
Hasse principle for Kummer varieties

Yonatan Harpaz and Alexei N. Skorobogatov

Abstract

The existence of rational points on the Kummer variety associated to a 2-
covering of an abelian variety A over a number field can sometimes be estab-
lished through the variation of the 2-Selmer group of quadratic twists of A.
In the case when the Galois action on the 2-torsion of A has a large image
we prove, under mild additional hypotheses and assuming the finiteness of
relevant Shafarevich–Tate groups, that the Hasse principle holds for the as-
sociated Kummer varieties. This provides further evidence for the conjecture
that the Brauer–Manin obstruction controls rational points on K3 surfaces.

1 Introduction

The principal aim of this paper is to give some evidence in favour of the conjecture
that the Brauer–Manin obstruction is the only obstruction to the Hasse principle for
rational points on K3 surfaces over number fields, see [31, p. 77] and [34, p. 484].
Conditionally on the finiteness of relevant Shafarevich–Tate groups we establish the
Hasse principle for certain families of Kummer surfaces. These surfaces are quotients
of 2-coverings of an abelian surface A by the antipodal involution, where

(a) A is the product of elliptic curves A = E1 × E2, or

(b) A is the Jacobian of a curve C of genus 2 with a rational Weierstraß point.

Both cases are treated by the same method which allows us to prove a more general
result for the Kummer varieties attached to 2-coverings of an abelian variety A

over a number field k, provided certain conditions are satisfied. By a 2-covering we
understand a torsor Y for A such that the class [Y ] ∈ H1(k,A) has order at most
2. Thus Y is the twist of A by a 1-cocycle with coefficients in A[2] acting on A by
translations. The antipodal involution ιA = [−1] : A → A induces an involution
ιY : Y → Y and we define the Kummer variety X = Kum(Y ) as the minimal
desingularisation of Y/ιY , see §6 for details.

In this introduction we explain the results pertaining to cases (a) and (b) above
and postpone the statement of a more general theorem until the next section. In case
(a) we have the following result, whose proof can be found at the end of Section 2.
We denote by ∆(f) the discriminant of a (not necessarily monic) polynomial f(x);
see (3) for the classical formula for ∆(f) in the case deg(f) = 4.
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Theorem A Let g1(x) and g2(x) be irreducible polynomials of degree 4 over a number
field k, each with the Galois group S4. Let w1 and w2 be distinct primes of k not
dividing 6 such that for all i, j ∈ {1, 2} the coefficients of gi(x) are integral at wj
and valwj(∆(gi)) = δij. Let Ei be the Jacobian of the curve y2 = gi(x), where
i = 1, 2. For i = 1, 2 assume the finiteness of the 2-primary torsion subgroup of
the Shafarevich–Tate group for each quadratic twist of Ei whose 2-Selmer group has
rank 1. If the Kummer surface with the affine equation

z2 = g1(x)g2(y) (1)

is everywhere locally soluble, then it has a Zariski dense set of k-points.

We expect that the conditions of Theorem A are in a certain sense ‘generic’. To
illustrate this, let Z[t]deg=4 ⊂ Z[t] be the set of polynomials of degree 4 ordered
by the maximal height of their coefficients. By a theorem of van der Waerden
100 % of polynomials in Z[t]deg=4 have the Galois group S4 (see [5, Thm. 1] for a
statement over an arbitrary number field). By [10, Prop. 11] for 100% of monic
polynomials g ∈ Z[t]deg=4 there exists a place w such that valw(∆(g)) = 1. Similar
arguments are likely to show that 100% of pairs g1, g2 ∈ Z[t]deg=4 satisfy the condition
valwj(∆(gi)) = δij for some w1, w2. The finiteness of the Shafarevich–Tate group is
a well known conjecture, established by M. Bhargava, C. Skinner and W. Zhang for
a majority of elliptic curves over Q ordered by näıve height [2, Thm. 2]. Note finally
that using [1, Thm. 1.4] one can show that the Kummer surface (1) is everywhere
locally soluble for a positive proportion of pairs g1, g2 ∈ Z[t]deg=4.

To give an explicit description of our results in case (b) we need to recall the
realisation of Kummer surfaces attached to the Jacobian of a genus 2 curve as smooth
complete intersections of three quadrics in P5

k. We mostly follow [32, Section 3]; for
the classical theory over an algebraically closed field see [9, Ch. 10].

Let f(x) be a separable monic polynomial of degree 5 over a field k of characteristic
different from 2. Let C be the hyperelliptic curve with the affine equation y2 = f(x)
and let A be the Jacobian of C. Let L be the étale k-algebra k[x]/(f(x)) and
let θ ∈ L be the image of x. The 2-torsion Gal(k̄/k)-module A[2] is isomorphic to
RL/k(µ2)/µ2, where RL/k is the Weil restriction of scalars. Since [L : k] is odd, A[2] is
a direct summand of RL/k(µ2). It follows that the map H1(k,RL/k(µ2)) = L∗/L∗2 →
H1(k,A[2]) is surjective and induces an isomorphism H1(k,A[2]) = L∗/k∗L∗2.

Let λ ∈ L∗. Let Wλ ⊂ RL/k(Gm,L) be the closed subscheme given by z2 = λ. It
is clear that Wλ is a k-torsor for RL/k(µ2) whose class in H1(k,RL/k(µ2)) = L∗/L∗2

is given by λ. Let Zλ = Wλ/{±1} be the subscheme of RL/k(Gm,L)/{±1} given
by the same equation. We obtain that Zλ is the k-torsor for A[2] whose class in
H1(k,A[2]) = L∗/k∗L∗2 is defined by λ.

Now let Yλ = (A × Zλ)/A[2] be the 2-covering of A obtained by twisting A by
Zλ. Then Kum(Yλ) is the following smooth complete intersection of three quadrics
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in P(RL/k(A1
L)× A1

k) ' P5
k:

TrL/k

(
λ
u2

f ′(θ)

)
= TrL/k

(
λ
θu2

f ′(θ)

)
= TrL/k

(
λ
θ2u2

f ′(θ)

)
− NL/k(λ)u2

0 = 0, (2)

where u is an L-variable, u0 is a k-variable, and f ′(x) is the derivative of f(x) (cf.
equations (7) and (8) in [32]). If λ ∈ k∗L∗2, then an easy change of variable reduces
(2) to the same system of equations with λ = 1. As Y1

∼= A has a rational point this
case can be excluded for the purpose of establishing the Hasse principle.

Theorem B Let f(x) be a monic irreducible polynomial of degree 5 over a number
field k, and let L = k[x]/(f(x)). Let w be an odd prime of k such that the coefficients
of f(x) are integral at w and valw(∆(f)) = 1. Let A be the Jacobian of the hyper-
elliptic curve y2 = f(x). Assume the finiteness of the 2-primary torsion subgroup
of the Shafarevich–Tate group for each quadratic twist of A whose 2-Selmer group
has rank 1. Let λ ∈ L∗ be such that for some r ∈ k∗ the valuation of λr at each
completion of L over w is even, but λ /∈ k∗L∗2. If the Kummer surface given by (2)
is everywhere locally soluble, then it has a Zariski dense set of k-points.

Let [λ] ∈ H1(k,A[2]) be the class defined by λ. The conditions imposed on λ in
Theorem B are equivalent to the condition that [λ] 6= 0 and [λ] is unramified at
w. Equivalently, the k-torsor Zλ defined above has a kun

w -point, where kun
w is the

maximal unramified extension of kw, but no k-point.

Any Kummer surface (2) can be mapped to P3
k by a birational morphism that

contracts 16 disjoint rational curves onto singular points. The image of Kum(Yλ) is a
singular quartic surface S ⊂ P3

k which is the classical Kummer surface with 16 nodes.
(See [9, Section 10.3.3] and [11] for a modern account of the geometry of S over an
algebraically closed field.) The group A[2] acts on S by projective automorphisms
and the singular locus Ssing is a k-torsor for A[2]. Then S is identified with the
twist of A/ιA by Ssing. The condition λ /∈ k∗L∗2, which we use to prove the Zariski
density of S(k), is precisely the condition that the torsor Ssing is non-trivial, that is,
no singular point of S is a k-point.

Theorem B is proved at the end of Section 2. The main idea of the proof of
Theorems A and B is due to Swinnerton-Dyer. Let α ∈ H1(k,A[2]) be the class
of a 1-cocycle used to obtain Y from A. The group µ2 = {±1} acts on A by
multiplication. As this action commutes with the action of A[2] by translations we
have an induced action of µ2 on Y . For an extension F/k of degree at most 2 let
TF be the torsor for µ2 defined by F . The quadratic twists AF and Y F are defined
as the quotients of A ×k TF and Y ×k TF , respectively, by the diagonal action of
µ2. We identify AF [2] = A[2] and consider Y F as a torsor for AF defined by the
same 1-cocycle with the class α ∈ H1(k,AF [2]) = H1(k,A[2]). The projection to
the first factor defines a morphism Y F = (Y ×k TF )/µ2 −→ Y/µ2. Thus in order
to find a rational point on the Kummer variety X = Kum(Y ) it is enough to find
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a rational point on Y F for some F . At the first step of the proof, using a fibration
argument, one produces a quadratic extension F such that Y F is everywhere locally
soluble. Equivalently, α ∈ H1(k,AF [2]) is in the 2-Selmer group of AF . At the
second step one modifies F so that the 2-Selmer group of AF is spanned by α
and the image of AF [2](k) under the Kummer map. (In the cases considered in this
paper AF [2](k) = A[2](k) = 0.) This implies that X(AF )[2] is Z/2 or 0. In previous
applications of the method [37, 33], as well as in Theorem A above, A is a product of
two elliptic curves, in which case the Cassels–Tate pairing on X(AF ) is alternating.
The assumption that X(AF ) is finite then implies that the order of X(AF )[2] is a
square and hence X(AF )[2] = 0. In particular, Y F has a k-point, so that Y F ' AF .
In this paper we consider more general principally polarised abelian varieties. The
theory developed by Poonen and Stoll in [28] ensures that in the cases considered
here the Cassels–Tate pairing on X(AF ) defined using the principal polarisation is
still alternating, so the proof can be concluded as before.

