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7.1 Factorization homology with support7.1 Factorization homology with support 115
7.2 En-suspension and En-loops7.2 En-suspension and En-loops 115
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1. Introduction

In the field of algebra we often encounter objects described as sets, equipped
with certain operations, which are required in turn to satisfy certain axioms. For
example, a monoid is given by a set with one binary operations, which is associative
and unital. When every element acts invertibly we say that the monoid is a group.
In modern mathematics it is very useful to consider such algebraic structures on
objects more general than sets. For example, if we replace sets by smooth manifolds
we get the notion of a Lie group. If instead we consider algebraic varieties we get
algebraic groups. In order to properly define such notions it is useful to describe
the algebraic structure diagrammatically, that is, as certain arrows in the category
we choose to work in. For example, a binary structure on a object X can be
represented by an arrow X ×X Ð→ X. This makes sense whether X is a set, an
algebraic variety, or something more exotic, as long as we know what the product
of two objects are. This product can be something that behaves quite differently
from the usual cartesian product of sets. For example, if we work in the category
of abelian groups, and take the product to be the tensor product operation, then a
monoid object will now be a ring.

To make this approach work we need a convenient way to encode algebraic
structures that is independent of the specific type of objects in which we want to
realize it. A successful framework for doing so is by using the notion of an operad.
An operad encodes the information of an algebraic structure by specifying in a
suitable way what are the operations, and what rules they are required to follow.
For example, the operad that encodes the structure of a monoid is usually called
the associative operad. The operad that encodes the structure of a commutative
monoid is called the commutative operad.

In the realm of homotopy theory this approach encounters a new subtlety. This
is because operads encode the algebraic structure using strict rules that the ope-
rations must obey to (such as associativity), but when dealing with objects with
a homotopical nature (such as spaces, chain complexes, or even categories), we
actually need to let our algebraic axioms hold only up to homotopy, in a suitable
delicate sense where all homotopies need to be specified compatibly (this is usu-
ally called up to coherent homotopy). For example, consider a topological space
X and let x ∈ X be a point. The fundamental group of X is defined to be the
group whose elements are homotopy classes of paths in X from x to itself, where
the group operation is given by concatenation. This invariant is very important in
algebraic topology. However, to some extent what is more interesting is the object
that you get without identifying homotopical paths, that is, the topological space of
all paths from x to x. We would like to say that this is a topological group with the
operation of concatenation. Alas, a direct examination shows that concatenation
is not, strictly speaking, associative. It turns out, however, that it is associative up
to (coherent) homotopy.

In order to encode algebraic structures in which the rules only hold up to cohe-
rent homotopy one can use the homotopy theoretical avatar of operads, which are
called ∞-operads. In the passage from operads to ∞-operads some new phenomena
arises. One such phenomenon, which is the center of the course, is the fact that
commutativity now comes in many flavors. More precisely, between the classical
associative and commutative operads there is now an infinite tower of intermediate
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operads

Ass = E1,E2,E3, ....

which ”converge” in a suitable sense, to the commutative operad E∞ = Com. The
operad En is known as the little n-cube operad. This hierarchy of commutativity
levels can already be seen when considering monoid structures on categories (which
have a certain limited level of homotopyness): between the notion of a monoidal
category (which is an E1-structure) and a symmetric monoidal category (which is
an E∞-structure) there is an an intermediate option known as a braided monoidal
structure, which corresponds to an E2-structure. In spaces, the typical examples of
En-monoids are the n-fold loop spaces. May’s recognition principle (see also work
of Boardman and Vogt) states that these are exactly the group-like En-monoids in
spaces.

We will start the course by recalling some homotopy theoretical preliminaries
surrounding the notion of ∞-categories. We will then discuss symmetric monoi-
dal ∞-categories and ∞-operads, setting up the stage for the study of algebraic
structures in a homotopy theoretical setting. We will then introduce and study the
main object of interest in this course, the little n-cube operad. We will prove a key
result, known as Dunn’s additivity theorem, which roughly states that specifying an
En-structure is equivalent to specifying n commuting E1-structures.

One of the interesting features of En-algebras are their relations to the topology
of n-manifolds. In particular, given an En-algebra A with a suitable equivariance
structure (taking values in a sufficiently nice ∞-category) and an n-manifold M
with a corresponding tangential structure, we may integrate A along M to obtain
an object ∫M A, known as the factorization homology of M with coefficients in A.
We may think of these construction as either producing homological invariants of
manifolds out of En-algebras, or as producing homological invariants of En-algebras
out of manifolds: both point of views yield interesting insights. In addition, in
the former point of view the resulting homology theories for manifolds can be
characterized axiomatically, as we will describe towards the end of the course,
following the approach of D. Ayala and J. Francis.

We note that any abelian group A can be considered as an En-monoid in spaces.
The factorization homology ∫M A is then simply the chain complex C∗(M,A) with
coefficients in A, whose homologies are H∗(M,A). If we replace A by a general
En-monoid is spaces X then we get a nonabelian generalization of classical homo-
logy. When X is group-like, May’s recognition principle gives that X ≃ ΩnY for
some space Y . In this case, Lurie’s nonabelian Poincaré duality states that ∫M X is
naturally equivalent to the mapping space from M to Y , that which can be consi-
dered as a generalization of cohomology to nonabelian coefficients. We will outline
the mathematics needed to establish this theorem in the final parts of the course,
following the ideas of Lurie.

The passage from X to its n-fold delooping Y can itself be considered as a
variant of factorization homology: it is obtained by taking the reduced factorization
homology of X along the n-sphere. This operation can be done for En-algebras
taking values in any nice ∞-category C, as long as they admit an augmentation
(which is what makes reduced homology make sense). This procedure takes an
augmented En-algebra and yields an augmented En-coalgebra. On the other hand,
given an En-coalgebra, we may take its reduced factorization cohomology along
the n-sphere and obtain again an En-algebra. In spaces this reproduces the looping



4 YONATAN HARPAZ

delooping procedure, where we note that every space is canonically an En-comonoid
for every n. In general, this delooping process is closely related to Koszul duality
for En-algebras. Given a closed n-manifold M one then obtains a canonical map
from the factorization homology of A along M to the factorization cohomology
of the “n-fold delooping” of A along M . In sufficiently nice cases this map is an
equivalence, yielding Poincaré-Koszul duality. We will describe these ideas without
proof in the last part of the course, following recent work of D. Ayala and J. Francis.

2. Preliminaries on ∞-categories

The point of departure of modern algebraic topology from traditional point-set
topology is arguably the introduction of homotopies between maps. This has some
remarkable consequences: it yields a notion of a homotopy equivalence between to-
pological spaces, leads to the focus on invariants which respect this new equivalence
relation, such as homotopy groups and homology groups, and demands modifying
various non-homotopical construction to accommodate homotopy. This last point
may seem surprising. If the notion of a homotopy between maps is natural from a
topological point of view, how come many natural topological constructions do not
respect homotopy equivalence? for example, if f ∶ X Ð→ Y is a continuous map
and y ∈ Y is a point, then the fiber f−1(y) ⊂X is not a homotopy invariant notion:
it is not stable under a continuous deformation of f or y, nor under replacing X
or Y by homotopy equivalent spaces. A modern answer to this question is that
the introduction of homotopies between maps means that we are no longer working
in the category of topological spaces we thought we were working in. Indeed, this
would explain why some constructions don’t work anymore: these constructions
are usually categorical, given by various limits and colimits, and hence should not
be expected to make sense once the category we are working with changes.

But then in what category are we working in? One potential answer is that
we should consider the homotopy category of spaces. This is the category whose
objects are spaces and whose morphisms are homotopy classes of maps. This point
of view is powerful, but has some serious drawbacks. Besides the general feeling
that some crucial information got lost (what about homotopies between homotopies,
homotopies between homotopies between homotopies, and so on?), working with
the homotopy category does not explain the modifications that various categories
constructions need in order to become homotopical. For example, the notion of
the fiber f−1(y) of a map f ∶ X Ð→ Y is replaced in algebraic topology with
the notion of the homotopy fiber of f , which is the space of pairs (x, η) where
x is a point of X and η is a continuous path in Y from f(x) to y. This is an
example of switching from a limit to its corresponding homotopy limit, and yields a
satisfyingly homotopy invariant replacement. It is not, however, the corresponding
limit in the homotopy category of spaces. In fact, the homotopy category of spaces
does not admit limits and colimits in general! If we choose the homotopy category
as our categorical framework when studying spaces, then we will need to accept
that the vast majority of our homotopically modified constructions, including all
homotopy limits and colimits, are not determined by the underlying categorical
structure, and thus need to be considered as additional structure. This is of course
a valid approach, which in fact leads to Grothendieck’s theory of derivators, though
conceptually it is not very satisfying, at least if we wish to hold on to the idea that
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the homotopy versions of our categorical constructions should be justified by some
manifest universality.

We are hence led to ask the following: is there a category in which we can consider
topological spaces in such a way that homotopy limits and colimits will become
limits and colimits with respect to this category? The answer to this question is
yes - if we accept to expand what we mean by a category. Indeed, homotopies
between maps are something that looks kind of familiar from a categorical point of
view: it looks like morphisms between maps. Indeed, we can concatenate them, and
there is a trivial homotopy from a map to itself. It hence seems that we have a kind
of a categorical structure stacked on itself: we have objects (spaces), morphisms
(continuous maps) and then morphisms between morphisms (homotopies). This
seems to just almost work, but then fails at a surprising point: concatenation of
homotopies is not, strictly speaking, associative (nor unital). But it almost is. It
is associative and unital up to homotopy between homotopies. A traditional way
to solve this problem would then be to replace homotopies by homotopy classes of
homotopies. This indeed yields something that looks very categorical (it is in fact
a 2-category in which all 2-arrows are invertible). Unfortunately, this “enhanced
homotopy category”, though keeping more of the information available than the
homotopy category, suffers from the exact same problem: it does not provide a
universal justification for homotopy limits and colimits. In fact, inspecting this
solution we may see that it is very similar to the solution of taking the homotopy
category. Indeed, up to some point-set topology subtleties we can describe the
homotopy category as obtained by remembering from each mapping space its set
of path components, while the extended version as obtained by remembering from
each mapping space its fundamental groupoid.

At this point it is starting to be clear that in order to obtain a satisfying solution
we would need to remember the information “all the way up”. In other words, we
need to have some kind of a categorical creature in which we have objects, mor-
phisms, (invertible) morphisms between morphisms, (invertible) morphisms bet-
ween morphisms between morphisms etc. The informal name for such a creature is
an (∞,1)-category. Here the ∞ symbols stands for the fact that we have morphisms
in all dimensions, and the 1 stands for the fact that the morphisms above dimension
1 are invertible (in a suitable sense). To make this idea precise is not trivial, and
took the mathematical community a few decades to develop. Historically, several
potential models for the notion of (∞,1)-category were suggested, and after a while
they were all shown to be equivalent to one another. In this course we will mostly
make use of the model developed by Joyal and Lurie, and which appears in the
literature as either quasi-category or ∞-category. In these notes we will use the
latter name.

2.1. Two models for (∞,1)-categories. Before we discuss ∞-categories let us
consider a more basic idea. Instead of inventing a whole new notion of a higher
category, why not use an already existing extension of category theory, the notion
of an enriched category? In this setup we consider categorical structures in which
the set morphisms is replaced by some other type of object. An example relevant
to our story will be to take our enrichment in the category Set∆ of simplicial sets.
Recall that a simplicial category C consists of

- a set of objects Ob(C);
- for every two objects x, y a simplicial set MapC(x, y) ∈ Set∆;
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- for every three objects x, y, z a composition rule

MapC(x, y) ×MapC(y, z) Ð→MapC(x, z)
which satisfies the associativity axiom.

- for every x ∈ Ob(C) a designated vertex Idx ∈ MapC(x,x), which is a two-sided
unit with respect to composition.

If x is an object of C then we will usually write x ∈ C as a short for x ∈ Ob(C). We

note that every simplicial category C has an underlying ordinary category C, whose
objects are the same as those of C and such that Hom

C
(x, y) is the set of vertices

of MapC(x, y).

Definition 2.1.1. A simplicial functor CÐ→D between simplicial categories con-
sists of a map of sets ϕ ∶ Ob(C) Ð→ Ob(D), together with maps MapC(x, y) Ð→
MapD(ϕ(x), ϕ(y)) for every x, y ∈ C, which are compatible with the composition
operation and preserve identity vertices.

Remark 2.1.2. There is also an associated notion of a simplicial natural transfor-
mation (though we will not make much use of it in this course): if ϕ,ψ ∶ CÐ→D are
two simplicial functors then a simplicial natural transformation τ ∶ ϕ⇒ ψ consists
of a map τx ∶ ϕ(x) Ð→ ψ(x) in the underlying category C for every x ∈ C such that
for every x, y ∈ C the composed map

MapC(x, y) Ð→MapD(ϕ(x), ϕ(y))
(τy)∗Ð→ MapD(ϕ(x), ψ(y))

and the composed map

MapC(x, y) Ð→MapD(ψ(x), ψ(y)) (τX)∗Ð→ MapD(ϕ(x), ψ(y))
coincide.

