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Abstract In this paper we propose to use a relative variant of
the notion of the étale homotopy type of an algebraic variety in
order to study the existence of rational points on it. In particular,
we use an appropriate notion of homotopy fixed points in order
to construct obstructions to the local-global principle. The main
results in this paper are the connections between these obstructions
and the classical obstructions, such as the Brauer-Manin, the étale-
Brauer and certain descent obstructions. These connections allow
one to understand the various classical obstructions in a unified
framework.

9.1 Introduction
9.1.1 Obstructions to the Local Global Principle -
Overview

Let X be a smooth variety over a number field K. A prominent problem
in arithmetic algebraic geometry is to understand the set X (K). For
example, one would like to be able to know whether X (K) # 0. As a
first approximation one can consider the set

X(K)C X(A)
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where A is the ring of adeles of K.
It is a classical theorem of Minkowski and Hasse that if X C P" is
hypersurface given by one quadratic equation then

X(A) #0= X(K)#0.

When a variety X satisfies this property we say that it satisfies the local-
global principle. In the 1940’s Lind and Reichardt ([Lin40], [Rei42]) gave
examples of genus 1 curves that do not satisfy the local-global principle.
More counterexamples to the local-global principle where given through-
out the years until in 1971 Manin ([Man70]) described a general obstruc-
tion to the local-global principle that explained all the examples that
were known to that date. The obstruction (known as the Brauer-Manin

obstruction) is defined by considering a set X (A)B" which satisfies

X(K)C X(A)P C X(4)

If X is a counterexample to the local-global principle we say that it is
accounted for or explained by the Brauer-Manin obstruction if

0= X (AP C X(A)#0.

In 1999 Skorobogatov ([Sko99]) defined a refinement of the Brauer-
Manin obstruction (also known as the étale-Brauer-Manin obstruction)
and used it to give an example of a variety X for which

0= X(K)C X(A)P #£0.
More precisely, Skorobogatov described a new intermediate set
X(K) C X(A)/™PrC X(A)P C X(A)
and found a variety X such that
0= X(A)"™B C X(A)BT #£0.

In his paper from 2008 Poonen ([Poo08]) constructed the first and
currently only known example of a variety X such that

0= X(K)C X(A)/™Br £

In 2009 the second author ([Sch09]) showed that in some cases Poonen’s
counter-example can be explained by showing that some smaller set
X (A)/Br~D g empty.

A different approach to define obstructions sets of the form

X(K)C X(A) C X(A)
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is by using descent on torsors over X under linear algebraic groups.
This method was studied by Colliot-Théléne and Sansuc ([CTS80] and
[CTS87]) for torsors under groups of multiplicative type and by Harari
and Skorobogatov ([HSk02]) in the general non-abelian case (see also
[SkoO1]).

One can define numerous variants of the descent obstruction by con-
sidering only torsors under a certain class of groups. We shall denote by
X (A)dese, X (A)™ X (A)T™= and X (A)°" the obstructions obtained
when considering all, only finite, only finite abelian and only connected
linear algebraic groups respectively.

In the case where X is projective Harari ([Har02]) showed that

X(A)Br _ X(A)con.

Lately, building on this work, Skorobogatov ([Sko09]) and Demarche
([De09a]) showed that in this case one also has

X(A)fin,Br _ X(A)desc.

9.1.2 Our Results

In this paper we use a new method in order to construct natural interme-
diate sets between X (K) and X (A). This method uses a relative variant
of the étale homotopy type Et(X ) of X which was constructed by
Artin and Mazur [AMa69].

This variant, denoted by Et /K (X), is an inverse system of simplicial
sets which carry an action of the absolute Galois group 'k of K. We
then use an appropriate notion of homotopy fixed points to define a
(functorial) set X (hK') which serves as a certain homotopical approxi-
mation of the set X (K) of rational points. In fact one obtains a natural
map

h: X(K)— X(hK).
In order to apply this idea to the theory of obstructions to the local-
global principle one proceeds to construct an adelic analogue, X (hA),

which serves as an approximation to the adelic points in X. One then
obtains a commutative diagram of sets

X(K) —~ X (hK)

\Lloc lloc h

X(A) —> X (hA).
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We then define X (A)” to be the set of adelic points whose correspond-
ing adelic homotopy fixed point is rational, i.e. is in the image of locy.
This set is intermediate in the sense that

X(K) C X(A)" C X(A)

and so provides an obstruction to the existence of rational points. By
using a close variant of this construction (essentially working with ho-
mology instead of homotopy) we define a set X (A)Z" that satisfies

X(K)C X(A)" € X(A)™ C X(A).

A second variant consists of replacing Et /i (X) with its n’th Postnikov
piece (in the appropriate sense) yielding "bounded" versions of the ob-
struction above denoted by

X(K)C X(A)" C X(A)Zhm C X (A).

To conclude we get the following diagram of inclusions of obstruction
sets:

X (A)ZC—s .. s X (A)EP2Cs X (A)PP1C—> X (A)

X(K)— X(A)'— ... X(A)"2C— X(A)M!,

The main results of this paper (Theorems 9.103, 9.116, 9.136 and
Corollary 9.61) describe these obstructions in terms of previously con-
structed obstructions:

Theorem 9.1 Let X be smooth geometrically connected variety over
a number field K. Then

X(A)" = X (A)/nPr,
X ()P = X ()",
XA =X (a)™,
X(A)ZRL = x(A)fin—ab,
Furthermore, for every n > 2
XA =X (A",

X(A)Zh’n _ X(A)Zh
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In particular, the diagram above is equal to the diagram

X (A . X (AP X (A)fin—obC s X (A)

X(K)(—> X(A)fin,Br(_> s X(A)fin,Br(_> X(A)f'm .

This homotopical description of the classical obstructions can be used
to relate them in new ways to each other. For example one gets the
following consequences:

Corollary 9.2 (Theorem 9.148) Let K be number field and X a smooth
geometrically connected K -variety. Assume further that 75'(X) = 0
(which is true, for example, when X is a curve such that X # P').
Then

X(A)fm — X(A)fin,Br.

Corollary 9.3 (Theorem 9.147) Let K be number field and X,Y be
two smooth geometrically connected K-varieties, then

(X X Y)(A)fin,Br _ X(A)ﬁn’Br % Y(A)fin,Br.

When studying homotopy fixed points for pro-finite groups we rely
heavily on [Goe95] who defines for a profinite group I' and a simplicial
set X with continuous I'-action the notion of a homotopy fixed points
space X',

Given a field K and a simplicial set X with continuous I'k-action we
define a suitable notion of "adelic homotopy fixed points space" X4,
An additional result we obtain is a generalization of the finiteness of the
Tate-Shafarevich groups for finite Galois modules.

Proposition 9.4 Let K be a number field and let X be an excellent
finite bounded simplicial T i -set. Then the map

locx : mo (XhFK) — o (XM)

has finite pre-images, i.e. for every (x,) € X(hA) the set locx ' ((x,))
is finite.

Shortly after we published on the ArXiv website a first draft of this
paper, Ambrus Pal published a paper with some similar ideas ([Pal10]).
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In his paper, Pal also uses the étale homotopy type to study rational
points on varieties, but takes a slightly different approach.

The paper is divided into three parts. In the first part we give the
basic definitions and describe the various obstructions. The first part
includes §9.2, where we recall the notion of the étale homotopy type
Et(X ) of X and construct the variations used later for the obstructions,
and §9.3 where we recall the definition of the classical obstructions and
define our various obstructions X (A)"" X (A)%"" using E/taK (X) and
an appropriate notion of homotopy fixed points.

In the second part of the paper we prove the technical results regard-
ing Galois homotopy fixed points that we will use later to relate different
obstructions to each other. As we have already mentioned the fact that
we don’t use a model structure on pro-spaces has some technical disad-
vantages that will be addressed in a future work. This part is the one
most influenced by this fact. The second part contains 4 sections.

In §9.4 we study methods to work with homotopy fixed points under
pro-finite groups. In §9.5 we prove that in order to study the obstructions
obtained in this method it is enough to study the obstructions obtained
from each space in the diagram Eta (X)) separately. This will prove very
useful in third part.

In 9.6 we relate the homotopical obstructions we have defined to
Grothendieck’s section obstruction and to Pal’s point of view presented
in [Pal10]. In §9.7 we show that our notion of the homotopy fixed points
set is stable under a certain type of pro-isomorphisms. This section will
be redundant when we work in suitable model structure.

Finally in the third part of paper we relate the homotopy obstruc-
tions to classical obstructions. In §9.8 we give basic results for vari-
eties of dimension zero and non-connected varieties as well as analyzing
the obstructions X (A)"0 and X(A)Z"0 | In §9.9 the equivalence be-
tween finite (finite-abelian) descent and X (A)*! (X (A)%Z"!) is proven
for smooth geometrically connected varieties. In §9.10 we prove (un-
der the same assumptions on X) that the Brauer-Manin obstruction is
equivalent to X (A)Z". In §9.11 we prove that the étale-Brauer-Manin
obstruction is equivalent to X (A)" (again for smooth geometrically con-
nected X). Finally in §9.12 we give some applications of the theory
developed throughout the paper.
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E. De-Shalit for their essential guidance. We would also like to thank
J.-L. Colliot-Théléne, A. Skorobogatov, H. Fausk, D. Isaksen and J.
Milne for useful discussions. We would also like to thank K. Cesnaviius
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We would also like to thank the anonymous referee for the very useful
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9.2 The Etale Homotopy Type and its Relative
version

In this paper we will only be interested in (smooth) varieties over fields.
By this we mean (smooth) reduced separated schemes of finite type over
a field K. In this section we do not assume any restriction on the field
K. We denote the category of smooth varieties over K by Var/K. We
will also refer to them as smooth K-varieties.

Remark 9.5 In this paper we deal a lot with both algebraic varieties
and simplicial sets. In order to distinguish in notation we will use regular
font (e.g. X,Y,etc.) to denote algebraic varieties and bold font (e.g.
X,Y, etc.) to denote simplicial sets.

This section is partitioned as follows. In §§9.2.1 we will discuss the
notions of skeleton and coskeleton and use them to define the notion of
a hypercovering. In §§9.2.2 we will describe the classical construction of
the étale homotopy type as well as the construction of a relative variant
which is the main object of interest in this paper. In §§9.2.4 we will give
some computational tools to help understand the homotopy type of the
spaces we shall encounter.

9.2.1 Hypercoverings

In this section we shall recall the notion of a hypercovering which
is used in the definition of the étale homotopy type. For a more de-
tailed treatment of the subject we refer the reader to §8 in [AMa69]
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or to [Fri82]. We start with a discussion of the notions of skeleton and
coskeleton.

Skeleton and Coskeleton
For every n > —1 we will consider the full subcategory A<, C A
spanned by the objects {[i] € ObA|i < n}. The natural inclusion A<, —
A induces a truncation functor

tr,, : Set®” — Set?A<n

that takes a simplicial set and ignores the simplices of degree > n.
This functor clearly commutes with both limits and colimits so it has
a left adjoint, given by left Kan extension

sk, : Set®<n 5 SetA”

also called the n-skeleton, and a right adjoint, given by right Kan ex-
tension
cosk,, : Set®<n — SetA”
called the n-coskeleton. To conclude, we have the two adjunction
sk,, - tr,, 1 cosk,,.

The n-skeleton produces a simplicial set that is freely filled with degen-
erate simplices above degree n.
Definition 9.6 We will use the following notation

Qn =skpy1 0trpg Set®” — Set®”

and

P, = cosky 41 0trpqq : Set®” — Set®”
for the composite functors. Now these two functors satisfy the adjunction
(Qn 4 P,) : Set®” — Set™”.

One of the important roles of P, is that if X is a Kan simplicial set
then P,(X) is its nth Postnikov piece, i.e. for & > n we have

Tk (Pn(X)) =0

and for k£ < n the natural map X — P,(X) induces an isomorphism
i (X) — 7 (Pr(X)).
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Now suppose we replace the category Set of sets with an arbitrary
category C. Then if C has finite colimits one has the functor

Qn:CA" — A"

defined in an analogous way and if C' has finite limits then one has the
functor

P, :CA" — A7,

The skeleton and coskelaton constructions are very useful and shall
be used repeatedly throughout this paper. One useful application is the
construction of a contractible space with free group action.

Definition 9.7 Let G be a finite group. We have an action of G on
itself by multiplication on the left. Now consider G as a functor:

% = Aogpo — Setg.
Define
EG = cosk(G) € Set5” .
We can write an explicit description of this simplicial G-set by
EG, = G"L
Note that the action of G on EG is free and and that EG is contractible.
Definition 9.8 Let G be a finite group. Define
BG = EG/G.
Note that BG is a connected and satisfies
m1(BG) = G.
Furthermore it can be checked that the natural map
BG — P1(BG)
is an isomorphism of simplicial sets.
Hypercoverings

We will apply these concepts for the case of C being the étale site of an
algebraic K-variety X.

Definition 9.9 Let X be a K-variety. A hypercovering Uy — X
is a simplicial object in the étale site over X satisfying the following
conditions:
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1. Uy — X is a covering in the étale topology.
2. For every n, the canonical map

Unt1 — (cosky, (trn (Us)))nt1
is a covering in the étale topology.

Example 9.10 The most common and simple kind of hypercoverings
are those defined through the classical Cech resolution:

Definition 9.11 Let X be a K-variety and Y — X an étale covering
of X. Considering Y as a functor from A= to the étale site of X we
will define the Cech hypercovering of Y to be

Y, = coskq(Y).

As above we can write an explicit description of this hypercovering by

n+1
. ——
Yn:YXx...XXy.

9.2.2 The Etale Homotopy Type

We shall start our discussion by recalling the definition of the étale
homotopy type functor as defined by Artin and Mazur in [AMa69]. We
will then describe a variant of this construction which we will use for
the rest of the paper.

Both the construction of the étale homotopy type and its variant use
categories enriched over simplicial sets. In all cases the enrichment is
defined in a very similar way, so it’s worthwhile to describe the general
pattern.

Suppose that C' is an ordinary category which admits finite coprod-
ucts. Given a finite set A and an object X € C we will denote by

Aex=]]x
acA
the coproduct of copies of P indexed by A. Note that —® — is a functor
from Set x C to C' (where Set is the category of sets) and that B&(A®X)
is naturally isomorphic to (B x A) ® X.
Let C2” denote the category of simplicial objects in C' and Se
the category of simplicial sets. Given a simplicial set S, € Set®” and
an object X, € C®” we will denote by S, ® X, the object given by

op
tA
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Now for every two objects Xo,Ye € C2" one can define a mapping
simplicial set Map(X.,, Ys) € Set®” by the formula

Map(Xa,Ys), = Hompaer (A" @ X,,Y,).

There is a natural way to define composition of these mapping simplicial
sets (using the natural map A" ® X — A" ® A" ® X induced from the
diagonal A™ — A”™ x A™) which is strictly associative. For example, in
the case C' = Set we obtain the usual enrichment of Set®” over itself.

Note that the zero simplices of Map(X,Y") are just the usual maps
in C2” from X to Y. Furthermore if C, D are two such categories and
F : C — D is a functor which respects coproducts then it induces a
simplicially enriched functor

FAT . A" — DA

Remark 9.12 To avoid confusion, let us emphasize that when we say
that 2" is a simplicially enriched functor we mean that for every two
objects X,o,Ys € C2”" we have a map of simplicial sets

Map(X,,Y,) — Map (FA”’ (X.), FA” (Y.))
which respects the identity and the composition rule.

Now let X be a smooth K-variety and consider the category Var,yx
of K-varieties over X. This category admits finite coproducts so one
obtains a natural simplicial enrichment of the category Var/A;p as above.
Let HC(X) C Var/A; denote the full (simplicially enriched) subcategory
spanned by the hypercoverings with respect to the étale topology. We
denote by I(X) = Ho(HC(X)) the homotopy category of HC(X) with
respect to this simplicial enrichment.

Now consider the connected component functor (over K):

mo : Var,x — Set.
This functor preserves finite coproducts and so induces a functor of

simplicially enriched categories

e Var/A; — Set®™
Since one wants to think of 7TOAOP(U.) as a topological space, one can
either take the realization of 75" (U,) (as is done in [AMa69]), or equiv-
alently, take the Kan replacement Ex™ (75" (U,)). The second option
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is more convenient because it allows one to continue working inside the
world of simplicial sets. It is equivalent in the sense that the subcategory

HoXkan» (SetAUp> C Ho (SetAUp)

consisting of Kan simplicial sets is equivalent to the homotopy category
of topological spaces with CW homotopy type.

Now the functor Ex™ extends to a simplicially enriched functor: the
augmentation map A"™ — Ex®°(A"™) induces a natural map on mapping
simplicial sets

Map(X,Y) — Map(Ex*(X), Ex*(Y))

which respects composition. Hence the composed functor Ex™ (WOAOP (o))

also extends to a simplicially enriched functor. Restricting Ex* (7‘(‘0A0p (o))
to HC(X) and descending to the respective homotopy categories one ob-

tains a functor

BH(X) : I(X) — HoKen (SetAOp) .

Since the category I(X) is cofiltered (Corollary 8.13 [AMa69]) we can
consider Et(X) as a pro-object in HoX®"(Set®™), i.e. an object in the
pro-category of HoX®(Set®™).

For a category C we will denote the pro-category of C by Pro C. Recall
that objects of Pro C are diagrams {X, }ocr of objects of C' indexed by
a cofiltered category I and that

Homp,, ¢ ({Xa}ou’:‘]v {Yﬁ}ﬁEJ) = gg}] Cglei}n Home (Xou Yﬁ)-

Now if f: X — Y is a map of K-varieties and U, — Y is a hyper-
covering of Y we can pull it back to obtain a hypercovering f*Us — X.
One then gets a natural map of simplicial sets

Ex> (770” ( f*u)) — Bx™ (wOA” (u)) .
These natural maps fit together to form a map
Et(X) — Et(Y)
in ProHo®*"(Set®™). This exhibits Et as a functor
Et: Var g — Pro Ho " (Set™™).

This is the étale homotopy type functor defined in [AMa69].
In [AMa69] Artin and Mazur work with a certain localization of

Pro HoKXan (SetAUp), via Postnikov towers. Postnikov towers are a way
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of filtering a topological space by higher and higher homotopical infor-
mation. In order to use Postnikov towers here we need a functorial and
simplicial way to describe them. Such a description can found in [GJa99]
by using the functor P,, = cosk, 41 o tr,, defined in the previous section.

Note that if X is a Kan simplicial set then P,,(X) will be a Kan simpli-
cial set as well, i.e. P,, can be considered as a functor from Kan simplicial
sets to Kan simplicial sets. Furthermore P,, extends to a functor of sim-
plicially enriched categories. Descending to the homotopy category we
get a functor

P, : HoRa® (SetAUp> — HoRan (SetAUp) )

Then for X; = {X, }aer € Pro HoKa“(SetAop) one defines
Xi = {Pn(Xa)}n,a-

In many ways the object XE, is better behaved then X ;. We will imitate
this stage as well in our construction of the relative analogue of Et(—).

9.2.3 The Relative Etale Homotopy Type

We now come to the construction of the relative analogue. If X is a
variety over K then it admits a natural structure map X — Spec (K).
We wish to replace the functor my from K-varieties to sets with a rel-
ative version of it. This relative functor should take a variety over K
and return a "set over K", i.e. a sheaf of sets on Spec (K) (with respect
to the étale topology).

Without getting into the formalities of the theory of sheaves let us
take a shortcut and note that to give an étale sheaf of sets on Spec (K)
is equivalent to giving a set with a I'x = Gal (K/K) action such that
each element has an open stabilzer. We will denote such objects by the
name I'x-sets and their category by Setr,. .

Remark 9.13 Some authors use the term discrete I'i-set in order
to emphasize the continuous action of I'. Since we will never consider
non-continuous actions, and in order to improve readability, we chose to
omit this adjective.

Note that Setr,, admits coproducts and so we have a natural simplicial
. A°P . . .
enrichment of Setr, . The relative version of g is the functor

TO/K * Var/K — SetpK
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which takes the K-variety X to the I'k-set of connected components of
X=X RK K.

This functor preserves coproducts and so induces a functor of simplicially
enriched categories

AP 7o ACP A°P
To i ¢ Varjg — Setp, .

As before, we don’t really want to work in Setlé;p itself, but with
some localization of it. In [Goe95] Goerss considers two simplicial model
. .. . A°P . ..
structures on the simplicially enriched category Setr, of simplicial Ga-
lois sets. In the first one, which is called the strict model structure, the
weak equivalences are equivariant maps of f : X — Y of simplicial
Galois sets such that the induced map

JAED S o

is a weak equivalence of simplicial sets for every open normal subgroup
A <T (in what follows we will use the notation A<I' to denote an open
normal subgroup). In the second model structure, which we will refer to
as the local model structure (as it is also a particular case of the local
model structure developed by Joyal in a well-known unpublished work),
weak equivalences are equivariant maps f : X — Y of simplicial Galois
sets which induce a weak equivalence on the underlying simplicial sets.
In both cases the cofibrations are just injective maps (and hence all the
objects are cofibrant) and for the strict model structure one also has a
concrete description of the fibrations: they are maps f : X — Y such
that the induced maps f» : X» — Y* are Kan fibrations for every
ALT.

We will denote by Ho (Set?f) the homotopy category of Setlé:{p with
respect to the simplicial enrichment given above. The localized homotopy
categories with respect to the strict and local model structures will be
denoted by Ho™ (Setlé:) and Ho'® (Setlé:) respectively. They can be
realized as a sequence of full sub-categories

Ho' (Setlé:)> C Ho™ (Set?j) C Ho (Set?j)

obtained by restricting to standardly fibrant and strictly fibrant objects
respectively.

Now, similarly to the above, we would like to compose WO/A; with the
strict fibrant replacement functor. It is convenient to note that strict
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fibrant replacement can actually be done using the Kan replacement
functor Ex*°: the functor Ex* also induces a functor Set?w — Set?w
(which by abuse of notation we will also call Ex*°), and we have the
following observation:

Lemma 9.14 If X € Set2” is a simplicial T-set then object Ex™(X)
is strictly fibrant and the map X — Ex*(X) is a strict weak equiva-
lence.

Proof We need to show that for every A<I' the simplicial set Ex™(X)"
is Kan and the map X* — Ex*(X)" is a weak equivalence. Both
claims follow easily once one shows that

Ex>®(X)" = Ex™®(X1).

This in turn follows from the fact that Ex°°(X) is the colimit of the
sequence of inclusions:

X — Ex(X) — Ex(Ex(X)) — Ex(Ex(Ex(X))) < ...
and
Ex(X)* = Ex(X%)
since Ex has a left adjoint (given by barycentric subdivision). [l

We now take the functor Ex* (W(/)K (0)) restricted to HC'(X) C Var/A;(p

and descend to the respective homotopy categories. We end up with a
functor

Et/K(X) : I(X) — ProHo™ (Setlé:)) .

We consider Et/K (X) to be the relative analogue of Et(X). Now just
as for Et, one can use pullbacks of hypercovering in order to make Et /K
into a functor:

Et/K :Var) g — ProHo® (Set?:)) i

As in the case of the regular étale homotopy type it will be better to
work with an appropriate Postnikov tower EtaK (X) of Bt/ (X), i.e. we
want a way to estimate an object by a tower of "bounded" objects. When
working with strictly fibrant objects the relevant notion of boundedness
is stronger:
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Definition 9.15 Let I' be a pro-finite group and X a simplicial I"-set.
We will say that X is strictly bounded if it is strictly fibrant and
if there exists an N such that for all AT the simplicial set X% is N-
bounded (i.e. all the homotopy groups m, (X*) are trivial for n > N.
Note in particular that the empty set is considered N-bounded for every
N >0).

Let X be a strictly fibrant simplicial " i-set. Recall that the underly-
ing simplicial set of X is Kan so we can consider

P, (X) = coskp41(trp+1(X)).