Swinnerton-Dyer’s method was used in combination with Schinzel’s Hypothesis
(H) in [6, 36, 39]. For the first time the method was applied without Hypothesis (H)
in [37] using Dirichlet’s theorem on primes in an arithmetic progression, the only
known case of (H). That work tackled diagonal cubic surfaces, which are dominated
by a product of two elliptic curves with complex multiplication. The immediate pre-
cursor of our Theorem A is [33], which treats Kummer surfaces attached to products
of elliptic curves, again without assuming Hypothesis (H). Central to Swinnerton-
Dyer’s method is a linear algebra construction that represents the Selmer group as
the kernel of a symmetric bilinear form. The difficulty of operating this machinery
makes implementation of the method a rather delicate task. In the present paper
this linear algebra machinery is not used. Instead we use the ideas of Mazur and
Rubin from [23] and especially from [22].

Let us note that given an elliptic curve E over a number field k it is not always
possible to find a quadratic extension F/k such that the 2-Selmer group of EF is
spanned by a fixed class α ∈ H1(k,E[2]) and the image of EF [2](k). Firstly, the
parity of the rank of the 2-Selmer group of EF can be the same for all F : this happens
precisely when k is totally imaginary and E acquires everywhere good reduction over
an abelian extension of k, see [8, Remark 4.9]. Secondly, over any number field k

there are elliptic curves E such that for any quadratic extension F/k the difference
between the 2-Selmer rank of EF and the dimension of the F2-vector space E[2](k)
is at least the number of complex places of k, see [14, 15]. Such examples can occur
when E[2](k) ∼= Z/2 and E has a cyclic isogeny of degree 4 defined over k(E[2]) but
not over k.

In this paper we do not discuss the conjecture [31, p. 77], [34, p. 484] that rational
points on a K3 surface are dense in its Brauer–Manin set1. Nevertheless we make

1 A recent result of D. Holmes and R. Pannekoek [13] shows that if this conjecture is extended
to all Kummer varieties, then the ranks of quadratic twists of any given abelian variety over a
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the following simple observation in the direction of Mazur’s conjectures [20, 21].

Proposition 1.1. Let E1, . . . , En be elliptic curves over Q such that Ei[2](Q) = 0
for i = 1, . . . , n. Let X = Kum(

∏n
i=1 Yi), where Yi is a 2-covering of Ei defined

by a class in H1(Q, Ei[2]) that restricts to a non-zero class in H1(R, Ei[2]), for i =
1, . . . , n. Then the real topological closure of X(Q) in X(R) is a union of connected
components of X(R).

This can be compared with the result of M. Kuwata and L. Wang [17]. See the
end of Section 7 for the proof of Proposition 1.1.

The main technical result of the paper is Theorem 2.3. It is stated in Section
2 where we also show that Theorem 2.3 implies Theorems A and B. In Section 3
we systematically develop the Galois-theoretic aspect of the approach of Mazur and
Rubin. We recall the necessary facts about the Kummer map for quadratic twists
of abelian varieties over local fields in Section 4. In Section 5 we discuss the Selmer
group and the Cassels–Tate pairing over a number field. A reduction to everywhere
soluble 2-coverings is carried out in Section 6 using a known case of the fibration
method. We finish the proof of Theorem 2.3 in Section 7.

While working on this paper the first named author was supported by the Fon-
dation Sciences Mathématiques de Paris. The paper was finalised when the second
named author was at the Institute for Advanced Study in Princeton where he was
supported by The Charles Simonyi Endowment. We are grateful to Jean-Louis
Colliot-Thélène, Tim Dokchitser, Evis Ieronymou, René Pannekoek for helpful dis-
cussions and to the referee for careful reading of the paper and detailed comments.

2 Main results

Let k be a field of characteristic different from 2 with a separable closure k̄ and the
Galois group Γk = Gal(k̄/k).

Let A be an abelian variety over k. Let K = k(A[2]) ⊂ k̄ be the field of definition
of A[2], that is, the smallest field such that A[2](K) = A[2](k̄). Let G = Gal(K/k).
Consider the following conditions:

(a) A[2] is a simple G-module and EndG(A[2]) = F2;

(b) H1(G,A[2]) = 0;

(c) there exists g ∈ G such that A[2]/(g − 1) = F2;

(d) there exists h ∈ G such that A[2]/(h− 1) = 0.

Lemma 2.1. Let A be the Jacobian of a smooth projective curve with the affine
equation y2 = f(x), where f(x) ∈ k[x] is an irreducible separable polynomial of odd
degree m ≥ 3. If the Galois group of f(x) is the symmetric group on m letters Sm,
then A satisfies conditions (a), (b), (c), (d).

given number field are not bounded.
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Proof. It is well known that the Γk-module A[2] is the zero-sum submodule of
the vector space (F2)m freely generated by the roots of f(x) = 0 with the natural
permutation action of Γk. Since m is odd, the permutation Γk-module (F2)m is the
direct sum of A[2] and the F2-vector space spanned by the vector (1, . . . , 1).

If an Sm-submodule of (F2)m contains a vector with at least one coordinate 0 and
at least one coordinate 1, then it contains the zero-sum submodule. Hence A[2]
is a simple Sm-module. A direct calculation with matrices shows that the m × m
matrices commuting with all permutation matrices are the linear combinations of
the identity and the all-1 matrix. We deduce that EndSm(A[2]) = F2, thus (a) holds.

The permutation Sm-module (F2)m is isomorphic to F2[Sm/Sm−1]. By Shapiro’s
lemma we have

H1(Sm,F2[Sm/Sm−1]) = H1(Sm−1,F2) = Hom(Sm−1,F2) = F2.

Since H1(Sm,F2) = F2, we obtain H1(Sm, A[2]) = 0, so (b) holds.

If g is a cycle of length m− 1, then A[2]/(g− 1) = F2, so (c) is satisfied. If h is a
cycle of length m, then A[2]/(h− 1) = 0, so (d) is satisfied. �

Remark 2.2. There are other natural cases when the Galois module A[2] satisfies
conditions (a) to (d). Assume dim(A) = n > 1. In this paper we only deal with
the case when the Cassels–Tate pairing defined by a polarisation λ ∈ NS (Ā)Γk is
alternating. According to the results of Poonen, Stoll and Rains recalled in §5, this
holds when λ lifts to a symmetric element of Pic(A). (This happens, for example,
when A is as in Lemma 2.1.) In this case, the pairing A[2]×A[2]→ Z/2 induced by
λ and the Weil pairing admits a Galois invariant quadratic enhancement q : A[2]→
Z/2. The ‘generic’ Galois action compatible with this assumption is when G is the
corresponding orthogonal group O(q) ⊂ GL(A[2]). It can be shown that conditions
(a), (c) and (d) are always satisfied for G = O(q). Condition (b) is satisfied for
all n 6= 2, 3 when q is split (i.e., isomorphic to a direct sum of copies of the rank 2
hyperbolic space) and for all n 6= 3, 4 if q is non-split (see [29, Prop. 2.1]). We do
not elaborate on these statements here, as we will not use them in the paper.

Let A1, . . . , Ar be abelian varieties over k. For each i = 1, . . . , r let Ki = k(Ai[2])
and Gi = Gal(Ki/k). We assume the following condition.

(e) The fields K1, . . . , Kr are linearly disjoint over k.

By definition this means that [K1 . . . Kr : k] =
∏r

i=1[Ki : k]. Thus the Galois group
of K1 . . . Kr over k is

∏r
i=1Gi.

When k is a number field we shall also assume the following condition.

(f) There exist distinct odd primes w1, . . . , wr of k such that for each i = 1, . . . , r
the abelian variety Ai has bad reduction at wi and the number of geometric con-
nected components of the Néron model of Ai at wi is odd, whereas each Aj for j 6= i

has good reduction at wi.
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Let kab
i be the maximal abelian subextension of k ⊂ Ki. Equivalently, Gal(kab

i /k)
is the maximal abelian quotient Gab

i of Gi. Let us finally assume the condition

(g) For each i = 1, . . . , r the field kab
i is totally ramified at wi. Equivalently, kab

i

has a unique prime ideal above wi, and Gab
i coincides with the inertia subgroup of

this ideal.

Let F be a field extension of k of degree at most 2. As in the introduction,
we denote by AF the quadratic twist of A by F , that is, the abelian variety over
k obtained by twisting A by the quadratic character of F/k with respect to the
action of µ2 on A by multiplication. For example, if A is an elliptic curve with the
Weierstraß equation y2 = f(x), then AF is given by y2 = cf(x), where c ∈ k∗ is
such that F = k(

√
c).

We are now ready to state the main theorem of this paper. Recall that a class
in H1(k,A[2]) is said to be unramified at an odd non-Archimedean place v of k if it
goes to zero under the restriction map H1(k,A[2])→ H1(knr

v , A[2]), where knr
v is the

maximal unramified extension of the completion kv of k at v.