To see how this might work as a model for (∞,1)-categories let us look again
at our motivating example of spaces. Given two spaces X,Y and two maps f, g ∶
X Ð→ Y , a homotopy from f to g is by definition a map of the form [0,1]×X Ð→ Y
which restricts to f on {0} ×X and to g on {1} ×X. Similarly, homotopy between
homotopies can be expressed as a map D2 × X Ð→ Y (where D2 is the 2-disk)
and so on for higher homotopies. Having in mind simplicial sets we may suggest
the following manner to efficiently encode all this information at once. Given two
topological spaces X,Y let us denote by Map(X,Y ) ∈ Set∆ the simplicial set whose
n-simplices are given by

Map(X,Y )n ∶= HomTop(∣∆n∣ ×X,Y )
where ∣∆n∣ is the geometric realization of the n-simplex. We then see that the ver-
tices of Map(X,Y ) are the continuous maps X Ð→ Y and the edges in Map(X,Y )
are exactly the homotopies. Similarly, any homotopy between homotopies can be
encoded by a suitable 2-simpelx ∆2 ×X Ð→ Y , and so on for higher homotopies.
Generalizing from our example of interest we may consider the idea that simplicial
categories can be used as a model for the notion of (∞,1)-categories. In turns out
that indeed any (∞,1)-category can be represented by a simplicial category. This
simplicial category will however not be unique, and in order to use this as a model we
have to understand when two simplicial categories model the same (∞,1)-category.
Given a simplicial category C, let us denote by Ho(C) the ordinary category whose
objects are the objects of C and such that HomHo(C)(X,Y ) ∶= π0∣MapC(X,Y )∣.
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Definition 2.1.3. Let ϕ ∶ C Ð→ D be a simplicial functor between simplicial
categories. We will say that ϕ is a Dwyer-Kan equivalence if it satisfies the following
two conditions:

(1) For every x, y ∈ Ob(C) the map MapC(x, y) Ð→ MapD(ϕ(x), ϕ(y)) is a weak
equivalence of simplicial sets.

(2) The induced functor Ho(C) Ð→ Ho(D) is an equivalence of categories.

We will say that two simplcial categories C,D are Dwyer-Kan equivalent if they
can be connected by a zig-zag of Dwyer-Kan equivalences.

Two simplicial categories should be considered as modeling the same (∞,1)-
category precisely when they are Dwyer-Kan equivalent. We can then say that
(∞,1)-categories are modeled by simplicial categories up to Dwyer-Kan equivalence.
This model has the advantage of behaving very much like ordinary categories,
and so many categorical arguments pass through without change. However, while
simplicial categories are useful to encode and construct individual (∞,1)-categories,
they are not as convenient when it comes to encoding functors between (∞,1)-
categories. Informally speaking, if ϕ ∶ CÐ→D is a functor between (∞,1)-categories

then we should be able to find simplicial categories C̃, D̃ which model C and D such
that ϕ can be represented as a simplicial functor ϕ̃ ∶ C̃ Ð→ D̃. However, such an ϕ̃
will not necessarily exist for every choice of simplicial categories modelling C and D.
In particular, given a fixed pair of simplicial categories, it is not easy to understand
directly what are the functors between the corresponding (∞,1)-categories, not to
mention that we would like to have this collection of functors organized into an
(∞,1)-category as well (much like for ordinary categories).

We shall now present another model for the theory of (∞,1)-categories, which has
the advantage of being particularly amenable to the formation of functor categories.
This amenability will also make this model very well suited for defining the notions
of limits and colimits, which will finally give us a universal justification to the
add-hoc constructions of homotopy limits and colimits in spaces. Recall that for
0 ≤ i ≤ n the i’th horn of ∆n is the subsimplicial set Λni ⊆ ∆n spanned by all the
(n − 1)-faces of ∆n which contain the vertex i.

Definition 2.1.4. An ∞-category is a simplicial set C with the following property:
for every 0 < i < n the dotted extension exists in any diagram of the form

(2.1) Λni� _

��

// C

∆n

>>~
~

~
~

To obtain a preliminary intuition as to why Definition 2.1.42.1.4 makes sense let us
explain how ordinary categories can be interpreted as ∞-categories via their nerves.

Definition 2.1.5. Let I be a small category. We define the nerve of I to be the
simplicial set N(I) given by

(2.2) N(I)n = HomCat([n], I)
where [n] is the category corresponding to the poset (partially ordered set) {0, ..., n}
with its usual linear order.

We invite the reader whose is not familiar with the following fact to prove it
themselves:



8 YONATAN HARPAZ

Exercise 2.1.6. Prove that the nerve functor N ∶ Cat Ð→ Set∆ is fully-faitful and
its essential image consists of those simplicial sets for which every diagram as (2.12.1)
admits a unique dotted extension.

The above exercise tells us that we can think of ordinary categories as a par-
ticular type of simplicial sets, and furthermore that this type of simplicial sets is
characterized by a certain unique lifting condition. The notion of an ∞-category is
then obtained by removing the uniqueness part of this condition.

Given an ∞-category C we will call the vertices of C its objects, and if we have
an edge e ∶ ∆1 Ð→ C then we will call it a morphism from x ∶= e∣∆{0} to y ∶= e∣∆{1} ,
in which case we will also use diagramatic notation and write this edge as an arrow
xÐ→ y. For a subset S ⊆ {0, ..., n} we use the notation ∆S ⊆ ∆n to denote the ∣S∣-
dimensional face of ∆n whose vertices are S. Given an object x ∈ C we will consider
the degenerate edge s(x) on x as the identity Idx ∶ x Ð→ x. Given a 2-simplex
σ ∶ ∆2 Ð→ C we will depict it diagramatically as

(2.3) y
g

��????????

x

f
??�������� h // z

where x, y, z are the vertices obtained by restricting σ to ∆{0},∆{1} and ∆{2}

respectively, and f, g, h are the morphisms obtained by restricting σ to ∆{0,1},∆{1,2}

and ∆{0,2} respectively. We can think of σ as designating a homotopy from g ○ f
to h. However, it is important to note that in an ∞-category there isn’t a specific
edge which is g ○ f . Instead, we may consider any triangle of the form (2.32.3) to
be exhibiting h as the composition of f and g. In particular, there could be two
different triangles σ,σ′ ∶ ∆2 Ð→ C of the form (2.32.3), with different edges σ∣∆{0,2} =
h ≠ h′ = σ′

∆{0,2} . However, in this case the edges h and h′ will be homotopic in

a suitable sense: indeed, let τ ∶ ∆2 Ð→ ∆1 Ð→ C be the degenerate triangle such
that τ ∣∆{1,2} = τ ∣∆{0,2} = f and τ ∣∆{0,1} = s(x) is degenerate on x. The triangles σ,σ′

and τ then determine a map ρ ∶ Λ2
3 Ð→ C such that ρ∣∆{0,1,2} = τ , ρ∣∆{0,2,3} = σ and

ρ∣∆{1,2,3} = σ′. Since C is an ∞-category the map ρ extends to a map ρ̃ ∶ ∆3 Ð→ C.
The 2-simplex ρ̃∣∆{0,1,3} then determines a diagram in C of the form

(2.4) x
h′

  @@@@@@@

x

Id
~~~~~~~

~~~~~~~ h // z

which we will consider as a homotopy from h′ to h. In this sense, while the compo-
sition of two morphisms in an ∞-category is not strictly speaking uniquely defined,
it is uniquely defined up to homotopy. Elaborating on this argument one can show
that the collection of compositions of f and g can be organized into a simplicial set
which is a contractible Kan complex (see Remark 2.3.112.3.11 below). We may thus say
that composition of two morphisms in an ∞-category is essentially defined. This
essentially defined composition is associative in the following sense: if f ∶ x Ð→ y,
g ∶ y Ð→ z and h ∶ z Ð→ w are three arrows in C then we can compose the three of
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them in two different ways. We can either choose triangles of the form

(2.5) y
g

��@@@@@@@@

x

f
>>~~~~~~~~ t //

s

  AAAAAAAA z
h

~~}}}}}}}}

w

exhibiting t as the composition of f and g and s as the composition of t and h, or
choose triangles

(2.6) y
g

��@@@@@@@@

t′

��

x

f
>>~~~~~~~~

s′

  AAAAAAAA z
h

~~}}}}}}}}

w

exhibiting t′ as the composition of g and h and s′ as the composition of f and
t′. We claim that in this case s is homotopic to s′. To see this, it will suffice
by the argument before to show that there exists a triangle in C exhibiting s as
the composition of f and t′. To find such a triangle we note that the two triangles
in (2.52.5) together with the right triangle in (2.62.6) together determine a map ρ ∶ Λ3

2 Ð→
C. Since C is an ∞-category we can extend ρ to ρ ∶ ∆3 Ð→ C. The triangle ρ∣∆{0,1,3}

then exhibits s as the composition of f and t′.
The above considerations concerning the essential well-definition and associati-

vity up to homotopy of composition of arrows in an ∞-category have in particular
the following outcome: we can define an ordinary category Ho(C) whose objects
are the vertices of C and such that HomHo(C)(x, y) is the set of homotopy classes of
arrows from x to y. This category is known as the homotopy category of C. There
is an evident map CÐ→ N(Ho(C)) which sends each arrow to its homotopy class.

Definition 2.1.7. Let C be an ∞-category and f ∶ xÐ→ y an arrow in C. We will
say that f is invertible if there exists an arrow g ∶ y Ð→ x and triangles as in (2.32.3)
exhibiting Idx as the composition of f and g and Idy as the composition of g and f .
In this case we will also say that f is an equivalence in C from x to y. We will say
that an object x ∈ C is equivalent to y ∈ C if there exists an invertible arrow from
x to y. In this case we will write x ∼ y. We note that, essentially by the definition
of Ho(C), an arrow is invertible if and only if it maps to an isomorphism in Ho(C),
and two objects are equivalent if and only if they become isomorphic in Ho(C).

Definition 2.1.8. Let X,Y be two simplicial sets. We will denote by Y X the
simplicial set such that

(Y X)n = HomSet∆
(∆n ×X,Y ).

We will call Y X the mapping simplicial set from X to Y .

Proposition 2.1.9 (Joyal). If C is an ∞-category then for every K ∈ Set∆ the
mapping simplicial set CK is again an ∞-category.
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We will think of CK as the ∞-category of K-indexed diagrams in C. If K is
also an ∞-category then we will also call CK the ∞-category of functors from K
to C. When we want to emphasize this point of view we will denote CK also by
Fun(K,C).

Definition 2.1.10. Let ϕ ∶ C Ð→ D be a map of ∞-categories. We will say that
ϕ is an equivalence if there exists a ψ ∶ D Ð→ C such that ψ ○ ϕ is equivalent to
IdC in the ∞-category Fun(C,C) and ϕ ○ ψ is equivalent to IdD in the ∞-category
Fun(D,D).

Definition 2.1.11. We will say that an ∞-category C is an ∞-groupoid if every
arrow in C is invertible.

Theorem 2.1.12 (Joyal). Let C be an ∞-category. Then C is an ∞-groupoid if
and only if it is a Kan complex, that is, if and only if the dotted extension exists in
any diagram of the form (2.12.1) where 0 ≤ i ≤ n.

We will give a proof of Theorem 2.1.122.1.12 in §2.32.3 below.

Definition 2.1.13. Given an ∞-category C we will denote by C≃ ⊆ C the subsim-
plicial set such that an n-simplex σ ∶ ∆n Ð→ C belongs to C≃ if and only if the edge
σ∣∆{i,j} is invertible for every i, j ∈ {0, ..., n}. Then C≃ is also an ∞-category, and
every morphism in C is invertible, i.e., C≃ is an ∞-groupoid. By construction, C≃ is
the maximal sub-∞-groupoid of C, that is, it contains any other subsimplicial set
of C which is an ∞-groupoid.

Remark 2.1.14. By Theorem 2.1.122.1.12 the ∞-groupoid C≃ is a Kan complex and con-
tains any other Kan subcomplex of C.

Remark 2.1.15. Given a topological space X, its singular simplicial set Sing(X) is
Kan, and is hence an ∞-groupoid by Theorem 2.1.122.1.12. We may thus call Sing(X) the
fundamental ∞-groupoid of X, an invariant which refines the classical fundamental
groupoid of X. The counit map ∣Sing(X)∣ Ð→ X is a weak homotopy equivalence
of spaces, and so the fundamental groupoid captures all the information on X up
to weak homotopy equivalence. On the other hand, if Z is a Kan complex then the
unit map Z Ð→ Sing ∣Z ∣ is an equivalence of ∞-categories (Definition 2.1.102.1.10) and
so every Kan complex is (canonically) equivalent to the fundamental groupoid of a
space. Elaborating on this argument we see that the notion of ∞-groupoids is es-
sentially equivalent to that of topological spaces up to weak homotopy equivalence.
Alternatively, if we restrict attention to CW complexes, then every weak homotopy
equivalence is a homotopy equivalence, and so we may say that the notion of ∞-
groupoid is equivalent to that of a CW-complex up to homotopy equivalence. The
idea that spaces are essentially ∞-categories in which every morphism is inverti-
ble is known as Grothendieck’s homotopy hypothesis, and is one of the conceptual
pillars of higher category theory.

2.2. Constructions of ∞-categories. In this section we will discuss two ways to
construct an ∞-category starting from from classical data. The first is via forming
coherent nerves of simplicial categories. This operation can also be used to show
the equivalence between the model of simplicial categories and that of ∞-categories.

Definition 2.2.1. For every n ≥ 0 let us denote by C(∆n) the simplicial category
whose objects are the numbers 0, ..., n and whose mapping simplicial sets are given
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by MapC(∆n)(i, j) = N(P(i, j)) where P(i, j) ⊆ Sub({0, ..., n}) is the poset of sub-

sets of {0, ..., n} whose minimal element is i and whose maximal element is j (in
particular P(i, j) = ∅ if i > j). The composition rule is induced by the poset map
P(i, j) ×P(j, k) Ð→ P(i, k) which takes (A,B) to A ∪B.