Since P, is a functor we have an induced action of I'x on P, (X). Note
that under this action the stabilizer of each simplex in P,(X) will be
open and so P,(X) is a simplicial I' x-set. Furthermore since

P (X)* =P, (XY)

for each Adl'g, we get that P,(X) is a strictly bounded simplicial T k-
set. Hence we can think of P, as a simplicially enriched functor from the
category of strictly fibrant simplicial Galois sets to itself. Descending to
the homotopy category we get a functor

P, : Ho™ (Setlé;p) — Ho® (Setlé:) .
Then for X; = {Xa}aer € ProHo®* (Set®™) we define as above
X? = {Pa(Xa)}tn,a-
It will also be convenient to consider the pro-objects
1 = {P(Xa)}r<n.a
where for n = co we define:
F =X
Note also that since P, (e) is an augmented functor so is ()™ and so for
every 0 < n < oo we have a natural map
X; — X?
We will use the following notation:

Definition 9.16 Let X be a K-variety and &/ — X a hypercover-
ing. We will use the following notations for the relevant simplicial sets
constructed from U:

Ny = (wfép(u)) ;
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Xy = Ex™ (Ny),

Xk = Pe(Xy).
Under this notation one has

Bt (X) = {Xu}uer(x),

Et7}< (X) = {Xu,k}LteI(X),kgn-

There are several important properties that the underlying simplicial
sets in the diagram of Et7K (X) satisfy. Here are the properties that we
will be interested in:

Definition 9.17 Let I' be a pro-finite group. A simplicial I'-set X will
be called

1. Finite if 7, (X) is finite for n > 1.

2. Excellent if the action of I on X factors through a finite quotient
of I'.

3. Nice if the action of I' on every skeleton sk, X factors through a
finite quotient of I'.

Remark 9.18 When we say a finite quotient of a pro-finite group we
always mean a continuous finite quotient, i.e. a finite quotient in the
category of pro-finite groups.

Now let X/K be an algebraic K-variety and &Y — X a hyper-
covering. Then clearly 7o, (U) is nice and it is easy to show that
Xy = Ex™ (mo,x(U)) is nice as well (this is one of the advantages
of using Ex* as strict fibrant replacement). Then we see that for each
k < oo the simplicial I"g-set Xy 1 is excellent and strictly bounded.

It can be shown (JAMa69]) that if X is a smooth K-variety then Xy,
is finite. Hence in that case Xy, j is finite as well.

We finish this subsection with a basic comparison result connecting
the relative notion Et/K(X ) and the étale homotopy type Et(X) of
X = X ®k K. Note that by forgetting the group action we obtain a
forgetful functor from Ho(Setlé:) to Ho(Set®”"). Prolonging this functor
we obtain a forgetful functor

F : Pro HOSt(Setﬁip) — ProHoX®(Set®™).
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Proposition 9.19 Let K be a ﬁeld and X a K-variety. Then there is
an isomorphism in ProHoX*"(Set>™):

FEC(X) = F (Et7K(X)) :

Proof Note that the indexing category of Et7K(X) is naturally con-

tained in the indexing category of Bt (X) and this inclusion identifies
F (Et7K (X )) with a sub-diagram of Et" (X). This yields a natural map
FEC(X) = F (E’t7K(X)) :

In order to show that f is an isomorphism one needs to show that
this sub-diagram is cofinal. More concretely, one needs to show that for
every hypercovering Vo — X defined over K and every 0 < k < n
there exists a hypercovering Uy —> X (defined over K) such that Xk
dominates Xy .

First, note that it is not restrictive to consider Py (V) instead of V.
Thus we may assume that V is defined over some finite field extension
L/K. Then it is clear that we can take

Us = RIS (V)

where R/L)/(K is the relative Weil restriction of scalars functor, i.e.

Hom x (7, R (Vi) ) = Homyxer (7@ L, Va)

9.2.4 The Homotopy Type of Xy,

Let X be a smooth geometrically connected K-variety and U, —> X
a hypercovering. In this section we will give basic results which help to
analyze the homotopy type of the spaces X;; which appear in Et /i (X).

Recall that given a map f : ¥ — X and an étale hypercovering
U, —» X one can levelwise pull U back to a hypercovering of Y. We
then have a natural map

Xf : Xf*u — Xy-

Now let X/K be a smooth geometrically connected variety. In this
case X has a generic point

& :Spec(K(X)) — X
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where K (X) is the function field of X (over K).

Note that Spec (K (X)) is not a K-variety. However, the schemes
Spec (K (X)) and Spec (K(X)) ® K = Spec (K (X)) are Noetherian,
which means that the functor m is well defined on étale schemes over
them. In fact, since K(X) is a field the étale site of Spec K(X) can be
identified with the site of finite discrete I' i x)-sets. Under this identifica-
tion a hypercovering of Spec (K (X)) corresponds to a Kan contractible
simplicial discrete I'g(x)-set which is levelwise finite. We will use the
following notation:

Definition 9.20 Let 4/ — X be a hypercovering. We shall de-
note by U the simplicial I'g(x)-set corresponding to the hypercover-
ing &*U — Spec (K (X)). In particular for each n we will denote the
Ik (x)-set corresponding to £*U,, by U,.

Under the identification above we can describe the functor w5 as

7ok (Un) = Un /T 5,

where the I'ic action on the right hand side is induced from the I'(x)
action on U/ and the short exact sequence

In particular we get the following expression for N;; which we frame
for future use:
Corollary 9.21 Letd — X be a hypercovering. Then we have an
isomorphism of simplicial T -sets

Ny =U/ ')
This interpretation of N;; will be a useful later in order to calculate

invariants of Xz, ~ Ny;. For example we immediately get the following
conclusion:

Corollary 9.22 Let X/K be a smooth geometrically connected variety
and Uy —> X a hypercovering. Then Xy is connected.

We can also use this interpretation in order to calculate the funda-
mental group of Xy,. This is done using the following lemma:

Lemma 9.23 Let G be a group and X a contractible Kan simplicial
G-set. Then, given a base point T € X /G, there is a natural short exact
sequence

1—K—G—m(X/G,7) — 1
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where

K = <U{Stabg(m)|m € X0}> .

Proof Let
m: X —X/G

be the natural quotient map and a € Xy a vertex. We will construct a
surjective map

0o : G — m(X/G,7(a))
such that
ker(¢q) = K

Let g be an element of G. Since X is contractible and Kan there is at
least one 1-simplex [, in X joining a and ga. We shall take ¢4 (g) to be
the element in 71 (X /G, m(a)) corresponding to 7(l,).

We shall first show that ¢, is well defined. Assume that l’g is another
1-simplex connecting a and ga. Since X is contractible there is an end-
points-preserving homotopy between the paths corresponding to [, and
I in the realization of X. Projecting this homotopy to X /G we get that
the corresponding elements in 71 (X/G, 7 (a)) are equal.

We will now prove surjectivity. It is not hard to see that X /G is Kan in
dimension one (see for example Lemma 11.6 in [AMa69]) and therefore
every element in 71 (X /G, 7(a)) can be represented by a 1l-simplex in
X /G with both end points being 7(a). We can then lift this 1-simplex
to X (note that the map X — X/G is levelwise surjective) obtaining
a simplex joining a and ga for some g € G.

It now remains to calculate the kernel of ¢,. First we shall show that
if b is another point in X then ker ¢, = ker ¢,. Since X is contractible
and Kan there is a 1-simplex in X going from b to a. We denote this
1-simplex by pye. Now for every g consider the three 1-simplices pyq,lq
and g(pp,) creating together a path between b and gb. Since X is Kan
this path is homotopic to a 1-simplex lg joining b and gb.

We shall use this lg to obtain ¢, (g). From the discussion above we get
that the following diagram commutes

G—>7r1 (X/G, (b))

H lcw{pba)

G—>7r1(X/G m(a))
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where cr(p,.) is the natural isomorphism defined by "conjugation" by
the path 7(ppq) between m(b) and 7(a). This diagram implies that the
kernel ker ¢, is independent of the choice of a € X. Since clearly

Stabg(a) C ker ¢q,

we get that K C ker(dg)-
To complete the proof of the lemma it suffices to show that ker ¢, C K.
For every x € Xy we have Stabgx C K. Thus there is map of G-sets

¢ Xo — G/K.

Recall that K is normal in G and let E(G/K) be as in Definition
9.7. E(G/K) is a Kan contractible simplicial set with the free action of
G /K. Pulling this action to G we get a Kan contractible G-simplicial
set. The quotient E(G/K)/G is a weakly equivalent to B(G/K), whose
fundamental group is exactly G/K.

The map ¢ lifts to a unique equivariant map

¢: X — E(G/K),
and the following commutative diagram
G
ld)x\
T(X/G) — 1 (B(G/K)) —= G/K

implies that ker ¢, C K.

9.3 The Obstructions

9.3.1 The Classical Obstructions

The Brauer-Manin Obstruction
Let K be a number field and X an algebraic variety over K. Given an
adelic point (z,), € X(A) and an element v € HZ,(X,G,,) one can
pullback u by each x, to obtain an element

ziu € HZ (Spec (K,),Gp,) .
There is a canonical map

inv : Hft (Spec (K,),G,,) — Q/Z
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called the invariant which is an isomorphism in non-archimedean places.
Summing all the invariants one obtains a pairing

X(A) x H? (X,G,,) — Q/Z

given by
((xy)p,u) — Zinv(miu) €Q/Z.

Now by the Hasse-Brauer-Noether Theorem we see that if (z, ) is actually
a rational point then its pairing with any element in H?(X,G,,) would
be zero. This motivates the definition of the Brauer set

X(A)Br = {(z)y € X(A)|((z0)v,u) = 0,Yu € HQ(Xét,(Gm)}

and we have

X(K)C X(A)P C X(A).

Descent Obstructions
Let X be an algebraic variety over a number field K. It is well-known
(see e.g. [Sko01]) that if f : Y — X is a torsor under a linear algebraic
K-group G then one has the equality

X(K)= [ fexK)

ceH(K,G)

and so the set

xa= U o)

ceH (K,G)
has to contain X (K). This motivates the definition

X(A)"e = (X ()
f

where f runs over all torsors under linear algebraic K-groups. As before
we have

X(K) € X(A)1e*° C X(A).
We shall denote by X (A)/" X (A)/"=% and X(A)®" the analogous

sets obtained by restricting f to torsors under finite, finite abelian and
connected linear algebraic groups respectively.
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Applying Obstructions to Finite Torsors
Given a functorial obstruction set

X(K) C X(A)™ C X(A),
and a torsor under finite K-group
Yy —X
one can always define the set

XA = e a))
o€H(K,G)
satisfying
X(K) C X(A)°b C X (A)" C X (A).
Now by going over all such f we get

X(A)fin,obs — ﬂ X(A)f’ObS
f

and
X(K) C X(A)/mob € X(A)°" C X(A).
In [Sko99] Skorobogatov defines in this way the set

X (A)FinBr

and constructs a variety X such that
X (A)/ B =g

but

X(A)B £0.

9.3.2 Homotopy-Theoretic Obstructions

Homotopy Fixed Points Sets

In this subsection we will explain how the notion of homotopy fixed
points by a profinite group T' fits into the scheme of étale homotopy
theory. Although we will be primarily interested in the case where I' =
T'k is the absolute Galois group of a field K, many of the constructions
and observations will be valid for a general profinite group, and will
hence be presented in the general form. The reader will not lose much
by assuming I' = ' everywhere.
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Recall from the previous section the strict model structure and the
local model structure introduced by Goerss ([Goe95]) on the category
Set2™ of simplicial (discrete) I-sets. We will use the terms strict fi-
brations/strict weak equivalence for the strict model structure and fi-
bration/weak equivalence for the local model structure. Cofibrations in
both case are simply injective maps.

As mentioned in [Goe95] the operation of (local) fibrant replacement
can actually be done functorially, yielding a functor

(0)/% : SetR™ — Set2”.

One then defines the homotopy fixed points of X to be the fixed
points of X7 ie.:

xhT def (Xfib)F .

Since fibrant objects are in particular strictly fibrant one gets that X"
is always a Kan simplicial set. It can be shown that if two maps f,g :
X — Y induce the same map in Ho' (Set?op) then the induced maps

1m

f*;g* . XhF N YhF

are simplicially homotopic. In particular this will be true for f, g which
are simplicially homotopic.

Since we will be working only with strictly bounded simplicial sets we
would like to have a convenient formula for the homotopy fixed points
in that case. Note that if S is strictly fibrant then for every open normal
subgroup A<’k the corresponding fixed points S* form a Kan simplicial
set. We then have the following formula:

Theorem 9.24 Let'Y be a simplicial I'-set whose underlying simplicial
set is Kan. Let D}:m C Ho (Set?op) be the full subcategory spanned
by Kan contractible objects which are levelwise finite. Then one has an
isomorphism of sets
o ((Y)"") =~ colim [E, Y]r

EeD},,
If in addition Y is also strictly bounded then the formula can be refined
to

o ((Y)hr) o~ cg%{n[E(I‘/A),Y]p ~

. AT AVA(T/A)
cglalén [E(T/A), Y?], ~ cglalgnﬂo ((Y ) ) .
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We delay the proof of this formula (which is completely independent
of the rest of this chapter) to section §4 (see 9.44).

Now let K be a number field and X an algebraic variety over K.
We will denote by I'x the absolute Galois group of K and similarly by
I'<T'k the absolute Galois group of a finite Galois extension L/K.

Every K-rational point in X is a map

Spec (K) — X
in Var/K. Applying the functor Et / Kh we get a map
2 i 2 i
Et/k (Spec (K)) — Et/k (X).

In order to describe mappings from Et/Kh(Spec (K)) to some pro-object

we need first to understand the pro-object Et/Kh(Spec (K)) itself.

We start with the simpler task of describing the pro-object
Et/K(Spec (K)): the site of finite étale varieties over Spec (K) can be
identified with the site of finite discrete I'k-sets (and surjective maps
as coverings) via the fully faithful functor 7o ;. This means that the
functor W/A]Zp induces a fully faithful embedding of I(Spec (K)) into

Ho (Set?:)> whose essential image consists of the full subcategory D?;jl -

Ho (Set?j{p). In particular we have an equivalence of categories

mo/k : I(Spec (K)) = D;gl

Now for a pro-finite group I' we will denote by EI' the pro-object

El &/ {EX‘X’(S)}SeD%n € ProHo (Set?op> .

We then have an isomorphism of pro-objects
Bt (Spec (K)) ~ E(I'k).

A simple corollary of this observation plus formula 9.44 is the follow-
ing:

Corollary 9.25 Let Y7 = {Ya}aes € ProHo™ (Set?:)) be an object.
Then

Hompm Host (Setlé:’) (Et/K(SpeC (K)), Y[) ~ (111?1] 0 (Y;LFK) )

We now wish to compute EI® for a pro-finite group T'. Since the
skeletons of the simplicial sets in EI' are finite the action of I' on each
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specific skeleton factors through a finite quotient. This means that the
action of I" on each of the spaces of EI'! factors through a finite quotient
G =T/A for some AT

Now for every such G one has the Kan contractible levelwise finite
simplicial I'-set EG = cosko(G) with the I'-action given by pulling
the standard G-action. Then Ex*(EG) appears in the diagram of EI'%.
Since every EG is strictly fibrant as a simplicial I'-set (every fixed point
space is either empty or equal to all of EG, which is Kan) the map
EG — Ex*(EG) admits a simplicial homotopy inverse Ex>(EG) —
EG which is unique up to simplicial homotopy. This gives a map in

ProHo (Setléop):
¢ : {E(T/A)}aar — EI™.

We claim that ¢ is actually an isomorphism: every Kan contractible
simplicial G-set X admits a map EG — X which is unique up to sim-
plicial homotopy (this can be seen using the projective model structure
on simplicial G-sets). These maps fit together to give an inverse to .
This finishes the computation of EI'Y.

We wish to compute the set of maps from

Et*(Spec (K)) 2 E(Tk)* = {EGL}1/x

to a pro-object of the form X; = {X,}aer where each X, is strictly
bounded. By definition this morphism set is the set
h('in cg}l}l{n [EGL, Xa]FK

where L/K runs over all finite Galois extensions, G, = I'x/I';, and
[X,Y]r, denotes simplicial homotopy classes of maps. Since I';, stabi-
lizes EG, this is the same as

. . T T . r\PGL

gl (G2, X[, = limeolimm ((X1)")

= limmo (X377

where the last equality is obtained by applying formula 9.44 to the
strictly bounded simplicial I'x-set X, .
We summarize the above computation in the following definition

Definition 9.26 Let X; = {Xa}acs € ProHo (Setléop) be an ob-
ject. We define the I'-homotopy fixed points set of X;, denoted by
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X; (ETY), to be
X (ET?) = limmo (X1 .

If I' = 'k is the absolute Galois group of a field K then we will also
denote this set by X (hK).

Remark 9.27 Note that if all the simplicial I'-sets X, are strictly
bounded then we have the isomorphism of sets

Xr (Erh) = MapPro Ho(Setlé{)p) (Erh’ XI) :

Remark 9.28 Usually one would like to get a notion of a homotopy
fixed points space by taking some kind of a derived equivariant map-
ping space from a point. Alas our definition cannot be obtained this
way, and in particular we work with a set which in general is not the
set of connected components of an underlying space. This definition is
hence not optimal (see for e.g Proposition 9.95). A better definition can
be given by using a suitable model structure (see [BScll]). Other ap-
proaches for a "correct" definition of such a notion appear in [Qui09] as
well as in [FIs07]. However these definitions are less convenient for our
needs.

When we originally wrote this paper we did not have at our disposal
the model structure described in [BSc11] and thus we chose to work
with the less "correct" notion. We will publish a model structure-based
version of the results in this paper in the near future. In any case one
should be aware that the model theoretic approach gives rise to differ-
ent objects, but to the same obstruction sets (and much more elegant
proofs).

When X is the étale homotopy type of an algebraic variety we use
the following abbreviations

_ 4l _ : hT i
X(hE) = Bif o (X) (hK) = | lim o (XM )

and

n . . Al : AT’
X (hE)= Bt (X) (hE) :uel(%gl,kgn o (Xuv’?) :uéIIIFX)WO (X“’f) '

Remark 9.29 Let X be a simplicial I'-set. By considering X as a

pro-object in Ho (Set?f) in a trivial way we will write

X (ET%) = 7o (X2T).
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When I' = 'k is the absolute Galois group of a field we will use the
notation

X(hK) =X (ET?).

Summarizing the discussion so far we see that for every 0 < n < oo
we get a natural map

hy: X(K) — X"(hK).
It is useful to keep in mind the most trivial example:

Lemma 9.30
Spec (K)" (hK) = *.

Proof We know that EtaK(Spec (K)) 2 {EGL}/k where L runs over
all finite Galois extensions of K and G, is the Galois group of L over K.
Since each EG is Kan contractible and strictly bounded we see that

Spec (K)" (hK) = Spec (K)(hK) = él/r?{ EGH =~ «.

O

Remark 9.31 Notions for homotopy fixed points for action of pro-
finite groups on pro-spaces were studied by Fausk and Isaksen in [FIs07]
and by Quick in [Qui09]. Fausk and Isaksen’s approach is to put a model
structure on the category of pro-spaces with a pro-finite group action.
In Quick’s work one replaces pro-spaces by simplicial pro-sets. Both
approaches use a model structure in order to produce a homotopy fixed
point space, and not just a set as we have in Definition 9.26.

In this paper we work with (a relative variation of) the étale homotopy
type which is a pro object in the homotopy category of spaces, and not
of spaces. Hence one cannot apply to it either of the theories above. In
order to use Fausk and Isaksen’s approach one would need to replace
the étale homotopy type with the étale topological type (see Friedlander
[Fri82]) which is a pro-space. Alternatively one can convert the étale
topological type to a simplicial pro-set and use Quick’s theory.

There are some drawbacks for working without a model structure. For
example, one gets only a homotopy fixed points set and not a homotopy
fixed point space. Furthermore, we only prove that this set is invariant
under pro-weak equivalences with heavy assumptions and using very
ad-hoc technical machinery.
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However, working with the (relative) étale homotopy type has its ad-
vantages. In our proofs we always end up analyzing objects with favor-
able "finiteness" properties (like varieties over number fields). Thus, for
our needs in this paper we found the étale homotopy type more suitable
than the aforementioned model structures.

Lately, Ilan Barnea and the second author ([BScll]) defined a new
model structure which is more suitable for our needs. A detailed de-
scription of how to use this model structure in the context of this work
would be published by the authors in another article.

p-adic and Adelic Homotopy Fixed Points
Let K be a number field and K, a completion of K. The relationship
between a number field and its completions will be the basis on which
we will construct obstructions. To begin let us denote by I', < 'k the
decomposition group.

If X is a simplicial I'k-set we can naturally consider it as a I', set
by restricting the action. The group I', is pro-finite as well and we can
apply Goerss theory to it. In particular for every hypercoveringd — X
and a natural number £ we can consider Xy, 1 as a simplicial I',-set and
take the corresponding homotopy fixed points

Xu ik (hE) = mo (X )
as well as the limit as in Definition 9.26:

X"(hK,)) = lim Xyp(hK)).

U,k<n

Remark 9.32 Let X be a simplicial I'x-set. It is well known that
every subgroup of a pro-finite group is equal to the intersection of all
open subgroups containing it. Hence for every A<l', one gets

!
XA = colim XM
A<AN Tk

This means that if f : X — Y is a strict weak equivalence of simplicial
I'i-sets then f induces a strict equivalence of simplicial I", -sets for every
V.

Now for every 0 < n < oo we get a map
hy,: X(K,) — X" (hK,).

Taking into account all the completions of K we get a commutative
diagram
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X(K) —"" o x™(hK)

Lloc LlOC h,n

[TX(K,) —22 [ X" (hK,).

v

Note that we abuse notation and use h,, for the rational case, the
p-adic case and the product of p-adics case.
Now consider the set

(H X(K») c[[x k)

given by all elements (z,) € [[ X (K,) such that h,((z,)) € im(locy n).
Note that '

h,n
X(K)C (H X(K,,)) .

Thus the comparison of local and global homotopy fixed points can be
used to define obstructions sets. However, when studying the local global
principle on a variety X one sees that in general it is better to work with
the set of adelic points on X (A) rather then the entire product [[ X (K,,).

Similarly we would like to replace the set [[ X™(hK,) with an analogous
set X™(hA).

Before defining such a notion for an object in Pro HoSt(Set?:) we
shall define it for the more simple case of a simplicial I"k-set.

Definition 9.33 Let K, be a non-archimedean local field, I,, <T", the
inertia group and
rvr=r,/I,
the unramified Galois group. Let X be a simplicial I',-set. We define the
unramified I'x -homotopy fixed points to be the simplicial set
Xhu,rFV _ (XIV)hF:fT

Remark 9.34 In light of remark 9.32 we see that if f: X — Y is
a strict weak equivalence of simplicial 'k -sets then f induces a weak
equivalence of simplicial sets

X >y yiv
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and so a weak equivalence

KRy Yy T
We will not need this result in this paper.

Definition 9.35 Let K be a number field, S a set of places of K and
X a simplicial I'k-set. We define the restricted product of S-homotopy
fixed points space to be

X" — hocolim H X H b, G
T
veT veS\T

where T runs over all the finite subsets of S. We also denote
X (hAg) = o (XM45).

Remark 9.36 Note that as a restricted product of discrete sets X (hAj)
carries the restricted product topology.

Since homotopy groups commute with products and directed colimits
we get that

!/
T (XhAS) = H T, (th”)
veS

when the restricted product is taken with respect to the subsets
- |:7Tn (Xhufl"u) v (thu)} .

When S is the set of all places we denote X (hA,) and X"4s by X(hA)
and X" respectively. Similarly when S is the set of all finite places we
denote X (hAg) and X"s by X(hA;) and X"As respectively.