Theorem 2.3. Let k be a number field. Let A =
∏r

i=1Ai, where each Ai is a prin-
cipally polarised abelian variety satisfying conditions (a), (b), (c) and (d). Assume
in addition that conditions (e), (f) and (g) are satisfied. Assume that the 2-primary
subgroup of the Shafarevich–Tate group X(AFi ){2} is finite for all i = 1, . . . , r and
all extensions F of k with [F : k] ≤ 2 for which the 2-Selmer group of AFi has rank
1. Consider the classes in H1(k,A[2]) that are unramified at w1, . . . , wr and whose
projection to H1(k,Ai[2]) is non-zero for each i = 1, . . . , r. If the Kummer variety
of A defined by such a class is everywhere locally soluble, then it has a Zariski dense
set of k-points.

Remarks 1. If r = 1, then condition (d) is not needed and condition (e) is vacuous.

2. The Brauer–Manin obstruction does not appear in the conclusion of the theorem.
In fact, the purely algebraic conditions (a), (b) and (e) imply that a certain part of
the Brauer group is trivial, see Proposition 6.1. The problem of calculation of the
full Brauer group of a Kummer variety will be addressed in a separate paper.

3. If the 2-primary torsion subgroup X(AFi ){2} is finite, then condition (b) implies
that the non-degenerate Cassels–Tate pairing on X(AFi ){2} is alternating. See
Proposition 5.2 based on the work of Poonen–Stoll [28] and Poonen–Rains [26]. In
the proof of Theorem 2.3 we use a well known consequence of this result that the
number of elements of X(AFi )[2] is a square.

We employ the following standard notation:

kwi is the completion of k at wi,

Owi is the ring of integers of kwi ,

mwi is the maximal ideal of Owi , and

Fwi = Owi/mwi is the residue field.
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Corollary 2.4. Let k be a number field. For i = 1, . . . , r let fi(x) ∈ k[x] be a monic
irreducible polynomial of odd degree ni ≥ 3 whose Galois group is the symmetric
group Sni, and let Ai be the Jacobian of the hyperelliptic curve y2 = fi(x). Assume
the existence of distinct odd primes w1, . . . , wr of k such that fi(x) ∈ Owj [x] and
valwi(∆(fj)) = δij for any i, j ∈ {1, . . . , r}. Assume that X(AFi ){2} is finite for
all i = 1, . . . , r and all extensions F of k with [F : k] ≤ 2 for which the 2-Selmer
group of AFi has rank 1. Consider the classes in H1(k,A[2]) that are unramified at
w1, . . . , wr and whose projection to H1(k,Ai[2]) is non-zero for each i = 1, . . . , r. If
the Kummer variety of A defined by such a class is everywhere locally soluble, then
it has a Zariski dense set of k-points.

Proof. Each Ai is a canonically principally polarised abelian variety which satisfies
conditions (a), (b), (c), (d) by Lemma 2.1.

Let Ci be the proper, smooth and geometrically integral curve over k given by the
affine equation y2 = fi(x), so that Ai = Jac(Ci). As in [18, Section 4.3], a proper and
flat Weierstraß model Ci over Spec(Owi) is defined as the normalisation in Ci×k kwi
of the projective line P1

Owi
with the affine coordinate x. Since 2 ∈ O∗wi the integral

closure of Owi [x] in kwi(Ci) is Owi [x, y]/(y2−fi(x)). The condition valwi(∆(fi)) = 1
implies that Ci is regular and the special fibre Ci ×Owi Fwi is geometrically integral
with a unique singular point, which is an ordinary double point, see Cor. 6 and
Remark 18 on p. 4602 of [18]. In particular, the reduction of fi(x) modulo mwi has
one rational double root and ni− 2 simple roots. (This can also be checked directly
using Sylvester’s formula for the discriminant.) Now [3, Thm. 9.6.1] implies that
the special fibre of the Néron model of Ai ×k kwi over Spec(Owi) is connected. If
j 6= i, then valwi(∆(fj)) = 0, and this implies that Aj has good reduction at wi. We
conclude that (f) holds.

For each i = 1, . . . , r the field Ki = k(Ai[2]) is the splitting field of fi(x). Since
Gal(Ki/k) ∼= Sni , the alternating group is the unique non-trivial normal subgroup
of Gal(Ki/k). Its invariant subfield is k(

√
∆(fi)). Thus if k′ is a Galois extension

of k such that k ( k′ ( Ki, then k′ = k(
√

∆(fi)) = kab
i . The extension k(

√
∆(fi))

of k is ramified at wi, so (g) holds.

Let K ′i be the compositum of the fields Kj for j 6= i. Since each Ki is a Galois
extension of k, the field Ki ∩ K ′i is also a Galois extension of k. To verify (e) we
need to check that Ki ∩K ′i = k for each i = 1, . . . , r. Otherwise, Ki ∩K ′i contains
k(
√

∆(fi)) which is ramified at wi. However, this contradicts the criterion of Néron–
Ogg–Shafarevich according to which K ′i is unramified at the odd place wi, where
each of the abelian varieties Aj for j 6= i has good reduction. Thus (e) holds. �

Proof of Theorem A assuming Theorem 2.3. For i = 1, 2 let Ci be the curve of
genus 1 given by y2 = gi(x). Write gi(x) = ax4 + bx3 + cx2 + dx + e. The classical
SL(2)-invariants of the corresponding quartic binary form Gi(u, v) = v4gi(u/v) are

I = 12ae−3bd+c2, J = 72ace+9bcd−27ad2−27eb2−2c3, ∆ = (4I3−J2)/27. (3)
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Then the Jacobian of Ci is the elliptic curve Ei with the equation u2 = pi(t), where
pi(t) = t3 − 27Ix − 27J is the resolvent cubic polynomial of gi(x), see [30, Prop.
3.3.6 (a)]. The 0-dimensional scheme gi(x) = 0 is a k-torsor Zi for Ei[2]. Then
Ci can be viewed as the twist of Ei by Zi, that is, Ci = (Ei × Zi)/Ei[2], where
Ei[2] acts simultaneously on both factors. The antipodal involution acts on Ci
by changing the sign of y, so the Kummer surface Kum(C1 × C2) is the minimal
desingularisation of the quotient of C1 × C2 by the involution that acts on each
component as (x, y) 7→ (x,−y). Thus z2 = g1(x)g2(y) defines an affine surface
birationally equivalent to Kum(C1 × C2).

Since the polynomials g1(x) and g2(x) have no roots in k, each of the torsors Z1

and Z2 is non-trivial. The field of definition Ki = k(Ei[2]) of Ei[2] is the splitting
field of pi(t). Hence the condition Gal(g1) ' S4 implies Gal(Ki/k) = Gal(pi) ' S3,
for i = 1, 2. The discriminant of the quartic gi(x) is equal to the discriminant of its
resolvent cubic pi(t) up to a power of 3, and gi(x) ∈ Owj [x] implies pi(t) ∈ Owj [t], so
the primes w1 and w2 satisfy the assumption in Corollary 2.4. To be in a position
to appeal to that corollary we now show that Zi is unramified at both w1 and w2.

Indeed, let Zij ⊂ P1
Owj

be the closed subscheme given by Gi(u, v) = 0, where

Gi(u, v) = v4gi(u/v) ∈ Owj [u, v]. For j 6= i the discriminant of Gi(u, v) is a unit
in Owj , thus Zij is a finite and étale Owj -scheme of degree 4 with the generic fibre
Zi ×k kwj , hence Zi is unramified at wj. For i = j the discriminant of Gi(u, v) is
a generator of the maximal ideal of Owi . This implies that the fibre Zii ×Owi Fwi
at the closed point of Spec(Owi) is the disjoint union of a double Fwi-point and a
reduced 2-point Fwi-scheme. The latter gives rise to two sections of the morphism

Zii ×Owi O
nr
wi
−→ Spec(Onr

wi
).

Hence Zi is unramified at wi. An application of Corollary 2.4 finishes the proof. �

Proof of Theorem B assuming Theorem 2.3. The condition valw(∆(f)) = 1 implies
that k(

√
∆(f)) has degree 2 over k. Hence the Galois group of f(x) is not a subgroup

of the alternating group A5. Any proper subgroup of S5 which acts transitively on
{1, 2, 3, 4, 5} and is not contained in A5, is conjugate to Aff5 = F5 oF∗5, the group of
affine transformations of the affine line over the finite field F5, see [4, Ch. XI, §166,
p. 215]. Let us show that this case cannot occur. Indeed, in the proof of Corollary
2.4 we have seen that the reduction of f(x) modulo mw has one rational double root
and three simple roots, whereas the integral model defined by y2 = f(x) is regular.
It follows that over the maximal unramified extension of kw the polynomial f(x) is
the product of three linear and one irreducible quadratic polynomials. Hence the
image of the inertia subgroup in Aff5 is generated by a cycle of length 2. This is
a contradiction because the elements of order 2 in Aff5 are always products of two
cycles, as they are given by affine transformations of the form x 7→ −x+ a.

We conclude that the Galois group of f(x) is S5. The theorem now follows from
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Corollary 2.4 provided we check that the relevant class in H1(k,A[2]) is non-zero
and unramified at w.