The association [n] ↦ C(∆n) determines a functor from the category ∆op to the
category Cat∆ of simplicial categories. Since Set∆ = Fun(∆op,Set) is a category of
presheaves (of sets), the functor C ∶ ∆Ð→ Cat∆ admits a unique colimit preserving
extension

C ∶ Set∆ Ð→ Cat∆ C(X) = colim
∆n→X

C(∆n)

where the colimit is taken of the category of simplices of X. By equally formal
arguments the functor C admits a right adjoint :

(2.7) N ∶ Cat∆ Ð→ Set∆ N(C)n = HomCat∆
(C(∆n),C).

we note that we used the same notation in (2.72.7) as we did for the nerve functor of
Definition 2.1.52.1.5: indeed if C is a simplicial category whose mapping simplicial sets
are discrete (i.e., C is a actually an ordinary category) then (2.72.7) coincides with (2.22.2)
and we may hence consider (2.72.7) as an extension of the nerve functor from ordinary
to simplicial categories. The functor (2.72.7) is also known as the coherent nerve
functor.

Definition 2.2.2. Let us say that a simplicial category C is locally Kan if for every
X,Y ∈ C the mapping simplicial set MapC(X,Y ) is Kan.

Remark 2.2.3. Recall that in simplicial sets we have a well-behaved Kan replace-
ment functor

Ex∞ ∶ Set∆ Ð→ Set∆

which sends every simplicial set X to a Kan complex Ex∞(X) equipped with a

natural weak equivalence X
≃Ð→ Ex∞(X). One can then check that the functor

Ex∞ preserves cartesian products, and so if we have a simplicial category C then
we can apply it to all mapping objects in C. This yields a locally Kan simplicial
category CEx∞ together with a Dwyer-Kan equivalence CÐ→ CEx∞ .

Theorem 2.2.4.

(1) If C is a locally Kan simplicial category then N(C) is an ∞-category.
(2) The functor N sends Dwyer-Kan equivalences between locally Kan simplicial

categories to equivalence of ∞-categories, while the functor C sends equivalences
of ∞-categories to Dwyer-Kan equivalences.

(3) If C is a locally Kan simplicial category then the counit map C(N(C)) Ð→ C is
a Dwyer-Kan equivalence.

(4) If D is an ∞-category then the natural map D Ð→ N(C(D)Ex∞) is an equiva-
lence of ∞-categories.

We may summarize Theorem 2.2.42.2.4 by saying that the functors C ↦ N(C) and
D ↦ C(D)Ex∞ determine an equivalence between the notion of locally Kan sim-
plicial categories (up to Dwyer-Kan equivalence) and that of ∞-categories (up to
equivalence of ∞-categories). This equivalence can in fact be set up in the more
powerful framework of Quillen model categories.
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Definition 2.2.5. We will say that a map K Ð→ L of simplicial sets is a categorical
equivalence if for every ∞-category C the induced map

(CL)≃ Ð→ (CK)≃

is an equivalence of Kan complexes.

Theorem 2.2.6.

[Bergner] (1) There exists a model structure on Cat∆, which we will call the Dwyer-Kan
model structure, whose weak equivalences are the Dwyer-Kan equivalences and
whose fibrant objects are the locally Kan simplicial categories.

[Joyal] (2) There exists a model structure on Set∆, which we will call the categorical mo-
del structure, whose weak equivalences are the categorical equivalences, whose
cofibrations are the levelwise injective maps and whose fibrant objects are the
∞-categories.

[Joyal-Lurie] (3) The adjunction C ⊣ N is a Quillen equivalence between these two model struc-
tures.

We remark that the fibrations in the categorical model structure, which are
called categorical fibrations are not easy to describe in general, but become easy to
describe when the codomain is an ∞-category.

Definition 2.2.7. Let p ∶X Ð→ Y be a map of simplicial sets. We will say that p is
an inner fibration if it has the right lifting property with respect to horn inclusions
of the form Λin ⊆ ∆n with 0 < i < n, that is, if the dotted lift exists in any diagram
of the form

(2.8) Λni� _

��

// X

p

��
∆n

>>|
|

|
|

// Y

with 0 ≤ i < n.

Remark 2.2.8. The map X Ð→ ∆0 is an inner fibration if and only if X is an
∞-category.

Proposition 2.2.9 (Joyal). Let ϕ ∶ CÐ→D be a map between ∞-categories. Then
ϕ is a fibration in the categorical model structure if and only if it is an inner fibration
and in addition for every x ∈ C and any invertible arrow f ∶ ϕ(x) Ð→ y in D there

exists an invertible arrow f̃ ∶ xÐ→ ỹ in C such that ϕ(f̃) = f .

Let us now go back to our motivating question and show that we can describe
spaces as forming a suitable ∞-category. Recall from earlier courses that we have
two equivalent models for the homotopy theory of spaces (with homotopy equi-
valences). The first consists of a model structure on the category Top of spaces
whose weak equivalences are the weak homotopy equivalences, whose cofibrant ob-
jects are the CW-complexes, and where all objects are fibrant. The second consists
of the Kan-Quillen model structure on the category Set∆ of simplicial sets whose
weak equivalences are the maps which induce a weak equivalence on geometric re-
alizations, whose fibrant objects are the Kan complexes, and where all objects are
cofibrant. These two model categories are related via the Quillen equivalence

∣ − ∣ ∶ Set∆
Ð→
⊥←Ð Top ∶ Sing .
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We may hence choose any one of these models in order to construct our ∞-category
of spaces. If we start from Top then we can do this by defining the simplicial
category CW whose

- objects are the CW-complexes;
- for two CW-complexes X,Y the simplicial mapping set MapCW(X,Y ) is given

by MapCW(X,Y )n = HomTop(∣∆n∣ ×X,Y ).
On the other hand, if we start from the Kan-Quillen model structure on simplcial
sets then we can consider instead the simplicial category Kan whose

- objects are the Kan complexes;
- for two Kan complexes X,Y the simplicial mapping set MapKan(X,Y ) is given

by MapKan(X,Y )n = HomSet∆
(∆n ×X,Y ).

Both CW and Kan are locally Kan simplicial categories. Furthermore, the functors
Sing and ∣ − ∣ are both Dwyer-Kan equivalence

Sing ∶ CW ≃Ð→Kan ∣ − ∣ ∶ Kan
≃Ð→ CW,

and so it makes essentially no difference which option we choose for our model. In
modern homotopy theory, it is often customary to take Kan.

Definition 2.2.10. We define the ∞-category of spaces

S ∶= N(Kan)
to be the coherent nerve of the simplicial category of Kan complexes.

Remark 2.2.11. Technically speaking, S is a large ∞-category, that is the set of
n-simplices Sn is a proper class. However, this ∞-category is locally small, that is,
its mapping spaces are all small.

In a similar fashion we can now define the ∞-category Cat∞ of (small) ∞-
categories. Let QC be the simplicial category whose objects are the ∞-categories
and such that for each C,D ∈ QC we have MapQC(X,Y ) = Fun(X,Y )≃, the maximal
∞-groupoid of Fun(X,Y ). Then QC is locally Kan by Theorem 2.1.122.1.12, and we
define

Cat∞ ∶= N(QC)
to be its coherent nerve. We will refer to Cat∞ as the ∞-category of ∞-categories. If
C,D are ∞-categories then we will usually denote MapQC(C,D) simply by Map(C,D).

We will now discuss a second major source of ∞-categories, which arise as locali-
zations of ordinary categories by a collection of weak equivalences. More generally,
one can localize ∞-categories by a collection of edges. Let us recall the definition.

Definition 2.2.12. Let C be an ∞-category and let W be a collection of arrows
in C. Let f ∶ C Ð→ D be a functor which sends every arrow in W to an invertible
edge in D. We will say that f exhibits D as the localization of C with respect to W
if for every ∞-category E the induced functor

Map(D,E) Ð→Map(C,E)
identifies Map(D,E) with the subspace of Map(C,E) consisting of those functors
C Ð→ E which send every edge in W to an equivalence in E. In this case we will
also write D ≃ C[W −1].

The following variant of Definition 2.2.122.2.12 is also terminologically useful:
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Definition 2.2.13. We will say that a map CÐ→D of ∞-categories is a localization
map if it exhibits D as the localization of C with respect to the collection of all
maps in C which are sent to equivalences in D.

By general considerations we have that the localization of C with respect to W
is unique as soon as it exists. One way to prove its existence is via the formalism
of marked simplicial sets.

Definition 2.2.14. A marked simplicial set is a pair (X,E) where X is a simplicial
set and E is a collection of edges in X which contains all the degenerate edges. We
call the edges in E the marked edges.

We will denote by Set+∆ the category of marked simplcial sets (and maps which
send marked edges to marked edges). The forgetful functor Set+∆ Ð→ Set∆ to
simplicial sets has both a left adjoint and a right adjoint. The left adjoint sends
X ∈ Set∆ to the marked simplicial set X♭ which is X with only the degenerate
edges marked. The right adjoint sends X ∈ Set∆ to the marked simplicial set X♯

which is X with all edges marked. If C is an ∞-category we will denote by C♮ the
marked simplicial set which is C with the marked edges being the invertible arrows.

Given two marked simplicial sets X,Y we will denote by Map♯(X,Y ) the sim-
plicial set given by the formula Map♯(X,Y )n = HomSet+

∆
((∆n)♯ ×X,Y ). If C is an

∞-category and (X,E) is any marked simplicial set then Map♯((X,E),C♮) is by
construction the subsimplicial set of (CX)≃ spanned by those diagrams X Ð→ C

which send E to invertible edges. Since (CX)≃ is a Kan complex it follows that
Map♯((X,E),C♮) is a Kan complex as well.

Definition 2.2.15. We will say that a map X Ð→ Y of marked simplicial sets is a
marked categorical equivalence if for every ∞-category C the induced map

Map♯(Y,C♮) Ð→Map♯(X,C♮)
is an equivalence of Kan complexes.

Theorem 2.2.16 ([55, §3]). There exists a model structure on Set+∆, which we will
call the marked categorical model structure, in which the weak equivalences are the
marked categorical weak equivalences, the cofibrations are the injective maps and the
fibrant objects are the marked simplicial sets of the form C♮ for an ∞-category C.

Furthermore, the forgetful functor (−) ∶ Set+∆ Ð→ Set∆ is a right Quillen equivalence
to the categorical model structure on Set∆.

Let C be an ∞-category and let W be a collection of edges in C. Given an ∞-
category D, the data of a map ϕ ∶ C Ð→ D which sends W to equivalences in D

can be encoded as a map of marked simplicial sets ϕ+ ∶ (C,W ) Ð→D♮. Comparing
Definition 2.2.122.2.12 an Definition 2.2.152.2.15 we see that ϕ exhibits D as the localization
of C by W if and only if ϕ+ is a marked categorical weak equivalence.

Corollary 2.2.17. An localization C[W −1] exists for every ∞-category C and col-
lection of arrows W .

Proof. One can simply take a fibrant replacement with respect to the marked ca-
tegorical model structure. �

Remark 2.2.18. The marked categorical model structure on Set+∆ is combinatorial
and in particular admits a functorial fibrant replacement. This means that the
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formation of localizations (C,W ) ↦ C[W −1] can be made functorial in the pair
(C,W ). Furthermore, one can show that the cartesian product of two marked
categorical weak equivalences is again a marked categorical weak equivalence. It
then follows that the functorial localization procedure preserves cartesian products
up to equivalence, that is (C × C′)[(W ×W ′)−1] ≃ C[W −1] × C′[(W ′)−1].
Notation 2.2.19. If M is a model category with class of weak equivalences W then
we will denote the localization M[W −1] also by M∞, and call it the underlying ∞-
category of M.

Remark 2.2.20. If M is a model category then M would usually be a large category
and hence technically not covered by Corollary 2.2.172.2.17. This issue can be bypassed
by using suitable set theoretical machinery, such as Grothendieck universes. Of
course, such an approach will only assure us that M∞ exists as a large ∞-category,
i.e., one in which the sets of simplices are a proper class. However, it could be shown
that in the case of model categories M∞ will always be locally small, e.g., it will
be equivalent to the coherent nerve of a large simplicial category whose mapping
spaces are small Kan complexes.

A situation in which the underlying ∞-category M∞ of a model category M is
especially accessible is when M is a simplicial model category.

Definition 2.2.21. A simplicial model category is a model category M, equipped
with the additional structure of a simplicial category such that the following two
conditions hold:

(1) The enrichment of M in simplicial sets admits tensors and cotensors, that is, the
functors MapM(−,X),MapM(X,−) ∶MÐ→ Set∆ admit enriched left adjoints.

(2) If i ∶ AÐ→ B is a cofibration in M and p ∶X Ð→ Y is a fibration in M then the
map

MapM(B,X) Ð→MapM(B,Y ) ×MapM(A,Y ) MapM(A,X)
is a Kan fibration, which is furthermore trivial if i or p are trivial.

Examples 2.2.22. The Kan-Quillen model structure on Set∆ and the marked cate-
gorical model structure on Set+∆ are both simplicial model categories. On the other
hand, the categorical model structure on Set∆ and the Dwyer-Kan model structure
on Cat∆ are not simplicial.

Remark 2.2.23. Condition (2) of Definition 2.2.212.2.21 implies that when X is cofibrant
and Y is fibrant the mapping simplicial set MapM(X,Y ) is a Kan complex.

Definition 2.2.24. Let M be a simplicial model category. We define M○ ⊆ M

to be the full simplicial subcategory spanned by the fibrant-cofibrant objects. By
Remark 2.2.232.2.23 we have that M○ is locally Kan.

Proposition 2.2.25. Let M be a simplicial model category. Then there is a cano-
nical equivalence of ∞-categories

N(M○) ≃M∞.

