write as f̂ : Y −→ X. These
morphisms help us to identify the spaces F(X): by definition, the collection of

maps îx : X −→ ∗ exhibit F(X) as the limit of the constant X-indexed diagram
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with value F(∗) = M . In particular, we may identify F(X) with the mapping

space MapS(X,M). Other morphisms of the form f̂ : Y −→ X don’t really give
more information: if f : X −→ Y is an (m − 1)-truncated map then for every

x ∈ X we have îx ◦ f̂ = îf(x), and so the induced map

f̂∗ : MapS(Y,M) ' F(Y ) −→ F(X) ' MapS(X,M)

is forced to coincide with the restriction along f . The second type of morphisms
in Sm−1m are the spans of the form

X
g
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where g : X −→ Y is any map of π-finite m-truncated spaces. We can think of
the associated map g∗ : MapS(X,M) −→ MapS(Y,M) as carrying the struc-
ture of M . Let Xy be homotopy fiber of g over y ∈ Y , equipped with its
natural map iXy

: Xy −→ X, and let py : Xy −→ {y} be the constant

map. Then îy ◦ g = py ◦ îXy
and so for each ϕ ∈ MapS(X,M) the func-

tion g∗(ϕ) ∈ MapS(Y,M) maps the point y to the point (py)∗(ϕ|Xy
) ∈ M .

Hence the core structure here is concentrated in the action of constant maps
p : X −→ ∗, which is given by some map p∗ : Map(X,M) −→ M . In other
words, the structure of being an m-commutative monoid means that for every
m-truncated space X we can take an X-family {ϕ(x)}x∈X of points in M and
“integrate” it to obtain a new point p∗(ϕ) ∈ M . The compatibility conditions
that this integration satisfies is encoded in the fact that if we present X as a
total space of a fibration X −→ Y and we have a map f : X −→ M then then
we have a “twisted Fubini” path in M relating

∫
x∈X f(x) and

∫
y∈Y

∫
x∈Fy

f(x).

If D is a presentable∞-category then Monm(D) is an accessible localization
of Fun(Sm−1m ,D) and in particular presentable. We note that Sm−1m carries a
natural symmetric monoidal structure inherited from the symmetric monoidal
structure of Span(S) (see [2, Theorem 1.3(iv)]), which is given on the level of
objects by (X,Y ) 7→ X × Y , and on the level of morphisms by taking levelwise
Cartesian products of spans. This structure induces a symmetric monoidal
structure on Fun(Sm−1m ,D) via Day convolution, and this structure descends
to a symmetric monoidal structure on Monn(D), which we can think of as a
tensor product of commutative monoids. In particular, Monn(D) is a tensor
∞-category.

The first result we wish to state is the following:

Proposition 9. For every m ≥ −1 the ∞-category Monm(S) is a mode.

At this point one is led to wonder what is the property classified by Monm(S).
This is closely related to the notion of ambidexterity, developed by Lurie
and Hopkins. Ambidexterity is a category-theoretic phenomenon concerning
diagrams p : K −→ C which have the property that their limits and colimit
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coincide. The simplest case where this can happen is when K is empty. In
this case a colimit of K is simply an initial object of C, and a limit of K is a
final object of C. Given that both ∅ and ∗ exist there is a canonical way to
require that they coincide, namely, asserting that the unique map ∅ −→ ∗ is an
equivalence. In this case we say that C is pointed. An object 0 ∈ C which is
both initial and final is called a zero object.

Generalizing this property to cases where K is non-empty involves an imme-
diate hic-up. In general, even if p : K −→ C can be extended to both a limit and
a colimit diagram, there is apriori no natural choice of a map relating the limit
and the colimit. Informally speaking, choosing a map colim(p) −→ lim(p) is the
same as choosing compatibly for every two objects x, y ∈ K a map p(x) −→ p(y)
in C. The diagram p, on its part, provides such a map p(e) : p(x) −→ p(y) for
every e ∈ MapK(x, y). The problem is that now we have a whole space of maps
p(x) −→ p(y) in our disposal, but no way to pin-point any specific one (certainly
not in a way that would be natural in x and y).