For this it is enough to prove that the corresponding k-torsor for A[2] has no k-
points but has a kun

w -point. This torsor is the subset Zλ ⊂ RL/k(Gm,L)/{±1} given
by z2 = λ. The natural surjective map

RL/k(Gm,L) −→ RL/k(Gm,L)/{±1}

is a torsor for µ2. Thus Zλ(k) is the disjoint union of the images of k-points of
the torsors tz2 = λ for RL/k(µ2), where t ∈ k∗. Hence Zλ(k) 6= ∅ if and only if
λ ∈ k∗L∗2, but this is excluded by one of the assumptions of Theorem B. Next, the
group H1(kun

w , µ2) consists of the classes of 1-cocycles defined by 1 and π, where π is
a generator of mw. Hence Zλ(k

un
w ) is the disjoint union of the images of kun

w -points
of the torsors z2 = λ and z2 = πλ for RL/k(µ2). By assumption there exists an
ε ∈ {0, 1} such that the valuation of πελ at each completion of L over w is even.
Then the torsor for RL/k(µ2) given by z2 = πελ has a kun

w -point, because any unit
is a square as the residue field of kun

w is separably closed of characteristic different
from 2. It follows that Zλ(k

un
w ) 6= ∅. �

3 Galois theory of finite torsors

This section develops some ideas of Mazur and Rubin, see [22, Lemma 3.5].

We shall work with groups that are semi-direct products of a group G with a
semisimple G-module M . Recall that a G-module M is simple if it has no G-
submodules except 0 and M . A G-module M is semisimple if M is a direct sum
of simple G-modules M = ⊕iMi. The simple G-modules Mi are called the simple
factors of M . Their isomorphism types do not depend on the presentation of M as
a direct sum. Indeed, one can characterise the simple factors of M as the simple
G-modules that admit a non-zero map to M or from M .

Remark 3.1. If M is a semisimple G-module, then each G-submodule of M is a
direct summand of M , see, e.g., [38, 20.2]. Furthermore, each G-submodule N ⊆M

is semisimple and each simple factor of N is a simple factor of M . Similarly, each
quotient G-module M/N is semisimple and each simple factor of M/N is a simple
factor of M .

Lemma 3.2. Let G be a group with more than one element and let M be a semisim-
ple G-module such that the action of G on each simple factor of M is faithful. Let
H ⊆M oG be a normal subgroup. Then

(i) either H ⊆M or M ⊆ H;

(ii) if (M oG)/H is abelian, then M ⊆ H.
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Proof. (i) Suppose that M is not contained in H. The subgroup K = H ∩M is
normal in M oG, thus K is a proper G-submodule of M . The quotient G-module
N = M/K 6= 0 is semisimple by Remark 3.1. Moreover, each simple factor of N is a
simple factor of M , hence N is a faithful G-module. We identify K with the kernel
of the natural surjective group homomorphism ρ : M o G → N o G. Then ρ(H)
and N are normal subgroups of N oG such that ρ(H) ∩N = {1}, hence ρ(H) and
N centralise each other. Thus the image of H in G acts trivially on N . But N is a
faithful G-module, so the image of H in G is trivial, hence H ⊆M .

(ii) By the result of (i) we just need to show that the case H (M is not possible.
Indeed, since H is normal in M oG, in this case H is a proper G-submodule of M ,
so that (M o G)/H = N o G, where N = M/H 6= 0. The same argument as in
the proof of (i) shows that N is a faithful G-module. By assumption (M o G)/H
is abelian, so G acts trivially on N . This contradicts the fact that G contains an
element other than the unit of the group law. �

Let us now set up notation and terminology for this section.

Let k be a field, k̄ be a separable closure of k and Γk = Gal(k̄/k). Let M be a
finite Γk-module such that the order of M is not divisible by char(k). We denote by
ϕ : Γk → Aut(M) the action of Γk on M . We identify M with the group of k̄-points
of a finite étale commutative group k-scheme GM . A cocycle c : Γk → M = GM(k̄)
gives rise to a twisted action of Γk on GM(k̄), defined as the original action of Γk
on M followed by the translation by c. The quotient of Spec(k̄[GM ]) by the twisted
action is a k-torsor of GM . It comes equipped with a k̄-point corresponding to the
neutral element of GM . Conversely, suppose we are given a k-torsor Z for GM .
For any z0 ∈ Z(k̄) the map c : Γk → M = GM(k̄) determined by the condition
c(γ)z0 = γz0 is a cocycle Γk → M . These constructions induce a bijection between
H1(k,M) and the set of isomorphisms classes of k-torsors for GM . See [30, Section
2.1], and also [3, Ch. 6]. For α ∈ H1(k,M) we denote by Zα the torsor for GM
obtained by twisting GM by a 1-cocycle representing α; such a torsor is well defined
up to an isomorphism of GM -torsors.

Definition 3.3. Let K be the smallest extension of k such that ΓK acts trivially
on M . For α ∈ H1(k,M) let Kα be the smallest extension of k such that ΓKα acts
trivially on Zα(k̄). Write G = Gal(K/k) and Gα = Gal(Kα/k).

Note that K ⊂ Kα, which follows from the surjectivity of the difference map
Zα × Zα → GM . Write Wα = Gal(Kα/K), then there is an exact sequence

1 −→ Wα −→ Gα
ϕ−→ G −→ 1. (4)

The group G of Definition 3.3 is identified with ϕ(Γk), which makes M a faithful
G-module. Let α ∈ H1(k,M) be a class represented by a 1-cocycle c : Γk → M . If
Zα is the twist of GM by c, then the semi-direct product M o G acts on Zα(k̄) ∼=
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GM(k̄) ∼= M by affine transformations, and Γk acts on Zα(k̄) by the homomorphism
(c, ϕ) : Γk → M o G. By the definition of Kα this homomorphism factors through
an injective homomorphism Gα → M o G. Since M is a trivial ΓK-module, the
restriction of α to Wα defines an injective homomorphism of G-modules α̃ : Wα →
M , and we have a commutative diagram

1 //Wα
//

� _

α̃
��

Gα
//

� _

(c,ϕ)
��

G //

=

��

1

1 //M //M oG // G // 1

Let R = EndG(M) = EndΓk(M) be the endomorphism ring of the Γk-module M .

Definition 3.4. Let N be an R-module. We say that α ∈ N is non-degenerate if
the annihilator of α in R is zero, i.e., if r ∈ R is such that rα = 0, then r = 0.
Equivalently, α is non-degenerate if Rα ⊂ N is a free R-module.

Remark 3.5. For any Γk-module M the group H1(k,M) is naturally an R-module.
If M is a simple G-module, then R is a division ring by Schur’s lemma, hence a finite
field by Wedderburn’s theorem. Then an element α ∈ H1(k,M) is non-degenerate
if and only if α 6= 0. When M = ⊕ri=1Mi, where the G-modules Mi are simple
and pairwise non-isomorphic, R = ⊕ri=1EndG(Mi) is a direct sum of fields. We have
H1(k,M) = ⊕ri=1H1(k,Mi). If we write α =

∑
αi with αi ∈ H1(k,Mi), then α

is non-degenerate if and only if each αi 6= 0. When M = N⊕r for a simple G-
module N , the ring R is the algebra of matrices of size r with entries in the field
EndG(N). In this case α =

∑
αi is non-degenerate if and only if α1, . . . , αr are

linearly independent in the EndG(N)-vector space H1(k,N).

In the following proposition we consider M as a Gα-module via the surjective
homomorphism ϕ : Gα → G.

Proposition 3.6. With the above notation assume that M is a semisimple Γk-
module such that H1(G,M) = 0. Let α ∈ H1(k,M) be a class represented by a
1-cocycle c. The following conditions are equivalent:

(i) the map (c, ϕ) is an isomorphism of groups Gα−̃→M oG;

(ii) the map α̃ : Wα−̃→M is an isomorphism of G-modules;

(iii) H1(Gα,M) is a free R-module generated by α;

(iv) α is non-degenerate in H1(k,M).

Proof. (i)⇒(ii) Since (c, ϕ) is an isomorphism, for each m ∈ M there exists
γ ∈ Gα such that (c, ϕ)(γ) = (m, 1). Then γ goes to 1 ∈ G and hence γ ∈ Wα and
c(γ) = α̃(γ) = m. It follows that the map α̃ : Wα −→ M is surjective. Since it is
also injective by construction we conclude that it is an isomorphism of G-modules.
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(ii)⇒(iii) Assume that α̃ : Wα−̃→M is an isomorphism of G-modules. Then
HomG(Wα,M) is a free R-module with generator α̃. The inflation-restriction exact
sequence

0→ H1(G,M)→ H1(Gα,M)→ H1(Wα,M)G = HomG(Wα,M) (5)

is an exact sequence of R-modules. We note that Zα(Kα) 6= ∅, so α ∈ H1(k,M) be-
longs to the kernel H1(Gα,M) of the restriction map to H1(Kα,M). By assumption
H1(G,M) = 0, hence the map H1(Gα,M) → HomG(Wα,M) is injective. This map
of R-modules sends α to the generator α̃ of the R-module HomG(Wα,M) = Rα̃, so
it is surjective, hence an isomorphism. We obtain that H1(Gα,M) is a free R-module
generated by α.

(iii)⇒(iv) Assume that H1(Gα,M) is a free R-module with generator α. By the
inflation-restriction exact sequence for ΓKα ⊆ Γk the map H1(Gα,M) → H1(k,M)
is injective, and so (iv) holds.

(iv)⇒(i) Suppose that α is non-degenerate in H1(k,M) and assume for contradic-
tion that the map (c, ϕ) is not an isomorphism. Since (c, ϕ) is injective by construc-
tion we conclude that it is not surjective. The intersection of the image of (c, ϕ)
with M is then a proper G-submodule α̃(Wα) (M . Since M is semisimple, α̃(Wα)
is a direct summand of M , see Remark 3.1. It follows that there exists a non-zero
element r ∈ R such that rα̃(Wα) = 0, so that rα̃ = 0 in HomG(Wα,M). From 5
we see that rα = 0 in H1(Gα,M). But this is a contradiction because the map
H1(Gα,M)→ H1(k,M) is injective and α is non-degenerate in H1(k,M). �

We record an amusing corollary of this proposition.