Remark 2.2.26. Applying Proposition 2.2.252.2.25 to the Kan-Quillen model structure
on simplicial sets shows that the ∞-category S which we defined in §2.12.1 as the
coherent nerve of Kan is equivalent to the localization of Set∆ by weak homotopy
equivalences. A similar claim holds for Cat∞, that is, Cat∞ is equivalent to the
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localization of Set∆ by categorical equivalences. To see this, we can replace the
categorical model structure on Set∆ (which is not simplicial) by the (simplicial)
marked categorical model structure on Set+∆ in which the simplicial enrichment is
given by Map♯(X,Y ) above. We then have that QC is isomorphic to the simplicial
category of fibrant-cofibrant objects in Set+∆, and so we can apply Proposition 2.2.252.2.25
to deduce that Cat∞ ≃ (Set+∆)∞. The latter is also equivalent to the localization of
the categorical model structure since the forgetful functor Set+∆ Ð→ Set∆ is a right
Quillen equivalence.

2.3. Left and right fibrations. Let X be a nice topological space. A classical
result in algebraic topology asserts an equivalence between the category of covering
spaces Y Ð→ X and the category of functors Π1(X) Ð→ Set, where Π1(X) is the
fundamental groupoid of X, i.e., the groupoid whose objects are the points in X and
whose morphisms are homotopy classes of paths. A similar phenomenon happens
in ordinary category theory. Recall that a functor π ∶ CÐ→D of ordinary categories
is said to be left fibered in sets if for every x ∈ C and every morphism f ∶ π(x) Ð→ y

in D there exists a unique arrow f̃ ∶ xÐ→ ỹ in C which maps to f . The notion of a
functor right fibered in sets is similarly defined using lifts of morphisms y Ð→ π(x).
One then has a classification of functors left fibered in sets over a fixed category
D, analogous to the topological story of covering spaces: they correspond exactly
to functors D Ð→ Set from D to sets. In particular, given π ∶ C Ð→ D we may
construct the corresponding functor D Ð→ Set by associating to each y ∈ D the
set π−1(y) of objects of C lying above y. If f ∶ y Ð→ y′ is map in D then for each

x ∈ π−1(y) there exists a unique lift f̃ ∶ xÐ→ x′ of f starting from x. We may hence
associate to f the map of sets π−1(y) Ð→ π−1(y′) given by x↦ x′. This association
preserves composition by the uniqueness of lifts. In the other direction, if we start
from a functor F ∶DÐ→ Set then we can associate to F a functor π ∶ ∫D F Ð→D left
fibered in sets where ∫D F is the category whose objects are pairs (y, a) where y is
an object of D and a is an element of F(y). A morphism from (y, a) to (y′, a′) is a
map f ∶ y Ð→ y′ in D such that f!(a) = a′ (where we denoted by f! ∶ F(y) Ð→ F(y′)
the map associated to f by F). The category ∫D F is also known as the category of
elements of F, and in a more general context as the Grothendieck construction of
F. In a dual manner, the notion of a functor right fibered in sets will correspond
to contravariant functors from D to Set.

In this section we will discuss the ∞-categorical avatar of this story, which are
known as left and right fibrations. We first note that since we are replacing cate-
gories with ∞-categories, we will naturally want to replace the notion of sets with
that of spaces, or more precisely, ∞-groupoids. We hence cannot expect to have a
definition in which we require a lift to be unique, but only unique up to equivalence.
Even more, we may want something such as unique up to a contractible space of
choices. Let us see how such a definition can be made in the setting of ∞-categories.

Definition 2.3.1. Let π ∶X Ð→ Y be a map of simplicial sets. We will say that π
is a left fibration if it has the right lifting property with respect to horn inclusions
of the form Λin ⊆ ∆n with 0 ≤ i < n, that is, if the dotted lift exists in any diagram
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of the form

(2.9) Λni� _

��

// X

π

��
∆n

>>|
|

|
|

// Y

with 0 ≤ i < n. Dually, we will say that π is a right fibration if is has the right lifting
property with respect to the horn inclusions Λin ⊆ ∆n such that 0 < i ≤ n.

We would like to explain how one can think of the lifting condition in 2.92.9 with
i = 0 as a kind of “unique lifting property” for arrows with a fixed domain. For
this, we will need a construction of the ∞-category of arrows with a fixed domain.

Definition 2.3.2. Let X,Y be two simplicial sets. The join X ⋆ Y of X and Y is
the simplicial set given by

(X ⋆ Y )n = ∐
i=−1,...,n

Xi × Yn−1−i,

where by convention we set X−1 = Y−1 = ∗. We note that X ∗ Y comes equipped
with two natural inclusions X ↪ X ∗ Y ↩ Y . The special cases where one of X,Y
is ∆0 will be denoted as

X▷ ∶=X ⋆∆0 Y ◁ ∶= ∆0 ∗ Y.
Remark 2.3.3. The join operation ⋆ can be considered as a simplicial model for the
join of topological spaces. However, in the simplicial case the join is not symmetric,
and generally X ⋆ Y ≠ Y ⋆X. For example, the 1-simplices in X ⋆ Y which are not
in X or Y all go from X to Y , and not the other way around.

Remark 2.3.4. If C,D are ordinary categories then N(C) ⋆N(D) is the nerve of the
ordinary category E which contains C and D as disjoint full subcategories and such
that the hom sets from every object of C to every object of D are singletons, while
the hom sets from every object of D to every object of C are empty. In particular, if
D = ∗ then N(C)▷ is the nerve of the categorical right cone on C. Similarly, N(C)◁
is the categorical left cone on C.

Definition 2.3.5. Let C be an ∞-category and p ∶K Ð→ C a map from a simplicial
set K. We will denote by C/p the simplicial set given by

(C/p)n = HomK(∆n ⋆K,C),
where HomK(−,−) refers to the set of morphisms which preserve the given map
from K. Similarly, we will denote by Cp/ the simplicial set given by

(Cp/)n = HomK(K ⋆∆n,C).
If K = ∆0 and p ∶ ∆0 Ð→ C picks the object x ∈ C then we will also denote C/p and

Cp/ by C/x and Cx/ respectively. Similarly, if K = ∆1 and p ∶ ∆1 Ð→ C picks the
arrow f ∶ xÐ→ y then we will also denote C/p and Cp/ by C/f and Cf/ respectively.

If C is an ∞-category then we will see below that for every p ∶ K Ð→ C the
simplicial sets C/p and Cp/ are ∞-categories as well. Given a K-indexed diagram

p ∶K Ð→ C in an ∞-category C, the objects of C/p are given by maps p ∶K◁ Ð→ C

extending p. Similarly, the objects of Cp/ are given by extensions p ∶K▷ Ð→ C. We
will call C/p the ∞-category of left cones on p, and Cp/ as the ∞-category of right
cones on p.
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Example 2.3.6 (over ∞-categories). Given an object x ∈ C, the ∞-category C/x can
be described as follows: the objects of C/x are maps f ∶ z Ð→ x from some z ∈ C to

x. A map in C/x from f ∶ z Ð→ x to f ′ ∶ z′ Ð→ x is given by a triangle σ ∶ ∆2 Ð→ C

of the form

(2.10) z
g //

f ��???????? z′

f ′��~~~~~~~~

x

which we consider as a map g ∶ z Ð→ z′ together with a homotopy exhibiting f as
the composition of g and f ′. We will call C/x the ∞-category of objects over x.
Similarly, we will call the ∞-category Cx/ the ∞-category of objects under x.

Remark 2.3.7. If C is an ordinary category and x ∈ C is an object then N(C)/x
coincides with the nerve of the ordinary category C/x of objects over x.

We are now ready to explain how Definition 2.3.12.3.1 can be considered as an essen-
tially unique lifting property for arrows with a fixed domain. Let π ∶ C Ð→ D be a
map of ∞-categories. Identifying (∂∆n)◁ ≅ Λn+1

0 and (∆n)◁ ≅ ∆n+1 we see that
π satisfies the right lifting property with respect to Λn+1

0 ⊆ ∆n+1 if and only if for
every x ∈ C, the dotted lift exists in any diagram of the form

(2.11) ∂∆n
� _

��

// Cx/

π

��
∆n

;;w
w

w
w

w
// Dπ(x)/

In other words, if and only if the map Cx/ Ð→ Dπ(x)/ is a trivial Kan fibration for
every x. We interpret this as the ∞-categorical analogue of the unique arrow lifting
property: it says in particular that the fiber Cx/ Ð→ Dπ(x)/ over a fixed arrow
f ∶ π(x) Ð→ y is a contractible Kan complex.

We will see in §2.42.4 that, in analogy with the situation in ordinary category theory,
left fibrations over a fixed ∞-category D essentially correspond to functors from D

to ∞-groupoids, where the functor corresponding to a left fibration π ∶ C Ð→ D is
given informally by the “formula” y ↦ π−1(y). Similarly, right fibrations correspond
to contravariant functors from D to ∞-groupoids. For now, let us focus on concrete
constructions and examples of left (and right) fibrations. We note that in ordinary
categories, a canonical example of a functor D Ð→ Set is given by the functor
corepresented by an object x ∈ D, that is, the functor y ↦ HomD(x, y). The
category of elements of this functor is simply the category ∫D HomD(x,−) ≅ Dx/
of objects under x, where the projection to D given by [x Ð→ y] ↦ y. If D is
an ∞-category then we have the ∞-categorical construction of the under category
Dx/ described in Example 2.3.62.3.6. We would like to show that this indeed results
in a left fibration Dx/ Ð→ D. More generally, we will show that for every diagram
p ∶K Ð→ C the projection Cp/ Ð→ C is a left fibration (and similarly that C/p Ð→ C

is a right fibration).
Recall the following terminology: we will say that a class of maps in Set∆ is we-

akly saturated if it closed under pushouts (along any map), transfinite compositions
and retracts.

Definition 2.3.8. We will say that a map of simplicial sets X Ð→ Y is
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(1) inner anodyne if it belongs to the smallest weakly saturated class of maps
generated by Λin ↪∆n for 0 < i < n.

(2) left anodyne if it belongs to the smallest weakly saturated class of maps gene-
rated by Λin ↪∆n for 0 ≤ i < n.

(3) right anodyne if it belongs to the smallest weakly saturated class of maps ge-
nerated by Λin ↪∆n for 0 < i ≤ n.

We note that the condition of being a left (resp. right) fibration is equivalent to
the condition of having the right lifting property with respect to all left (resp. right)
anodyne maps. Similarly, the condition of being an inner fibration is equivalent to
having the right lifting property with respect to all inner anodyne maps.

Lemma 2.3.9. Let f ∶ A0 ↪ A and g ∶ B0 ↪ B be inclusions of simplicial sets and
consider the map

h ∶ A0 ⋆B ∐
A0⋆B0

A ⋆B0 Ð→ A ⋆B.

Then the following holds:

(1) If f is left anodyne then h is left anodyne.
(2) If g is right anodyne then h is right anodyne.
(3) If f is right anodyne or g is left anodyne then h is inner anodyne.

Proof. Let us begin with Claim (1). Let us fix g and consider the class of all f such
that the h is left anodyne. Using the fact that the functor (−)⋆g preserves pushout
squares and filtered colimits one can check that this class is weakly saturated. It
will hence suffice to show that it contains all horn inclusions of the form Λni ⊆ ∆n

for 0 ≤ i < n. On the other hand, if we fix f to be Λni ⊆ ∆n then the collection of all
g such that h is left anodyne is also weakly saturated. It will hence suffice to show
it for f the inclusion Λni ⊆ ∆n for 0 ≤ i < n and g the inclusion ∂∆m ⊆ ∆m (these
maps generate the weakly saturated class of inclusions). In this case the map h
identifies with the inclusion

Λn+m+1
i ⊆ ∆n+m+1

which is indeed left anodyne. The proof of (2) is completely dual to (1).
To prove (3) we argue in the same manner to reduce the claim to checking that

the maps

(2.12) Λni ⋆∆m ∐
Λni ⋆∂∆m

∆n ⋆ ∂∆m Ð→∆n ⋆∆m

and

(2.13) ∆m ⋆Λnj ∐
∂∆m⋆Λnj

∂∆m ⋆∆n Ð→∆m ⋆∆n

are inner anodyne when 0 < i ≤ n and 0 ≤ j < n. But (2.122.12) is just the horn inclusion
Λn+m+1
i Ð→ ∆n+m+1 and (2.132.13) is the horn inclusion Λm+n+1

m+j+1 Ð→ ∆m+n+1. Since
both i and m+j+1 are strictly between 0 and m+n+1 we get that (2.122.12) and (2.132.13)
are inner anodyne, as desired. �

Corollary 2.3.10. Let C be an ∞-category and p ∶K Ð→ C a diagram. Let K0 ⊆K
be a subsimplicial set and write p0 = p∣K0 ∶K0 Ð→ C. Then the projection

Cp/ Ð→ Cp0/
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is a left fibration which is furthermore a trivial Kan fibration if the inclusion K0 ⊆K
is right anodyne. More generally, if π ∶ C Ð→ D is an inner fibration then the
projection

Cp/ Ð→ Cp0/ ×Dp0/
Dp/

is a left fibration, which is furthermore a trivial Kan fibration if the inclusion is
right anodyne. Dually, the projection

C/p Ð→ C/p0
×D/p0

D/p

is a right fibration which is furthermore a trivial Kan fibration if the inclusion
K0 ⊆K is left anodyne.

Remark 2.3.11. Applying Corollary 2.3.102.3.10 to the case where K = ∆1 and K0 = ∆{0}

we may conclude that for every map f ∶ xÐ→ y in C the projection

(2.14) Cf/ Ð→ Cy/

is a trivial Kan fibration. In particular, for every g ∶ y Ð→ z the fiber (Cf/)g
of (2.142.14) is a trivial Kan complex. We may interpret (Cf/)g as the space of com-
positions of f and g (its vertices consists indeed of maps h ∶ x Ð→ z together with
a triangle exhibiting h as the compostion of f and g). We may then interpret the
contractibility of (Cf/)g as the statement that composition is well-defined up to a
contractible space of choices.