Definition 9.37 Let K be a number field. Let X; = {X,}acr be a
pro-I'g-simplicial set. We define

X;(hhs) = lim Xo (hAs).

In the case where we are dealing with the étale homotopy type of an
algebraic variety X over K we abbreviate
X"(hA) = Et}(X) (hA)
and

X (hA) = X®(hA).
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Lemma 9.38 Let K be number field and X a strictly bounded T k-
simplicial set. Then the natural map

loc : X (hK) — [[ X (hK))

factors through a natural map
fo: X(hK) — X (hA).

Proof Let L/K be finite extension and 77, is the set of places of K that
ramify L. Since for v ¢ T;, we have I, < T'y, there is a natural map:

fo: X' — T xXx ] x™.
veTy vegTr,
Now this map induces a map
f . (XFL)hGL — H XhFu X H (XI,,)hFZT ]
veTr V¢TL
By passing to homotopy colimit on L we get a map
fo XM — XM
and we can choose fo = mo(f). O

Lemma 9.39 Let K, be a local field, X a variety over K, and Uy —>
X an étale hypercovering. Then for every n > 0 the map

h:X(K,) — Xun (hKy)
is continuous (where X (K, inherits a natural topology from the topology
of K, and Xy, (hK,) is discrete).

Proof Let x € X(K,) be a point. It is enough to find a neighborhood
V of z in X(K,) (with respect to the K, -topology) such that for every
y € V we have h(xz) = h(y). Consider z as a map

x:Spec K, — X

and let z*(U) be the hypercovering of Spec K, which is the pullback
of U by x. The underlying simplicial set of X+, is contractible and
hence XZE(”U) ,, 18 also contractible. The map x gives a map

T: Xz*(u),n — XU,n
such that the induced map

~hT, . hT, hI'y
z : X;c*(bl),n — XZ/{,n
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sends XZ*FEJU),n to the connected component h(z).

Now given any étale map f : U — X the Inverse Function Theorem
insures that there is an open neighborhood V of z in the K, -topology
such that for every y € V there is a natural Galois equivariant identifi-

cation of the fibers
Fy: f~H ) — ().

This identification takes any point in f~!(x) to the unique point in
f~1(y) sitting with it in the same connected component of f~(V).

This means that there is an open neighborhood V ,, of x in the K-
topology such that for every y € Vi, ,, there is a natural Galois equivari-
ant map

Fyp : skp (2 (U)) — skn(y*(U)).

Now since for every y € Vi, the map 2 factors through the map g we
see that "7~ and §""» must land in the same connected component and
so h(y) = h(z). O

Lemma 9.40 Let X be an algebraic variety over a number field K and
let Uy —> X be a hypercovering. Then the natural continuous map

X&) — [[Xun (hK,)

factors through a natural continuous map
hitn : X(A) — Xy n (RA) .
Proof First choose some model for Uy — X over Spec (Z),
(Uz)e — X7z,

then there exist a finite set of primes 77 such that the maps (Uz),, —
X7y, are étale outside T3 m < n + 1. We will show that

h(Xz(0,)) C im [wo (XZ};L:;F") — Xy (hKy)}

for almost all v. Choose some finite extension L/K such that I'z fixes
sk, (Xy) and denote by Ty the set of ramified places in L.
Consider now a place v ¢ Ty U Ty. Since v ¢ Ty we have

I,
Xiin = Xun-

Hence all we need to show is that the homotopy fixed point A, (z) comes
from a homotopy fixed point of the quotient group I'*" =T, /1,,.
Since v ¢ Ty pulling back Uz to a point z € Xz(0,) will yield a
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(contractible) simplicial set E that is stabilized up to level n + 1 by
some unramified extension of K. Then h,(z) is the image of the unique
point mo(E"") = x in Xy,,. Since E is stabilized by I, this homotopy
fixed point comes from I'}" and we are done.

This means that in order to prove Lemma 9.40 it will be enough to
prove the following general lemma on the behavior of maps between
restricted products of topological spaces:

Lemma 9.41 Let

{fr: Xy — Yalaen

be a family of continuous maps of topological spaces and let

{Ox, Ur}ren

be a family of open subsets Oy C X, Uy C Y.
Assume that f(Oy) C Uy for almost all \. Then the map

F\ = II fAI II.X} — II Y\
AEA AEA AEA

induces a continuous map

/ /
Fy : II<X} — II Yy

AEA AEA

where the restricted product is taken with respect to Oy, Uy respectively.
Proof It is clear that
I !
F\ (H X,\> c [ v
AEA AeA

Hence it is enough to show that F is continuous.
We need to show that if S C A is a finite set and {Ay C Y)}aes are
open then the set

(Fk)_l II‘AA X II X

Aes AEA\ S

!/
isopenin [] X,. Let
AEA

(@re @) [T x I O

AesS AEAN\ S
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and let T'C A be a finite set containing S such that
zx € Oy, f(Ox) CUN

for every A € A\ T. Note that such a set exists due the assumptions of
the lemma. Consider the set

Ne= ][] 1Ay x I MO0 x J] Oa

Aes XET \ S AEANT

It is clear that IV, is an open neighborhood of z and that

N.CE)T | [[Ax J] X

Aes AEA\ S

This completes the proof of Lemma 9.40.

The Etale Homotopy Obstructions
By Lemma 9.40 and Lemma 9.38 we have a commutative diagram

X(K) -t X7 (hK)

l]oc lloc h,n

X(A) s X7 (hA) .

Note that we abuse notation and use h,, for both the rational and
adelic cases.

We denote by X (A)"»™ C X(A) the set of adelic points whose image
in X™ (hA) lies in the image of locy, ,,. Note that

h,n
XA = <H X(KV)> NX(A) C X(A)

and also
XK)CXA)C---CXA)?C---C XA CX(A).

We denote X (A)">° simply by X (A)". We call the elements of X (A)"
the set of homotopically rational points.

Definition 9.42 We say that the lack of K-rational points in X is
explained by the étale homotopy obstruction if the set X (A)" is
empty.
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The Etale Homology Obstructions
Let Modr be the category of discrete I'-modules. Consider the aug-
mented functor

Z - Setr — Modr

which associates to the I'-set A the free abelian group ZA generated from
A with the induced Galois action. The terminal map A — {x} defines
a map ZA — 7Z which we will call the degree map. Note that the
image of the augmentation map A — ZA lies in the subset of elements
of degree 1.

For a simplicial I'-set X we will denote by ZX the simplicial I'-module
obtained by applying the Z functor levelwise, i.e.

(ZX), = Z(X,)-

The terminal map X — # induces a map from ZX to the constant
simplicial I-module Z (this is the discrete simplicial I'-module with the
trivial action). Note that again the elements in the image of the aug-
mentation map have degree 1.

The homotopy groups of ZX can be naturally identified with the ho-
mology of X and the augmentation map induces the Hurewicz map

T (X) — m(ZX) = H,(X).

We shall refer to the augmentation map as the Hurewicz map as well.
We can now consider the Z-variant of the functor £t x applying the
Z functor on each simplicial set in the diagram:

ZEt)x = {ZXu}ucr(x)-

As before we prefer to work with bounded simplicial I'-sets and so we
replace this object by its Postnikov tower

(ZEt k)" = {Pe(ZXu) hue1(x) k<n
as well as the full Postnikov tower
(ZEt)x)" = (ZEt;k)™ = {Po(ZXu) Yuer1(x) ken-
For every 0 < n < oo we have a natural transformation

Et}(X) — (ZEt)g)"(X)
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and so we can consider the commutative diagram

X(K) e X7 (hK) —— X% (hK)

l lloc hon \LIOCZh,n
(A

X(A) —2s X7 (hA) —= X7m (hA)
where
X2 (hK) = (ZEt/)"(X))(hK)
and

X% (h) = (ZEt/)"(X))(hd).

We say that an adelic point
!
(z,) € X(A) = [[ x(K.)

is n-homologically rational if its image in X%™ (hA) is rational, i.e.
is in the image of locz . We denote by X (A)Z"" C X(A) the set of
n-homologically rational points. We also denote

X(A)Zh _ X(A)Zh,oo.

Definition 9.43 We say that the lack of K-rational points in X is
explained by the étale homology obstruction if the set X (A)%" is
empty.

From the above discussion we immediately see that we have the fol-

lowing diagram of inclusions

X(A)Zh(ﬁ N G X(A)Zh’QC—> X(A)Zh,1(_> X(A)

X (K)C X (A)hC e X(A)M2C— X(A)n1

and so the étale n-homology obstruction is in general weaker then the
étale n-homotopy obstruction.

The Single Hypercovering Version
It will sometimes be convenient to consider the information obtained
from a single hypercovering. Let X be an algebraic variety over K and

Eth/K(X) = {Xu,n}uer(x)nen
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For each hypercoveringf € I(X) and n € N we can consider the diagram

hu,n

X(K) —_— Xum (hK)
llocz/[,n
X(A) 24 Xy (hA) .

We denote by X (A)“"" the set of adelic points (z,) € X (A) whose image
in Xy, (RA) is rational (i.e. is in the image of locy ).
Similarly we can consider the diagrams

hzu,n

X(K) —="7ZXy n (hK)
l . lloczu,n
X(A) —="7Xy ., (hA) .

We denote by X (A)Z“" the set of adelic points (z,) € X(A) whose
image in ZXyy ,, (hA) is rational (i.e. is in the image of loc zi4,»).

Note that for every object {X4}taer € ProHo (Set?op> and every
oo € I we have a natural map

{Xa}ozel — XO(O.

Thus
X(A)h’n g X(A)M’n

and
X(A)Zh’n C X(A)Zu,n

for every hypercovering U, —> X.

9.3.3 Summary of Notation

The following is a summary of the notation we’ve used so far for maps
from points to corresponding homotopy fixed points.

h:X(K) — X(hEK),
Byt X(K) — X"(hK),
hy : X(K) — Xy (hK),

hun: X(K) — Xyn(hK),
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hz : X(K) — X%(hK),
hzn: X(K) — X%"(hK),
hau = X (K) — ZXy (hK),

haum : X(K) — Po(ZXy)(hK).

We will abuse notation and use the exact same notation for the adelic
versions of all of these maps.

9.4 Homotopy Fixed Points for Pro-Finite Groups

Let T" be a pro-finite group. We start with the basic calculative theorem
regarding homotopy fixed points of simplicial I'-sets in Goerss’ model
category:

Theorem 9.44 LetY be a simplicial I'-set whose underlying simplicial
set is Kan. Let Dys;, € Ho (Setléop) be the full subcategory spanned
by Kan contractible objects which are levelwise finite. Then one has an
isomorphism of sets
AT :
~ colim [E .

mo ((Y)"") = colim [E, Y]r
If in addition Y is also strictly bounded then the formula can be refined
to

o ((Y)') ~ cglﬂi%n[E(F/A),Y]p ~

cg%{n [E(I‘/A),YA]F ~ cg%{n o ((YA)h(F/A)) .
Proof We use a formalism developed by Brown in [Bro73] called a cate-
gory of fibrant objects. This is a notion of a category with weak equiv-
alences and fibrations satisfying certain properties (see [Bro73] pages
420-421).

We will apply this formalism to an example analogous to one appear-
ing in [Bro73] itself: let C' C Set2”" be the full subcategory consisting of
simplicial I'-sets whose underlying simplicial set is Kan. We will declare
a morphism in C to be a fibration if it induces a Kan fibration on the
underlying simplicial sets and a weak equivalence if it induces a weak
equivalence on the underlying simplicial set (so in particular weak equiv-
alences in C' coincide with those of the local model structure). It can be
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shown that these choices endow C with the structure of a category with
fibrant objects.

Now let X, Y be two simplicial I'-sets and let ¢ : X’ —+ X be a weak
equivalence (with respect to the local model structure). Let g : X' — Y
be a map. Then there exists a unique map h : X — Y% such that the
square

X 2 . v

commutes up to simplicial homotopy. This gives us a map of sets

X Y], — [X’ Yfib} r

for every weak equivalence ¢ : X’ = X. Now Theorem 1 in [Bro73|
applied to C (taking into account remark 5 on page 427 of [Bro73|)
yields the following: if X and Y are in C, and if we take the colimit over
all weak equivalences ¢ : X’ = X in C, then the resulting map
colim [X', Y], — [X,Y/*]_
X' X

is actually an isomorphism of sets.

In particular if we denote by D C Ho (Set?) the full subcategory of
Kan contractible simplicial I'-sets then we get an isomorphism of sets

. o~ i i\
colimlE, Y]r <= [« /%], = mo ((Y/")") = mo (Y'T).

This colimit is indexed by a category which is a bit too big for our
purposes, but this problem can easily be mended:

Lemma 9.45 The subcategory Dy, C D consisting of objects which
are levelwise finite is cofinal.

Proof We need to show that every object E € D admits amap E' — E
where E’ € D is a levelwise finite Kan contractible simplicial I'-set. We
will construct E’ inductively as follows: let £/ ; =0 and f_; : E' | —
E the unique map. We will extend {E’;} to an increasing family of
simplicial I"-sets

/ / /
E ,CE,C..CE, C..

such that E/ is an n-dimensional levelwise finite simplicial I'-set and
the map E;, — E; ,, is the inclusion of the n-skeleton. Furthermore the
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simplicial set E/, will be (n — 1)-connected in the following sense: every
map OA™ — E! with m < n extends to A™. This will guarantee that

E =|JE,

is a Kan contractible levelwise finite simplicial I'-set. Furthermore we
will construct a compatible family of equivariant maps

fo:E, —E

which will induce one big equivariant map E' — E.

Now let n > —1 and suppose f, : E/, — E as above has already
been constructed. We will describe the construction of E; . First for a
finite simplicial set X and a simplicial I'-set Y we will denote by

Y* = Homgya (X,Y)

the set of maps of simplicial sets from X to Y. The action of I' on Y
induces an action of I' on YX rendering it a I'-set (i.e. all the stabilizers
are open because X is finite).

Now consider the I'-set

AR+ AN+l

A= E;? XE3A7L+1 E .

This set parameterizes commutative diagrams in the category of simpli-

cial sets of the form

1A\ p— E/,

T

A"t S E.

Since E is Kan contractible the map A — E/P2™"" is surjective. Since
E/, is levelwise finite the set E?A"+1 is finite, so we can choose a finite
subset A’ C A such that the restricted map

n+41
A — E9A

is still surjective (recall that all the orbits in A are finite). Then we
get one big commutative diagram of simplicial I'-sets and equivariant
maps

QAT x A/ — 5 E/,

Tk

APTL 5 A E
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and we define E;, ,; to be the pushout of the diagram

OA™ ! x A/ — s E/,

|

An+1 x A’

which admits a natural equivariant extension
/

fn+1 : EnJrl —E

of fn. Since A’ is finite E; ,, is still levelwise finite. Furthermore since

the map A" — E?A"+1 is surjective we see that every map A"+ —
E/,,, extends to all of A"+, This finishes the proof of the lemma. O

We now get the first desired formula:

lim [E = hTy
gebn, I8 Xle = m (Y5

Now for every finite quotient G = I'/A for Adl' we can consider EG
as a simplicial I'-set with the action induced from the action of G. Then
EG is Kan contractible and levelwise finite, i.e. EG € Dy;,. We then
have a map of sets

. . A h(I'/A) ~ .
Py : colim ((Y ) ) = colim [B(I/A), Y], —

colim [E, Y]r 2 m (Y"T) .
E€Dyin
We will finish the proof by showing that if Y is nice and strictly bounded
then Fy is an isomorphism of sets.
Let n be big enough so that m, (YA) = 0 for all AdI’. Then the map

Y — P,(Y)

is a strict weak equivalence. Note that both the domain and range of Fy
are invariant under strict weak equivalence in Y, so it will be enough to
prove the theorem for P, (Y). We will start by showing that Fp_ (y) is
surjective.

Let g : E — P,(Y) be a map. Then g factors

E — P,(E) L P(Y).

Since E € Dy, it is in particular nice and so P,(E) is excellent, i.e.
the action of T' on P, (E) factors through a finite quotient G = I'/A.
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Furthermore P, (E) is also Kan contractible so it admits a G-homotopy
fixed point, i.e. a map

h:EG — P,(E).

The fact that such a map exists simplicially can be seen by using the
projective model structure on simplicial G-sets. Now the composition

EG % P,(E) L P.(Y)
and
g:E— P,(Y)
both factor through ¢’ and so represent the same element in

colim [E, Y]r.
E€Dyin

This means that F'p, (v is surjective. Now consider a diagram

E— "> E(/A)

l/;m lfl
f2

E(l'/Az) —— Pu(Y)

which commutes up to simplicial homotopy, i.e. f1 and f; represent the
same element in colimgep,,, [E, Y]r. Since P, (E(I'/A;)) = E(I'/A;) we
get that this diagram factors through a diagram

Pl

Pa(E) E('/A1)

P

E(I/As) —2—= P,(Y)

which also commutes up to simplicial homotopy since we have a map
P,(E) x I = P,(E) x P,(I) = P,(E x I).

Now there exists a A3 € Ay N Ay such that the action of " on P, (E)
factors through I'/Ags. Since P, (E) is Kan contractible it admits a map
h : E(I'/A3) — P,(E). Pulling the diagram by h we obtain a new
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diagram

E(I/As) 2= B(T/Ay)

P

E(I/A5) 2 Po(Y)
which commutes up to simplicial homotopy. This shows that g1, g> rep-
resent the same element in
lim [E(T'/A),Y
colim [E(I'/A), Y]p
and so F'p, (y) is injective. This finishes the proof of the theorem. [

Aside for having an explicit formula we would also like to have a con-
crete computation aid, in the form of a spectral sequence. The following
theorem appears in the paper of Goerss [Goe95]:

Theorem 9.46 Let X be a bounded simplicial I'-set and let x € X be
a fized point of I'. Then there exists a spectral sequence of pointed sets

El, = m_s (X", 2)
such that
E, = HYT,m(X, z)).

Remark 9.47 When we write H*(T", A) for I profinite we always mean
Galois cohomology. In [Goe95] Goerss uses the notation H¢, (', A) for
this notion. For simplicity of notation we chose to omit the Gal subscript.
Note that when T' is a finite group, Galois cohomology coincides with
regular group cohomology.

Remark 9.48 The above spectral sequence is of the form used to
compute homotopy groups of homotopy limits. It is concentrated in the
domain ¢ > s — 1 and its differential df ; goes from E{, to By, 1, 1.
We call such spectral sequences HL-spectral sequences.

We wish to drop the assumption that X has an actual fixed point
and replace it by the assumption that X is Kan and admits a homo-
topy fixed point. From Theorem 9.44 this implies the existence of an
equivariant map

fE—X

for some Kan contractible simplicial I'-set E. We can then take the
cofiber Cy and extend the action of I' to it.
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Since E is contractible the map X — C induces a homotopy equiva-
lence of the underlying simplicial sets and so is a weak equivalence. This
means that f induces a weak equivalence X" — C}*'. But Cy has an
actual fixed point and so we can use Goerss’ Theorem on it and obtain
the desired spectral sequence.

Another aspect of homotopy fixed points for finite groups is that of
obstruction theory. Let G be a finite group acting on a simplicial set
X. We want to know whether there exists a homotopy fixed point.

Suppose for simplicity that X is a bounded Kan simplicial set and let
n be such that X ~ P, (X). Then we can reduce the question of whether
X has a homotopy fixed point to the question of whether P, (X) has a
homotopy fixed point. We then consider the sequence of simplicial G-sets
and equivariant maps

P,(X)— P,o1(X) — ... — Py(X)

We can then break the non-emptiness question of X" into a finite
number of stages: for every i = 0, ...,n we can ask whether P;(X)"¢ is
non-empty. Note that P;(X)"® is non-empty if and only if mo (P;(X)")
is non-empty, so we can work with sets instead of spaces.

For i = 0 we have Py(X) = mp(X) and so

o (Po(X)"Y) = Py(X)"C = mo(X)“

is just the set of G-invariant connected components. Now given a G-
invariant connected component zg € mo (Py(X)"“) one can ask if it lifts
to an element z; € mo (P(X)"). This results in a short exact sequence

1—m(X,20) —H—G—1

where 71 (X, zo) here denotes the fundamental group of the component
of X corresponding to g (choosing different base points in the same
connected component will lead to isomorphic short exact sequences).
Obstruction theory then tells us that this sequence splits if and only if
Zo lifts to ) (P1 (X)hG)

Now suppose we have an element x1 € 7o (Pl(X)hG) and let p; € 11
be a point. Note that p; is a homotopy fixed point, and not an actual
point. However, since it encodes a map from a contractible space to
Py (X) we can still use it as if it were a base point for purposes of
homotopy groups, i.e. we can write

Wn(val)'
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Furthermore p; behaves like a G-invariant base point and so we can use
it to define an action of T on each 7, (X, p1).

Obstruction theory then proceeds as follows: let z;_1 € g (B_l (X)
be an element, let 21 € mo (P1(X)"“) be its image and let p; € 21 be a
point. Then one obtains an obstruction element

hG)

0z, € HHG, mi(X,p1))

which is trivial if and only if z;_1 lifts to mg (H (X)hG).

Now consider the case of a pro-finite group I'. Let X be a bounded Kan
simplicial T-set. Then there is an n such that the map X — P,(X) is
a weak equivalence. Hence as above we reduce the question of emptiness
of X" to that of P,(X)"" which in turn leads to a sequence of lifting
problems via the sequence of simplicial I'-sets

Pu(X) — Py (X) — ... — Py(X).

We now claim that the obstruction theory above generalizes to the
pro-finite case by replacing the group cohomology

HiJrl (Gv T (Xv pl))
with Galois cohomology
HiJrl (Fv T (Xv pl))

We will prove this here for the case i > 2. Note that in this case a
homotopy fixed point z € P;_1(X)"!' gives an element in P; (X)"I" which
as above can act as a ['-invariant base point and determine an action of
T" on all the homotopy groups of X. The case i = 1 will be dealt with in
subsection §§9.6.2 (see Theorem 9.78).

Proposition 9.49 Let X be a bounded excellent strictly fibrant simpli-
cial I"-set. Let x;_1 € mg (Pi,l(X)hF) (i > 2) be a homotopy fized point
component, r1 € moy (P1 (X)hr) its image and p; € x1 a point. Then
there exists an obstruction in the Galois cohomology group

o(zi—1) € H(D,mi(X,p1))
which vanish if and only x;_1 lifts to an element x; € 7 (Pi(X)hF).

Proof Since X is excellent there exists a AL such that the action of T’
on X factors through I'/A. Since X is bounded P;_;(X) and P;(X) are
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strictly bounded and so we can apply formula 9.44 to get

7o (Pifl(X)hF) = C/(\)lim T ((Pi1(X)A')h(F/A/)>

'3r

= colim mg (Pi,l(X)h(F/Al))
A CA,AET

and similarly

P(X)") = coli (Pi X W/A/)) .
mo (B(X)") = | colim  mo ( Pi(X)
Let A1 C A be such that z;_1 comes from mo (P;—1(X)"T/A1)). Then we
want to know if there exists a Ay C Aj such that the image of x;_1 in

0 (Pih_(lr/AQ)> lifts to 7o (Pih(F/A2)>. From the obstruction theory in the
finite case we know that this is equivalent to the vanishing of a certain

obstruction element
OA, (l‘i_l) € Hi+1 (F/A27 Tri(X7p1))'
Hence we see that x;_; lifts to mg (Pihr) if and only if op, = 0 for some

As.
Now each such op, (z;—1) defines (the same) element

A2 CA,A23

= 1. qu—"_1 F A .
Afg?\,lgar (I'/Ag, mi(X, p1))

o(wi—1) € HT (I, m(X,p1)) = colim FHHI(F/A%?U(X,PDM)

and o(x;_1) vanishes if and only if 05, vanishes for some As, so we are
done.
O

Remark 9.50 It is not hard to show that under the same assumptions
for every z;_1 € P;_1(X)(hA) there exists an obstruction

O(xi—l) S Hi+1(Aa Tri(Xapl))a

which vanishes if and only if x;_; lifts to P;(X)(hA), where H*t1(A, —)
is the suitable notion of restricted product of local cohomologies. We
shall give an exact definition of a generalization of this notion in §9.10.