Corollary 3.7. Under the assumptions of Proposition 3.6, let α, β ∈ H1(k,M) be
non-degenerate. Then the associated torsors Zα, Zβ for GM are integral k-schemes.
Furthermore, the following conditions are equivalent:

(i) there exists an r ∈ R∗ such that rα = β;

(ii) Rα = Rβ ⊂ H1(k,M);

(iii) Zα and Zβ are isomorphic as abstract k-schemes.

Proof. Let c be a cocycle representing α. By Proposition 3.6 the group Gα acts on
Zα(k̄) ' M via the isomorphism (c, ϕ) : Gα−̃→M o G. Hence Gα acts transitively
on Zα(k̄), because already the subgroup M ⊂ M o G acts (simply) transitively on
M . Hence Zα is integral. The same argument proves that Zβ is integral.

Let us now establish the equivalence of (i), (ii) and (iii). The implication (i)⇒(ii)
is clear. Conversely, if Rα = Rβ, then there exist r, s ∈ R such that rα = β and
α = sβ. Then srα = α and rsβ = β. Since α and β are non-degenerate we obtain
that r and s are invertible in R, so (ii) implies (i).

We now show that (i) is equivalent to (iii). Assume (i) and take a cocycle c :
Γk → M which represents α, then rc represents β. We identify Zα(k̄) with GM(k̄)
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such that Γk acts via its original action on GM(k̄) followed by the translation by c.
Then Zβ(k̄) can be identified with GM(k̄) such that Γk acts via its original action
on GM(k̄) followed by the translation by rc. Under these identifications the map
r : GM(k̄) → GM(k̄) becomes a Γk-equivariant map Zα(k̄) → Zβ(k̄). Thus Zα and
Zβ are isomorphic as 0-dimensional k-schemes.

Finally, assume that Zα and Zβ are isomorphic as k-schemes. Since α and β
are non-degenerate we see from Proposition 3.6 that the maps α̃ : Wα−̃→M and
β̃ : Wβ−̃→M are isomorphisms of G-modules. The splitting fields Kα and Kβ

coincide as subfields of k̄, so there exists an isomorphism of Γk-modules represented
by the dotted arrow in the diagram

Wα

∼=

��

α̃ //M

r

��

ΓK

== ==

!! !!
Wβ

β̃ //M

It is obtained as the action of an invertible element r ∈ R∗. It follows that rα
and β have the same image in H1(K,M). By assumption H1(G,M) = 0, hence the
restriction-inflation exact sequence implies that the map H1(k,M) → H1(K,M) is
injective. Thus rα = β, as desired. �

A continuous action of the pro-cyclic group Ẑ on a discrete module N is deter-
mined by the homomorphism g : N → N which is the action of the generator 1 ∈ Ẑ.
There is a canonical isomorphism

H1(Ẑ, N) ∼= N/(g − 1)

induced by sending the class of a cocycle ξ to the class of ξ(1) in N/(g − 1).

An element γ ∈ Gα determines a map fγ : Ẑ→ Gα which sends 1 to γ, and hence
an induced map

f ∗γ : H1(Gα,M) −→ H1(Ẑ,M) = M/(g − 1).

Here we denote by g the image of γ in G (which acts on M) under the natural
surjective map Gα → G. In particular, if c : Gα → M is a cocycle representing
α ∈ H1(Gα,M), then f ∗γ (α) is equal to the class of c(γ) in M/(g − 1).

Corollary 3.8. In the assumptions of Proposition 3.6 let α ∈ H1(k,M) be non-
degenerate. Take any g ∈ G and any x ∈ M/(g − 1). Then g has a lifting γ ∈ Gα

such that fγ(α) = x.
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Proof. Let c : Gα →M be a cocycle representing α and let m ∈M be an element
whose class in M/(g − 1) is x. By Proposition 3.6 the map (c, ϕ) : Gα−̃→M oG is
an isomorphism. Hence there exists an element γ ∈ Gα such that (c, ϕ)(γ) = (m, g).
Then γ is a lifting of g and c(γ) = m so that fγ(α) = x, as desired. �

Corollary 3.9. Let M be a semisimple Γk-module such that G contains more than
one element, the action of G on each simple factor of M is faithful and H1(G,M) =
0. Let α ∈ H1(k,M) be non-degenerate. Then

(i) each subfield of Kα which is Galois over k is either contained in K or contains K;

(ii) each subfield of Kα which is abelian over k is contained in K.

Proof. By Proposition 3.6 we have Gα ' M oG. The desired result now follows
directly from Lemma 3.2. �

Until the end of this section we assume that k is a field of characteristic different
from 2. Let A1, . . . , Ar be abelian varieties satisfying conditions (a) and (b) of
§2 and let A =

∏r
i=1 Ai. Let Ki be the splitting field of Ai[2]. The compositum

K = K1 . . . Kr is the field of definition of A[2]. Assume that condition (e) of §2
holds, i.e., the fields K1, . . . , Kr are linearly disjoint over k.

Remark 3.10. Condition (a) implies that each Ki is a non-trivial extension of k,
so that Gi has more than one element.

We now present two applications of the results above. In the first one we consider
the semisimple Γk-module M = A[2] = ⊕ri=1Ai[2].

Proposition 3.11. Suppose that abelian varieties A1, . . . , Ar satisfy conditions (a)
and (b), and that condition (e) holds. Let Zi be a non-trivial k-torsor for Ai[2], for
each i = 1, . . . , r, and let Z =

∏r
i=1 Zi. Let L be the étale k-algebra k[Z], so that

Z ∼= Spec(L). Then L is a field which contains no quadratic extension of k.

Proof. Let M = A[2] and let α ∈ H1(k,M) be the class of Z. Write α =
∑r

i=1 αi,
where each αi ∈ H1(k,Ai[2]) is non-zero. By condition (a) each Ai[2] is simple and
hence M is semisimple with simple factors A1[2], ..., Ar[2]. By condition (e) the fields
K1, . . . , Kr are linearly disjoint over k, so that the Galois group G = Gal(K/k) is
the product G =

∏r
i=1Gi, and the Ai[2] are pairwise non-isomorphic Γk-modules.

From Remark 3.5 we see that α is non-degenerate.

For each i = 1, . . . , r we have Ai[2]Gi = 0 and H1(Gi, Ai[2]) = 0 by condi-
tions (a) and (b). The inflation-restriction exact sequence for Gi ⊂ G then gives
H1(G,Ai[2]) = 0, and so H1(G,M) = 0. Let c : Γk → M be a cocycle represent-
ing α. By Proposition 3.6 the map (c, ϕ) : Gα−̃→M o G is an isomorphism. Let
s : G→ Gα be the section corresponding to the canonical section G→MoG under
the isomorphism (c, ϕ).
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By Corollary 3.7 the scheme Zα is integral, and hence L = k[Zα] is a field, whose
Galois closure is Kα by definition. Moreover, L ∼= (Kα)s(G). If L contains a quadratic
extension of k, then s(G) is contained in a normal subgroup H ⊂ Gα of index 2.
Since s is a section, the induced homomorphism H → G is surjective, so its kernel is
a G-submodule of M which is a subgroup of M of index 2. But this is a contradiction
since M is semisimple and the simple factors Ai[2] of M have size 4. �

In the second application we consider the semisimple module M = A1[2]⊕r.

Proposition 3.12. Suppose that abelian varieties A1, . . . , Ar satisfy conditions (a)
and (b), and that condition (e) holds. Let M = A1[2]⊕r be a direct sum of copies
of A1[2] and let α ∈ H1(k,M) be non-degenerate. Then the fields (K1)α, K2, . . . , Kr

are linearly disjoint.

Proof. Write E = (K1)α ∩ K2 . . . Kr. In view of condition (e) it is enough to
show that E = k. Indeed, E is a Galois subfield of (K1)α, so by Remark 3.10 and
Corollary 3.9 we have E ⊂ K1 or K1 ⊂ E. In the first case E = k because E is
contained in K1 ∩ K2 . . . Kr = k, where the equality holds by condition (e). By
the same condition the second case cannot actually occur, because then K1 ⊂ E ⊂
K2 . . . Kr which contradicts the linear disjointness of K1, . . . , Kr. �

4 Kummer map over a local field

Let A be an abelian variety over a local field k of characteristic zero. The Kummer
exact sequence gives rise to a map δ : A(k)→ H1(k,A[2]), called the Kummer map.
For x ∈ A(k) choose x̄ ∈ A(k̄) such that 2x̄ = x. Then δ(x) is represented by the
cocycle that sends γ ∈ Γk to γx̄− x̄ ∈ A[2].

The Weil pairing is a non-degenerate pairing of Γk-modules A[2] × At[2] → Z/2.
The induced pairing on cohomology followed by the local invariant of local class field
theory gives a non-degenerate pairing of finite abelian groups [24, Cor. I.2.3]

H1(k,A[2])× H1(k,At[2]) −→ Br(k)[2]
inv−→ 1

2
Z/Z.

The local Tate duality implies that δ(A(k)) and δ(At(k)) are the orthogonal com-
plements to each other under this pairing (see, e.g., the first commutative diagram
in the proof of [24, I.3.2]).