Our goal in this section is to prove Joyal’s Theorem 2.1.122.1.12, which characterizes
Kan complexes as those ∞-categories in which all morphisms are invertible. We
begin with some auxiliary results.

Lemma 2.3.12 ([55, Proposition 2.1.1.5, 2.1.1.6]). Let π ∶ CÐ→D be a left fibration
of ∞-categories. Then the following holds:

(1) The functor π detects invertible maps, that is, an arrow f ∶ x Ð→ y in C is
invertible if and only if π(f) is invertible in D.

(2) For every object y ∈ C and every invertible arrow f ∶ x Ð→ π(y) in D there

exists an arrow f̃ ∶ x̃Ð→ y in C such that π(f̃) = f .

Proof. We begin with Claim (1). Let g be a homotopy inverse to π(f) in D, so
that there exists a triangle in D of the form

π(y)
g

""FFFFFFFF

π(x)

π(f)
<<xxxxxxxx

Id // π(x)
Since π is a left fibration we can lift this triangle to a triangle in C of the form

y
g̃

��????????

x

f
??�������� Id // x

for some g̃. It follows that f admits a left homotopy inverse in C. Since π(g̃) = g is
an equivalence in D the same argument shows that g̃ has a left homotopy inverse
f ′ in C. In particular, the image of g̃ in Ho(C) has both a left and a right inverse
and is hence an isomorphism there. It follows that the image of f in Ho(C) is an
isomorphism and so f is invertible in C.
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Let us now prove (2). Let g ∶ π(y) Ð→ x be a homotopy inverse to f in D, so
that we have a triangle

(2.15) π(x)
f

""FFFFFFFF

π(y)

g
<<xxxxxxxx

Id // π(y)

Since π is a left fibration there exists a morphism g̃ ∶ y Ð→ x̃ such that π(g̃) = g.
We may then lift (2.152.15) to a triangle

x̃
f̃

��>>>>>>>>

y

g̃
??�������� Id // y

in C for some f̃ ∶ x̃Ð→ y. Then π(f̃) = f and so f̃ is the desired lift. �

Proposition 2.3.13. Let π ∶ C Ð→ D be an inner fibration and f ∶ x Ð→ y an
invertible arrow in C. Then the dotted lift exists in any diagram of the form

(2.16) Λn0� _

��

// C

π

��
∆n

>>}
}

}
}

// D

with n ≥ 2 which maps ∆{0,1} ⊆ Λn0 to the edge f .

Proof. The lifting problem (2.162.16) is equivalent by adjunction to the lifting problem

(2.17) ∆{0}

��

// C/∆{2,...,n}

��
∆1

55kkkkkkkkk // C/∂∆{2,...,n} ×D
/∂∆{2,...,n}

D/∆{2,...,n}

Since π ∶ C Ð→ D is an inner fibration the right vertical map in (2.172.17) is a right
fibration by Corollary 2.3.102.3.10. Now the composed arrow

C/∂∆{2,...,n} ×D
/∂∆{2,...,n}

D/∆{2,...,n} Ð→ C/∂∆{2,...,n} Ð→ C

is a composition of right fibrations by Corollary 2.3.102.3.10 (and the fact that right
fibrations are closed under base change) and the edge determined by the lower
horizontal map in (2.172.17) is sent to an invertible edge in C by our assumption. It
then follows from (the dual of) Lemma 2.3.122.3.12(1) that this edge is already invertible
in C/∂∆{2,...,n} ×D

/∂∆{2,...,n}
D/∆{2,...,n} . The desired lift now follows from (the dual

of) Lemma 2.3.122.3.12(2). �

Corollary 2.3.14 (Joyal). Let C be an ∞-category. Then f ∶ xÐ→ y is an invertible
arrow if and only if the dotted lift exists in any diagram of the form

(2.18) Λn0� _

��

// C

∆n

>>~
~

~
~



22 YONATAN HARPAZ

which maps ∆{0,1} ⊆ Λn0 to the edge f .

Proof. The “only if” direction follows from Proposition 2.3.132.3.13. To show the “if”
direction note that if the dotted lift exists in any diagram of the form (2.182.18) even
just for n = 2,3 then in the homotopy category Ho(C) pre-composition with f

induces a bijection HomHo(C)(y, z)
≅Ð→ HomHo(C)(x, z) for any z ∈ C, and so f is

an isomorphism in Ho(C) (and hence invertible in C) by the Yoneda lemma. �

Proof of Theorem 2.1.122.1.12. If C is a Kan complex then every extension problem of
the form (2.182.18) has a solution and hence every arrow in C is invertible by Corol-
lary 2.3.142.3.14. On the other hand, if every arrow in C is invertible then the same is
true for Cop and hence Corollary 2.3.142.3.14 applied to both C and Cop implies that
C has the extension property with respect to every horn extension Λin ⊆ ∆n with
0 ≤ i ≤ n, so that C is a Kan complex. �

We finish this section with another interesting corollary:

Corollary 2.3.15. Let C be an ∞-category and x ∈ C an object. Then for every
y ∈ C, the fiber (Cx/)y of Cx/ Ð→ C over y ∈ C is a Kan complex.

Proof. The map (Cx/)y Ð→ ∆0 is a base change of a left fibration and hence a left
fibration. It follows from Corollary 2.3.142.3.14 that every arrow in (Cx/)y is invertible,
and hence (Cx/)y is a Kan complex by Theorem 2.1.122.1.12. �

Corollary 2.3.152.3.15 motivates the following definition

Definition 2.3.16. Let C be an ∞-category and x, y ∈ C. We will denote by

MapL
C(x, y) ∶= (Cx/)y,

and refer to it as the mapping space in C from x to y.

Remark 2.3.17. Definition 2.3.162.3.16 is somewhat asymmetric. Indeed, we could instead
first take the right fibration C/y and then take its fiber (C/y)x over x ∈ C, which

is usually denoted by MapR
C(x, y). This results in a different, though canonically

homotopy equivalent, Kan complex. Furthermore, if C is obtain as the coherent
nerve of a locally Kan simplicial category D and x, y ∈D are two objects then

MapL
C(x, y) ≃ MapR

C(x, y) ≃ MapD(x, y).
We will hence often simplify notation and denote either one of the above spaces
simply as MapC(x, y).

The definition of mapping spaces also allows for the following definition:

Definition 2.3.18. We will say that a map of ∞-categories ϕ ∶ C Ð→ D is fully-
faithful if it induces an equivalence MapC(x, y) Ð→ MapD(ϕ(x), ϕ(y)) for every
x, y ∈ C.

Remark 2.3.19. The condition that ϕ ∶ C Ð→ D is an equivalence of ∞-categories
(Definition 2.1.102.1.10) is in fact equivalent to the condition that ϕ is fully-faithful
and essentially surjective (that is, every object in D is equivalent to an obejct
in the image of ϕ). This is not evident from Definition 2.1.102.1.10, which is phrased
in terms of the existence of an inverse functor. To show this one can use the
Quillen equivalence between the categorical model structure and the Dwyer-Kan
model structure on simplicial categories. In particular, ϕ is an equivalence in the
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sense of Definition 2.1.102.1.10 if and only if it is a categorical equivalence in the sense
of Definition 2.2.52.2.5, and since every object in Set∆ is cofibrant and C is a left
Quillen equivalence we have that ϕ is a categorical equivalence if and only if it is
mapped to a Dwyer-Kan equivalence in Cat∆. One can then show MapC(x, y) ≃
MapC(C)(x, y) and so C(ϕ) is a Dwyer-Kan equivalence if and only if ϕ is fully-
faithful and essentially surjective.

2.4. Cartesian and cocartesian fibrations. In §2.32.3 we discussed left and right
fibrations of ∞-categories. These are the ∞-categorical analogues of ordinary func-
tors C Ð→ D fibered in sets. In the classical setting, the association F ↦ ∫D F,
which associates to a functor F ∶ D Ð→ Set its category of elements, determines an
equivalence of categories

Fun(D,Set) ≃Ð→ Fibset(D),
where the right hand side refers to the full subcategory Fibset(D) ⊆ Cat/D spanned
by those CÐ→D which are fibered in sets, that is, for which arrows admit a unique
lift given a lift of their domain (see §2.32.3). It is natural to wonder what can be done
if start with a functor not into sets but into categories. Here we encounter a small
subtlety: the category Cat of (small) categories is actually a 2-category: in addition
to objects (categories), and morphisms (functors), it also has morphisms between
morphisms (natural transformations). Equivalently, it is a category enriched in
categories (mapping sets are replaced by mapping categories). The notion of a
diagram in Cat is therefore a bit subtle: the right notion to use here is that of a
pseudofunctor

F ∶DÐ→ Cat .

This means that we associate to each object x ∈ D a category F(x) ∈ Cat, to each
morphism f ∶ xÐ→ y in D a functor f! ∶ F(x) Ð→ F(y), and to each composable pair

of morphisms x
fÐ→ y

gÐ→ z in D a natural isomorphism τf,g ∶ g! ○ f!
≅⇒ (g ○ f)!. We

then enforce a certain compatibility condition for each triple of composable arrows

x
fÐ→ y

gÐ→ z
hÐ→ w. Here for simplicity we assume that F is strictly unital, that

is, it sends the identity morphisms to the corresponding identity functors (though
morally we should have also required here that this would only hold up to a specified
natural isomorphism; there is however a very simple procedure that replaces every
weakly unital pseudofunctor by a strictly unital one, and so we will ignore this
point).

Now, given such a pseudofunctor F ∶ D Ð→ Cat, we may assemble the various
categories {F(x)}x∈D into a global category ∫D F, known as the Grothendieck con-
struction of F. More precisely, if we denote by f! ∶ F(x) Ð→ F(y) the functor
associated to f ∶ xÐ→ y by F, then ∫D F is the category whose

- objects are pairs (x, a) where x is an object of D and a is an object of F(x);
- morphisms from (x, a) to (y, b) are pairs (f,ϕ) where f ∶ x Ð→ y is a map in
D and ϕ ∶ f!aÐ→ b is a map in F(y).

Composition of maps is defined in a straightforward way using the natural isomor-

phisms τf,g ∶ g! ○ f!
≅⇒ (g ○ f)!. The category ∫D F admits a natural projection

π ∶ ∫D F Ð→ D given by (x, a) ↦ x. The somewhat surprising feature of the
Grothendieck construction is that it actually does not forget any information: the
original pseudofunctor F ∶DÐ→ Cat can be reconstructed from π. To see how this
works let us introduce the following definition:
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Definition 2.4.1. Let π ∶ C Ð→ D be a functor of ordinary categories and let
f ∶ x Ð→ y be a morphism in C. We will say that f is π-cocartesian if for every
morphism g ∶ xÐ→ y in C and every factorization

(2.19) π(x)
ϕ(g) //

ϕ(f)
��

ϕ(z)

π(y)

<<x
x

x
x

of π(g) through π(f), there exists a unique factorization

(2.20) x
g //

f

��

z

y

??�
�

�
�

of g through f whose image in D is (2.192.19).

Exercise 2.4.2. Let F ∶ D Ð→ Cat be an D-indexed diagram of categories and let
π ∶ ∫D F Ð→ D be the projection from the Grothendieck construction as above.
Show that an arrow (f,ϕ) ∶ (x, a) Ð→ (y, b) in ∫D F is π-cocartesian if and only if
ϕ ∶ f!aÐ→ b is an isomorphism.

Definition 2.4.3. Let π ∶ CÐ→D be a functor of ordinary categories. We will say
that π is a cocartesian fibration if for every object x ∈ C and morphism f ∶ π(x) Ð→
y, there exists a π-cocartesian morphism f̃ ∶ xÐ→ ỹ lying above f .

Remark 2.4.4. The definitions of cocartesian edges and cocartesian fibrations can
be dualized in an obvious manner. In particular, given a functor π ∶ C Ð→ D with
opposite πop ∶ Cop Ð→Dop, an arrow f ∶ xÐ→ y in C is π-cartesian if and only if it
is πop-cocartesian when considered as an arrow in Cop, and π is a cartesian fibration
exactly when πop is a cocartesian fibration.

Example 2.4.5. If F ∶ D Ð→ Cat is a D-diagram of categories then the projection
π ∶ ∫D F Ð→ D is a cocartesian fibration: indeed, for every (x, a) ∈ ∫D F and
f ∶ xÐ→ y we have the π-cocartesian lift (f, Idf!a) ∶ (x, a) Ð→ (y, f!a).
Definition 2.4.6. Let D be a small category. We define Fibcoc(D) to be the 2-
category whose objects are the cocartesian fibrations π ∶ CÐ→D, whose morphisms
are functors

C

π
��???????

// C′

π′~~~~~~~~~~

D

over D which send π-cocartesian edges to π′-cocartesian edges, and whose 2-morphisms
are the natural transformations which are compatible with the projection to D.

The precise way in which the Grothendieck construction does not loose any
information is summarized in the following folk theorem:

Theorem 2.4.7 (Grothendieck’s correspondence, see, e.g, [44, Theorem 1.3.6]). The
Grothendieck construction determines an equivalence of 2-categories

∫ ∶ PsFun(D,Cat) ≃Ð→ Fibcoc(D)
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between the 2-category of pseudofunctors D Ð→ Cat and the 2-category of cocarte-
sian fibrations over D.

The equivalence of Theorem 2.4.72.4.7 is of fundamental importance in ordinary ca-
tegory theory, but is also useful in practice, since cocartesian fibrations over D are
more benign creatures than functors DÐ→ Cat. One problem with the latter is that
it requires using the large category Cat, and so forces us to take into account some
set theoretical issues. This issue will less concern us in this course. A more interes-
ting problem is that the 2-categorical nature of Cat makes the notion of diagrams
D Ð→ Cat a rather intricate type of mathematical object (involving various cohe-
rence isomorphisms), while the notion of a cocartesian fibration ∫D F Ð→D is much
simpler in that respect. When passing from ordinary category to higher category
theory, this second issue becomes considerably more important. In particular, if D
is now an ∞-category, then a diagram of ∞-categories indexed by D is something
that is very difficult to write down explicitly, while the (∞-categorical generaliza-
tion of the) notion of a cocartesian fibration over D is a much more accessible type
of structure. This makes the notion of cocartesian fibrations of ∞-categories, which
we will discuss below, utterly indispensable in higher category theory.