To see how this problem might be resolved assume for a moment that C

is a pointed, and that MapK(x, y) is either empty or contractible (i.e. K is
equivalent to a partially ordered set, or a poset). Then for every X,Y ∈ C

there is a distinguished point in MapC(X,Y ), namely the essentially unique
map which factors as f : X −→ 0 −→ Y , where 0 ∈ C is a zero object. We
may call this map X −→ Y the zero map. Then we do have a choice of a map
fx,y : p(x) −→ p(y) which is natural in x and y: if MapK(x, y) is contractible
then we just take fx,y to be p(e) for the essentially unique map e : x −→ y, and
if MapK(x, y) is empty then we just take the zero map. It is then meaningful to
ask whether the limits and colimit of a diagram p : K −→ C coincide: assuming
both of them exist, we may ask whether the map colim(p) −→ lim(p) we have
just constructed is an equivalence.

For general posets and general pointed ∞-categories C it turns out that the
map colim(p) −→ lim(p) is rarely an equivalence. For example, if K = [1]
then our map p(1) ' colim(p) −→ lim(p) ' p(0) is the 0-map, and is hence an
equivalence if and only if both p(0) and p(1) are zero objects. However, there
is a class of posets for which this property turns out to yield something more
interesting, namely, the class of discrete finite posets, i.e., finite posets for
which the order relation is the equality. In this case we may consider K as a
finite set and identify colim(p) '

∐
x∈K p(x) and lim(p) '

∏
x∈K p(x). The

map

Fp :
∐
x∈K

p(x) −→
∏
x∈K

p(x)

we constructed above is then given by the “matrix” of maps [fx,y]x,y∈K , where
fx,y : p(x) −→ p(y) is the identity if x = y and the zero map if x 6= y. When
a pointed ∞-category satisfies the property that Fp is an equivalence for every
finite set K and every diagram p : K −→ C we say that C is semiadditive.
In the world of discrete categories examples of semiadditive categories include
all abelian categories. Similarly, every stable ∞-category is semiadditive. How-
ever, semiadditivity is a strictly weaker property. For example, the category of
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commutative monoids is semiadditive but not abelian. Similarly, if C is any ∞-
category with finite products then the ∞-category MonE∞(C) of E∞-monoids
in C is semiadditive.

In their paper [6], Lurie and Hopkins develop the theory of ambidexterity
further by observing that the passage from pointed∞-categories to semiadditive
ones is just a first step in a more general process. Suppose, for example, that
C is a semiadditive ∞-category. Then for every X,Y ∈ C, the mapping space
MapC(X,Y ) carries a natural structure of an E∞-monoid, where the sum of two
maps f, g : X −→ Y is given by the composition

X
diag−→ X ×X f×g−→ Y × Y ' Y

∐
Y

codiag−→ Y.

Now suppose that K is an ∞-category whose mapping spaces are finite and
discrete and that p : K −→ C is a diagram which admits both a limit and
colimit. Then we may construct a natural map colim(p) −→ lim(p) by choosing,
for every x, y ∈ K, the map

∑
e∈MapK(x,y) p(e) : p(x) −→ p(y), where the sum

is taken with respect to the natural E∞-monoid structure on MapC(X,Y ). The
resulting map

Nrp : colim(p) −→ lim(p)

is known as the norm map. We may now ask when the norm map is an equiv-
alence. Again, it turns out that this rarely happens in general. However, if K
is assumed in addition to be ∞-groupoid (and hence a finite discrete groupoid
by our assumption) then this map is an equivalence in many interesting exam-
ples. For example, this holds when C is the category of vector spaces (or chain
complexes) of a field of characteristic 0. When the norm map is an equivalence
for every finite grouopoid K we say that C is 1-semiadditive.

The definition of n-semiaddivity for higher n is a bit subtle: to define what
it means for C to be n-semiadditive we need to assume that it is already (n−1)-
semiadditive. Instead of trying to reproduce the definition of Lurie and Hopkins,
let us try to continue along the same route as above. We saw that in order to
define the notion of 1-semiadditivity, we needed to assume that C is already
0-semiadditive, and we needed to use the fact that in this case C is naturally
enriched in commutative monoids. The passage from (n − 1)-semiadditivity
to n-semiadditivity can be similarly described using a suitable enrichment in
n-commutative monoids. Informally speaking, we can define inductively the
notion of n-semiadditivity using the following logic:

1. Being (−1)-semiadditive is to be pointed, and to be 0-semiadditive is to
be semiadditive in the usual sense.

2. To define the notion of n-semiadditive, one must first have a notion of
(n − 1)-semiadditive. This notion should have the following property: if
C is (n − 1)-semiadditive then C should admit Kn−1-indexed limits and
colimits (which coincide) and should be naturally enriched in (n − 1)-
commutative monoids.
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3. Let C be an (n− 1)-semiadditive∞-category. Suppose we have a diagram
p : K −→ C where K is an ∞-category whose mapping spaces are all in
Kn−1, and suppose that p admits both a limit and a colimit. Then we
may use the enrichment in CMonn(S) to construct a natural norm map

Nrp : colim(p) −→ lim(p).