When A is principally polarised, we combine the last pairing with the principal
polarisation A−̃→At and obtain a non-degenerate symmetric pairing

inv(α ∪ β) : H1(k,A[2])× H1(k,A[2]) −→ Br(k)[2]
inv−→ 1

2
Z/Z.

It is well known that δ(A(k)) is a maximal isotropic subspace of H1(k,A[2]), see [27,
Prop. 4.11]. Note that the pairing inv(α ∪ β) is also defined for k = R and the
above statements carry over to this case, cf. [24, Thm. I.2.13 (a), Remark I.3.7].
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Let us recall a well known description of δ(A(k)) when A has good reduction.
Let κ be the residue field of k, and assume char(κ) = ` 6= 2. Then δ(A(k)) is the
unramified subgroup

H1
nr(k,A[2]) = Ker[ H1(Γk, A[2]) −→ H1(I, A[2]) ],

where I ⊂ Γk is the inertia subgroup. By Néron–Ogg–Shafarevich the inertia acts
trivially on A[2], so that H1

nr(k,A[2]) = H1(κ,A[2]). The absolute Galois group
Gal(κ̄/κ) = Γk/I is isomorphic to Ẑ with the Frobenius element as a topological
generator. Thus we have a canonical isomorphism

δ(A(k)) = A[2]/(Frob− 1). (6)

Since Ẑ has cohomological dimension 1, the spectral sequence

Hp(Ẑ,Hq(I, A[2]))⇒ Hp+q(k,A[2])

gives rise to the exact sequence

0→ A[2]/(Frob− 1)→ H1(k,A[2])→ Hom(I, A[2])Frob → 0.

The maximal abelian pro-2-quotient of I is isomorphic to Z2, and Frob acts on it
by multiplication by `. Thus Hom(I, A[2]) = A[2] with the natural action of Frob,
so that

Hom(I, A[2])Frob = A[2]Frob = Ker(Frob− 1 : A[2]→ A[2]).

It follows that the dimension of the F2-vector space A[2]/(Frob − 1) equals the
dimension of A[2]Frob, and therefore

dim H1(k,A[2]) = 2 dimA[2]/(Frob− 1). (7)

Let us now return to the general case, where A does not necessarily have good
reduction. If F/k is a quadratic extension, we write δF : AF (k) → H1(k,A[2]) for
the Kummer map of AF . In the rest of this section we summarise some known
results relating δ, δF and the norm map N : A(F )→ A(k).

Lemma 4.1. We have δ(N(A(F ))) = δ(A(k)) ∩ δF (AF (k)) ⊂ H1(k,A[2]).

Proof. Cf. [16, Prop. 7] or [23, Prop. 5.2]. Let χ : Γk → {±1} be the quadratic
character associated to F . We choose σ ∈ Γk such that χ(σ) = −1.

Suppose that x ∈ A(k) and y ∈ AF (k) are such that δ(x) = δF (y). Using the
embedding AF (k) ⊂ A(F ) we can consider y as a point in A(F ) such that σy = −y.
If ȳ ∈ A(k̄) is such that 2ȳ = y, then δF (y) is represented by the cocycle that sends
γ ∈ Γk to

χ(γ) γ ȳ − ȳ = γ ȳ − χ(γ)ȳ ∈ A[2].
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Since δ(x) = δF (y) we can choose x̄ ∈ A(k̄) such that 2x̄ = x and such that

χ(γ) γ ȳ − ȳ = γx̄− x̄.

We deduce that γ(x̄− ȳ) = x̄−χ(γ)ȳ for every γ ∈ Γk. It follows that x̄− ȳ ∈ A(F )
and σ(x̄− ȳ) = x̄+ ȳ. Therefore, x = 2x̄ = N(x̄− ȳ) is a norm from A(F ).

Conversely, suppose that x = N(z) = z + σz for some z ∈ A(F ). Let y = σz − z.
Then y ∈ AF (k) and we claim that δ(x) = δF (y). Choose x̄ ∈ A(k̄) such that 2x̄ = x
and set ȳ = x̄− z. Then 2ȳ = x− 2z = y and we have x̄− ȳ = z and x̄+ ȳ = σz. It
follows that for each γ ∈ Γk we have γ(x̄− ȳ) = x̄− χ(γ)ȳ, and hence

γx̄− x̄ = γ ȳ − χ(γ)ȳ.

This implies δ(x) = δF (y), as desired. �

Lemma 4.2. Let A be a principally polarised abelian variety over k with bad reduc-
tion such that the number of geometric connected components of the Néron model of
A is odd. If F is an unramified quadratic extension of k, then δ(A(k)) = δF (AF (k)).

Proof. Since A is principally polarised, it is isomorphic to its dual abelian variety.
It follows from [19, Prop. 4.2, Prop. 4.3] that the norm map N : A(F ) → A(k) is
surjective. By Lemma 4.1 we see that δ(A(k)) ⊂ δF (AF (k)). Since F is unramified,
the quadratic twist AF also satisfies the assumptions of the lemma, and the same
argument applied to AF gives the opposite inclusion. �

Lemma 4.3. Assume that the residue characteristic of k is not 2. If A is an abelian
variety over k with good reduction and F is a ramified quadratic extension of k, then
δ(A(k)) ∩ δF (AF (k)) = 0.

Proof. In this case we have N(A(F )) = 2A(k). If dim(A) = 1 this is proved in
[23, Lemma 5.5 (ii)], and the same proof works in the general case. It remains to
apply Lemma 4.1. �

5 Selmer group and Cassels–Tate pairing

Let A be an abelian variety over a field k of characteristic zero. Let NS (A) be the
Néron–Severi group of A. The dual abelian variety At represents the functor Pic0

A.
In particular, we have an exact sequence of Γk-modules

0 −→ At(k̄) −→ Pic(A) −→ NS (A) −→ 0. (8)

The antipodal involution ιA = [−1] : A → A induces an action of Z/2 on Pic(A)
which turns (8) into an exact sequence of Z/2-modules. The induced action on
NS (A) is trivial, see [35, p. 119]. The involution ιA induces the involution ιAt on
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At. Since At(k̄) is divisible, we obtain H1(Z/2, At(k̄)) = 0. Thus the long exact
sequence of cohomology gives an exact sequence

0 −→ At[2] −→ Pic(A)[−1]∗ −→ NS (A) −→ 0, (9)

cf. [26, Section 3.2]. It is well known that NS (A) is canonically isomorphic to

the group Hom(A,A
t
)sym of self-dual homomorphisms of abelian varieties A → A

t
,

see, e.g., [25, Thm. 13.7]. Hence NS (A)Γk is canonically isomorphic to the group
Hom(A,At)sym of self-dual k-homomorphisms of abelian varieties A → At, cf. [26,
Remark 3.1]. A polarisation on A is an element λ ∈ NS (A)Γk that comes from an
ample line bundle on A. The polarisation is called principal if the associated mor-
phism ϕλ : A→ At is an isomorphism. Following [26] we shall write cλ for the image
of λ under the differential NS (A)Γk → H1(k,At[2]) attached to (9). In particular,
cλ vanishes if and only if λ lifts to an element of (Pic(A)[−1]∗)Γk ∼= Pic(A)[−1]∗ . For
example, if A is the Jacobian of a smooth projective curve C and λ is the canonical
principal polarisation of A, then cλ is the image of the class of the theta charac-
teristics torsor of C under the isomorphism ϕλ∗ : H1(k,A[2])−̃→H1(k,At[2]), and
vanishes when C carries a rational Weierstrass point; see [26, Thm. 3.9].

Lemma 5.1. Let A be an abelian variety over a field k of characteristic 0 with
polarisation λ. Let K = k(A[2]). Then cλ belongs to the kernel of the restriction
map H1(k,At[2])→ H1(K,At[2]).

Proof. This is a particular case of [26, Lemma 3.6 (a)]. �

Now let k be a number field. For a place v of k let

locv : H1(k,A[2]) −→ H1(kv, A[2])

be the natural restriction map. The 2-Selmer group Sel2(A) ⊂ H1(k,A[2]) is defined
as the set of elements x such that locv(x) ∈ δ(A(kv)) for all places v of k. If v is a
place of good reduction, then (6) allows us to write the restriction map at v as

locv : Sel2(A) −→ A[2]/(Frobv − 1).

For every quadratic extension F/k we have AF [2] = A[2] and hence we may consider
the 2-Selmer groups Sel2(AF ) of all quadratic twists AF as subgroups of H1(k,A[2]).
We have the well known exact sequence

0 −→ A(k)/2 −→ Sel2(A) −→X(A)[2] −→ 0. (10)

The Cassels–Tate pairing is a bilinear pairing

〈, 〉 : X(A)×X(At) −→ Q/Z.

If X(A) is finite, then X(At) is finite too and the Cassels–Tate pairing is non-
degenerate, see [24, Thm. I.6.26]. A polarisation λ on A induces a homomorphism
ϕλ∗ : X(A)→X(At).
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Proposition 5.2. Let A be an abelian variety over a number field k with a prin-
cipal polarisation λ. Then condition (b) of § 2 implies that the Cassels–Tate pair-
ing 〈x, ϕλ∗y〉 on X(A){2} is alternating. In particular, if the 2-primary subgroup
X(A){2} is finite, then the cardinality of X(A)[2] is a square.

Proof. By a result of Poonen and Stoll we know that cλ ∈ Sel2(At), see [28, Cor.
2]. If c′λ is the image of cλ in X(At)[2], then [28, Thm. 5] says that 〈x, ϕλ∗x+c′λ〉 = 0
for any x ∈X(A). Thus it is enough to prove that cλ = 0. Lemma 5.1 implies that
cλ belongs to the image of the inflation map H1(G,At[2])→ H1(k,At[2]), where G =
Gal(k(A[2])/k) is the image of Γk → GL(A[2]). Since λ is a principal polarisation,
ϕλ induces an isomorphism of Γk-modules A[2]−̃→At[2]. Now condition (b) implies
H1(G,At[2]) = H1(G,A[2]) = 0, hence cλ = 0. �

6 Kummer varieties

Let A be an abelian variety over a field k of characteristic different from 2. Let Z
be a k-torsor for the group k-scheme A[2]. Recall that the 2-covering f : Y → A
associated to Z is a k-torsor for A defined as the quotient of A×k Z by the diagonal
action of A[2]. In other words, Y is the twisted form of A by Z with respect to the
action of A[2] by translations. The morphism f is induced by the first projection,
and we have Z = f−1(0). Let L be the étale k-algebra k[Z], so that Z ∼= Spec(L).