In order to generalize the definition of a cocartesian edge to the ∞-categorical
setting it will be useful to formulate the unique relative extension property in terms
of the associated map of nerves π ∶ N(D) Ð→ N(C) (which we also denote by π).
Indeed, a pair of maps of the form f ∶ xÐ→ y, g ∶ xÐ→ z in D can be encoded as a
map of simplicial sets f ∨g ∶ Λ2

0 Ð→ N(D), and a factorization of π(g) through π(f)
can be encoded as a map of simplicial sets ∆2 Ð→ N(C). If we drop the uniqueness
condition, then the mere existence of a relative extension amounts to the existence
of a dotted lift in the resulting square

Λ2
0

f∨g //

��

N(D)

π

��
∆2

<<z
z

z
z

// N(C)

Somewhat surprisingly, the uniqueness can also be phrased as a similar lifting con-
dition using the horn inclusion Λ3

0 ↪∆3.

Exercise 2.4.8. Suppose that the morphism f ∶ x Ð→ y in D has the (non-unique)
relative extension property. Then f has the unique extension property if and only
if a dotted lift exists in any square of the form

Λ3
0

σ //

��

N(D)

π

��
∆3

<<z
z

z
z

// N(C)

in which σ sends the edge ∆{0,1} ⊆ Λ3
0 to f .

Definition 2.4.9. Let π ∶ X Ð→ S be a map of simplicial sets and let f ∶ x Ð→ y
be an edge in X. We will say that f is π-cocartesian if for every n ≥ 2 a dotted lift
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exists in every square of the form

(2.21) Λn0
σ //

��

X

π

��
∆n

>>|
|

|
|

// S

in which σ maps ∆{0,1} ⊆ Λn0 to f . Similarly, we will say that f is π-cartesian if
the same holds when we replace σ ∶ Λn0 Ð→ X in 2.212.21 by a map τ ∶ Λnn Ð→ X such

that τ maps ∆{n−1,n} to f .

Exercise 2.4.10. Let π ∶X Ð→ S be an inner fibration.

(1) Show that f ∶ x Ð→ y in X is π-cocartesian if and only if the dotted lift exist
in any diagram of the form

∂∆n ρ //

��

Xx/

��
∆n // Sπ(x)/

with n ≥ 1 and such that ρ(0) = f .

(2) Let x ∈X be a vertex and f ∶ π(x) Ð→ y an edge in S. Let X ⊆Xx/ ×Sπ(x)/ {f}
be the subsimplicial set spanned by those f ∶ x Ð→ ỹ which are π-cocartesian
edges in X. Show that X is either empty or a contractible Kan complex.

(3) Let f ∶ x Ð→ y and f ′ ∶ x Ð→ y′ be two arrows in X which map to the same

arrow f in S. Show that if f is equivalent to f ′ in Xx/ ×Sπ(x)/ {f} (the latter is

an ∞-category since π is an inner fibration) then f is π-cocartesian if and only
if f ′ is π-cocartesian.

Definition 2.4.11. Let π ∶ X Ð→ S be a map of simplicial sets. We will say that
π ∶X Ð→ S is a cocartesian fibration if the following conditions hold:

(1) π is an inner fibration, i.e., π satisfies the right lifting property with respect to
all horn inclusions Λni ↪ ∆n with 0 < i < n (this condition is automatic when
X and S are nerves of discrete categories).

(2) For every x ∈X and every edge f ∶ π(x) Ð→ y in S there exists a π-cocartesian

edge f̃ ∶ xÐ→ ỹ such that π(f̃) = f .

Example 2.4.12. The terminal map π ∶ X Ð→ ∗ is a cocartesian fibration if and
only if X is an ∞-category, in which case the π-cocartesian edges are exactly the
equivalences by Corollary 2.3.142.3.14.

Remark 2.4.13. By definition the property of being a cocartesian fibration is inva-
riant under base change. In other words, if π ∶ X Ð→ S is a cocartesian fibration
and T Ð→ S is any map then X ×S T Ð→ T is a cocartesian fibration. In particular,
if π ∶ X Ð→ S is a cocartesian fibration then the fiber π−1(s) is an ∞-category for
every s ∈ S.

Definition 2.4.14. Let S be a simplicial set. We define Fibcoc
∆ (S) to be the

simplicial category whose objects are the cocartesian fibrations π ∶ X Ð→ S and
such that for two cocartesian fibrations π ∶ X Ð→ S and π′ ∶ Y Ð→ S the mapping
simplicial set Map(X,Y ) is the simplicial set of FunS(X,Y )≃ spanned by those
maps X Ð→ Y over S which send π-cocartesian edges to π′-cocartesian edges. It
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can then be shown that Fibcoc
∆ (S) is a locally Kan simplicial category, and we define

Fincoc
∆ (S) ∶= N(Fincoc

∆ (S)) to be its coherent nerve.

We then have the following higher categorical analogue of Theorem 2.4.72.4.7:

Theorem 2.4.15 (The Lurie-Grothendieck correspondence). For S ∈ Set∆ there
is an equivalence of ∞-categories

(2.22) Un∞S ∶ Fun(S,Cat∞) ≃Ð→ Fibcoc(S)
such that

(1) Un∞S is compatible with base change along maps T Ð→ S.
(2) Un∞S reduces to the tautological identification

Fibcoc(∗) = Cat∞
IdÐ→ Cat∞ = Fun(∗,Cat∞)

for S = ∗.
(3) If S = N(D) is the nerve of a discrete category D and F ∶ D Ð→ Cat∞ factors

through Cat ⊆ Cat∞, then Un∞S (F) is naturally equivalent to ∫D F.

We will then say that the cocartesian fibration Un∞S (F) Ð→ S is classified by F,
and will refer to Un∞S as the ∞-unstraightening functor.

By compatibility with base change we mean that if T Ð→ S is a map of simplicial
sets then under the Lurie-Grothendieck correspondence the functor Fibcoc(S) Ð→
Fibcoc(T ) given by (X Ð→ S) ↦ (X ×S T Ð→ T ) corresponds to the restriction
functor Fun(S,Cat∞) Ð→ Fun(T,Cat∞). Combined with the “normalization” con-
dition for S = ∗ this means that if π ∶X Ð→ S is a cocartesian fibration classified (up
to equivalence) by a functor F ∶ S Ð→ Cat∞, then for every s ∈ S the ∞-category
F(s) is equivalent to the fiber π−1(s).

Remark 2.4.16. The dual statement of Theorem 2.4.152.4.15 for cartesian fibrations yields
a similar equivalence between the ∞-category Fibcar(S) of cartesian fibrations (and
functors which preserve cartesian edges) and Fun(Sop,Cat∞).

Given a cocartesian fibration π ∶ X Ð→ S, the fiber Xs ∶= X ×S {s} over any
vertex of S is an ∞-category by Remark 2.4.132.4.13 and Example 2.4.122.4.12. We would like
to illustrate the idea encapsulated in Theorem 2.4.152.4.15 that Xs depends functorially
on s. In particular, given an arrow f ∶ sÐ→ s′ in S, we would like to construct the
transition functor f! ∶ Xs Ð→ Xs′ associated to f . Informally speaking, we would
like to do this by choosing for each x ∈ Xs a cocartesian edge f̃ ∶ x Ð→ x′ covering
f in a way that is compatible along Xs. One way to describe this procedure is by
a lifting property for natural transformations:

Proposition 2.4.17. Let π ∶ X Ð→ S be an inner fibration and consider a lifting
problem of the form

(2.23) K ×∆{0}

��

p // X

π

��
K ×∆1 H //

H̃

::v
v

v
v

v
S

Assume that for every vertex v ∈K there exists a π-cocartesian edge f ∶ p(v) Ð→ x

lifting H({v} ×∆1). Then there exists a lift H̃ ∶ K ×∆1 Ð→ X in (2.232.23) such that

H̃({v} ×∆1) is π-cocartesian for every v ∈K.
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We note that given a cocartesian fibration π ∶ X Ð→ S, solving the lifting pro-
blem (2.232.23) can be described as follows: if we are given a diagram p ∶ K Ð→ X
and a natural transformation H ∶ K × ∆1 Ð→ S from π ○ p ∶ K Ð→ S to some
map q ∶ K Ð→ S, then we can lift H to a natural transformation H̃ in X starting
from p. Furthermore, we can choose this natural transformation to be pointwise
π-cocartesian.

We will prove Proposition 2.4.172.4.17 by working simplex by simplex. For this we
will need the following lemma:

Lemma 2.4.18. Let π ∶X Ð→ S be an inner fibration and consider a lifting problem
of the form

(2.24) ∂∆n ×∆1 ∐
∂∆n×∆{0}

∆n ×∆{0} ρ //

��

X

π

��
∆n ×∆1

ρ̃

66nnnnnnnn
σ // S

for n ≥ 1. If ρ(∆{0} ×∆1) is π-coCatesian then the dotted lift exists.

Proof. For i = 0, ..., n let σi ∶ ∆n+1 Ð→∆n×∆1 be the n+1 simplex given on vertices
by the formula

σi(j) = { (j,0) j ≤ i
(j − 1,1) j < i .

Consider the filtration Zn+1 ⊆ Zn ⊆ ... ⊆ Z0 = ∆n ×∆1 such that Zn+1 is the top left
corner of (2.242.24) and for i = 0, ..., n the subsimplicial set Zi is obtained from Zi+1

by adding the (n + 1)-simplex σi. Let us construct the dotted lift ρ̃ inductively on
each Zi. For this, we observe that the n-faces of σi are all contained in Zi+1 except
the face across from the i’th vertex. It follows that we have a pushout square of
simplicial sets

Λn+1
i

��

// Zi+1

��
∆n+1 // Zi

Since 0 ≤ i < n + 1 we see that any partial extension ρ̃i+1 ∶ Zi+1 Ð→ X can be
extended to ρ̃i ∶ Zi Ð→ X, either because 0 < i < n + 1 or, when i = 0, by the
assumption that ρ sends ∆{0} ×∆1 to a π-cocartesian edge. �

Proof of Proposition 2.4.172.4.17. We argue inductively on the skeleton of K. We first
define ρ̃ on {v} ×∆1 for every vertex v ∈ K by choosing π-cocartesian lifts. Given
n ≥ 1 we then extend ρ̃ from the (n − 1)th skeleton to the nth skeleton simplex by
simplex using Lemma 2.4.182.4.18. �

Construction 2.4.19. Let π ∶ X Ð→ S be an inner fibration and f ∶ s Ð→ s′ an
edge in S such that for every x ∈ Xs there exists a π-cocartesian edge of X lifting
f . Consider the commutative diagram

(2.25) Xs
ι //

��

X

π

��
Xs ×∆1 //

;;w
w

w
w

w
S
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where the bottom horizontal map is the composition Xs × ∆1 Ð→ ∆1 [f]Ð→ S. By
Proposition 2.4.172.4.17 there exists a dotted lift in (2.252.25) which sends {x} × ∆1 to a
π-cocartesian edge for every x ∈ Xs. This can be interpreted as a natural trans-
formation from the fiber inclusion ι ∶ Xs ↪ X to some other functor ι′ ∶ Xs Ð→ X
whose image is contained in the fiber over s′. In particular, ι′ determines a map
f! ∶ Xs Ð→ Xs′ . It can be shown that this functor is equivalent to the functor
Xs Ð→ Xs′ associated to f by the functor χ ∶ S Ð→ Cat∞ classifying π, and in
particular does not depend on the choice of lift (as long as it is “pointwise” π-
cocartesian). We will refer to the f! ∶ Xs Ð→ Xs′ above as the transition functor
associated to f .

An important particular case of cocartesian fibrations is the following:

Proposition 2.4.20. Let π ∶X Ð→ S be a cocartesian fibration. Then the following
conditions are equivalent:

(1) π is a left fibration.
(2) Every edge of X is π-cocartesian.
(3) For every s ∈ S the ∞-category π−1(s) is an ∞-groupoid.
(4) The functor classifying π takes values in the full subcategory Grp∞ ⊆ Cat∞

spanned by ∞-groupoids.

In particular, the Lurie-Grothendieck correspondence descends to an equivalence

Fun(S,S) ≃Ð→ Fibleft(S)

between the ∞-category of functors S Ð→ S (resp. Sop Ð→ S) and the ∞-category
of left (resp. right) fibrations over S.

Proof. The equivalence of (1) and (2) is by definition, and the equivalence of (3) and
(4) is by the base change compatibility of the ∞-unstraightening functor (2.222.22). The
implication (2) ⇒ (3) is obtained by restricting attention to π-cocartesian edges
contained in a fiber and using Example 2.4.122.4.12. To see that (3) ⇒ (2) observe that
every arrow in C factors as a composition of a π-cocartesian arrow followed by an
arrow contained in a fiber, and so if (3) holds then every arrow is equivalent to a
π-cocartesian arrow, and is therefore π-cocartesian (see Exercise 2.4.102.4.10(3)). �

Let us now say a few words about the proof of the Lurie-Grothendieck corre-
spondence (see [55, §3]). The main idea consists of finding suitable model categories
which model the ∞-categories on both sides and then constructing explicit Quil-
len equivalence between them. This is done by using the category Set+∆ of marked
simplicial sets. Recall from Theorem 2.2.162.2.16 that there exists a model structure on
Set+∆ whose underlying ∞-category is Cat∞. The path to the proof of the Lurie-
Grothendieck correspondence passes through the following steps:

(1) Let C = C[S] be the simplicial category generated from S. Then the model
structure of Theorem 2.2.162.2.16 induces a model structure on the functor category
(Set+∆)C whose underlying ∞-category is Fun(S,Cat∞).