Note that if
f : X1 — XQ

is a weak equivalence of simplicial I'k-sets then the induced map

thK : X?FK XSFK
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is a weak equivalence. We want a similar property to hold for adelic
homotopy fixed points. This will require the additional assumption that
the spaces are nice:

Theorem 9.51 Let
f : X1 — Xo

be a weak equivalence of nice and bounded simplicial I i -sets. Then the
induced map

th : X}ILA XSA
is a weak equivalence.

Proof We start with two lemmas which give a connection between the
connectivity of f and the corresponding connectivity of f*I's and fh4 .

Lemma 9.52 Assume that T'x is a pro-finite group of finite strict
(non-strict) cohomological dimension d and let

f:X1 —>X2

be an n-connected map of (finite) nice bounded simplicial Ik -sets. Then
the induced map

thK : X?FK — XSFK
is (n — d)-connected.

Proof Consider the corresponding spectral sequences EY ,, F{,. From
our assumption the map

2 2
Es,t Es,t

is an isomorphism for ¢ < n. Since the differential df ; goes from (s,t)
to (s+r,t+r—1) we see that if ¢t — s < n — d then the map

T T
Es,t ? Es,t
remains an isomorphism for all r. [l

Lemma 9.53 Let K be number field S a set of places of K that does
not contain the real places. Let

f:X1 —>X2

be an n-connected map of nice bounded simplicial T'i-sets. Then the
induced map

. ychhs hhs
£ X9 — X5
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is (n — 3)-connected.

Proof Since X1, X3 are nice there exists a finite Galois extension L/K
such that I';, stabilizes the (n + 1)-skeleton of both X; and Xs. Let Ty
be the finite set of places the ramifies in L. Then if v ¢ Ty we get that I,
stabilizes the (n + 1)-skeleton of both X; and Xs. Thus for every finite
set, of places Ty C T C S we have that the maps

fV:X1—>X2, veT

and
fo: Xl — X oveT

are n-connected. Thus by Lemma 9.52 we get that the maps

fo XMy XM peT

and
fo it (XM — (XM v T

are (n — 3)-connected. Therefore the map

ny : hocolim H XM % H Xy

ToCTCS
veT veS\T
hocolim H X H X4ty
ToCTCS
veT veS\T
is (n — 3)-connected. O

We now complete the proof of the theorem. Denote by S, the finite
set of archimedean places in S and let

S5 = S\ Swe.

We get
his,
i

hA
Xhhs = X5 o X
and since S, is finite,

hA
Xt = ] X
VESso

To conclude we have that

hA hA
foX(Te — X,
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is a weak equivalence and by Lemma 9.53

hAsf

hAs,
[:Xy 2 !

— X
is a weak equivalence. This means that
. xchhAs hAs
[ X9 — X5
is a weak equivalence. [l

Corollary 9.54 In Lemma 9.38 we may replace the assumption that
X is strictly bounded with the assumption that X is bounded, i.e if K is
number field and X a bounded T i -simplicial set then the natural map

loc : X (hK) — [[ X (hK))

factors through a natural map
fo: X(hK) — X (hA).

Proof In light of Theorem 9.51 and Lemma 9.38 it is enough to show
that every bounded I'i-simplicial set is weakly equivalent strictly to a
bounded I g-simplicial set. Indeed, if X is bounded then for large enough
n the map

X = P,(X)
is a weak equivalence, and P, (X) is always strictly bounded. O
Lemma 9.55 Let I' be a pro-finite group and let
X; — X9 — X3
be a homotopy fibration sequence of simplicial T'-sets. Then
Xi s XA T
is a homotopy fibration sequence of simplicial sets.

Proof First note that we can change the map X, — X3 to a fibration
X, — X3 in the local model structure without changing the homotopy
types. Now any fibration in the local model structure is also a Kan fibra-
tion and thus the fibre of the map 5{2 — X3 is standardly equivalent
to X;. Hence we may assume that

X; — X9 — X3

is a fibration sequence of simplicial I'-sets in the local model structure
and the lemma follows from the fact that X" is the derived mapping
space from the terminal object to X. [l



330 Harpaz and Schlank
Corollary 9.56 Let K be a number field and let
X; — X9 — X3
be a homotopy fibration sequence of nice simplicial T" i -sets. Then
XMy Xhh XA
is a homotopy fibration sequence of simplicial sets.

Proof By applying P, for large enough n it is enough to prove this
when the X; are excellent. Now take S to be a finite set of places such
that all the X;’s are unramified outside S. Now if T is any finite set of
places such that S C T then by Lemma 9.55

I« [ — I Tt — TIxi [

veT vgT veT vgT veT vgT

is a homotopy fibration sequence. Now by passing to the limit and us-
ing the fact that direct homotopy colimits preserve homotopy fibration
sequences (as they commute with finite homotopy limits) we get that

XA — X§h — XA
is a homotopy fibration sequence. O
Definition 9.57 We shall say that a commutative diagram

A——B

L

C——=D
in the category of sets is semi-Cartesian, if the map
A— BxpC
is onto.

Proposition 9.58 Let K be a number field and let X be an excellent
bounded simplicial I i -set. Then the commutative diagram

X (hK) — Py(X)(hEK)

l l

X (hA) — Py(X)(hA)

is semi-Cartesian.
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Proof We shall first prove the proposition for the case that X is 2-
connected. In that case P»(X) is contractible and thus the claim is re-
duced to the following lemma

Lemma 9.59 Let K be number field and X be a 2-connected excellent
bounded simplicial Tk -set. Then the map loc : X(hK) — X(hA) is
surjective

Proof First we will show that if X(hK) = 0 then X(hA) = () as well.
Since X is excellent and bounded we can use the obstruction theory
described above (see 9.49).

Since X is 2-connected the obstructions fall in the groups

H™H K, mi(X)),

H™H (A, (X)),

for i > 3 (note that since P;(X) is contractible we can suppress the base
point). Since the map

HYY(K,A) — H™TY(A, A)

is an isomorphism for ¢ > 2 and every finite module A (see [Mil06],
Theorem 4.10 (c)) we get that if X(hK) is empty then so is X(hA).
Now assume that X(hK) # (). We shall prove that the map

loc : X(hK) — [[X(hEK,)

(and thus the map loc : X(hK) — X(hA)) is surjective. Since X (hK) #
() we have [[ X(hK,) # 0 and so we can use the spectral sequence from
Theorem 9.46. Let p € X"I'x be a chosen base homotopy fixed point.
The lemma will follow by carefully investigating these spectral se-
quences. We shall denote by E{,(K) the spectral sequence that con-
verges to m_ (X"'% p) and by EI,(K,) the spectral sequence that
converges to m_ (X", p,). We also denote by [] E7,(K,) the prod-

v
uct spectral sequence (since X is bounded the spectral sequence collapses
after a finite number of pages. This fact together with the exactness of
products insures that [] £ ,(K,) is indeed a spectral sequence and that

14
it converges to the product []m_s (XhFK,pl,)). Consider the map of
14

spectral sequences

loch, : EL,(K) — [[ B (K.).
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This map converges to

loc t—s s Tt—g (th”,p) — H’]ths (thuapu) .

Now since for a finite module M and k& > 3 one has

H* (K, M) = [[ H*(K,, M)

we see that loc ft is an isomorphism for ¢ > 3. Since X is 2-connected,
loc ft is also an isomorphism for 0 < ¢ < 2. Hence in particular it is an
isomorphism on the lines ¢t — s = 0 and t — s = —1. We shall use the
following lemma:

Lemma 9.60 If fi, : E{, — Fy, is map of HL-spectral sequences
such that ff}t is injective on the line t — s = d and surjective on the line
t —s=d+1 then the same is true for all f,.

Proof By induction on r and a simple diagram chase. [l

Now since X is bounded the spectral sequences EY ,(K),[] £5(K,)
collapse in some page r and we get that the map

locys : B (K) — [[ EXS(Ky)
is surjective for all ¢ > 0. Hence

locg : 7 (XhFK,p) — Hﬂo (XhFKapu)

v

is also surjective. [l
We shall now prove the claim in the case of a general X. Let
((av), o) € X(hA) X py(x)(ha) Po(X)(hK)

be a general point. Let A<I'x be such that z¢ can be represented by a
'k equivariant map E(T'x /A) — P»(X). We get a diagram of excellent
strictly fibrant simplicial I'x-sets:

E(Tx/A)

|

X P (X)

We denote the homotopy pullback of this diagram by X(2). Note that
X(2) is 2-connected and excellent and that the sequence

X(2) — X —» Py(X)
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is a homotopy fibration sequence of excellent strictly fibrant simplicial
I'k-sets. Hence by applying Lemma 9.55 and Corollary 9.56 we get the
following commutative diagram with exact rows

C2

X (2)(hK) —> X (hK) (Po(X)(hK),x0)

l1001 llOCQ lloc;;

X (2)(hA) ——> X (hA) —Z> (Py(X)(hA), loc 3(x0))

where the notation (A, a) means that the element a € A is the neutral
element in the pointed set A. Now since

c2((ay)) = loc 3(wo)

there is an element (b,) € X(2)(hA) such that p((b,)) = (a,). Now by
Lemma 9.59 there is an element ko € X(2)(hK) such that loc (ko) =
(b,). We denote k1 = p(ko) and get

c2(k1) = ca(p(ko)) = o
and
loc (k1) = loca(p(ko)) = p(loc1 (ko)) = p((bv)) = (av).
O

Now from Proposition 9.58 we immediately get the following two corol-
laries.

Corollary 9.61 Let K be a number field, X/K a smooth variety and
U — X an hypercovering. Then for every n > 2 we have

X (A" = X (A2,

X(A)Zu,n — X(A)Zu’2.

Corollary 9.62 Let K be a number field, X/K a smooth variety and
U — X a hypercovering such that Xy, 1s simply connected. Then

X(A)M’n _ X(A)Zu,n

for every n > 0.
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9.5 The Finite Pre-Image Theorem

In this section we will prove a theorem that will be very helpful in
analyzing our various obstructions.

Theorem 9.63 Let K be a number field, X; = {Xolaer €
ProHo (Set?:)) such that each X, is finite, bounded and excellent. Let

(z,) € X1 (hA) be an adelic homotopy fized point. Then (x,) is rational
if and only if its image in each X, (hA) is rational.

Proof Since an inverse system of non-empty finite sets has a non-empty
inverse limit (see Lemma 9.76) it is enough to show that:

Proposition 9.64 Let K be a number field and let X be an excellent
finite bounded simplicial T i -set. Then the map

loc x : X(hK) — X(hA)

has finite pre-images. i.e. for every (z,) € X(hA) the set locx ' ((x,))
is finite.

Proof Since
X(hA) C [[X(hK,)

we can work with this product instead of X (hA).

First note that the theorem is trivial if either of the sets is empty. If
both of them are non-empty we can use the spectral sequence of theorem
9.46 in order to compute them. Let p € X" be a base homotopy fixed
point.

The proposition will follow by carefully investigating these spectral
sequences. We shall denote by EY, (K) the spectral sequence that con-
verges to mp_s (XhFK,p) and by Ef,(K,) the spectral sequence that
converges to my_g (th",p,,). Consider the map of spectral sequences

loc” : EL(K) — [[ EL(K.).
This map converges to

10Ct,5 Y (XhFK,p) — H’]ths (XhFKapV) .

We are interested in the components which contribute to my so we
would like to understand the pre-images of the maps

loci® : ERY(K) — [ B (K).
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Since X is bounded these groups/pointed sets are trivial for large enough
t. For the rest of the t’s we will prove the following:

Proposition 9.65 The maps
loc® : ERY(K) — [ B3 (K.)

have finite pre-images for all t > 0.

Before we begin the proof let us explain how this proves that the
pre-image of (z,) is finite, i.e. Proposition 9.64.

Note the Epy terms are pointed sets which filter the set mo (XhFK) in
a way which we describe below. The idea is to use this filtration on the
pre-image loc x ~'((z,)) of some ((x,)) € X(hA). We will assume that
locx !((z,)) is infinite and get a contradiction using this filtration.

Recall that in order to construct the spectral sequence we had to
choose some homotopy fixed point p € X"I'% which we call the base
point of the spectral sequence. We pick it so that its connected compo-
nent z € m (X"') is in locx '((z,)).

The first filtration map is the map

fo o mo (X)) — E5% € HO(T'k, m0(X))

which associates to every homotopy fixed point the invariant connected
component of X which it lies in. Note that all of loc x ~*((z,)) is mapped
to the connected component of X which ((x,)) maps to, and so this
filtration step is trivial when restricted to locx " ((z,))-

Now for those homotopy fixed points which are mapped to the same
connected component as z we get the next filtration map

frs £ (folz)) — EPS € HY(L, my(X)).

Now if we restrict this filtration map to locx ~*((z,)) we get that their
image under f; lies in the appropriate pre-image of the map

loc§® : EYS (K) — [ ERS(K.).

From Proposition 9.65 such a pre-image must be finite. Hence if
locx !((z,)) is infinite then there exists a fiber of f; which has an
infinite intersection with locx '((z,)). Let F' C locx '((z,)) be this
fiber. Then we can assume without loss of generality that = € F.

Now since all the elements in F' agree on the first two filtration steps it
follows from the general construction of the spectral sequence that if we
change the base point p to any other base point in F' then the spectral
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sequence will be isomorphic. This makes the remainder of the steps of
the filtration independent of p.
Continuing on, we have filtration maps

for fih(fema () — EES.

For t > 2 these are abelian groups and elements of locx *((x,)) are
mapped to the kernel of the map loc$°, which is finite by Proposition
9.65.

Hence we can continue the process of choosing the infinite fiber each
time and assume that x is in that infinite fiber. Since X is bounded there
will be only a finite number of filtration steps and since the spectral
sequence will no longer change when we change x within the infinite
fiber we get from Proposition 9.65 the desired contradiction.

We now finish the proof of Theorem 9.63 by proving Proposition 9.65.

Proof of Proposition 9.65 For t = 0 note that the map
Eg,o(K) — HEg,o(Ku)

is injective and thus so is the map
Ego(K) — [[ ESo(Ky).

For ¢ > 2 the set B}, (K) = H'(K,m(X)) is finite and therefore the set
E3(K) is finite. For ¢ = 1 we have that B9 C E?, so it is enough to
show that the map

loc?: EF(K) — [ [ E7 1 (K.)
has finite pre-images. This is the map
loc , : HY (K, m (X)) — HHl(Kl,, m1(X)).
The fact that this map has finite pre-images appears for example in

Borel-Serre [BSe64] §7.
We shall now prove the result for ¢ = 2. We have

B3y C EQQ,z/d2 (E12,0) :
Consider first the map
loc 3,2 : E222(K) — HE222(KV)
which is the map of abelian groups

l0¢ r, + H* (K, m5(X)) — [[ H*(K,, m2(X))
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and the kernel of this map is IIT*(mo(X)) which is finite since 7o (X) is
finite (see Milne [Mil06] Theorem 4.10).

Hence in order to show that loc5% has finite kernel it is enough to
show that

d* HEIQ,O(KV) — HE222(KV)
has finite image. Now for each v the group
B} o(K,) = HO(T,), m (X))

is finite because m1(X) is finite and so it is enough to show that for
almost all v the map

d* EIQ,O(KV) — E22,2(Ku)
is the zero map. This is achieved in the following lemma:

Lemma 9.66 Let X be a I'i-simplicial set such that the 3-skeleton
X3 is stabilized by some open subgroup 'y, C 'y where L/K is a finite
Galois extension. Then if v is a place of K which is non-ramified in L,
the differential

d*: E1270(K,,) — E22,2(KV)
1S zero.

Proof The action of the group I', on X3 factors through the group I'".
Now consider the natural maps

XA Sy bty Sz,
Let
Fy (BT, FY(Ky), ELL(K,)

be the spectral sequences converging to my_g (Xgrgr) s Ti—s (XQF”) and
mi—s (X") respectively. Then we have corresponding maps of spectral
sequences

Id ur f1T r fT r
Fs,t(KV ) — Es,t(KV) —2> Es,t(KV)'
We denote by f2 = f2 o f2. Now let
a € Efo(K,) = H)(T,,m (X)).

Since the map

7T1(X3) — 7T1(X)
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is an isomorphism and the action on 7 (X3) factors through T'%" we see
that

f3 O m(Xs)) — H (T, m (X))
is an isomorphism. This means that there exists a
be HO(LY, m(Xs)) = Fio(Ky")

such that f2(b) =a .
Now since I'“" has cohomological dimension 1 and m2(X3) = m2(X) is
finite we have

F3o(Ky") = H* (LT, ma(X3)) = 0
and therefore d?(b) = 0. Hence
d*(a) = d*(f3 (b)) = f3(d*(b)) = f5(0) = 0

as required. [l
This completes the proof of Proposition 9.65 |
This completes the proof of Proposition 9.64 |
This completes the proof of Theorem 9.63. |

Corollary 9.67 Let X be a smooth algebraic variety over a number
field K. Then for every 0 <n < oo one has

Xy = () XA
U,k<n
X(A)Zh’n: ﬂ X(A)Zu,k.
U,k<n

Using Corollary 9.61 we then get the following important conclusion:

Corollary 9.68 Let K be a number field and X /K a smooth variety.
Then for every 2 < n < oo we have

X (A" = X (A2,
X(A)Zh’" _ X(A)Zh’Q.

In particular, the homotopy and homology obstructions depend only
on the 2-truncation of the étale homotopy type.
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9.6 Sections and Homotopy Fixed Points

Let G be a finite group acting on a space X. Then it is known that the
space of homotopy fixed points X"¢ = [EG, X]¢ is naturally equivalent
to the space of sections of the classifying map

p: XhG — BG
where
XhG = (X X EG)/G

is the homotopy quotient. In particular the question of existence of a
homotopy fixed point can be translated to the question of existence of a
section to p.

In this section we will discuss the generalization of this alternative
approach to the case of pro-spaces and pro-homotopy types. A similar
approach is taken by Pal in his paper [Pal10].

9.6.1 The Pro Fundamental Group

In order to study the notion of fundamental groups one needs to be able
to work with base points. Since the étale homotopy type is not naturally
a pro object in the homotopy category of pointed spaces one needs to
make some choices in order to identify base points.

One way to tackle this issue is to lift pro-homotopy-types to pro-
spaces. We will use the following observation:

Lemma 9.69 1. Let X; = {Xa}aer € ProHo (Set?f) be an ob-

ject such that I is countable. Then there exists an object Xp €
ProSetlé;ps whose image in ProHo (Setlé:) is isomorphic to Xj.
Furthermore one can choose I' to be the poset N of natural numbers
such that )~(0 is fibrant and all the maps )~(n — )~(n_1 are fibra-
tions in the local model structure. We will refer to such pro-objects
as fibration towers.

2. Let f: X; — Y be a map in ProHo (Set?j) and assume that
both I,J are countable. Then one can lift f to a map
f: X]/ — -?J/
in Pro Setlé;p. Furthermore one can choose I' and J' to be N and
f to be levelwise.



340 Harpaz and Schlank

Proof 1. Since I is countable it contains the poset N C I as cofinal
subcategory. One then constructs the lifts X, by induction on n
by each time representing the homotopy class X,, — X,_1 by a
fibration.

2. By choosing X and Y to be towers of fibrations one can lift f
to f using standard lifting properties of fibrations. One can then
replace X 1 with a sub-tower in order to make f into a levelwise
map.

O

Remark 9.70 The lift described above is unique up to homotopy but
is not functorial. There is a way to lift the étale homotopy type func-
torially to a pro-space using Friedlander’s construction of the étale topo-
logical type ([Fri82]). However we will not make use of this construction
in this paper.

Remark 9.71 Given a K-variety X, the category I(X) is in general
not countable. However, if K is a countable field (e.g. a number field)
then the category of K-varieties is essentially countable (every K-variety
can be described by a finite set of equations and inequalities over K).

This means that the category of truncated hypercoverings (i.e. hy-
percoverings Uy — X which satisfy Us = cosky, (try, (Us)) for some n) is
essentially countable as well. Now since all the simplicial sets in Et5 1 (X)
were explicitly truncated we see that it is isomorphic to its sub-diagram
indexed by truncated hypercoverings.

Definition 9.72 Let {X,} € Pro Set®” be an object and {z,} €
lim,, X,, a base point. We will define the nth pro-homotopy group to be
the pro-group
de
T (Xai, {a}) < {0 (Xaswa)}-

Remark 9.73 Note that if {X,} is a pro-simplicial T'-set we will define
pro-homotopy groups by forgetting the group action. In particular we
will not require base points to be I'-invariant.

We would like to restrict our selves to the following nice class of ob-
jects:

Definition 9.74 An object X; € Pro Setléop will be called pro-finite
if each X, is an excellent, strictly bounded and finite simplicial I'-set
(see Definition 9.17).
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The issue of uniqueness of the base-point is dealt with in the following
lemma:

Lemma 9.75 Let Xy be a tower of Kan fibrations such that each
X, is finite, non-empty and connected. Then lim,, X,, is non-empty and
connected.

Proof Since Xy is a tower of Kan fibrations the non-emptiness of each
X,, implies the non-emptiness of lim, X,.

Now let {z,},{z,} € lim,X, be two points. For each n, let
P(X,,, zn, ) denote the space of paths from z, to z/ in X,,. Then
{P(X,,xn,x})} is a tower of Kan fibrations as well and so it is enough
to show that

lim 7o(P(Xn, Tn, x),)) # 0.

But this now follows from the following standard lemma (since by our
assumptions each 7o (P(X,,, Zn,z,,)) is non-empty and finite):

Lemma 9.76 Let {Ay}acr be an inverse system of finite non-empty

sets. Then
lim A, # 0.
=
Proof A standard compactness argument. O

This completes the proof of Lemma 9.75.
O

It will be useful then to keep in mind the following classical observa-
tion:

Lemma 9.77 The pro-category of finite groups is equivalent to the cat-
egory of pro-finite groups (and continuous homomorphisms). The equiv-
alence is given by {G4} — lim, G, with the natural pro-finite topology.

In particular we think of the pro-homotopy groups of pro-finite ob-
jects X; € Pro Set®” as pro-finite groups. From now on we will not
distinguish between pro-finite groups and pro-objects in the category of
finite groups.
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9.6.2 The Pro Homotopy Quotient
Recall that the categorical product of {X,},{Ys} in the category
Pro Set?:{p is given by
def
{Xa} x {¥5} = {Xa % Ys}as

Let ET* € Pro Set2” be the lift of ET* given by

ET% = {E(I'/A)} azr-

We will now define the pro-homotopy quotient. Let Xy € Pro Set?op
be a pro-finite fibration tower. We define its pro-homotopy quotient
to be the levelwise quotient (which is also the categorical quotient, see

9.93) of Xy x ET* by T, which we write as

(Xn)nr = (XN X ﬁﬁ) JT = {Xn A n,azr

where

def

X, (X, x E(T/A))/T.

Note that whenever A fixes X,, we get that X, o is bounded and
finite. Since the pairs (n, A) for which A fixes X,, are a cofinal subfamily
we get that (Xy), is isomorphic to a pro-finite object. In particular
we can consider its pro-fundamental group as a pro-finite group. This
pro-simplicial T'-set fits into a short sequence

Xy — (Xn)nr — {B(I'/A)}azr-

Choosing a base point {z,} € lim, X,, we get an induced base point
in (Xn)pr (which we will denote {z,,} as well) which is mapped to the
unique base point of {B(I'/A)} yielding a short sequence of pro-finite
groups:

1—m (XN, {J)n}) — 1 ((XN)hD {xn}) —I'—1
which is exact because whenever A fixes X, the short sequence of groups
1 —m(Xn,zn) — 1 (Xpa, 2n) — /A —1

is exact.
Our main claim of this section is the following:

Theorem 9.78 Let Xy a pro-finite fibration tower and
Xiy = {P1 (Xn)}
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its 1-truncation. Then the sequence
1 —m Xy, {zn}) — 1 (Xn)pp, {2n}) — T —1
splits if and only if X} (ET?) # 0.