Let Ỹ be the blowing-up of Z in Y . The antipodal involution ιA : A→ A induces
the map (ιA, Id) : A ×k Z → A ×k Z which commutes with the action of A[2] and
hence induces an involution ιY : Y → Y . As ιY fixes Z = f−1(0) ⊆ Y it extends to
an involution ιỸ : Ỹ → Ỹ whose fixed point set is precisely the exceptional divisor.
It is easy to see that the quotient X = Kum(Y ) = Ỹ /ιỸ is smooth. We call X the
Kummer variety attached to A and Z. We note that the branch locus of Ỹ → X is
Z ×k Pd−1

k , where d = dim(A).

Let F be an extension of k of degree at most 2. Recall that AF denotes the
quadratic twist of A by F , that is, the abelian variety over k obtained by twisting
A by the quadratic character of F with respect to the action of µ2 via the antipodal
involution ιA. Similarly, Y F denotes the quadratic twist of Y with respect to the
involution ιY , see §1. Since ιA commutes with translations by the elements of A[2],
the quadratic twist Y F of Y is a k-torsor for AF . We have a natural embedding
iF : Z → Y F . Then Ỹ F , defined as the blowing-up of iF (Z) in Y F , is the quadratic
twist of Ỹ by the quadratic character of F with respect to the action of µ2 on Ỹ

via ιỸ . We can also consider Ỹ F as a quadratic twist of the 2-covering Ỹ → X, and
consequently consider every Ỹ F as a (ramified) 2-covering of X. It is clear that Y F ,
and hence X, has a K-point for any extension K/k such that α is in the kernel of
the natural map H1(k,A[2])→ H1(K,AF ).

We now recall a construction from [33, §5]. Let Y be the quotient of Ỹ ×Gm,k by
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the action of µ2 in which the generator −1 ∈ µ2 acts as the multiplication by −1
on Gm and by ιỸ on Ỹ . The fibre of Y over a ∈ Gm,k(k) can be naturally identified
with the quadratic twist Ỹ F where F = k(

√
a). As in [33, §5] one may consider a

smooth compactification Y ⊂ X that fits into the commutaive diagram

Y //

��

X
p

��
Gm,k

// P1
k

Proposition 6.1. Let A =
∏r

i=1 Ai be a product of abelian varieties over k satisfying
conditions (a) and (b) of §2 such that condition (e) holds. Assume in addition that
the class α ∈ H1(k,A[2]) of Z is non-degenerate (see Definition 3.4). Then the
vertical Brauer group of X over P1

k is the image of Br(k) in Br(X ).

Proof. Let t be a coordinate on P1 invertible on Gm,k ⊂ P1
k. According to [33,

Thm. 3] the vertical Brauer group of X is generated by the image of Br(k) and
the pullbacks of the classes (t, c) ∈ Br(k(P1

k)), where c ∈ k∗ becomes a square in
L = k[Z]. By Proposition 3.11 the element c is already a square in k, hence the
result. �

Proposition 6.2. Let k be a number field. Let A =
∏r

i=1Ai be a product of abelian
varieties over k satisfying conditions (a) and (b) of §2, and such that conditions (e)
and (f) hold. Let Z be a k-torsor for A[2] whose class α ∈ H1(k,A[2]) is unramified
at the places w1, . . . , wr and non-degenerate. Let Y be the attached 2-covering of
A and let X = Kum(Y ). If X is everywhere locally soluble, then there exists an
extension F of k of degree at most 2 such that Y F is everywhere locally soluble and
F is split at w1, . . . , wr.

Proof. This is proved in [33, Lemma 6], but we give a detailed proof for the
convenience of the reader. Let w be one of the places w1, . . . , wr. By assumption
α ∈ H1(k,A[2]) goes to zero under the composed map

H1(k,A[2]) −→ H1(kw, A[2]) −→ H1(knr
w , A[2]).

Hence the class [Y ] ∈ H1(k,A)[2] goes to zero under the composed map

H1(k,A) −→ H1(kw, A) −→ H1(knr
w , A). (11)

The second arrow in (11) is the restriction map H1(Γkw , A) → H1(Iw, A), where
Γkw = Gal(kw/kw) and Iw ⊂ Γkw is the inertia subgroup. By the inflation-restriction
sequence we see that the class [Y ×k kw] ∈ H1(Γkw , A) belongs to the subgroup
H1(Γkw/Iw, A(knr

w )). Let A → Spec(Ow) be the Néron model of A ×k kw. By [24,
Prop. I.3.8] we have an isomorphism

H1(Γkw/Iw, A(knr
w )) = H1(Γkw/Iw, π0(A×Ow Fw)),
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where π0(A ×Ow Fw) is the group of connected components of the special fibre of
A → Spec(Ow). Since 2[Y ] = 0, condition (f) implies that [Y ×kkw] = 0, hence Y has
a kw-point Pw ∈ Y (kw). We view Pw as a point (Pw, 1) ∈ Y above 1 ∈ Gm,k(k) ⊂ P1

k.

For each place v of k and for each point Qv ∈ X(kv) there exists an extension
Fv/kv of degree at most 2 such that Qv lifts to Ỹ Fv(kv). Since X is everywhere
locally soluble, we can use this observation to extend the collection of local points
(Pw, 1), w ∈ {w1, . . . , wr}, to an adelic point (Pv) ∈ Y(Ak) ⊆ X (Ak). The fibration
X → P1

k has only two bad fibres at 0 and∞ (both of which are geometrically split).
By Proposition 6.1 the vertical Brauer group of X over P1

k is generated by the image
of Br(k), therefore the desired result can now be obtained by applying the fibration
method. More precisely, one proceeds as in the proof of [7, Thm. A]. (As a more
recent reference one can apply [12, Thm. 9.17] with B = 0 and U = Gm,k, which is
justified in the light of [12, Thm. 9.11].) We obtain that there exists an adelic point
(P ′v) ∈ X (Ak) arbitrarily close to (Pv) such that the image of (P ′v) in P1

k(Ak) is a k-
point. Let us call it a. By the construction of (Pv) we can assume that a ∈ Gm,k(k)
and that a is arbitrarily close to 1 in the w-adic topology for w ∈ {w1, ..., wr}. The
quadratic extension F = k(

√
a) now satisfies the desired properties. �

7 Proof of Theorem 2.3

Suppose that our Kummer variety is X = Kum(Y ), where Y is the k-torsor for A
defined by a class α ∈ H1(k,A[2]). To prove the existence of a k-point on X it
is enough to find a quadratic (or trivial) extension F of k such that α goes to 0
in H1(k,AF ). We write α =

∑r
i=1 αi, where αi ∈ H1(k,Ai[2]) is non-zero for each

i = 1, . . . , r. Let Ki = K(Ai[2]). For each i = 1, . . . , r we fix gi, hi ∈ Gal(Ki/k)
satisfying conditions (c) and (d), respectively, for Ai.

By Proposition 6.2 there is a quadratic extension F of k split at w1, . . . , wr such
that α ∈ Sel2(AF ). Replacing A with AF we can assume without loss of generality
that α ∈ Sel2(A). By doing so we preserve conditions (a), (b), (c), (d), (e) and (g)
that are not affected by quadratic twisting. The extension F/k is split at w1, . . . , wr,
so replacing A by AF also preserves condition (f) for each Ai.

Let S0 be the set of places of k that contains all the Archimedean places and the
places above 2.

Lemma 7.1. Let S be the set of places of k which is the union of S0 and all the places
of bad reduction of A excluding w1, . . . , wr. For each i = 1, . . . , r let αi ∈ Sel2(Ai)
be non-zero. Let β ∈ Sel2(A1) be a non-zero class such that β 6= α1. Then there
exists q ∈ k∗ such that q = (q) is a prime ideal of k with the following properties:

1. all the places in S (including the Archimedean places) are split in F = k(
√
q),

in particular, q /∈ S;
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2. A has good reduction at q;

3. Frobq acts on A1[2] as g1;

4. Frobq acts on Ai[2] as hi, for each i 6= 1;

5. locq(α1) = 0, but locq(β) 6= 0.

Proof. We adapt the arguments from the proof of [22, Prop. 5.1].

Let M = A1[2]⊕2 be the direct sum of two copies of A1[2]. Let

α = α1 + β ∈ H1(k,A1[2])⊕ H1(k,A1[2]) = H1(k,M).

The splitting field of M is K1 and the Galois action on M factors through G1 =
Gal(K1/k). Let (K1)α and (G1)α be as in Definition 3.3. By Corollary 3.8 we can
find a lift γ ∈ (G1)α of g ∈ G1 such that the associated map

fγ : H1(k,M) −→M/(g − 1) =
(
A1[2]/(g − 1)

)
⊕
(
A1[2]/(g − 1)

)
= Z/2⊕ Z/2

sends α to the class (0, 1) ∈ Z/2⊕Z/2. That is, fγ(α1, 0) = 0, whereas fγ(0, β) 6= 0.