(2) The category (Set+∆)/S♯ of marked simplicial set over S♯ can be endowed with
a model structure whose underlying ∞-category is Fibcoc(S).

(3) There exists a Quillen equivalence

St+S ∶ (Set+∆)/S♯
// (Set+∆)C ∶ Un+S⊥oo
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which is suitably compatible with base change, and such that for S = ∗ the
resulting Quillen equivalence St+∗ ⊣ Un+∗ is naturally equivalent to the identity.
Furthermore, if S = N(D) is the nerve of a discrete category and F ∶DÐ→ Cat∞
factors through Cat ⊆ Cat∞, then Un∞S (F) is naturally equivalent to the nerve
of ∫D F (with the marked edges being the cocartesian ones).

The Quillen functors St+S and Un+S are known as the straightening and unstraigh-
tening functors. The ∞-unstraightening functor Un∞S of Theorem 2.4.152.4.15 is the one
induced on underlying ∞-categories by Un+S .

2.5. The relative nerve. In this section we will describe an alternative and equi-
valent construction for the ∞-unstraightening which is valid when S is the nerve
of an ordinary category. This construction is combinatorially simpler than that of
St+S and reflects what happens in the ∞-categorical analogue of the Grothendieck
construction more transparently. In [55, §3.2.5] this construction is described under
the name the relative nerve construction.

Definition 2.5.1. Let D be an ordinary category and F ∶ D Ð→ Set∆ a functor.
Define a simplicial set NF(D) as follows. An n-simplex of NF(D) consists of

(1) A functor σ ∶ [n] Ð→D.
(2) A collection of simplices τS ∶ ∆S Ð→ F(σ(max(S))) for every non-empty subset

S ⊆ [n] such that for every S′ ⊆ S ⊆ [n] the diagram

(2.26) ∆S′ τS //

��

F(σ(max(S′)))

��
∆S τS // F(σ(max(S)))

commutes.

Forgetting the collection (τS) we obtain a natural map π ∶ NF(D) Ð→ N(D).
Remark 2.5.2. The compatibility condition (2.262.26) implies in particular that the
collection τS ∶ ∆S Ð→ F(σ(max(S))) is completely determined by the collection
τ{0,..,i} for i = 0, ...n, and so we could have replaced in Definition 2.5.12.5.1 the compatible
collection {τS} by a compatible collection {τ{0,...,i}}. However, choosing all the τS
makes the simplicial structure on NF(D) more evident.

Example 2.5.3. If F ∶ D Ð→ Set∆ is such that F(x) is the nerve of an ordinary
category G(x) for every x ∈ D then NF(D) is naturally isomorphic to the nerve of
the Grothendieck construction of G. In fact, a more general variant of this claim is
true, see Proposition 2.5.92.5.9 below.

We note that the the fiber of NF(D) Ð→ N(D) over x ∈D is canonically isomor-
phic to F(x). In particular, a vertex of NF(D) can be identifies with a pair (x, a)
where x is an object of D and a is an object of F(x). Similarly, an edge from (x, a)
to (y, b) is given by definition by a pair (f,α) where f ∶ x Ð→ y is an arrow in D

and α ∶ f!aÐ→ b is an arrow in F(y), where we have denoted by f! ∶ F(x) Ð→ F(y)
the map associated to f by F.

Proposition 2.5.4. Let D be an ordinary category and F ∶ D Ð→ Set∆ a functor
such that F(x) is an ∞-category for every x ∈ D. Then π ∶ NF(D) Ð→ N(D) is a
cocartesian fibration. Furthermore, an edge (f,α) ∶ (x, a) Ð→ (x, b) is π-cocartesian
if and only if α ∶ f!aÐ→ b is an equivalence in F(y).
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Proof. Let us first show that π is an inner fibration. Consider a lifting problem of
the form

(2.27) Λni
ρ //

��

NF(D)

��
∆n σ //

;;x
x

x
x

x
N(D)

with 0 < i < n. For every S ⊆ [n] other than [n] and [n] ∖ {i} the map ρ provides
us with an S-simplex τS ∶ ∆S Ð→ F(σ(max(S))) which satisfies the compatibility
condition 2.262.26. The collection of composed maps

∆S τSÐ→ F(σ(max(S))) Ð→ F(σ(n))

then determines a map ρ′ ∶ Λni Ð→ F(σ(n)). The data of the dotted lift is than
equivalent to an extension of ρ′ to a map ρ′ ∶ ∆n Ð→ F(σ(n)). This extension exists
by our assumption that F takes values in ∞-categories.

Let us now consider a lifting problem as in (2.272.27) with i = 0 and let ρ′ ∶ Λni Ð→
F(σ(n)) be as above. By Corollary 2.3.142.3.14 the desired extension exists if ρ′∣∆{0,1}

is an invertible edge of F(σ(n)). This will indeed by the case if the edge τ{0,1} ∶
∆{0,1} Ð→ F(σ(1)) is invertible. We may hence conclude that a general edge
(f,α) ∶ (x, a) Ð→ (y, b) as above is π-cocartesian if the edge α ∶ f!a Ð→ b is an
equivalence in F(y). Conversely, if (f,α) is π-cocartesian then we can deduce that
α ∶ f!x Ð→ y is an equivalence from Corollary 2.3.142.3.14 by considering the lifting
problem (2.272.27) as above when σ ∶ ∆n Ð→ N(D) factors through the surjective map

∆n Ð→∆1 which sends ∆{0,1} isomorphicaly to ∆1. To show that π is a cocartesian
fibration it will hence suffice to show that if f ∶ xÐ→ y is an arrow in D and a ∈ F(x)
is an object then there exist b ∈ F(y) and an equivalence α ∶ f!a Ð→ b. But this is
clear: just take b = f!a and α the identity on f!a. �

Remark 2.5.5. Proposition 2.5.42.5.4 implies in particular that when F ∶ D Ð→ Set∆

takes values in ∞-categories the relative nerve NF(D) is an ∞-category. The map-
ping spaces in this ∞-category can be explicitly described. Specifically, if x, y ∈ D
are two objects and a is an object of F(x) then there is a natural isomorphism of
simplicial sets

(2.28) NF(D)(x,a)/ ×NF(D) F(y) ≅ ∐
f ∶x→y

F(y)f!a/,

where the coproduct ranges over all maps f ∶ x Ð→ y in D. Taking the fibers over
a particular b ∈ F(y) we may conclude that

MapNF(D)((x, a), (y, b)) ≃ ∐
f ∶x→y

MapF(y)(f!a, b).

Remark 2.5.6. If τ ∶ F Ð→ F′ is a natural transformation such that τx ∶ F(x) Ð→
F′(x) is an equivalence of ∞-categories for every x ∈ D then the induced map τ∗ ∶
NF(D) Ð→ NF(D) is an equivalence of ∞-categories. Indeed, the discussion above
shows that if τ is levelwise essentially surjective then τ∗ is essentially surjective
and the formula in (2.282.28) shows that if τ∗ is levelwise fully-faithful then τ∗ is fully-
faithful (see Remark 2.3.192.3.19).
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Remark 2.5.7. In Definition 2.5.12.5.1, if we assume instead that F ∶ Dop Ð→ Set∆

is a contravariant functor form D to Set∆ then we can define the cartesian ver-
sion of the relative nerve NF(D) Ð→ N(D) whose simplices are given by pairs
(σ,{τS}) as in Definition 2.5.12.5.1 where τS is now a simplex of F(σ(min(s))) instead
of F(σ(max(s))). The projection NF(D) Ð→ N(D) is then a cartesian fibration
which is the one corresponding to F by the Lurie-Grothendieck correspondence for
cartesian fibrations.

Remark 2.5.8. Let F ∶ D Ð→ Set∆ be a diagram of ∞-categories indexed by an
ordinary category D. Then the fiber of π ∶ NF(D) Ð→ N(D) over an object x ∈ N(D)
is canonically isomorphic to F(x). Let f ∶ x Ð→ y be a map in D corresponding to
a map of simplicial sets σf ∶ ∆1 Ð→ N(D). Consider the lifting problem

(2.29) F(x) //

��

NF(D)

��
F(x) ×∆1 //

99r
r

r
r

r
N(D)

where the bottom horizontal map is the composition F(x) ×∆1 Ð→ ∆1
σfÐ→ N(D).

Unwinding the definitions we see that we can construct a lift in (2.292.29) by sending
an n-simplex in F(x) ×∆1 given by a pair (η, ρ) ∈ F(x)n × (∆1)n to the n-simplex
of NF(D) given by the data (σ,{τS}S⊆[n]) where σ = σf ○ ρ ∶ ∆n Ð→ N(D) and

τS ∶ ∆S Ð→ F(σ(max(S)) is given by the restriction of ρ ∶ ∆n Ð→ F(x) to ∆S if

ρ(max(S)) = 0 and the composition ρ∣∆S ∶ ∆S Ð→ F(x) f!Ð→ F(y) if ρ(max(S)) = 1.
We then see that the resulting natural transformation H ∶ F(x) × ∆1 Ð→ NF(D)
is point-wise π-cocartesian by the description of π-cocartesian edges in Proposi-
tion 2.5.42.5.4, and that H ∣F(x)×∆{1} maps F(x) to the fiber F(y) of π over y via f!. We

may hence conclude that the transition functor F(x) Ð→ F(y) associated to π (see
Construction 2.4.192.4.19) is exactly f!.

We finish this section with another version of the Grothendieck construction,
this time for a family of simplicial categories indexed by an ordinary category D.
Given a functor F ∶DÐ→ Cat∆, let ∫D F be the simplicial category whose

- objects are pairs (x, a) where x is an object of D and a is an object of F(x);
- The mapping simplicial set from (x, a) to (y, b) is given by

Map∫D F((x, a), (y, b)) = ∐
f ∶x→y

MapF(y)(f!x, y)

where the coproduct is taken over all maps f ∶ x Ð→ y in D, and f! ∶ F(x) Ð→
F(y) is the simplcial functor associated to f by F.

We then have the following observation:

Proposition 2.5.9. Let D be an ordinary category and F ∶DÐ→ Cat∆ a diagram
of simplicial categories. Let NF ∶ D Ð→ Set∆ be the composition of F with the
coherent nerve functor. Then there is a natural isomorphism of simplicial sets

N (∫
D
F) ≅ NNF(D)

which is compatible with the projection to N(D).
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Proof. Let Θ ∶ [n] Ð→ Set∆ be the functor i ↦ ∆{0,...,i}. In view of Remark 2.5.22.5.2
we see that given an n-simplex σ ∶ ∆n Ð→ N(D), the lifts σ̃ ∶ ∆n Ð→ NNF(D) of σ
are in bijection with natural transformations

(2.30) Θ⇒ σ∗ NF

of functors from [n] to Set∆, where we have identified σ with a functor [n] Ð→
D. By adjunction, a natural transformation as in (2.302.30) is the same as a natural
transformation

(2.31) CΘ⇒ σ∗F,

where we denote by CΘ ∶ [n] Ð→ Cat∆ the composition of Θ and C ∶ Set∆ Ð→ Cat∆.
Explicitly, a natural transformation as in (2.312.31) is given by a collection of simplicial

functors ρi ∶ C(∆{0,...,i}) Ð→ F(i) for i = 0, ..., n, such that for every i ≤ j the diagram

C(∆{0,...,i}) //

��

F(i)

��
C(∆{0,...,j}) // F(j)

commutes. We claim that this is the same data as a map η ∶ C(∆n) Ð→ ∫[n] σ∗F
over [n] (and hence the same data as an n-simplex of N(∫D F) lying above σ).
Indeed, for each i = 0, ..., n let Fi ∶ [i] Ð→ Cat∆ be the restriction of σ∗F to
[i] = {0, ..., i} ⊆ [n]. Given an η as above we may restrict it to a map

ηi ∶ C(∆{0,...,i}) Ð→ ∫[i]
Fi ≅ [i] ×[n] ∫[n]

σ∗F

over [i] for every i = 0, ..., n. We now observe that since i is terminal in [i] we
have a natural functor ∫[i] Fi Ð→ F(i) (which maps each F(i′) ⊆ ∫[i] Fi for i′ ≤ i to

F(i) via the map F(i′) Ð→ F(i) determined by the functor F). Composing these
functors with ηi we get a compatible collection of functors

ηi ∶ C(∆{0,...,i}) Ð→ F(i).
The association η ↦ {ηi} then gives the desired bijection. �

2.6. Limits and colimits in ∞-categories. A major advantage of the model of
∞-categories over that of simplicial categories is that it allows for a straightforward
definition of limits and colimits.

Definition 2.6.1. Let C be an ∞-category and x ∈ C an object. We will say that
x is final if MapC(y, x) is contractible for every y ∈ C. Dually, we will say that x is
initial if MapC(x, y) ≃ ∗ for every y ∈ C.

Remark 2.6.2. It follows from Remark 2.3.172.3.17 that if C is an ordinary category and
x ∈ C is an object then x is final (resp. initial) in C in the usual sense if and only
if x is final (resp. initial) in N(C) in the sense of Definition 2.6.12.6.1. More generally,
if C is a locally Kan simplicial category then x is final in N(C) if and only if it is
homotopy final in C in the sense that MapC(y, x) is weakly contractible for every
y ∈ C.

Definition 2.6.3. Let C be an ∞-category and p ∶ K Ð→ C a diagram in C. We
will say that a left cone p ∶ K◁ Ð→ C is a limit cone if it is terminal as an object
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of the ∞-category C/p. Similarly, we will say that a right cone p ∶ K◁ Ð→ C is a
colimit cone if it is initial as an object of C/p.