Proof Since each X}, is strictly bounded the non-emptyness of X (ET?)
is equivalent to the existence of a map

EI* — X}
in Pro Setf” (we can lift maps into X} from ProHo (Set?w> to

Pro Set2”" because X} is a tower of fibrations).
Now given a map

h:ED% — XL
we can take the map
7 x Id: ET% — X}, x EL'?
and descend it to the I'-quotients
s {B(I/A)} = BI¥/I' — (X})ur
obtaining a section of the natural map
(Xi)ar — {B(L/A)}.
Lemma 9.79 FEvery section
s: {B(/A)} — (Xi)ar
is induced by a map
h:ED% — XL
in this way.

Proof The map s can be described by the following information: for
each n and A that stabilizes X,, we are given a normal subgroup A’<l’
which is contained in A and a map

st BI/A) — X, = (X}, x E(I'/A))/T
such that the composition
B(I'/A) — X}, , — B(L'/A)

is equal to the map ¢. : B(I'/A’) — B(I'/A) induced by the natural
projection ¢ : I'/A’ — T'/A. Since A stabilizes X the action I' on
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X! x E(I'/A) factors through a free action of I'/A. Hence we have a
pullback square

X! x E(T/A) — E(T'/A)

| |

XA B(I'/A).

The maps ¢, : E(I'/A’) — E(I'/A) and the composition
E(I'/A') — B(I/A)) =5 X1,
combine to form a map
Sna t B(L/A) — X)),

which lifts sp, A.

It is left to show that the maps s, 5 can be chosen in a compatible
way. Since the map X! x E(I'/A) — X! , is a covering map with
fiber of size |I'/A| we see that there are no more then IT'/A| equivariant
maps E(I'/A") — X}%A which lift s, a. Since a filtered colimit of sets
of size < |[['/A] is of size < |I'/A| the result will now follow from Lemma
9.76. O

To summarize so far, we see that the non-emptiness of XL (EL") is
equivalent to the existence of the section

s {B(I/A)} — (Xi)ar
to the natural map
(Xi)nr — {B(I'/A)}.

It is left to show that the existence of such a section is equivalent to a
section in the respective fundamental groups. Since X} , is 1-bounded
whenever A fixes n we see that a section of the pro—fundamental groups
induces a section

s {B(I/A)} — (X)nr-
In the other direction let
s {B(T/A)} — (X{)nr

be a section. Note that s might send the base point of {B(I'/A)} to a
point other then our chosen base point {z,}. However from 9.75 the
simplicial set lim,, X} is connected and so we will know how to translate
s into a section in the fundamental groups.
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We finish by the following useful criterion:

Lemma 9.80 The map X}, — {B(I'/A)} has a section if and only
if the induced map in ProHo (SetAop) has a section.

Proof We will use the following lemma whose proof is easy and classical:
Lemma 9.81 Let H,G be two groups then

Homgaor (BH,BG) = Homg,p(H, G),

Homyy,sepacry(BH, BG) = Homey, (H, G)/ ~ .

where for p1,ps : H — G we have p1 ~ poy if there exist g € G such that

pi(e) = gpa(e)g~'.

Now let
s {B(L/A)} — (Xi)nr

be a section in ProHo (SetAw>. As above the map s can be described

by the following information: for each n and A that stabilizes X,, we are
given a normal subgroup A’AI’ which is contained in A and a map

sna : B(D/A) — X)) = (X;, x E(/A))/T
such that the composition
B(I'/A) — X}, , — B(I'/A)

is homotopic to the map ¢, : B(I'/A’) — B(T'/A) induced by the
natural projection ¢ : I'/A’ — T'/A.

By Lemma 9.81 the two maps differ by a conjugation by some element,
of T'/A. Lifting this element to I'/A’ we can find a map s/, , homotopic
to s, A such that the composition /

B(I'/A') — X;/(T/A) — B(I'/A)

is exactly the natural projection map ¢, : B(I'/A") — B(I'/A). Now
similarly to the proof of Lemma 9.79 there are only finitely many such
possible maps so by Lemma 9.76 we have a section in Pro Set®” and
we are done. |
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9.6.3 The Etale Fundamental Group

In this section we will connect the notions described in the previous
section to the étale fundamental groups.

Proposition 9.82 Let K be a field and X a K -variety. Then

(Et’/K(X))hFK ~ 17(X)

in ProHo (SetAop) for every n < oco.
Proof We start by showing that
Bt} (X) x BT} = Bt} (X)

for every n < co. Since P, commutes with products and the simplicial
I'k-sets in EI‘E( are 0-bounded it will be enough to prove that

Bt (X) x B 2 Bt e (X).
Now we have a natural projection map
p: Bt (X) x ET% 2 Bt (X)

and we will show that it is in fact an isomorphism. Let &/ — X be a
hypercovering, n a natural number and A<I’ an open normal subgroup.
Let L/K be the finite Galois extension corresponding to it. We will use
the following construction:

Definition 9.83 Let L/K be a finite Galois extension. Let X, be the
restriction of scalars of X ® g L from L to K. Note that there is a natural
map

X, — X
which is an étale cover. We then denote by

X, — X
the hypercovering obtained by the Cech construction (see §9.2.1, Defi-
nition 9.11).

The connected components of X7 @ K (each of which is isomorphic
to X)) can be identified (not uniquely) with Gy, = Gal(L/K) where the
Galois action of G, on itself is by left translations. Such an identification
induces an isomorphism of simplicial I'x-sets

XXL — EGL.
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In particular, the action of 'k on X ¢ = factors through a free action of
Gr.
Now let

Z/{L =U Xx XL.
Then it is easy to verify that the natural map
Yu,r : XuL — Xu X XXL = Xu X EGL
is an isomorphism of simplicial I'x-set. The maps ¢y 1, fit together to
form a map
Bt (X) — Eti(X) x ET*
which is an inverse to p. We leave it to the reader to verify that this is
indeed an inverse to p. The proof is analogous to the case appearing in
the proof of Theorem 9.131.

In view of Corollary 9.94 (whose proof is independent of the rest of
the paper) we can finish the proof by showing that

Et”(X) = Et7K(X)/F = {Xu,k/F}MeI(K),kgn-
Now by definition we have that
Et(X) = Bt (X)/T.

Hence in order to get our result we need to verify that taking the quo-
tient commutes with truncation in this case. This will be done using the
following two lemmas:

Lemma 9.84 Let K be a field and X a K-variety. Then there is
a cofinal subcategory J(X) C I(X) x N such that for each (U,n) €
J(X) the action of U'x on Xy, factors through a free action of a finite
quotient of 'k .

Proof Let U — X be a hypercovering and n € N a number. Let L/K
be a finite Galois extension such that the action of I'x on the (n + 1)-
skeleton of U factors through G;, = T'x /T'L.

Consider as above

ULZUXXXL.

Then the action of T'x on the (n + 1)-skeleton of Xy, factors through
Gr. Since we have a map

XLIL — XX'L

we see that the action of G, on the (n+ 1)-skeleton of Xy, ,, is free. We
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also have a map of hypercoverings U;, — U. Hence the full subcategory
on

J(X) ={Uz,n)} € I(X) x N

is cofinal and we are done.
O

Lemma 9.85 Let X be a free simplicial G-set and n > 1 be a number.
Then G acts freely on P, (X) and

Pu(X/G) 2 Po(X)/C.

Proof Let G be finite group, X a simplicial G-set and Y a simplicial
set considered as a simplicial G-set with trivial action. Let f : X — Y
be a map of simplicial G-sets. We say that Y is a free G-quotient by
fif G acts freely on X and f induces an isomorphism as simplicial sets

f:X/G=Y.
Hence, we want to show that if Y is a free G-quotient by
[ X—Y
then P,(Y) is a free G quotient by
P.(f): Po(X) — P,(Y).

Now it is easy to see that Y is a free G-quotient by f if and only if f
fits in a pullback diagram of the form

X ——EG
v
Y — BG.

Since P, has a left adjoint, it commutes with pullbacks and we can
apply it to the above diagram and get another pullback square

Pp(X) Po(EG)
| |
Py(X/G) —— P, (BG).

However, both EG and BG are nerves of categories and thus since
n > 1 we have

P.(EG) = EG
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and

P,(BG) = BG.
Thus we get that pull back diagram:

P, (X) EG

P

P.(X/G) —= BG

and so P,(Y) is indeed a free G-quotient by P, (f). O

We now proceed with the proof of Proposition 9.82. From Lemma
9.84 we may replace { Xy n fuer(x)nen With {Xuy n}w,n)es(x). Now the
action of I'k on the (n + 1)-skeleton Xy, factors through a free action of
a finite quotient G of I'r. Then we have a free action of G on Q,(Xy)
(see Definition 9.6). Applying Lemma 9.85 to Q,(Xy) we get that

Po(Xu/Tk) = Po(@n(Xu/Tk)) = Po(@n(Xu)/G) =

Pn(Qn(XL{))/FK = Pn(XU) = XUJL/FK

for every n > 1. This means that
Et"(X) = Bt} (X)/Tk

and we are done. O

9.6.4 A Generalized Version of Grothendieck’s
Obstruction

Going back to the map
hy : X(K) — X"(hK)
We see that
X"(hK)=0= X(K)=10

and so one can consider the emptiness of each X™(hK) as an obstruction
to existence of a rational point. The following lemma shows that for
n = 1 this obstruction is actually Grothendieck’s section obstruction.
See also Pal [Pall0] or Quick [Qui09] for a similar discussion.

Keeping in mind Remark 9.71 and the fact that the pro-fundamental
group of (a pointed lift of) Et(X) can be identified with the étale fun-
damental group of X we can use Theorem 9.78, Proposition 9.82 and
Lemma 9.80 to obtain the following Corollary:
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Corollary 9.86 Let K be a field and X a geometrically connected
smooth variety. Then the following conditions are equivalent:

1. The set X'(hK) is nonempty.
2. The sequence of pro-finite groups

1 — 7T1(7) — 7T1(X) — I —1

admits a continuous section.
3. The map

Et'(X) — Et'(Spec (K))

admits a section in ProHo (Set?j).

9.7 Homotopy Fixed Point Sets and
Pro-Isomorphisms

In this section we assume that K is a number field. Let X be a K-variety.
Let

frEt(X)— Y
be map in ProHo (Set?:)). One can then consider the subset of adelic
points
X(A)YT C X(A)

containing the points (x,) whose corresponding homotopy fixed point

fe(h((2.))) € Yi(hA)

is rational, i.e. comes from Y (hK). In general this obstruction can only
be weaker then the étale homotopy obstruction, i.e. X"(A) C X (A)Y1.
However the freedom to replace Et/K(X) with Y can be useful.

In this section we will prove the following theorem:

Theorem 9.87 Let K be a number field and X a K-variety. Let
X7, Y; € ProHo (Set?j) be two objects such that I and J are countable
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and all the X, ’s and Y, ’s are finite, excellent and connected. Let

X7

e

Bt /re(X) f
Y;
be a commutative triangle such that f induces an isomorphism
7X Y

where

(o) : ProHo (Setlé;p) — ProHo (SetAop)
is the forgetful functor. Then
X(A)XT = X(A)Y".

Now before we come to the proof of 9.87 we will need to develop some
terminology regarding torsors of pointed sets.

Definition 9.88 Let A, be a pointed set. An A,-Torsor is a non-
empty set B together with an map

a: A, xB— B
such that

1. a(x,b) = b for all b € B.
2. The map

A, xB“% BxB
is an isomorphism of sets.
We call the map a the "action" of A, on B.

We denote by Tors(Set., Set) the category whose objects are triples
(As, B,a) such that B is an A,-torsor with action a and whose mor-
phisms are maps of pairs (A, B) — (A, B) which commute with the
respective actions.

We have two natural functors:

2, : Tors(Set,, Set) — Set.,
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Q[*((A*, B7 a)) = A*7

and

9B : Tors(Set,, Set) — Set,

B((A«, B,a)) = B.

Lemma 9.89 Let I be a cofiltered indezing poset and {(Aq, Ba, @) tacr,
{(A%s, Bj,aj)}per two pro-objects in Tors(Set., Set). Let

F: {(AouBouaa)} — {(A:wB(/wa:x)}

be a levelwise map such that A(F') is an isomorphism in Pro Set.. Then
B(F) is an isomorphism in Pro Set.

Proof We can consider F' as a compatible family of commutative dia-
grams

Ay X By =~ B,

lf&xgu lga
a

I / @ I
Al x B, ——= B!,

Now the map . (F') in Pro(Set.) is represented by the levelwise map
fa. Since fr = {fa}aer is an isomorphism we have a map

frt i {A eer — {Aataer

which is the inverse of f;. Note that f, ! can be represented by a map
0 : I — I and a collection of maps fi' : A, — A, satisfying
some natural compatibility conditions (See [EHa76]). Without loss of
generality we may assume that 8(a) > « for all a.

We would like to construct an inverse to the map B(F') in Pro(Set)
which is represented by the levelwise map g,. We denote this inverse by

91_1 = {BL}acr — {Ba}acr
To describe 91_1 we will give a collection of maps
g;l . Bé((y) — Ba

and we leave it to the reader to verify the easy diagram chasing that
is required to check that the maps g, ! are indeed defining a pro-map
which is an inverse to gr = B(F).

Now let o € I be an index. Choose an arbitrary element by € By(q)-
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We shall denote by by € B, the image of by by the structure map
BG(a) — B, and by
b = go(a)(bo) € By(y)
the respective image in Bé(a).
Now for every b’ € Bé(a) we can apply the inverse of the map
/ / / /
Ap@) X Bo(a) — Bo(a) X Bo(a)

to the tuple (b',b)) and get an element (¢’,by) € Ap,,y X By,,)- We then
define

g (V) = a(f57(¢),bo) € Ba.

O

Now in the proof of Theorem 9.87 we will need to work with pro-
objects of various kinds which carry actions of pro-objects in the category
of finite groups. In order to work well with such objects it will be useful to
recall first that pro objects in the category of finite groups are the same
as pro-finite groups in the usual sense (see 9.77). We will be interested
in the following kind of actions:

Definition 9.90 Let C be a category, G a pro-finite group and {X,}
an object in Pro C. An excellent action of G on {X,} is an action of
G on {X,} via levelwise maps such that the induced action on each X,
factors through a finite (continuous) quotient of G. In this case we will
say {X,} is an excellent G-pro-object.

We say that a map in Pro C between two excellent G-pro-objects

fi{Xa} — {Y5)
is equivariant if go f o g7! = f for every g € G.
We then have the following basic lemma:
Lemma 9.91 Let C be a category, G a pro-finite group and let
Fi{Xa} — {Y5)

be an equivariant map between two excellent G-objects. Then f can be
represented by a compatible family of maps

fﬁ : X(y(ﬁ) — Yﬁ

such that each fg is equivariant.
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Proof It is enough to prove for {Y 3} which is a single space Y.

Start with any map f’ : X, — Y representing f and consider the
finite orbit {f’ o g}4eq. Since fog = f for every g € G we get that
all the maps f’ o g represent the same map f. Thus there exist some
a < B € I such that the images of all the f’ o g in Hom(Xpg,Y) are the
same. We will denote this unified image by

fg:X5—>Y.

Then we see that fg is an equivariant map representing f and we are
done. |

In particular we see that any equivariant map
fiA{Xa} — {Ys}
between two excellent G-objects induces a map
fAXa) = {Ys)

in the pro-category of G-objects in C.
This simple observation has several useful corollaries:

Corollary 9.92 Let

fi{Xa} —{Ys}

be an equivariant map between two excellent G-objects such that the un-
derlying map of pro-objects is an isomorphism. Then f induces an iso-
morphism in the pro-category of G-objects.

Corollary 9.93 Let X; = {X,} be an excellent G-object. Then the
levelwise quotient

X /T ={Xa/I'}
coincides with the categorical quotient (i.e. with the corresponding col-
imit) in Pro C.
Corollary 9.94 Let

fi{Xa} —{Ys}

be an equivariant map between two excellent G-objects such that the un-
derlying map of pro-objects is an isomorphism. Then f induces an iso-
morphism in Pro C'

{Xa/G} =+ {Y5/G}.
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We are now ready to prove the main ingredient of the proof:

Proposition 9.95 Let T" be a pro-finite group and X; = {X,}, Y, =
{Y 3} be two objects in ProHo (Setléop) such that I, J are countable and

all the X, ’s and Y, ’s are excellent, finite, connected and 2-bounded. Let
f:X; — Y be a map such that

T:X]H?[

is an isomorphism in ProHo (SetAUp). Then f induces an isomorphism
of sets

X; (ET¥) ~ Y, (ETY).

Remark 9.96 Once again we pay a price for not having a suitable
model structure on Pro (SetAUp). Of course in such a model structure
this statement would be immediate and without the heavy assumptions.
As mentioned before, this better approach will be taken in a future paper
based on the model structure of [BSc11].

Proof Recalling the discussion in the beginning of subsection §§9.6.1
we start by lifting f to a levelwise map

}TZ XN — FYV'N
in ProSetf” between two pro-finite fibration towers.
Let 5(11\1 = {Pl (f(n>} and ?§ = {Pl (?n> } We will start by show-
ing that
X} (ET%) ~ Y} (EDY).
Choose a compatible set of (not-necessarily-I'-invariant) base points
zn € X,, and let y,, = fn(zn) € Y, Let G; = m (f(n,xn) and H, =

1 (Yn, yn) .

Now the map f induces an isomorphism of short exact sequences (note
that any bijective map of pro-finite groups is an isomorphism because
the topology on both is Hausdorff-compact):

l——m (XNv {xn}) — T ((XN)hFa {(En}) —I—1

| | |

l——m (YNv {xn}) — T ((YN)hFa {(En}) —I—1
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and so the first sequence splits if and only if the second does. Hence from
Theorem 9.78 we see that

X} (ET%) #£0
if and only if
Y} (ET?) # 0.
Hence it is enough to deal with the case that arises when both of them

are non-empty. Since X}L is a fibration tower we get that {(X}L)hr} is
a tower of Kan fibrations and so one can choose a compatible family
iy, € (XL)PT

Now from Corollary 9.92 we get that the equivariant isomorphism of
pro-finite groups

{Wl (Xév’ﬁn)} — {'/Tl <?}Lv fn(ﬁn))}
together with the spectral sequence of 9.46 induce an isomorphism
v 1 B o 130 W1 1 1 <1l 7 ~
X} (EIY) = lim X}, (hK) = lim H (r, ™ (Xn hn)) S
lim H' (r, ™ (?;, fn(ﬁn))) =~ lim Y (hK) = Y} (ET?) .
Now consider the commutative square

Xy (EIY) —= vy (EIY)

| |

X} (EI%) —— Y} (ET¥) .

In order to finish the proof we will show that for every {h,,} € X}, (EI'%)
the map f. maps the fiber over {h,} isomorphically to the fiber over
{fulhn)}- o

As above, choose a compatible family h,, € (X1)"I' such that h, is
the connected component of En

First of all we need to address the possibility that this fiber above
{hn} is empty. By Proposition 9.49 we see that for every n we have an
obstruction element

on € H® (F,@ (5{”%”))

~ _ \hT
which is trivial if and only if h,, lifts to mg (XZF) >~ 7 (P2 (Xn) >
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From Corollary 9.92 the equivariant isomorphism of pro-finite groups

(rs (%)} — (r (B 00}

induces an isomorphism of pro-finite groups

(5 (0 (50} 0 e (R 2)
and so the element

{on} € lim H? (F,@ (5{”%”))
is zero if and only if the element

{nloa)} € tim H° (D (Yoo fo () ))

is zero. If both of them are non-zero then both fibers are empty and we
are done. Hence we can assume that both are zero.
Let A, C m (XZF) be the (non-empty) pre-image of h, and B,, C

) (?ZF) the pre-image of f,,(h,). We need to show that the induced
map

f+:lim A, — lim B,

is an isomorphism.
Now given any homotopy fixed point z € XI' we can run the spec-

tral sequence of 9.46 to compute (f(?f) Since X,, is 2-bounded this

spectral sequence will degenerate in the third page and hence we see
that in order to compute the cell 3% = E§2 it is enough to choose the
image of z in P;(X,)"T. In particular we can calculate this cell using
the homotopy fixed point En

Now by analyzing the spectral sequence we see that the pointed set

E3 5(hy) is obtained from the group H? (I‘, T (mezn)) by taking the
quotient pointed set under the action of H° (I‘, m (mezn)) which is
induced by the action of H° (I‘, T (mezn>> on o (f(n,fzn>

Now the equivariant isomorphism of pro-groups

fro (%) — frs (T 1)

induces an isomorphism of pro-groups

(1 (17 (%02))} — {1 (o (B ()
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From Corollary 9.92 we get that the equivariant isomorphism of pro-

finite groups
{rs (Run)} — s (o)

induces an isomorphism of pro-finite groups

{1 (1 ()} [ (o (0000 -

Hence from Corollary 9.94 we get that the induced map of pro-pointed-

sets {Eé’ja (En) } N { B55, (fn (ﬁn) }

is an isomorphism. Now from the Bausfield-Kan type spectral sequence
of 9.46 the set A, admits a natural torsor structure under E3S (hn>

and similarly B, under E5% ( fn(ﬁn)> From Lemma 9.89 we then get
that the induced map of pro-sets

{An} — {Bn}
is an isomorphism and induces an isomorphism
lim A,, —» lim B,,.
O

We now come to the proof of Theorem 9.87. From Theorem 9.63 and
Proposition 9.58 we can assume that all the spaces in the diagrams of X;
and Y are 2-bounded. The Theorem will then follow from the following
corollary:

Corollary 9.97 Let K be a number field and X; = {X.}, Y ={Y,}
two objects in ProHo (Setﬁip) such that I and J are countable and all
the X, ’s and Y, ’s are finite, excellent, connected and 2-bounded. Let
f:X; — Y be a map such that

7 : X} — ?[

is an isomorphism. Assume that Xi(hA) # (0. Then an element (z,) €
X (hA) is rational (i.e. is the image of am element in X;(hK)) if and
only if f«(z,) € Y1(A) is rational.

Proof From Proposition 9.95 we get that f induces isomorphisms of
sets:

X;(hK) = Y;(hK)
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and

Now since X(hA) C [, X;(hK,) the result follows. O

In subsections 9.3.2 and 9.3.2 we have defined a family of obstruction
sets that fit together into the diagram

X (A - o X (A X (AR X (A)

X(K)—— X(VL)h;> > X(A)IC = X (A)M0

In section 9.8 we will consider zero-dimensional varieties, and show
that in that case even the weakest obstruction set X (A)%Y is equal to
X (K). This can be used to show that for general X the non-emptiness
of X (A)%0 is equivalent to the existence of a Galois invariant geometric
connected component.

In the next three sections we will relate all the rest of the above
obstruction sets to the classical ones.

9.8 Varieties of Dimension Zero

Proposition 9.98 Let X be a zero dimensional variety. Then for every
0 <n < oo one has

X(A)"" = X ()" = X(K)

Proof Consider the hypercovering X, — X where X, is the constant
simplicial variety X,, = X. Then Py(ZXx,) is a discrete simplicial set
which is the I module freely generated by X (K ). From the discreteness
of Py(ZXx,) and the fact that

X(K) € Py(ZXx,).
we see that

X(A)2Xe0 = X(K).
Now since

X(K)C X(A)"" C X(A)Zh € X (A)PX0 = X(K)
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we get that

as required. O
Corollary 9.99 Let X be a zero dimensional variety. Then

X (A = X (AR = X(K).
Proof Immediate from Proposition 9.98 and the fact that

X(A)fin’h C X(A)fin’Zh C X(A)Zh

Corollary 9.100 If X = X, [[ X5 then

X (A" = Xy (A)r T Xa(A)",
X(A)Zh’n =X (A)Zh,n HX2(A)Zh,n,
X(A)fin,h _ Xl(A)fin,h HX2(A)fin,h’

X(A)fin,Zh =X, (A)fin,Zh H X (A)fin,Zh.
Proof Consider the obvious map
X — Spec (K) H Spec (K)

and use functoriality together with Proposition 9.98 and Corollary 9.99.
O

Corollary 9.101 Let X be a K-variety. Then both X(A)*° and
X (A)ZM0 contains exactly the adelic points which sit in a T'x invari-
ant connected component.