The fields (K1)α, K2, . . . , Kr are Galois extensions of k that are linearly disjoint by
condition (e) and Proposition 3.12. Let K be the compositum of (K1)α, K2, . . . , Kr.
This is a Galois extension of k with the Galois group Gal(K/k) = (G1)α ×

∏r
i=2Gi.

Let the modulus m be the formal product of the real places of k, 8 and all the
odd primes in S. Let km be the ray class field associated to the modulus m. This is
an abelian extension of k which is unramified away from m. We claim that km and
K are linearly disjoint over k. Indeed, k′ = km ∩K is a subfield of K that is abelian
over k and unramified at w1, . . . , wr. We note that Gal(K/k)ab = (G1)ab

α ×
∏r

i=2 G
ab
i .

By Corollary 3.9 (applicable in the light of Remark 3.10) we have (G1)ab
α = (G1)ab.

Therefore, Gal(K/k)ab =
∏r

i=1 G
ab
i , so that k′ is contained in the compositum L =

kab
1 . . . kab

r of linearly disjoint abelian extensions kab
1 , . . . , k

ab
r , where, as in §2, kab

i

denotes the maximal abelian subextension of Ki/k.

Write M = kab
1 . . . kab

r−1. The extension kab
r /k is totally ramified at wr by condition

(g), whereas k′/k and M/k are unramified at wr (the latter by the criterion of Néron–
Ogg–Shafarevich). Hence L/M is totally ramified at each prime v of M over wr.
Since M ⊂ k′M ⊂ L, where k′M/M is unramified over v, we must have k′ ⊂ M .
Continuing by induction we prove that k′ = k, as required.

It follows that kmK is a Galois extension of k with the Galois group

Gal(kmK/k) = Gal(km/k)× (G1)α ×
r∏
i=2

Gi.

By Chebotarev density theorem we can find a place q of k such that the correspond-
ing Frobenius element in Gal(kmK/k) is the conjugacy class of (1, γ, h2, . . . , hr).
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Then q is a principal prime ideal with a totally positive generator q ≡ 1 mod 8, hence
q is a square in each completion of k at a prime over 2. We also have q ≡ 1 mod p

for any odd p ∈ S. Thus all the places of S including the Archimedean places are
split in F = k(

√
q). All other conditions are satisfied by construction. �

Proposition 7.2. For any β ∈ Sel2(A1), β 6= 0, β 6= α1, there exists a quadratic
extension F/k unramified at the places of S0 and all the places of bad reduction of
A, such that

Sel2(AF1 ) ⊂ Sel2(A1), α1 ∈ Sel2(AF1 ), β /∈ Sel2(AF1 ), Sel2(AFi ) = Sel2(Ai) for i 6= 1.

Proof. Let F = k(
√
q) be as in Lemma 7.1. Let i ∈ {1, . . . , r}. Since F is split

at each v ∈ S we have AFi ×k kv ∼= Ai ×k kv, so that the Selmer conditions at S
are identical for Ai and AFi . These conditions are also identical for all primes where
both Ai and AFi have good reduction, and this includes the primes wj if j 6= i. At
wi the extension F/k is unramified, and by condition (f) we can apply Lemma 4.2,
so we obtain δ(Ai(kwi)) = δF (AFi (kwi)).

It remains to check the behaviour at q, which is a prime of good reduction for
Ai. If i 6= 1 then Frobq = h, and from condition (d) and formula (7) we deduce
H1(kq, Ai[2]) = 0 so the Selmer conditions for both Ai and AFi at q are vacuous.
This proves that Sel2(AFi ) = Sel2(Ai) whenever i 6= 1.

In the rest of the proof we work with A1. The Selmer conditions for A1 and AF1 are
the same at each place v 6= q. Thus locq(α1) = 0 implies α1 ∈ Sel2(AF1 ). Moreover,
δ(A1(kq)) ∩ δF (AF1 (kq)) = 0 by Lemma 4.3. By property (5) in Lemma 7.1 we have
locq(β) 6= 0, so we conclude that β 6∈ Sel2(AF1 ).

To prove that Sel2(AF1 ) ⊂ Sel2(A1) it is enough to show that for A1 the Selmer
condition at q is implied by the Selmer conditions at the other places of k. Indeed,
let ξ ∈ H1(k,A1[2]) be an element satisfying the Selmer condition at each place
v 6= q, but not necessarily at q. By global reciprocity the sum of invv(β∪ ξ) ∈ 1

2
Z/Z

over all places of k, including the Archimedean places, is 0. Since the images of ξ
and β in H1(kv, A1[2]) belong to δ(A1(kv)) for all v 6= q we obtain invv(β ∪ ξ) = 0.
By the global reciprocity we deduce invq(β ∪ ξ) = 0. The non-zero element locq(β)
generates δ(A1(kq)), because

δ(A1(kq)) = A1[2]/(Frobq − 1) = A1[2]/(g − 1) = Z/2,

where we used (6) and the fact that Frobq acts on A1[2] as the element g of condition
(c). Since A1 is principally polarised, δ(A1(kq)) is a maximal isotropic subspace of
H1(kq, A1[2]) (see the beginning of §4). Therefore invq(β ∪ ξ) = 0 implies that the
image of ξ in H1(kq, A1[2]) lies in δ(A1(kq)). �

End of proof of Theorem 2.3. The extension F/k is unramified at all the places
where A has bad reduction, so replacing A by AF preserves condition (f) for each
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Ai. Conditions (a), (b), (c), (d), (e) and (g) are not affected by quadratic twisting.
By repeated applications of Proposition 7.2 we can find a quadratic extension F/k
such that αi is the only non-zero element in Sel2(AFi ), for all i = 1, . . . , r. The exact
sequence (10) for AFi shows that X(AFi )[2] is of size at most 2. If the 2-primary
subgroup of X(AFi ) is finite, then, by Proposition 5.2, the number of elements in
X(AFi )[2] is a square. Thus X(AFi )[2] = 0, so that the image of αi in H1(k,AFi ) is
0. Then the image of α in H1(k,AF ) is 0, so that Y F ∼= AF and hence Y F (k) 6= ∅.
This implies that Ỹ F (k) 6= ∅ and hence X = Ỹ /ιỸ has a k-point.

It remains to prove that k-points are Zariski dense in X. Since Y F (k) 6= ∅ we have
Y F ' AF , so we may identify X with Kum(AF ). Hence it will suffice to show that
AF (k) is Zariski dense in AF . For each i the exact sequence (10) for AFi shows that
AFi (k)/2 6= 0. Since AFi [2](k) = 0 by condition (a), we see that AFi (k) is infinite.
The neutral connected component of the Zariski closure of AFi (k) in AFi is an abelian
subvariety B ⊂ AFi of positive dimension. By condition (a) we must have B = AFi .
Thus the set AFi (k) is Zariski dense in AFi for each i = 1, . . . , r, so that AF (k) is
Zariski dense in AF . �

Proof of Proposition 1.1. For each i = 1, . . . , n we have the exact sequence

0 −→ Ei(Q)/2 −→ H1(Q, Ei[2]) −→ H1(Q, Ei)[2] −→ 0.

By assumption there is a class αi ∈ H1(Q, Ei[2]) that goes to the class of the torsor
Yi in H1(Q, Ei)[2]. The restriction of αi to H1(R, Ei[2]) is non-zero, hence αi 6= 0.
Recall from §6 that the fixed point set of the antipodal involution ιY on Y =

∏n
i=1 Yi

is Z =
∏n

i=1 Zi, where Zi is a torsor for Ei[2] defined by αi.

Consider the double covering of smooth projective varieties π : Ỹ → X = Ỹ /ιỸ
whose branch locus is Z×k Pn−1

k ⊂ X. Let V ⊂ X be the complement to the branch
locus, and let U = π−1(V ). Then π : U → V is a torsor with the structure group
µ2.

We need to show that a real point M ∈ X(R) path-connected with a rational
point P ∈ X(Q) can be approximated by a point in X(Q). In our assumptions
Z(R) = ∅, hence P ∈ V (Q), M ∈ V (R) and the path connecting P and M is
contained in V (R). There exists a unique extension F of Q of degree [F : Q] ≤ 2
such that P lifts to a Q-point P̃ on the quadratic twist UF . Moreover, M lifts to
an R-point M̃ in UF which is path connected with P̃ .

We note that UF is naturally a subset of the quadratic twist Y F =
∏n

i=1 Y
F
i .

Recall from the introduction that each Y F
i is a torsor for EF

i defined by the image
of αi under the map

H1(Q, Ei[2]) = H1(Q, EF
i [2]) −→ H1(Q, EF

i ).

Now UF (Q) 6= ∅ implies Y F (Q) 6= ∅, thus Y F is a trivial torsor, i.e., Y F ∼=
∏n

i=1 E
F
i .

Therefore αi goes to zero in H1(Q, EF
i ), so αi is a non-zero element of EF

i (Q)/2.
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Thus EF
i has a Q-point not divisible by 2. By assumption EF

i [2](Q) = Ei[2](Q) = 0,
so this point has infinite order in EF

i . It follows that Q-points of EF
i are dense in the

neutral connected component of EF
i (R) for each i = 1, . . . , n. But Y F ∼=

∏n
i=1E

F
i ,

so Q-points are dense in the connected component of Y F (R) which contains P̃ and
M̃ . Hence we can find a Q-point on X = Kum(Y ) = Kum(Y F ) which is as close as
we wish to M . �
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d’Ulm, Paris 75005, France

harpaz@dma.ens.fr

28


	Introduction
	Main results
	Galois theory of finite torsors
	Kummer map over a local field
	Selmer group and Cassels–Tate pairing
	Kummer varieties
	Proof of Theorem 2.3