The data of such a map is equivalent to a compatible collection of maps
Nrx,y : p(x) −→ p(y) for (x, y) ∈ Kop×K. In this case Nrx,y will be given
by the “integral” ∫

α∈MapC(x,y)

p(α) ∈ MapC(p(x), p(y))

which is defined using the (n−1)-commutative monoid structure of MapC(p(x), p(y))
and the fact that MapK(x, y) is in Kn−1.

4. If C is (n − 1)-semiadditive then we say that it is n-semiadditive if it
admits Kn-indexed limits and colimits and such that for every K ∈ Kn

and every diagram p : K −→ C the norm map Nrp : colim(p) −→ lim(p)
is an equivalence.

We may now describe our main results:

Theorem 10. The∞-category CMonn(S) is the free n-semiadditive presentable
∞-category generated by a single object. If D is any other presentable ∞-
category, then D is tensored over CMonn(S) if and only if D is n-semiadditive,
in which case the CMonn(S)-tensor structure is unique. In other words, the
mode CMonn(S) classifies the property of being n-semiadditive.

Corollary 11. The∞-category of Kn-local spectra is tensored over n-commutative
monoids.

The proof of Theorem 10 is obtained by first proving that Snn itself is the free
n-semiadditive ∞-category generated by a single object. One then shows that
CMonn(S) is the presentable completion of Snn, considered as a small∞-category
with Kn-indexed colimits, yielding the same universal property for CMonn(S).
More generally, if D is any presentable∞-category, then CMonn(D) ' CMon(S)⊗
D is the free presentable n-semiadditive ∞-category generated from D. This
relationship between Snn and CMon(S) means in particular that there is a nat-
ural yoneda type functor Snn −→ CMon(S) which can be considered as sending
X ∈ Snn to the free n-commutative monoid generated from X. We note that
this functor is also symmetric monoidal. One motivation for this circle of ideas
is their relation to topological field theories. Indeed, if X is a π-finite n-
truncated space then there is a 1-dimensional TFT Bordun

1 −→ Snn which sends
a 0-manifold M to Map(M,X) and sends a cobordism W from M1 to M2 to
Map(W,X), considered as a span from Map(M1, X) to Map(M2, X). Compos-
ing this TFT with the yoneda map Snn −→ CMonn(S) one obtains a TFT valued
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in n-commutative monoids. By the universal property of CMonn(S) one may
transport this TFT to any other n-semiadditive presentable tensor ∞-category
D, such as the∞-category of Kn-local spectra. More generally, one may obtain
a TFT starting from a π-finite n-truncated space X and an X-indexed family
of dualizable objects in D. It is quite desirable to obtain higher dimensional
generalizations of this result, which would allow one to construct higher dimen-
sional TFT’s. This would be related to the∞-category 2−Snn of spans of spans,
whose objects are π-finite n-truncated spaces and such that the ∞-category of
morphisms from Y to Z is the ∞-category of spans in (Snn)/Y×Z . Fixing a π-
finite n-truncated space X one obtains a 2-dimensional TFT Bordun

2 −→ 2−Snn
which sends a 0-manifold M to Map(M,X), a 1-cobordism W from M1 to M2

to Map(W,X) considered as a span from Map(M1, X) to Map(M2, X) and a
2-cobordism Z from W1 to W2 to Map(Z,X) considered as a bordism from
Map(W1, X) to Map(W2, X). One should then be able to transport this TFT
to a PrL-valued TFT by composing with a natural 2-functor which associates
to X the tensor∞-category Fun(X,CMon(S)) ' CMon(Fun(X, S)) of local sys-
tems of m-commutative monoids on X. To understand this 2-functor, observe
that Map2−Sn

n
(X,Y ) is the free n-semiadditive ∞-category generated from the

∞-groupoid X × Y , while, sense CMon(Fun(X, S)) is the free presentable n-
semiadditive ∞-category generated from the ∞-groupoid X we have that

FunL(CMon(Fun(X, S)),CMon(Fun(Y, S))) ' Fun(X,CMon(Fun(Y, S))) '

' Fun(X × Y,CMon(S))

is the free presentable n-semiadditive∞-category generated from X×Y . Under
suitable conditions, one should be able to transport this from CMon(S) to other
n-semiadditive presentable ∞-categories, such as Kn-local spectra.
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