Proof Again consider the map X — 7o(X) where 7(X) is consid-
ered as a zero dimensional K-variety. From Proposition 9.98 we see that
if (z,) € X(A)Z"0 then (x,) sits on a I'x invariant connected compo-
nent. Hence it will be enough to show that if X is connected over K
then X(A)"® = X(A). But this follows from the fact that when X is
connected over K then all the spaces Xy, are connected and so

Xz,{70 = %
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This means that in that case,

hz/l’{n Xz,u)(hK) = *

and so all adelic points are in X (A)"°. O

Corollary 9.102 If X does not have a Tk -invariant connected com-
ponent then

X(A)f”“h _ X(A)fin,Zh _ X(A)h’" _ X(A)Zh’n _ @
Proof Immediate from Corollary 9.101 and the fact that
X (AP C X (A",

9.9 Connection to Finite Descent

Let K be a number field and X a K-variety. Recall sections §9.3.2 and
9.3.2 in which we have defined for each n two obstruction sets

X(K)C X(A)»™ C X(A)Zh" C X (A).
In section §9.5 we have proved Corollary 9.68 which states that for
each n > 2 one has
X(A)P" = X(4)"2
and
X(A)Zh’n _ X(A)Zh’Q.

In Corollary 9.101, we have determined X (A)™% and X (A)%"0 and
we saw that they contain only information coming from the zero dimen-
sional scheme of connected components of X. It is hence left to analyze
the sets X (A)"" and X (A)Z"" for n = 1,2. In this section we will deal
with the n = 1 case and prove the following theorem, connecting the cor-

responding obstruction sets to the obstruction sets obtained by descent
over certain finite groups:

Theorem 9.103 Let K be field and X a smooth connected K -variety.
Then

XA =X (a)7m,

X(A)Zh’l _ X(A)fin—ab.
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The rest of this section will be devoted to the proof of Theorem 9.103.
Let us begin by establishing some notation. In order to understand the
finite descent obstructions we will be considering torsors

f:Yy —X

under finite K-groups G. We will always assume that Y is connected over
K (i.e. that its geometric connected components form a single Galois
orbit), as this is no loss of generality for descent obstruction. When we
don’t wish to specify the K-group G we will simply refer to f : Y — X
as a finite torsor. We will denote by

XT(a) C X(a)

(see §§89.3.1) the set of adelic points which survive descent by Y, i.e.
the set of adelic points which lift to some K-twist of Y. In this notation
X (A)f™ is obtained by intersecting X/(A) over all finite torsors and
X fin=ab is obtained by intersecting X (A)f over all finite abelian torsors.

The essence of the connection between torsors under finite K-groups
and the relative étale homotopy type is given by applying the Cech
construction to the étale (covering) map ¥ — X. One then obtains a
hypercovering Y, given by

n+1
Yn:YXX XXy.

Let us now analyze the simplicial I'k-set Ny (see Definition 9.16).

We have a natural isomorphism (over K)
n+1

—l
Y Xx .. xxY=2Y xG"

and so

(NY)n = 7"-O/K(Yvrn) = WO/K(Y) x G™.
We then observe that we can identify Ny with the nerve of a certain
groupoid Y:

Definition 9.104 Let G be a finite K-group and f : Y — X a torsor
under G. We define the groupoid ) to be the groupoid whose objects
set is

Ob(Y) =mo,k (Y)
and whose morphism sets are

Hom(C1,Cy) = {g € G|gC1 = Ca}
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for each C1,Cs € WQ/K(Y).
It is easy to verify that:
Lemma 9.105
Ny = N(Y).
Now recalling again Definition 9.16 we can write
Xy, = Pi(Ex®(Ny)) = Pi(Ex®(N(Y)).

Now it is a well known result in homotopy theory that since ) is a
connected groupoid the nerve N(G) is a connected Kan simplicial set
and for each C' € Ob(Y) one has

Homy (C,C) n=1

m (V) 0) = {1 *

In particular this means that the map
Ny — Pi(Ex™(Ny)) = Xy,
is a local weak equivalence of simplicial I x-sets, so we can consider Ny
as a model for Xy ;. In particular we have isomorphisms of sets
Ny (hE) = Xy, (hK),
Ny (hA) = Xy (hA). =)

We consider the K-group G as the finite group G(K) with an action
of ' on it. We then consider the standard model for BG as the nerve
of the groupoid BG with one object and morphism set G. We have a 'k
action on this groupoid and so an action of I'x on our model for BG.

We have an equivariant map of groupoids

Yy — BG

induced by the natural inclusion Hom(C7, C2) C G. This groupoid map
induces a map
Cy : NY — BG.
The computation (x) has the following corollary describing the behav-

ior of the map cy:

Corollary 9.106 Let G be a finite K-group and f : Y — X a torsor
under G. If Y is geometrically connected then the map

Cy:Ny—>BG
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is an tsomorphism and induces a natural identification
m (NYa *) = G

If Y is not geometrically connected then the map cy will still induce an
embedding on the level of fundamental groups.

We now come to the main lemma which connects the descent obstruc-
tion given by Y and the homotopy obstruction given by the hypercov-
ering V:

Proposition 9.107 Let X be a K-variety and f : Y — X a torsor
under a finite K-group G. Then

X (A C X(A).
If, furthermore, Y is connected over K then
X(A)Y! = X(A).

Proof In this model BG has a single vertex giving it a natural base
point preserved by I'k. Since BG is also bounded we can use this base
point to compute

BG(hK) = m (BG"'¥)

via the spectral sequence of 9.46. Since BG is connected and 7 is its
only non-trivial homotopy group the spectral sequence collapses and we
obtain an isomorphism

BG(hK) = HY(K,G).

Let us try to make this identification more explicit. Let Adl'jx be an
open normal subgroup and define H = I'x /A. Then the simplicial set
EH can be realized as the nerve of the groupoid £H whose objects are
H and whose morphism sets are all singletons. Now suppose that our
homotopy fixed point is given by a map

F:EH — BG
which is induced by a map of groupoids
F:EH — BG.
We can identify H with the union of singletons
UsegHomg g (1,0).

Then F maps this set to the morphism set from the single object of BG
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to itself which can be identified with G. The obtained map u: H — G
gives the desired 1-cocycle in H'(K, G).

Note that since F is H-equivariant it is completely determined by
u. If one uses this determination in order to write the condition that
F respects composition in terms of u one will find exactly the familiar
1-cocycle condition.

Now recall the map cy defined above. By (xx) we get a map (which
we denote by the same name)

cy : Xy 1 (hK) — BG(hK) = H'(K,G).

With some further abuse of notation, we will call the adelic version of
this map by the same name:

cy : Xy 1 (hA) — BG(hA) = H' (A, G).
Lemma 9.108 Let p € X(K) be a point and
h(p) € X (hK)
the corresponding homotopy fixed point. Then
ey (Mp)) € H'(K,G)

is the element which classifies the G-torsor Y, = f~1(p). Similarly if
p € X(A) is an adelic point then cy (h(p)) classifies the adelic G-torsor

).

Proof We will prove the lemma for K. The proof of the adelic version is
completely analogous. From functoriality it is enough to prove the claim
for X =pand Y =Y.

In this case ) is the groupoid whose objects set is a principle homoge-
nous G-set classified by an element o € H!(K, @) and there is a unique
morphism between any two objects.

Let yo € Y be an arbitrary base point and let H be a big enough finite
quotient of I' such that the action of I'x on both G and Y, as well as
the element «, factor through H. In that case we can represent « by a
1-cocycle u : H — G (denoted by ¢ — u,) such that

a(yo) = us(yo)

for every o € H.
Now since the elements in ) don’t have automorphisms we see that
Ny and hence Xy ; are contractible and so Xy ; (hK) = *. This means
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that if we construct any concrete element in Xy (hK) (or Ny (hK)) then
it has to coincide with h(p).

The homotopy fixed point which we will construct is the one given by
the equivariant map of groupoids

p:EH — )Y

which sends the object 0 € H to the object oyy € Y (since all the
morphism sets are singletons there is no problem to construct such a
map). We then need to compose the map ¢ with the groupoid map
Y — BG and consider the obtained map

Y : EH — BG.

In order to find the corresponding element in H*(K, G) we need to check
to which morphism 1 sends the unique morphism from 1 to ¢ € H. Now
 sends this morphism to the unique morphism from yg to oyg. Since

0Yo = Uos (yO);

we see that v sends this morphism to the morphism u, € G. This finishes
the proof of the lemma. O

We are now ready to finish the proof of Proposition 9.107. Let (z,) €
X(A)Y be an adelic point. Then the homotopy fixed point h((z,)) €
Xy 1(hA) is rational which means that the adelic cohomology class

ey (h(z,)) € HY(A,G)

is rational as well. By Lemma 9.108 the torsor type of the fiber over (z,)
is rational and so there exists a K-twist of Y such that (x,) lifts to it.
This means that (x,) € X(A)/ and so

XA C x(a).

Now assume Y is connected over K and let (z,) € X(A)/ be a point
surviving descent by Y. In that case the groupoid ) has only one object
and so the map

Y — BG
is an isomorphism. This means that the map
Ny — BG
is an isomorphism and by (%), the maps

Xy 1 (hK) — BG(hK)
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and
Xy 1 (hA) — BG(hA)

are bijections of sets. By Lemma 9.108 we get that ¢y (h(z,)) € BG(hA)
is rational and so h(z,) € Xy ;(hA) is rational as well. Hence in this
case

and we are done. O
We are now ready to prove Theorem 9.103.

Proof of 9.103 Since X (A)™! C XY:1(A) for every finite torsor Y we
immediately obtain from Proposition 9.107 that

X"HA) C X (AT,

A similar arguments works for X%?™1:if f : Y — X is a finite abelian
torsor then the map

Ny — ZNy

induces a weak equivalence

Ny — Pi((ZNy)")
where (ZNy )! denotes the connected component of ZNy given by

1 € m(ZNy) = Hy(Ny ) = Z.

The last isomorphism here is canonical. This implies that in that case

X (A = X (42! (3 %)
and since X (A)Z"! C X(A)%ZYV'! we get that

X(A)ER C X (A)in—ab,

It hence remains to prove the inverse inclusion, i.e. to show that

XA XM(A),

X(A)finfab C X(A)Zh’l.

Let (x,) € X (A)/™" be a point. We need to show that (z,) € X (A)™!.
Our first step will be to show that (z,,) € X (A)Y"! for each finite torsor
f:Yy — X.
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Proposition 9.109 1. Let f: Y — X be a torsor under a finite
K-group G. Then

xXFin(p) C X (AL,
2. Let f: Y — X be a torsor under a finite abelian K-group G. Then
Xfinfab(A) C X(A)Y’l.
Proof We start with the following lemma:

Lemma 9.110 Let X, K be as above and assume that X (A)/™ # ().
Let

f:Yy—X
be a torsor under a finite K -group G. Then there is a twist
feYyT —X
such that Y has a connected component defined over K. If one assumes
instead that X (A)7" = o£ () then the result is true for abelian G.
Proof Note that over K there is an inclusion
(Yo,Go) — (Y, G)

which is a map of torsors over X, where Y is any connected component
of Y. Since X (A)7 # () we have from Lemma 5.7 of [Sto07] that there
exists a map

(Y7,G") — (Yo, Go)
where (Y’, G’) is a geometrically connected torsor over X. By composing
we get a map
Now by Lemma 5.6 of [Sto07] there exists an a € H'(K, Q) for which
there is a map

Y, G — (Y*,G?).
Since (Y',G") is geometrically connected and defined over K the same

is true for its image. The abelian version is similar. |

Now assume that (z,) € X(A)7™ and let f : Y — X be a torsor
under a finite K-group G. Since X (A)7™™ = () we get from Lemma 9.110
that there exists a twist

oY — X
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such that Y has a I'k-invariant connected component. Let Y C Y
be that connected component and consider it as torsor over X under its
stablizer G§ C G*. Now by calculation (x) above the equivariant map

Xyoq = Xya

is a weak equivalence. Applying Proposition 9.107 to the torsor f§ :
Yy¥ — X we then get

XYQ’I(A) _ XYOa’l(A) _ ng(A)
and since (z,) € X (A)/™ C X5 (A) we get that
(z,) € XY1(A).

We need to show that (z,) € XY:1(A), so we will need to be able to
"undo" the twist.

Let H be a big enough finite quotient of I'x such that the action of
T'x on G as well as the element « factor through H. In that case we can
represent « by a 1-cocycle u : H — G (denoted by 0 — u,) satisfying
the cocycle condition

Uor = U(UT)uU

Let L/K be a finite Galois extension corresponding to H. Let f¢ :
Y* — X be the corresponding twist by a which is a finite torsor under
G*. Let

XL—)X

be as in Definition 9.83. Note that this is a H-torsor.
Now consider the torsors (over X)

Yo=Y xx X,
Y=Y xx Xy,
and the natural projections
Y, — Y,
Y — Y

Note that these maps induce K-isomorphism from each K-connected
component in their domain to its image. Hence from (%) above we see
that they induce weak equivalences

NYL — Ny,
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NYLQ — NYQ.

Lemma 9.111 There exists an isomorphism of étale coverings over X
T, :Y, — YE‘

Proof After choosing an identification of 7o(X) with H it is enough
to construct an isomorphism

T,:HxXxY — HxY=HxY“

which commutes with the action of I'x (note that the action is different
on both sides). We shall define

To(T,y) = (7’7 u;ly) .

Now note that indeed

o(Ta(r,y)) = 0 (,u7'y) = (07,0 (u;y)) =
(o, uy o (ur ) y)) = (o7,u;to(y)) =
T

Ta(om,0(y)) = Ta(o(7,y))-
This finishes the proof of the lemma. O
Now from Lemma 9.111 it follows that
XVHA) = XYel(A) = XVE(A) = XV TL(A)
and so (z,,) € XY"1(A) as required. O

Let us now return to the proof of Theorem 9.103. Let &/ — X be a
hypercovering. We need to show that (z,) € X (A)¥!. We will require
the following definition:

Definition 9.112 Let X = X @ K and let f : Y — X be a torsor
under a finite group G defined over K. We say that (f,T,G) is Galois
invariant if for each o € I'c the G-torsor 7 : Y — X is isomorphic
to the G-torsor f : ¥ — X over K.

The following lemma will make the crucial step enabling us to apply
information on torsors to the general hypercoverings:

Lemma 9.113 Let K be a field and X a geometrically connected K -
variety. Let Uy — X be a hypercovering and G = m1(Xy). We will
denote by G the abelianization of G. Then
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1. There exists a geometrically connected G-torsor
f:r—X
and a map of hypercoverings
v iUy — Y
which induces the identity
G=m (Xua) = m (Xf,l) =G

where the last identification is by Corollary 9.106.
2. There exist a exists a geometrically connected G*®-torsor

f:r—X
and a map of hypercoverings
v Uy —> Y.
which induces the abelianization
G=m (Xyy) —m (XT,I) = @G
Furthermore in both cases the torsor f : T — X can be taken to be
Galois invariant.

Proof By the discussion in subsection §§9.2.4 we can naturally consider
the pullback of U,, to the generic point of X as a finite I'x(x)-set which
we denote by U,, (see Definition 9.20). By restriction we will also consider
Uy, as a I (x)-set.

We denote by

Stabr v, () = {H, ... Hi}

the set of stabilizers in P?(Y) of the points of Uo.
In order to prove part 1, consider the group

E = (Hy,.. H),

i.e E is the group generated inside I‘?(y) by all the groups in
Stabr_ _ (17[0). Since the set Stabpr_ _ (Ijlo) is invariant under con-

K(X) K(X)
jugation by elements from I'i(x) we see that E is actually normal in
I'k(x) (and so in particular normal in I'z %))

Since go is a finite set each H; has finite index in I‘?(y) which means
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that E has finite index in I'zz %) as well. Let F/K(X) be the finite field
extension that corresponds to F.

Now for each i let K(X) C F; be the field extension corresponding to
H;. Then Fj is unramified over the image of the component of Ijlo corre-
sponding to the Ff(y)—orbit containing 4. Since Uy — X is surjective
and since F' C F; for every i we see that F' is unramified on X. Thus E
contains the kernel of the surjective map

P T — m(X)
and the normal subgroup p(E) < 71 (X) corresponds to a geometrically
connected torsor
p: T —X
under the group 71 (X)/p(E). Now from Corollary 9.21 and Lemma 9.23

we see that 7 (X)/p(E) 2 G. By construction, we have a map I‘?(?)
sets

v Uy — Ta
which induces a map
U — 7T,
and so a map
U — T

induces the identification
G = T (Xu) — T (XY’) =G.

In order to prove part 2 consider the group £ C E’ C Stabr_ _ (go)

K(X)
generated by £ and the commutator subgroup of Stabr_ = (Z/N{o). Then

E’ is again normal in I'(x). The image p(E’) C m(X) corresponds to
a finite Galois cover

oY —X

under the group 71 (X)/p(E’') = G®. As above we get a map of hyper-
coverings

Us — T
which this time induces the abelianization

G= T (Nz,{) — T (Ny) = Gab.
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Note that since both p(E), p(E’) C m1(X) are invariant to conjugation
by elements of 71 (X)) we get that in both cases Y is Galois invariant. O

Now let # — X be a hypercovering with m (i) = G and let f :
T — X be a geometrically connected G-torsor which admits a map

U—7

inducing the identity on fundamental groups.

Now there exists a large enough finite Galois extension L/K such that
we can put an L-group structure on GG and an L-variety structure on T
making f: T — X into a G-torsor defined over L. Since T was Galois
invariant we may assume that L is big enough so that Y is isomorphic
over L to all its Galois conjugates.

By "averaging" over Gal(L/K) = {01, ...,0,} (where n = |Gal(L/K)|)
we obtain a map of hypercoverings over K given by

U—T7 xx o xx T7 = RE(T)

where R/L)/(K is the Weil restriction of scalars over X. Let us denote

Y = R/L)/(K(T). Now Y is a torsor under the finite K-group
RUYE(G) =G x ... x Gn.

Furthermore since T was Galois invariant we get that

n

——N—
Y®KL%JTXX...X)(T%JTXG”71

where all the isomorphisms are over L. In particular we have a diagonal
embedding of T in Y ® ¢ L whose image is a geometric connected com-
ponent (defined over L). The stabilzer of this connected component is
the diagonal subgroup of G™, which is isomorphic to G (as L-groups).
By our analysis above we get that the map

WO/L(T) — 7TO/L(Y)
is a weak equivalence. This means that the map
Xua — Xy
is a weak equivalence, and so
X(AM! = x(A)Y L

Since (z,) € X(A)¥! by Proposition 9.109 we get that (z,) € X (A)4:!
and we are done.
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This finishes part 1 of 9.103. For part 2 we need to show that if
(r,) € X(A)/"=ab then (x,) € X(A)241. Using the second part of
Lemma 9.113 there exists a normal field extension K C L and a G-
torsor f: ¥ — X which admits a map

U—7

inducing the abelianization on fundamental groups. Again we can choose
a large enough finite Galois extension L/K such that G, T and the map
U — T are all defined over L . Let Y = R/L)/(K(T). Then as above we
get a map defined over K

U—Y
and we know that the diagonal map induces a natural isomorphism
m1 (Ny) — m1 (Ny).
Hence the map
Ny — Ny

induces the abelianization on the level of fundamental groups and hence
an isomorphism on first homology groups. This means that the map

P, (ZNy) — Pi (ZNy)
is a weak equivalence and so
X(A)Zu,l _ X(A)ZY,I.
By (* * %) above we see that
X(A)ZY,I _ X(A)Y’l
and since (z,) € X(A)Y"! by 9.109 we get that
() € X ()51

as needed. This finishes the proof of Theorem 9.103.
O

Remark 9.114 One might wonder what the role of connectivity is in
the proof of Theorem 9.103. To see this one should consider the case

X = Spec (K) H Spec (K).
By Proposition 9.98 we know that
X (AP = X (A = X(K).
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On the other hand, when K has a complex place then
X (M)t = X (M) # X(K).

Indeed if (z,), (z),) € X(A) are two adelic points that differ only in a
complex coordinate then (z,,) € X (A)7™ if and only if (2) € X (A)f",
and similarly for X (A)fn—ab,

This is, however, the only fault in the desired equality of X (A)/" and
X(K). In fact, in [Sto07] Stoll gives a proof of this equality (Lemma
5.10 in [Sto07]). However this proof is erroneous and the error becomes
a problem exactly in the complex places.

To conclude, when one ignores the complex places (or if K is totally
real) one can write

XA = X (A
and
X(A)ER1 = X (A)fin—ab
even when X is not connected.

The following corollary is originally due to Harari and Stix (unpub-
lished work) and is closely related to Lemma 5.7 in [Sto07]:

Corollary 9.115 Let K and X a smooth geometrically connected va-
riety over K. If

XA £0
then the short exact sequence
1 —mX) —m(X) —Tg—1
splits.
Proof Since

XA =X (A)f™ £0

we know that Et / Kl(X )(hK) is non-empty thus we get the claim from
Lemma 9.86.
O
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9.10 The Equivalence of the Homology Obstruction
and the Brauer-Manin Obstruction

In this section we shall prove to following theorem:

Theorem 9.116 Let 2 < n < oo and let X be a smooth algebraic
variety over a number field K. Then

X(A)Zh’n C X(A)Br.
If X is also connected then
X(A)Zh’n _ X(A)Br.

In light of Corollary 9.68 it is enough to prove Theorem 9.116 for any
specific 2 < n < oco. In particular we can assume that n is some fixed
number 3 < n < oco. The reader can replace n with 4 everywhere if he
or she so pleases.

In light of Corollary 9.67 we see that in order to understand

X(A)Zh’n

we first need to understand the sets P, (ZXy)(hA) and P, (ZXy)(hK)
for each hypercovering U. Note that P, (ZXy) is not only a simplicial
T'i-set but also a simplicial I'x-module i.e. a simplicial object in the
category Modr,, of I'x modules.

The category Modr,. is abelian. An important tool of homotopy the-
ory is the Dold-Kan correspondence which allows one to reduce the study
of the homotopy theory of simplicial objects in an abelian category A
to homological algebra of complexes over A.

9.10.1 The Dold-Kan Correspondence

Definition 9.117 Let A be an abelian category. We denote by C.A
the category of complexes over A with a differential of degree —1. We
denote by CZ°A the category of complexes which are bounded below by
dimension 0 (i.e. complexes C, such that C; = 0 for i < 0).

Definition 9.118 Let A be an abelian category. If X is a simplicial
object in A we denote by X € CZ°A the complex over A given by

Xn = Xn
with the differential d = >, (—1)%d,.
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Proposition 9.119 (The Dold-Kan Correspondence) Let A be an
abelian category. The category A>°" of simplicial objects in A is equiv-
alent to the category CZ°A. Moreover for every two simplicial A objects
one has

(X, Y] =X Y]

where the first denotes simplicial homotopy and the second chain homo-
topy.
Proof See [Dol58]. The proof there uses a slightly different functor

called the Moore complex, but this functor is naturally chain equiva-
lent to the functor e (called the unnormalized complex in [Dol58]). O

Remark 9.120 The functor e admits a right adjoint
e CT0A— AT

which is its "homotopy inverse" i.e.

X = (X), VXedr”,

Y) =Y, VYYeC=A

In particular for every X € CA, Y € A®" one has an isomorphism of
sets

X, Y] = [X,Y]
where the first denotes simplicial homotopy and the second chain homo-
topy.

Remark 9.121 In the case where A is the category of abelian groups
then the Dold-Kan correspondence replaces homotopy groups with ho-
mology groups, i.e

Hy(X) = m(X), VXeAr™

9.10.2 Postnikov Towers For Complexes

In order to continue along this line we would like to use a Postnikov-
like construction for complexes which allows us to truncate homology
groups. This construction is actually quite simpler than the Postinikov
piece functor for spaces.

Let C € CA be a complex. We denote by P (C) the complex

e — 00— C,/d(Cry1) — Crog — Crimg —> ..
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Note that H;(P;t(C)) = 0 for i > n and there is a natural map C —>
P (C) which induces isomorphisms

H;(C) = Hi(P; (0))

for i < n. The functor C — P,f(C) from general complexes to complexes
bounded from above by dimension n is left adjoint to the inclusion func-
tor.

Definition 9.122 Analogously to Definition 9.17 we shall define

1. A complex C € CModr will be called finite if H;(C) is finite for all
1€ 2.

2. A complex C' € CModr will be called bounded if there exists an
N > 0 such that

Ci=0

for |i| > N.
3. A complex C € CModr will be called excellent if the action of T’
on C factors through a finite quotient.

The Kan-Dold correspondence allows us to study the complex P, (ZXy,)
instead of the space P,(ZXy,). Note that since P, (ZX,) is bounded the
homology groups of P, (ZX) are almost always zero. However the com-
plex P, (ZXy) itself will not necessarily be bounded.

Since it will be convenient for us to work only with bounded com-
plexes, we would like to find a bounded complex C such that P, (ZXy,)
is naturally weakly equivalent to C' in the local model structure. The
complex C can be taken to be P (ZNy) (see Definition 9.16).

Lemma 9.123 letU — X be a hypercover andn € N, then P;i (ZNy,)
is naturally weakly equivalent to P, (ZXy) in the local model structure
on Setlé;p.

Proof We prove this theorem by writing a natural zig-zag of weak-
equivalence

Po(ZXy)— (Po(ZXy))— P (Po(ZXy))+— Pif (ZXy )¢— Pif (ZNy).
O
Note that in view of Lemma 9.123 we get natural bijections of sets.

Po(ZXy)(hK) = Py (ZNy)(hK),

P (ZXy)(hA) = P (ZNy)(hA).
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9.10.3 Hypercohomology and Homotopy Fixed Points

In view of our discussion so far we see that in order to understand the
homological obstruction we should understand the relation between the
set P, (ZNy)(hK) and the set Py (ZNy)(hA).

Let C € C®*Modr, be a bounded complex. Then C is a strictly
bounded simplicial I'x-set. By Theorem 9.44 we then get

—hT K .
CrK) =70 () = solim BT/ 8). Cl gy
= colim [ZE(Tk/A),C]

Mod4&°P
Tk

= colim [ZE(PK /A), c]

ATk €20 Modr

=H'Tg,C) =H(K,C),
where
HI(K, €)= colim [ZB(Cie/A),C]

is the Galois hypercohomology of the C.

We would like to have an analogous hypercohomology counterpart
for the adelic homolotopy fixed points. This can be obtained via the
following natural definition:

Definition 9.124 Let C be a bounded complex of I'-modules. We
define the adelic hypercohomology of C to be

H' (A, C) =lim [[ H'(K,,C) x [] H (%", C"™)

T veT vgT

where T runs over all finite subsets of S.

Using the notion of adelic hypercohomology we get the following ana-
logue to equality (x):

C(hA) = H°(A,C).

Note that adelic hypercohomology, like Galois hypercohomology, trans-
forms short exact sequences to long exact sequences:

Lemma 9.125 Let
0—A—B—C—0

be a short evact sequence of excellent bounded complexzes in C® Modr,, .
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Then there is a natural long exact sequence

o HTHA, O)— HY (A, A)— H'(A, B)— H(A, C)
— HFH A, A)— ...

Proof Products and filtered direct limits are exact. O

9.10.4 Proof of the Main Theorem

This section will be devoted to the proof of Theorem 9.116. As mentioned
above we fix an 3 < n < oo and prove the theorem for n. Let (x,) € X (A)
be an adelic point. By the discussion above we see that (z,) € X (A)Z"n
if and only if for every hypercovering Y — X the corresponding adelic
hypercohomology class

h((zv)) € Po(ZXy)(hA) = P;f (ZNy)(hA) = H(A, P} (ZNy))
is rational. i.e. lies in the image of the map
loc : HY(K, P (ZNy)) — H°(A, P (ZNy)).

On the other hand, the Brauer set is defined via pairings with elements
in H2,(X,G,,). The main ingredient of the proof of 9.116 will be to show
that the Brauer pairing actually factors through the map

X(A) — limH(A, P, (ZNy))
u

i.e, depends only on the colimit of adelic cohomology classes of (z,).
First we will need some terminology.

Let X/K be an algebraic variety over K with ¢ : X — Spec K the
structure map. Given a Galois module A we can consider it as an étale
sheaf over Spec (K). We denote by ¢t*A the pullback of this sheaf from
Spec (K) to X.

The sheaf t* A can be described more concretely as follows: it associates
to an étale map V — X the group of 'k equivariant maps from the
[-set mo (V) to A. We refer to t*A as the sheaf of locally constant
maps to A.

Our first step towards proving Theorem 9.116 will be to describe
the Brauer set via pairing with elements in H?(X,t*G,,) rather than
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H?(X,G,,). In order to do this we consider the commutative diagram
X(A)  x H%(X,G) — Q/Z
| ]
X(@A)  x  Hi(X,t*Gp) —Q/Z
where in both cases the pairing is defined by

(zy),u) = > inv(zju)

with
iny : HE (Spec (K,), 751" Gyn) = HE (Spec (K,), Gpn) > Q/Z

being the natural isomorphism of class field theory. We refer to the
pairing of the second row as the locally-constant Brauer pairing. We
claim that the left kernel of the Brauer pairing is equal to the left kernel
of the locally-constant Brauer pairing. This will follow immediately from
the following lemma:

Lemma 9.126 Let X be a smooth variety. Then the map
iv: H3(X,t*Gpn) — HZ(X,G,p),
1S surjective.

Proof Since X is a smooth variety H2,(X,G,,) is torsion group (e.g. by
[Lie08] Corollary 3.1.3.4). Hence it will be enough to prove surjectivity
on torsion elements. Let 1 < k € N be a natural number and consider
the map of short Kummer sequences

xk

0 tuk t*Gm t*Gm 0
L

We get an induced map of long exact sequences

= H2 (X, ) —— H2,(X, 0 Gn) — H2(X, *Gpp) — ...

[ | |

= H2 (X, ) —— H2(X, Grn) — s H2,(X, Gpy) —— ...
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inducing a commutative square

(Xt ) —»Hft(X, t*Gm)[K]

H |-

(X, 1) —— HE,(X, o)
with the two horizontal maps being surjective. This means that the map
bt H (X, "G (k] — HE(X, G ) K]
is surjective as well. This finishes the proof of the Lemma. O

From Lemma 9.126 we see that we can describe the Brauer set equiv-
alently as the left kernel of the locally-constant Brauer pairing, i.e. as
the set of all adelic points which are orthogonal to all the elements in
H?(X,t*G,,).

We now wish to show that the locally-constant Brauer pairing depends
only on (the colimit of) the adelic cohomology classes of (z,). For this
we will need the following two standard definitions:

Definition 9.127 Let C, and D, be two complexes of I'x-modules.
We define the complex of T'x-modules Hom(C,, D,) as follows:

HOHl(C., Do)n - H HOInAb(Ci, Dj)
Jj—i=n
with the differential given by
8f =dpo f + (—1)nf o dc.
The I'k action on Homay,(C;, D;) is given by

o(f)(e) = a(f(o7'(c))).
Definition 9.128 Let K be a field and I' = I'. Consider G,,, as a

complex concentrated in degree zero such that G,,g = G,,(K) = K.
We denote by C' the mapping complex Hom(C,G,,) and refer to it as

the dual complex. In particular one has
C\n = HomAb (C_mf*> .

Now the key element in the proof of Theorem 9.116 will be to describe
the locally-constant Brauer pairing via the adelic cohomology classes of
the adelic point. Note that we have a natural pairing

HOA PF(ZNy)  x  B (K PI(ZNg)) —Q/z
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which is defined as follows. Given
z e H'(A, P (ZNy)), y e H? (K, Pi(ZNy)).

we go over all places v of K, project = to H(K,,, P,”(ZNy,)) and restrict

—

y to H? (K,,, P{f(ZNu)). We then pair using the cup product (note that
all complexes here are bounded) to get an element in

H2(K,, Gyn) = H2(K,, Gr) = Q/Z

then as in the Brauer-Manin pairing we sum up the invariants in all the
places to get the pairing (z,y) € Q/Z. Note that /sige the cohomol-
ogy class y is rational its restrictions to H? (K,,, P (@)) are almost
always unramified, hence almost always zero, so the summation is well-
defined. We will refer to this pairing as the cup-product pairing. The
following theorem connects this cup product pairing with the locally
constant Brauer-Manin pairing:

Proposition 9.129 LetUd — X be a hypercovering. Then there exists
a commutative diagram

X(A) x H2/(X,t*Gp) Q/Z
HO(A, P (ZNy)  x W (K,P{(ZNy)) —=Q/Z

natural in U, where the upper row is the locally constant Brauer-Manin
pairing and the lower row is the cup-product pairing. Further more the
maps Yy induce an tsomorphism:

lim B2 (T, P (ZNy) ) — H3(X,Gp).
u

Before we come to the proof of Proposition 9.129 let us explain how
it implies Theorem 9.116. First of all we see that Proposition 9.129 im-
plies that an adelic point is in the Brauer set if and only if its image in

H(A, P,F(ZNy)) is orthogonal to all the elements in H?> (FK, Py (ZNL{)) .
From the Hasse-Brauer-Noether Theorem in class field theory it fol-
lows that if an element in HO(A, P;"(ZNy)) is rational then it is orthog-

—

onal to every element in H?(K, P;"(ZNy)) . This gives us the first part
of the Theorem 9.116, i.e. that

X(A)Zh € X (A)P.
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Now assume that our variety X is connected. Then C = P} (ZNy)
satisfies the following properties:

It is excellent.

It is bounded.

It is bounded below by dimension 0.
Hy(C) = Hy(Ny) = Z.

H,(C) is finite for ¢ > 0.

AR

From property 3 we have a natural map C' — Z which induces a map
7 :H(A,C) — HO(A, 7).
Then for every (z,) € X(A) we have that
haun((2,)) € HY(A, C)
is an element which is mapped by 7 to the element

(1,1,..1) € [[Zz=H(A, Z)

which is clearly rational. Since H? (K, 2) = 3 (K, f*) = 0 we get
from Theorem 9.135 that hzy . ((z,)) is rational if and only if it is or-
thogonal to all the elements in H? (PK, PJ(ZNU)).

Remark 9.130 One might wonder what is the role of the connectivity
of X in the proof of Theorem 9.116. The situation here is very similar
to that of Remark 9.114. Again by Proposition 9.98 we recall that if
X = Spec (K) ][] Spec (K) then

On the other hand if K is not totally real then
X(A)P +£ X(K).

As in the case of Remark 9.114, the fault lies in the behavior of the
complex places. Indeed since Br C = 0 the pairing

X(A)xBrX —Q/z

is not effected by the complex coordinate. Similarly to the case in Re-
mark 9.114 this is the only fault, i.e. if X is not geometrically connected
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but we ignore the complex places (or if K is totally real) we can still ap-
ply Theorem 9.135 (since M = Hy (Ny) is always a permutation module

we have H3 (K, ]\7) =0) and get that
X(A)Zh = X (AP,
We will now finish this section by proving Proposition 9.129:

Proof of Proposition 9.129 Let A <T'x be an open normal subgroup.
In the course of the proof we shall consider the Kan contractible sim-
plicial T'i-set E(I'x /A). Note that E(I'x /A) can be considered as a
hypercovering in the étale site of Spec K.

We will then consider the pullback of E(T'x/A) from Spec (K) to X
via t : X — Spec(K) (see §§9.2.4 for the definition of pullback of
hypercoverings). Note that if E is a hypercovering of Spec K then there
is always a natural map Nyg — E.

We start by constructing the maps ¥y, and showing that they induce
an isomorphism:

Theorem 9.131 Let K be an arbitrary field with absolute Galois group
T'x and X an algebraic variety over K. Let A be a I'k-module and
consider the étale sheaf t*A on X of locally constant maps into A (see
definition above) and let n > i+ 1. Then there exist natural maps

Wy HY (K, Hom (P, (ZNy), A)) — Hi (X, t*A)
which induce an isomorphism
lim H' (K, Hom(P;f (ZNy), A)) > HY, (X, ¢" A)
u
where A is considered as a complex concentrated at degree 0.
Proof To compute étale cohomology we note that
HL (X, t"A) = Extl ,(t"Z, t* A).

We start by computing the left hand side. The hypercovering I can be
used to construct the sheaves

Pn(V) =t"Z(V xx Uy)
which fit in a resolution

e Py — Py — Py — t'Z
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of t*7Z. This is unfortunately not a projective resolution and so the re-
sulting cohomology groups

H'(I(P,)) = H' (Homr (ZNy,, A)) = [ZNy, A]}.
are not equal to the étale cohomology groups. We do, however, get a
map
Py : [ZNy, Ay, = H(D(Pa)) — Hiy (X, A)
and we know by Verdier’s hypercovering theorem for étale cohomology

([SGA4, Exposé V, 7.4.1(4)]) that by taking the direct limit over all étale
hypercoverings U we get an isomorphism

@ : lim[ZNy, Al — HZ, (X, A).
u

Since n > i + 1 we have
[ZNy, Al = [P (ZNy), Alp
so we get a system of maps
@y 1 [P (ZNy), Alp,. — HE (X, A)
and in the limit the isomorphism

@ : im[P (ZNy), A}, — Hj (X, 17 A).
u
Since Hom(P, (ZNy), A) is bounded we can compute its hypercoho-
mology and get:
H(K, Hom(P;f (ZNy), 4)) = lim [ZE('xc/A), Hom(P; (ZNy), 4)|
AT Fx
— lim [ZE(/A) @ P} (ZNy), 4]
AT g
= lim [ZE(Tx/A) © ZNy, A};

AITx K

'k

Thus we get in the limit

A i
lim HY (K, Hom(P;F (ZNy), A)) = lim [ZE(PK /M) ® ZNy, A}
— _— _ | —_— - 7 _— FK
u U,A
So in order to prove the theorem we will construct a natural equivalence

between the functors
X = {ZNy},,
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and
X+ {ZE(k/A) © ZNy }

s

as functors from algebraic varieties over K to the pro-category of
Ho(C Modry ).
In order to construct a transformation

F {ZE(PK/A) ® ZNU}M L — {zNy},,
we need to pick (compatibly) for each étale hypercovering U an étale
hypercovering of X U’, an open normal subgroup A<I'x and a map
Fy ZE(FK/A) ® ZNy» — ZNy.

Our choice here is simple. Take U’ = U and A = Tk, E(Tx /Tk) = *.
Then choose Fy; to be the natural map

Fuy: Zx ® ZNy — ZNy,.

The other direction is more tricky. In order to construct a transfor-
mation

G+ {ZNu},, — {ZE(Cx/N) © 2Ny}

s

we need to pick (compatibly) for each étale hypercovering U and an open
normal subgroup AJ['x an étale hypercovering U4’ and a map

Gu,a : ZNy — ZE(T'k /A) ® ZNy.
Recall that we denote by ¢ : X — Spec X the structure map. We choose
U =Up =t"(ETk/AN) xx U.
There are natural maps
Ny, — Ne=gri/a)) X Ny — E(T'x /A) x Ny
which give a map

ZNMA — Z(E(FK/A) X Nz,{)

By composing with the Alexander-Whitney map (which is a homotopy
equivalence of complexes by the Kiinneth Theorem):

Z(E(Tk /M) x Ny) — ZE(T g /A) @ ZNy

we construct our map

GL{,A : ZNL{A — ZE(FK/A) ® ZNM .
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The map FoG is clearly the identity (in the category Pro Ho(C Modr, )).
Now consider

GoF:{w(@@}uA

s

— {ZBIK/N @ @}U K

s

This is the pro-map that for each U, A chooses U’ = Uy, A’ = T'x and
the map

@@ ZNUA — ZE(FK/A) ® ZNL{

obtained as above.

In order to show that this pro-map represents the identity in
ProHo(C Modr, ) we will show that the following diagram commutes
in Ho(C Modr, ):

ZE(T ik /A) @ ZNy,

|

Zx @ ZNy, —SLTZET  /A) ® ZNy

where 1, 75 are refinement maps which are the structure maps of our pro-
object. The two maps GoF ory and rg both factor through ZE(T' i /A)®
ZE(Tk/A) @ ZNy as

GoFor;=fio0(Ild®G)
and
ro = fo0(Id® Q)
where

fi=p@Ild®Id: ZETk/A) @ ZETk/A) @ ZNy
— ZE(PK/A) ®ZNL{,

fo=Ild@peId: ZEQTk/AN) @ ZE(Tkx /) @ ZNy
— ZE(FK/A) ® ZNy ,

and p : ZE(T'x /A) — Z is the natural projection.
Hence it is enough to prove that the square

1d®G

ZE(Tk /\) ® ZNy,

lld@G

ZE(I'x/A) ® ZE(I'x /A) ® ZNy

ZE(Lxc/A) ® ZE(Tx /A) © ZNy

lfz

ZEGL ® ZNy
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commutes up to equivariant homotopy, or simply that f; and fo are
equivariantly homotopic as chain maps.

Let H =Tk /A. Since the action of I'x on ZE(I'k /A) factors through
H it is enough to show that

p@Id, Id®p:ZEH ® ZEH — ZEH

are H-equivariantly homotopic as chain maps. Recall that ZEH®QZEH is
equivariantly homotopy equivalent to Z(EH x EH). Hence it is enough
to show that the two projections

p1,p2: EH xEH — EH

are equivariantly homotopic. Note that both EH and EH x EH are
contractible free H-spaces and so the equivariant mapping space from
EH xEH to EH is homotopy equivalent to EH"H which is contractible.
This means that p; and ps are H-equivariantly homotopic and we are
done (the fact that this homotopy can be done simplicially can be seen
using the projective model structure on simplicial H-sets).

Now the maps

Wy 2 (T, P (ZNW) ) — HE(X, °Gr)
are obtained as the composition

. 2
H (i, P (ZNw)) = lim |ZB(Ux/A) @ ZNu, G|

AT K
Gltt . 2 Dy, 9 . (&)
4 Jim [ZNMA,G,,L} Uy H2(X, Gy,
AGP Tx
This concludes the proof of 9.131. O

Remark 9.132 Note that for X = Spec (K) and every hypercovering
U — Spec (K) we have a quasi-isomorphism

Hom (P, (ZNy), A) ~ Hom (P, (ZNx), A) = Hom (Z, A) = A

where X — X is the trivial hypercovering. Substituting &/ = X in (&)
one sees that Gj; becomes the identity and W;; becomes the standard
identification

HY (K, A) = H'(K,A) — H.,(Spec (K), A).
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We shall now finish the proof of Proposition 9.129 by showing that
the map W, renders the diagram

X(A) X HZ(X,t*G,y,) Q/z
g |
H(A PF(ZNy)  x  B (K RfENy) —=0Q/Z
commutative.

Since both pairings are defined by summing the local contributions it
is enough to show that the diagram

X(K,) x H2,(X,, *Gpy) Q/Z
| S
B (K, Pr(ENg)) xR (K, P{(ZNw)) —>Q/Z

is commutative, where X, U/, are the base changes of X and U respec-
tively from K to K, (note that this base change doesn’t change geomet-
ric connected components so Ny, is actually the same simplicial set as
Ny).

Since both rows of the diagram are functorial in X, it is enough to
prove the commutativity for the case X, = Spec(K,). In that case
P (ZNy,) is quasi-isomorphic to Z considered as a complex concen-
trated at degree 0 (for all hypercoverings U, — Spec (K,)) and we get
the diagram

{o} X He?t(Spec (K,),t*G,,) —= Q/Z
| “l |
Z X H?(K,,G,,) Q/z

where the point e is mapped to 1 € Z. But this pairing diagram is
compatible in view of Remark 9.132 so we are done. This finishes the
proof of Proposition 9.129. |

9.10.5 Proof of Arithmetic Duality Results

In this section we will prove the main auxiliary result (Theorem 9.135)
which we need in order to prove the equivalence of the homological
and Brauer-Manin obstructions (Theorem 9.116). We will need various
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generalizations of results from the theory of arithmetic duality of Galois
modules (See [Mil06]) to Galois complexes. Similar and related results
appear in [HSz05], [De09b] and in [Jos09].

Let K be a number field with absolute Galois group I'. Consider the
Galois module

J=1limlim [ Lz x [] 0z

—  —

L/K T weT wgT
where L runs over finite extensions of K, T over finite sets of places of
L and O}, C L} is the group of O, -units. There is a natural inclusion

K C3
and the quotient is denoted by
c=3/K .
The module € is called a class formation. Using the Yoneda product
one obtains for every I'-module M a pairing

H?>™"(T', M) x Exth(M,¢) — H*(T',¢) = Q/Z

which is the basis for all arithmetic duality results.

We would like to generalize these notions from I'-modules to I'-complexes.
By replacing Ext with its extension Ext to the category of bounded
I"x-complexes and cohomology with hypercohomology one obtains anal-
ogous pairings

H?~"(T, C) x Extp(C,¢) — H3(T,¢) — Q/Z
for every bounded T'k-complex C' (where € is considered as a complex
concentrated in degree 0). These pairings induce maps:

ol Extp(C,€) — (H* (I, 0)))" = (H*"(0)))".

The following two lemmas generalize two of the main aspects of the
theory from modules to complexes under various finiteness conditions.

Lemma 9.133 Let K be a field of characteristic zero and let C be
an excellent bounded complex such that H, (C) is finitely generated for
every n. Then there are natural isomorphisms

Hi(K,C) = Ext' (6,7‘) ,
Hi(A, C) = E xt' (é,s) .

where C denotes the dual complex of C, see Definition 9.128.
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Proof For C which is concentrated at degree 0 (i-e. is actually a T-
module) this claim is proved in the [Mil06] Lemmas 4.12 and 14.3. One
can then proceed by induction on the length of C' using the fact that
for bounded complexes both H'(T", ¢) and H*(A, e) transform short exact
sequences to long exact sequences (Lemma 9.125) and applying the 5-

lemma.
O

Lemma 9.134 Let K be a number field and Let C be an excellent
complex bounded below by dimension 0 such that

1. H,(C) is finite for all n > 0.
2. Ho(C) =0

Then the map
ol Ext” (5 @) L HET (K, 6)
is an isomorphism for every r > 0 and is surjective for r = —1.

Proof We will say that a complex C € CZ°Modr, is n-bounded if
C; = 0 for ¢ > n. We will prove the lemma for n-bounded complexes by
induction on n.

For n = 1 we get that Cis quasi-isomorphic to a complex of the form
3 M for some finite Galois module M. The claim then is just Theorem
4.6 in [Mil06] after the suitable dimension shift (note that both sides are
invariant to quasi-isomorphisms between bounded complexes).

Now assume that the lemma is true for n-bounded complexes (n > 1)
and let C' be an (n + 1)-bounded complex satisfying the assumption of
the lemma. Consider the short exact sequence

0— C(l) — C — P (C) — 0.

Since

H” (KC/‘<T>> —H! (K, ZjC\<1>) :

Ext” (5@@) = Ext™ (zfc\<1>,¢) :

and since £ 71C(1) is n-bounded we get that the lemma is true for G 1y

Since P;(C) is 1-bounded the lemma is true for gy as well. We then
observe the map of long exact sequences:



9: Homotopy obstructions to rational points 393

—Ext" (PF(C),¢) —Ext” (C(1),¢) —Ext (C,€) — -

r—1 T T
\Lapj(c) lo‘cm lac
*
1

e i (70)) — (e ()

For r > 0 we get from the five lemma that o, is an isomorphism (recall
that in the five lemma it is enough to assume the left most map is
surjective). If » = —1 then an analogous diagram chase shows that af
is surjective.

O
Now let C' be an excellent bounded I' x-complex. Let
pHO(A,C) — H (K 6)
be the composition
HO(A, C) =5 Ext? (63) — S Ext? (6 @) o8, g2 (K 6)
where the first isomorphism is the one given in Lemma 9.133. Then p
induces a pairing
HO(A, C) x H? (K 5) — Q/Z.

Unwinding the definitions one can see that this pairing is given by using
the cup product

HO(K,, C) x H? (KV, 6) — H(K,,Gr) = Q/Z

for each v separately and summing the results.

For our purposes we need to understand the connection between the
left kernel of the cup-product pairing (&) and the subgroup of H°(A, C)
coming from H(K, C). This is done in the following lemma, under some
assumptions, which are slightly weaker than those of Lemma 9.134 (these
assumptions will be satisfied in the cases we are interested in):
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Theorem 9.135 Let C be an excellent bounded I i -complex, bounded
below by dimension 0, such that:

1. H,(C) is finite for all n > 0.
2. The Galois module M = Hy(C) satisfies the property that H3(K, M) =
0.

Denote by m : C — M the natural map. Consider the (non-exact)
sequence

HY(K, C) 2% BO(A, 0) L 2 (K, 6>* .

Let (z,) € H°(A,C) be such that m.((x,)) is rational and p((z,)) = 0.
Then (x,) 1is rational, i.e. is in the image of loc.

Proof Consider the following diagram with the two middle rows exact

HO(K, C) ——~ HO(A, C)

o o

E xt® (6’,?*) loe | mxt® (6,3) — > Ext® (6, €>

E xt° (1\7 F) o _ B xt0 (M,g) L Ext’ (M, e)

o o~

HO(K, M) —2¢ = HO(A, M)

where the isomorphisms in the diagram are those of Lemma 9.133. We
can hence consider (z,) as an element of E xt’ (C,fj) whose image in

E xt° (]/\4\, 3) comes from E xt° (]/\4\, f*>. Let § be the image of (z,) in

E xt° (6’, QZ). From the exactness of the middle rows we see that it is
enough to show 3 = 0.
From commutativity we get that

7.(8) =0 € Ext” (1\7 @) .
Let C = ker() and consider the exact sequence of T x-complexes

0—>]\//.7—>@—>5—>0.



9: Homotopy obstructions to rational points 395

Consider the following commutative diagram with exact columns

3 (K z\?)

E xt° (6’,3) — > Ext® (é, €> ;HQ (K, 6’)

Ext? (6,3)

E xt° (1\7 3) - Ext” (J/W\ e:) :

Since 7.(8) = 0 we get that there is a v € Ext® <6’, ¢> mapping to
B. The fact that p(r,) = 0 means that a(8) = 0. Since we assume
H? (K, J/W\) = 0 we get that a%('y) = 0. But by Lemma, 9.134 the map

a% is an isomorphism and so v = 0. This means that 8 = 0 as well and
we are done. O

9.11 The Equivalence of the Homotopy Obstruction
and the Etale Brauer Obstruction

The main result of this section is the following theorem:

Theorem 9.136 Let K be a number field and X a smooth geometri-
cally connected variety over K. Then the étale homotopy obstruction is
equivalent to the étale-Brauer obstruction (see §9.3), i.e.

X(A)fin,Br _ X(A)h

Remark 9.137 If one wants to omit the condition that X is geomet-
rically connected one again faces a small problem in the complex places
of K (the situation here is completely analogous to the one in Remarks
9.114 and 9.130).

In the proof we will use the idea of applying obstructions to finite
torsors (see 9.3.1 for the definition). In particular we will apply the
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homology obstruction to finite torsors. This will plug into the proof
by breaking it into two propositions:

1. Proposition 9.139 will show that for any smooth variety over K we
have
X(A)fin,Zh C X(A)h.
2. Proposition 9.141 will show that for any smooth variety over K we
have
XA C X(A)/™h,
We then get

X(A)Zh C X (A C X(A)TR C X (A)TER
which means that
X(A)fmZh — X (A,
The theorem will then follow from the following lemma:

Lemma 9.138 Let K be a number field and X a geometrically con-
nected smooth variety over K. Then

X(A)fin,Br — X(A)fin,Zh.

Proof By Theorem 9.116 this claim is almost immediate. The only point
one would verify is the geometric connectivity issue (note that even
though X is geometrically connected, this is not true for every Y which
is a torsor over X ). By Remarks 9.114, 9.130 and 9.137 the only problem
lies in the complex places and this can be easily treated. O

Proposition 9.139 Let K be a number field and X a smooth variety
over K. Then

X(A)fin,Zh C X(A)h.

Proof From Corollary 9.100 we can assume without loss of generality
that X is connected over K. But in this case both sets are empty unless
X is geometrically connected (Corollary 9.102). Hence we can assume
that X is geometrically connected.

We shall prove the proposition by using the following lemma

Lemma 9.140 Let K be a field and X a smooth geometrically con-
nected variety over K such that the short exact sequence

l—mX) —mX) —Tg —1
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admits a continuous section. Then for every hypercovering U — X
there exists a geometrically connected torsor f:Y — X under a finite
K-group G such that X -y is simply connected.

Before proving Lemma 9.140 we shall explain why it implies the propo-
sition. Let

(x,) € X (A)TEh

be an adelic point. By Corollary 9.67 it is enough to prove that for every
U — X and every n we have

(z,) € X (A"
Now since
(r2) € X(A)FM 2 C X (a)fin
we have that
X (A £

and by Corollary 9.115 the sequence

1l—mX) —>mX) —Tx —1

admits a continuous section. Now by Lemma 9.140 there exists a geo-
metrically connected torsor f: Y — X under a finite K-group G such
that X . is simply connected. Since

(xu) c X(A)fin,Zh

there exists some twist f&: Y* — X< of f and a point (y,) € Y¥(A)Z"
such that

(zv) = f*((yn))-
Now we have
(y,) € YO (A C Yo (A)EUS) W)n

but since X ey« (which is isomorphic to Xy- ) as a simplicial set)
is simply connected we get from Corollary 9.62 that

(o) € Y (A)UT) E0n

as well.
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Now by considering the commutative diagram

a h
Y (A) —— X(ff’)*(u),n(hA) T X(f“)*(b{),n(hK)

o |

one sees that
(x0) = [*((y)) € X (A)"

as needed.
We shall now prove Lemma 9.140.

Proof LetUd — X be a hypercovering. By the discussion in subsection
§89.2.4 we can naturally consider the pullback of U, to the generic point
of X as a finite I'g(x)-set which we denote by U, (see Definition 9.20).
By restriction we will also consider Zj{n as a I‘K(Y)—set.

We denote by

Stabr—_ _ (Up) = {H1, ..., Hy}

K(X)

the set of stabilizers in P?(Y) of the points of Uy. Consider the group
E= <H1a "'aHt>

generated by all the stabilizers. Let F//K(X) be the finite field extension
that corresponds to E.

Observing Lemma 9.113 and its proof we see that there exists a G-
torsor

f:r—X

such that K(Y) = F.

Now consider f*Uy. By pulling back to the generic point of T we get
a set f*U, with an action of FE(T) = FE. Note that pulling back an
étale covering from the generic point of X to the generic point of T
corresponds to restricting the Galois action. In other words the set f*,
can be naturally identified with Uy and the action of F is obtained by
restricting the action of Ff(y).

This means that the set of stabilizers of the points of ]?;Z{O is

{(HiNE,...,H,NE}={H,, .., H,}

as F contains all the H;’s. In particular the stabilzers of ]?;Z{O in F
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generate E. Now from Corollary 9.21 and Lemma 9.23 we get that X s+
is simply connected.

To conclude, it is enough to show that we can find a K-form of T.
Since E is normal in I'g(x) we get that p(E) is normal in 71 (X). Hence
the covering

f:r—X

is isomorphic over K to all its twists. By standard arguments we get
that there exists a K-form for f if and only if the short exact sequence

1 — m(X)/p(BE) — 1 (X)/p(E) — Txg — 1

has a continuous section. But this is true because

1—m(X) —mX)—Tg —1
has a continuous section. O
This finishes the proof of 9.139. |

We now come to the second part of the proof of Theorem 9.136,
namely:

Proposition 9.141 Let K be a number field and X a smooth K -variety
over then

XA C X(A) ™",

Proof Like in the proof of Proposition 9.139 we can assume without
loss of generality that X is geometrically connected.

Let (x,) € X(A)" be a point and f : Y — X a K-connected torsor
under a finite K-group G. We need to show that there exists an a €
H'(K,G) such that the corresponding twist

forr7yr —X
satisfies
(f) " H(@n)) N Y (A)" £ 0.
Choose a rational homotopy fixed point
re X (hK)
such that
loc (r) = h((z)).

Recall Ny of Definition 9.16 and the discussion prior to and including
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Corollary 9.106 where we have described Ny as the nerve of the groupoid
Y of definition 9.104.
Consequently we have defined a map of simplicial I x-sets

cy : Ny — BG

inducing a map (denoted by the same name)

cy : Ny (hK) — HY(K,G).
For each o € H'(K,G%), we will denote by

cya : Nyo(hK) — HY(K,G®)
the corresponding map for the twist Y¢. We will denote by
b: X (hK) — Ny (hK),
bo : X (hK) — Nyo(hK).

the natural projection map.
The strategy of the proof will be as following:

1. We will show that for each r € X (hK) there exists an « such
ey (ba(r) € H' (K, G”)

is the neutral element.
2. We will show that if cya(ba(r)) is neutral and loc(r) = h((xy))
then

(F) () N Y (A # 0.

Proposition 9.142 Let f : Y — X be a torsor under a finite K-
group G. Let r € X (hK) be a rational homotopy fized point. Then there
exists an o € H'(K,G) such that

ey olba(r)) € HYK,G?)
is the neutral element.
Proof For each a € H' (K, G) we will denote by
7ot HY(K,G) — H'(K,G)

the inverse of twisting by « (hence sending [a] € H!(K, G) to the neutral
element in H'(K,G®)). We will prove the theorem by showing that for
each a € H'(K,G) one has

Cya 0by = Tq0cCy 0b. Q)



9: Homotopy obstructions to rational points 401

Then if we simply choose @ = cy (b(r)) we will get that cy«(ba(r)) is
the neutral element. We will now proceed to prove ().

Let a € H'(K,G®) be an element and let H be a big enough finite
quotient of I' ¢ such that the action of I'x on G and the element « factor
through H. Then we can represent o by a 1-cocycle

uw:H— G,

Let L/K be the finite Galois extension corresponding to H. Recall the
étale hypercovering

XL—)X

from Definition 9.83. By choosing some identification of the geometric
connected components of X with H we obtain an isomorphism of sim-
plicial I" i -sets

d:Ng, — EH.
Consider the following hypercoverings over X:

Y =Y xx Xp,

Yg =Y X x XL.

In Lemma 9.111 we have constructed an isomorphism étale coverings
over X

T,:Y, = Y®
inducing an isomorphism of simplicial I x-sets
(Ta)« : Ny, — Ny

Note that over K the variety Y7, decomposes as the disjoint, union of | H|
copies of Y. It is then not hard to see that the projections

Y, — Y,
Y, — X1,
induce an isomorphism of simplicial I x-sets
Ny, — Ny x Ng, .
Similarly, we have a natural isomorphism of simplicial I x-sets
Nye — Nyao x Ng, .

Now the desired equality (©) will follow from the following lemma:
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Lemma 9.143 There exists a Ik -equivariant isomorphism of groupoids
To:EH x BG — EH x BG*

such that:

1. The following diagram in the category simplicial I k- -set commutes:

Ny & BG

] :

Cde

Ny, — =Ny x Ny, ——=BG x EH
Nl(Ta)* N(Ta)

cyaXd

Ny. —= Ny. x Ny, — BG* x EH

. ~

Ny ———= BG®

where all the unmarked maps are induced from the projections de-
scribed above.

2. All arrows in the right column of the diagram above are weak equiv-
alences and the induced bijection

7o : BG(WK) = HY(K,G) — H'(K,G*) = BG*(hK)
coincides with the inverse of twisting by «.

Proof We begin by defining

To : EH x BG — EH x BG*.
We define 7, to be the identity on the objects. Now Let

(1,%), (0,%) € Ob(EH x BG) = EH x BG*.

One can naturally identify

Homemxpa((1, %), (0, %)) = G,

Homepnwnae ((T, *), (O’7 *)) >~ G

Hence we need to define a map

7.7 G — G~
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We shall take
7.7 (9) = u ' gus.
We leave it to the reader to verify that 7, is indeed a I'x-equivariant
isomorphism of groupoids.
Now one can easily verify the commutativity of diagram in 1 above.
For proving 2, note that since 7, is an isomorphism so is N (7). Thus

since EH is contractible, all the maps in the right column are weak-
equivalences. We leave to the reader to verify that the map

7o : BG(hK) = HY(K,G) — HY(K,G") = BG*(hK)

is indeed the inverse of twisting by «

This finishes the proof of Proposition 9.142. O
We now come to the second part of the proof of 9.141:

Proposition 9.144 Let o € H (K, G) be such that cy«(by(r)) is the
neutral element. Then

() (@) NY (A" £0.

Proof Note that without loss of generality we can replace Y by Y¢ and
« by the neutral element.

We want to show that there is a point in f~((z,)) which is homotopy
rational. For that it will be enough to show that every hypercovering
of Y and every n > 1 the subset of f~!((x,)) of points which are (U, n)-
homotopy rational is non-empty and compact. Then the standard
compactness argument shows that

FH @) nY (a)" #0.

First, we will show that it is enough to prove this only for hypercov-
erings of a certain form.

Lemma 9.145 Let f : Y — X be a torsor under a K-group G. Let
U — 'Y be a hypercovering. Then there exists a hypercoveringV — X
which admits a map

y—Y
of hypercoverings over X and a map
ffv)—u

of hypercoverings over Y .
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Proof For a g € G we denote by UY the hypercovering obtained from
U by replacing each étale map

U, —Y
with the composition
U, — Y LY.

Define U< to be the fiber product

uc = JJue.

geG

We have a natural action of G on ¢ which is free and so we get a
hypercovering

Uuc/G — X
of X. It is not hard to check that
uc =~ Wu°/a).
Now take the hypercovering
V=U%/G xxY
of X. Then one has a natural map over X
V—Y
obtained by projection and since
Vv=u®xy fy
we have the composition of maps over Y
ffv—u®—u

where the last one is obtained by projecting on the coordinate which
corresponds to 1 € G.
O

In view of Lemma 9.145 it is enough to show that the set
F7 () NY (B)F 7V

is non-empty and compact for every n > 1 and every hypercovering
Y — X which admits a map

$:V—Y

over X. Such hypercoverings have the following useful property
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Lemma 9.146 Let f : Y — X be a torsor under a K-group G. Let
YV — X be a hypercovering and ¢ : V — Y a map of hypercoverings.
Let

p:Nf*v —)NV

be the natural map. Then p is a principle G-covering. Furthermore, the
composition

Ny — NY C—Y) BG
is the classifying map of p.

Proof We have a natural action of G on Ny« such that Ny is the
quotient.

Now as in section §9.6.1 it will be enough to show that N -y, fits in a
commutative diagram

Ny —4=EG

l”

Ny —= BG

such that d is G-equivariant. Since we have a map ¢ : V — Y it is
enough to show this for V = Y. This is done by explicit computation.

Consider the augmented functor /' — Id from groupoids to groupoids
defined as follows. If C' is a category then the objects of F/(C) are pairs
(X, f) where X € Ob(C) and f is a morphism starting at X. The mor-
phisms from (X, f) to (Y, g) are morphisms h : X — Y in C such that
g o h = f. The natural transformation from F' to Id sends (X, f) to X.

Now recall the groupoid Y of Definition 9.104 such that Ny = N (D).
It is then an easy verification to check that N.y is the nerve of the
groupoid F(Y) and that EG is the nerve of F(BG). Then the commu-
tative diagram

F(Y)—— F(BG)

|

BG
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gives the desired commutative diagram
N,y —=EG
Ny —— BG

of simplicial sets. It is left to show that the map N,.y — EG is G
equivariant. Note that in both ) and BG we have natural identification

UyHom(X,Y) =G
and the action of G on F(Y) and F(BG) is given by multiplication
9(X, f) = (X, 9f).

Hence it is clear that the map F'()) — F(BG) is G-equivariant and we
are done. O

Now let ¥V — X be a hypercovering which admits a map of hyper-
coverings

¢V —Y
and let n be a natural number. We need to show that
F (@) NY (8)T7V "
is non-empty and compact. As above we will denote by
p:Nygpy — Ny

the natural map which we have seen is a principal G-torsor. We will
denote by

pf : Nf*v7n(hK) — Nv,n(hK)
P Npey ,(hA) — Ny, (hA)

the induced maps.
We have a commutative diagram

hgsv n

Y (A) — Ny-p n(RA)

l lp‘i‘
hy n

X(A) —2" Ny, (hA) .

<~
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By Lemma 9.146 the sequence
Nf*V,n — NV,TL — Pn(BG) =BG

is a principle G-fibration sequence. In particular the first map is a normal
covering with Galois group G(K ). Hence by Lemma 9.55 the sequence

RD hT r
NG, — Ny < — BGM« (1)
is a fibration sequence.

From the spectral sequence that computes the homotopy groups of
BG"'x we see that the connected component of the base point has
vanishing homotopy groups in dimension greater than 1 and that its
fundamental group is

HTk,G) =G'x

which we also denote by G(K). Hence the trivial connected component
of BGM'% is a model for BG(K).

Now from the fibration (1) we get the following sequence of sets/groups
(obtained as the tail of the long exact sequence in homotopy groups):

K
G(K) =55 Ny o (hK) 25 Ny, (hK) 2% HY(K, G)
which is exact is the following sense:

1. A point v € Ny ,(hK) can be lifted to Nf«y ,(hK) if and only if
cy (¢«(v)) is the neutral element.

2. If v does lift to Nf«y ,(hK) then G(K) acts transitively (although
not necessarily faithfully ) on f1(v).

Note that we can do the same for A instead of K and get the following
diagram:

sk Py Cy 0
G(K) — Ny+y n(hK) —— Ny ,(hK) — Hl(K, G)

lloc lloc lloc lloc
s fo
_

G(A) —2> Ny (hA) —= Ny, (hA) <29 HY(A, G)
| o] |
G(A) Y(A) X(A) H'(A,G)

Note that Lemma 9.108 guarantees that the last row fits commutatively
into the diagram. We now proceed to finish the proof of Proposition
9.144.
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Let
A ={ve Ny ,(hK) |loc (f*K(v)) = hyn(z,)}.
We wish to show that it is non-empty and finite. Let
v € Ny p(hK)

be the image of r in Ny ,,(hK). The map ¢. sends ry , to the image of
rin Ny, (hK) and thus

cy (¢«(ry.n))
is the neutral element. This means that there exists a
v € Nyay n(RK)
such that
Py (V) =rvn
and so we have that
loc (pif (v)) = loc (rv,n) = hv,n(z,)

implying that A # (.
On the other hand by Lemma 9.65 the set of all elements s € Ny, ,,(hK)
such that loc (s) = hy »(z,) is finite and since G(K) is finite so is A.
From the compactness of G(A) and the commutativity of the diagram
we see that the subspaces

B=(pt) " (hn(e)) © Npv,(h)
and
F7 @) CY(A)
are compact and that the continuous map (see Lemma 9.40)
hpyn: Y(A) — Nyayp o (hA)

restricts to a continuous map

hp : fﬁl(xu) — B

From the exactness of the rows we get that hp is also surjective.
Now from commutativity we see that

loc(A) C B
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and furthermore if (y,) is in f~!(x,) then hp((y,)) € B is rational if
and only if hp((y,)) € loc (A). Hence we get that

F7H (@) Y (A)T7V" = bt (loc (4)).

Now since loc (A4) is non-empty and finite and since hp is continuous
and surjective we have that h'(loc (4)) is non-empty and closed in the
compact space f~1((z,)). Hence

(@) nY (A Vo
is non-empty and compact.

This completes the proof of... O

9.12 Applications

In this section we shall present some applications of the theory developed
in the paper.

Theorem 9.147 Let K be number field and X,Y two smooth geomet-
rically connected K -varieties. Then

(X X Y)(A)fin,Br _ X(A)ﬁ”’Br « Y(A)fmva,

Proof Let 7: K — C be an embedding. Then it is known that the pro-
object Et(X) is isomorphic to the pro-finite completion of the topological
space (X ®; C)(C). Since pro-finite completion commutes with products
this means that the natural map

Et(X xY) — Et(X) x Et(Y)
is an isomorphism. Recalling Proposition 9.19, the result then follows

from Theorem 9.87. O

Theorem 9.148 Let K be a number field and X a smooth geometri-
cally connected variety over K. Assume further that

Wgt(y) =0,
then
X(A)fzn _ X(A)fin,Br.



410 Harpaz and Schlank

Proof Tn this case the map Et?(X) — Et'(X) is an isomorphism in
ProHo (SetAop). By Proposition 9.19 and Theorem 9.87, this means
that

XA = X (A2
By Theorems 9.103 & 9.136, and Corollary 9.68 we then have
X ()" = X (AL = X(A)M? = X (A)" = X (A)/mBr,
O

Corollary 9.149 Let K be a number field and X a smooth geometri-
cally connected proper variety over K such that 75¢(X) = 0. Then

X(A)ese = X (A)in,
Corollary 9.150 Let C' be a smooth curve over K, then
C(A)™ = C(A)/ B,
If C is also projective then
C(A)f™ = C(A)dese,
Proof If C = P! over K then
C(A)™ =C(A) = C(A)P" = C(A)/ P

Otherwise, C'is geometrically a K (7, 1) and one can verify that m (C(C))
is good in the sense of section 6 of [AMa69]. Hence

5 (C) =0
and then the results follows from Theorem 9.148 and Corollary 9.149. [
Now let us recall the following definition (see [AMa69)):

Definition 9.151 Let X be a variety over an algebraically closed field
K. Let Et(Y) = {Xa}aer be the étale homotopy type. Then we define
the étale homology pro-groups of X to be

H{'(X) = {Hi(Xa)}aer-
Theorem 9.152 Let X and K be as above. If H5'(X) = 0 then

X(A)Br _ X(A)fin—ab.
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Proof In this case we get from 9.87 that
X(A)Zh,Q _ X(A)Zh’l

and so the result follows from Theorem 9.116, Corollary 9.68 and The-
orem 9.103. O

Theorem 9.153 Let X and K be as above and assume that 75t (X) is
abelian and that 75'(X) = 0 (e.g. X is an abelian variety or an algebraic
torus). Then

fzn ab fzn

Proof Applying Theorem 9.148 and using the fact that the fundamental
group is abelian one gets

fzn Br

X(A)fin—ab _ X(A)fi" _ X(A)fi"’Br

and so in particular X (A)/"~e> = X (A)f"Br. Note that in general one
has inclusions

X(A)fm’Br C X(A)Br C X(A)fin—ab
and so in this case both inclusions are equalities. O

Theorem 9.154 Let X and K be as above and assume that 7t (X) is
abelian and the Hurewicz map

T (X)e — Hy'(X)
is an isomorphism. Then
X (A)mBr = X (AP
Proof In this case we get from 9.87 that
X (A2 = X (A)Zh:2

and so the result follows from Theorem 9.136, Corollary 9.68 and The-
orem 9.116.
O
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