Remark 2.6.4. Given a simplicial set K, the embedding of the cone point {∗} ⊆K◁

is left anodyne. It then follows from Proposition 2.6.82.6.8 below and Corollary 2.3.102.3.10
that if p ∶K◁ Ð→ C is a limit cone with p ∶= p∣K and x ∶= p(∗) then in the diagram

C/p

≃

~~}}}}}}}} ≃

  BBBBBBBB

C/p

!!CCCCCCCC
C/x

}}{{{{{{{{

C

both top projections are trivial Kan fibrations. This expresses the idea that if p is
a limit cone then the object x = p(∗) represents the functor classifying the right
fibration C/p Ð→ C.

Theorem 2.6.5. The classical notion of homotopy limits and colimits in spaces,
coincides with the notion of limits and colimits in the ∞-category S. More generally,
in any model category M the construction of homotopy limits and colimits, as given,
for example, by the explicit construction of Bousfield and Kan, coincides with limits
and colimit in the underlying ∞-category M∞.

The cocartesian fibration modelling a diagram of ∞-categories can also be used
to express its limits and colimit without making any reference to model categorical
homotopy limits and colimits. More precisely, we quote the following assertion,
which is a combinatorion of [55, Corollary 3.3.3.2, Corollary 3.3.3.4, Corollary 3.3.4.3,
Corollary 3.3.4.6].

Theorem 2.6.6. Let π ∶ CÐ→D be a cocartesian fibration of ∞-categories classified
by a diagram χ ∶ D Ð→ Cat∞. Then the colimit of π in Cat∞ is equivalent to the
localization of C (Definition 2.2.122.2.12) by the collection of π-cocartesian edges, while
the limit of π in Cat∞ is equivalent to the ∞-category of sections D Ð→ C of π
which send every edge to a π-cocartesian edge. The analogous statemet holds if we
replace Cat∞ by the ∞-category S of spaces and π by the corresponding left fibration.

Our next goal is to show that limits and colimits are essentially unique once
they exist. Given their definition via initial and final objects we may formulate this
uniqueness as follows:

Proposition 2.6.7. Let C be an ∞-category and let C0 ⊆ C be the full subcategory
spanned by the final vertices. Then C0 is either empty or a contractible Kan complex.

Proposition 2.6.72.6.7 will follow rather directly from the following:

Proposition 2.6.8. Let π ∶ C Ð→ D is a right fibration of ∞-categories. Then the
following conditions are equivalent:

(1) The fibers of π are trivial Kan complexes.
(2) π is a trivial Kan fibration.
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Proof. We first note that (2) ⇒ (1) since the base change of a trivial Kan fibration
is a trivial Kan fibration. Now assume that the fibers of π are contractible Kan
complexes. We need to show that a dotted lift exists in any square of the form

(2.32) ∂∆n σ //

��

C

π

��
∆n

<<z
z

z
z

τ // D

If n = 0 then this follows from the fact that the fibers of π are not empty. We may
hence suppose that n ≥ 1. Consider the composed map H ∶ ∆n×∆1 Ð→∆n Ð→ C in
which the first map is given on vertices by the rule (i,1) ↦ i and (i,0) ↦ 0. Consider
the restriction H ′ ∶=H ∣∂∆n×∆1 , which we can consider as a natural transformation
from the constant map ∂∆n Ð→ D with value τ(0) to πσ ∶ ∂∆n Ð→ D. Since π is
a right fibration we can use the (dual version of the) lifting property for natural
transformations given in Proposition 2.4.172.4.17 to lift H ′ to a natural transformation

H
′ ∶ ∂∆n ×∆1 Ð→ C from some σ′ ∶ ∂∆n Ð→ C to σ, and such that πσ′ ∶ ∂∆n Ð→D

is constant with value τ(0). In particular the image of σ′ is concentrated in the
fiber over τ(0). Since this fiber is a contractible Kan complex by assumption we
can extend σ′ to a map τ ′ ∶ ∆n Ð→ C such that πτ ′ ∶ ∆n Ð→ D is constant with

value τ(0). The maps H
′

and τ ′ together then determine a diagram of the form

(2.33) ∂∆n ×∆1 ∐
∂∆n×∆{0}

∆n ×∆{0}

��

// C

π

��
∆n ×∆1 //

66nnnnnnnnn
D

Note that we assumed that n ≥ 1. The top horizontal map in (2.332.33) then sends

the edge ∆{0} × ∆1 to an edge which lies over the identity τ(0) Ð→ τ(0) in D,
and which is hence invertible by Lemma 2.3.122.3.12(1). Since any invertible edge is π-
cocartesian (Example 2.4.122.4.12) we can apply Lemma 2.4.182.4.18 to deduce that the dotted

lift exists in (2.332.33). Restricting this lift to ∆n×∆{1} then yields a lift in the original
diagram (2.322.32). �

Corollary 2.6.9. Let C be an ∞-category and ρ ∶ ∂∆n Ð→ C a map. If ρ(n) is
final in C then ρ extends to ρ ∶ ∆n Ð→ C.

Proof. By adjunction we can transform this extension problem into a lifting problem
of the form

(2.34) ∂∆n−1 σ //

��

C/σ(n)

π

��
∆n−1

::u
u

u
u

τ // C

where the desired lift exists by Proposition 2.6.82.6.8 since the projection C/σ(n) Ð→ C

is a right fibrations whose fibers are contractible Kan complexes. �

Proof of Proposition 2.6.72.6.7. This follows immediately from Corollary 2.6.92.6.9. �
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Exercise 2.6.10. Let π ∶ C Ð→ D be a cartesian fibration of ∞-categories. Assume
that for every x ∈D the fiber Cx ∶= C×D {x} over x has an initial object. Show that
any lifting problem of the form

∂∆n ρ //

��

C

π

��
∆n σ //

<<z
z

z
z

D

with n ≥ 1 has a solution as soon as ρ(∆{0}) is initial in Cσ(0). Deduce that if we
denote by C0 ⊆ C the collection of all objects which are initial in the fiber then the
restriction π∣C0 ∶ C0 Ð→ D is a trivial Kan fibration. Hint: argue as in the proof of
Proposition 2.6.82.6.8 and use (the dual of) Corollary 2.6.92.6.9.

Definition 2.6.11. Let q ∶X Ð→ Y be a map of simplicial sets. We will say that q
is cofinal if for every ∞-category C and every diagram p ∶ Y Ð→ C the induced map

Cp/ Ð→ Cpq/

is an equivalence of ∞-categories. Dually, we will say that q is coinitial if for every
∞-category C and every diagram p ∶ Y Ð→ C the induced map

C/p Ð→ C/pq

is an equivalence of ∞-categories.

Example 2.6.12. It follows from Corollary 2.3.102.3.10 that any left anodyne map X ↪ Y
is coinitial and any right anodyne map is cofinal. In fact, it can be shown that
any cofinal map arises in this way up to a categorical equivalence (see [55, Corollary
4.1.1.12]).

It follows directly from the definition that if q ∶ X Ð→ Y is a cofinal map then
for every diagram p ∶ Y Ð→ C in an ∞-category C we have that p admits a colimit
if and only if pq ∶ X Ð→ C admits a colimit and that a given cone p ∶ Y ▷ Ð→ C

is a colimit cone if and only if pq ∶ X▷ Ð→ C is a colimit cone. Similarly, if q is
coinitial then the same claim holds for limits instead of colimits. The operation of
restricting along cofinal/coinitial map is a very common process in the computation
of limits and colimits. It is hence important to be able to identify when a given
map of simplicial sets is cofinal/coinitial. One of the principal criteria in practice
is given by the following fundamental theorem:

Theorem 2.6.13 (Quillen’s theorem A for ∞-categories). Let q ∶ X Ð→ C be a
map of simplicial sets whose codomain is an ∞-category. Then q is cofinal if and
only if for every y ∈ C the simplicial set X ×C Cy/ is weakly contractible. Dually, q
is coinitial if and only if for X ×C C/y is weakly contractible.

For reasons of scope we will not describe the proof of Theorem 2.6.132.6.13. We refer
the interested reader to [55, §4.1.3].

2.7. Kan extensions. Let ϕ ∶ C Ð→ D be a functor of ∞-categories and let E be
a third ∞-category. Then we may associate with ϕ the restriction functor

ϕ∗ ∶ Fun(D,E) Ð→ Fun(C,E).
In many cases the need arises to go the other way, namely, starting from a functor
ψ ∶ C Ð→ D, to extend it to a functor ψ′ ∶ D Ð→ E. To be more precise, by a left
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extension of ψ along ϕ we will mean a pair (ψ′, τ) where ψ′ ∶ D Ð→ E is a functor
and τ ∶ ψ ⇒ ϕ∗ψ′ is a natural transformation (that is, an arrow in Fun(C,E) from
ψ to ϕ∗ψ′). The collection of such extensions can be organized into an ∞-category,
which we call the ∞-category of left extensions of ψ. To see how this is done,
consider the left mapping cone

ConeL
ϕ ∶= [C ×∆1] ∐

C×∆{1}

D ×∆{1}.

Then the data of a triple (ψ,ψ′, τ) as above is literally the same as the data of

a map of simplicial sets ConeL
ϕ Ð→ E. Restriction along C × ∆{0} ⊆ ConeL

ϕ then
determines a categorical fibration

(2.35) Fun(ConeL
ϕ,E) Ð→ Fun(C,E)

whose fiber over ψ ∈ Fun(C,E) is the desired ∞-category of left extensions of ψ.
Dually, we define a right extension of ψ along ϕ to be a pair (ψ′, τ) where ψ′ ∶
D Ð→ E is a functor and τ ∶ ϕ∗ψ′ ⇒ ψ is a natural transformation. These can be
organized into an ∞-category by considering the right mapping cone

ConeR
ϕ ∶= [C ×∆1] ∐

C×∆{0}

D ×∆{0},

in which case we can identify right extensions with objects in the fiber of the
categorical fibration

(2.36) Fun(ConeR
ϕ ,E) Ð→ Fun(C,E)

over ψ.

Definition 2.7.1. We will say that τ ∶ ψ⇒ ϕ∗ψ′ exhibits ψ′ as a left Kan extension
of ψ if (ψ,ψ′, τ) is initial in the fiber of (2.352.35) over ψ. Dually, we will say that
τ ∶ ϕ∗ψ′ ⇒ ψ exhibits ψ′ as a right Kan extension of ψ if (ψ,ψ′, τ) is final in the
fiber of (2.362.36) over ψ.

Remark 2.7.2. One can show that the restriction

Fun(ConeL
ϕ,E) Ð→ Fun(C,E)

is a cartesian fibration. It then follows from (the dual of) Exercise 2.6.102.6.10 that if

every ψ ∶ C Ð→ E admits a left Kan extension and we denote by FunL(ConeL
ϕ,E) ⊆

Fun(ConeL
ϕ,E) the full subcategory spanned by those triples (ψ,ψ′, δ) which corre-

spond to left Kan extensions of ψ along ϕ then the projection

FunL(ConeL
ϕ,E) Ð→ Fun(C,E)

is a trivial Kan fibration. More generally, if we do not assume that every ψ admits
a left Kan extension but instead we take some full subcategory X ⊆ Fun(C,E) such
that every ψ ∈ X admits a left Kan extension then the projection

FunL(ConeL
ϕ,E) ×Fun(C,E) XÐ→ X

is a trivial Kan fibration.

The main result that we will need about left and right Kan extensions is their
relation to the notions of limits and colimits described in 2.62.6. We will describe
this result without giving the proof, and refer the interested reader to [55, §4.3]. To
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phrase this result, we first note that the cones ConeL
ϕ and ConeR

ϕ are simplicial sets
which are generally not ∞-categories. To fix this, let us define

ML
ϕ ∶= N[ϕ]([1]) Ð→∆1

to be the cocartesian fibration obtained by applying the relative nerve construction
of Definition 2.5.12.5.1 to the diagram [ϕ] ∶ [1] Ð→ Set∆ determined by the arrow
ϕ ∶ CÐ→D in Set∆. We have inclusions

C↪ML
ϕ ↩D

identifying C with ML
ϕ×∆1 ∆{0} and D with ML

ϕ×∆1 ∆{1}. Consider the commutative
diagram

(2.37) C ×∆{1} //

��

C ×∆1

��
D ×∆{1} // ML

ϕ

where the right vertical map is constructed as in Remark 2.5.82.5.8.

Lemma 2.7.3. The map

ConeL
ϕ Ð→ML

ϕ

determined by the square (2.372.37) is a categorical equivalence.

Remark 2.7.4. Since the map C×∆{1} Ð→ C×∆1 is a cofibration and the categorical
model structure is left proper it follows that the pushout defining ConeL

ϕ is also a
homotopy pushout. The claim of Lemma 2.7.32.7.3 is hence equivalent to the claim that
the square (2.372.37) is a homotopy pushout square in the categorical model structure.

Proof of Lemma 2.7.32.7.3. Since the coherent nerve functor is a right Quillen equiva-
lence there exists a map ϕ̃ ∶ C̃ Ð→ D̃ of fibrant simplicial categories such that the
arrow N(ϕ̃) ∶ N(C̃) Ð→ N(D̃) is levelwise categorically equivalent to ϕ ∶ CÐ→D. In
addition, we may choose ϕ̃ to be a cofibration in Cat∆. By Remark 2.5.62.5.6 and Re-
mark 2.7.42.7.4 we may then prove the claim for N(ϕ̃) instead of ϕ. By Proposition 2.5.92.5.9
the square (2.372.37) for N(ϕ̃) is the image under N of the square of simplicial categories

(2.38) C̃ × {1} //

ϕ̃

��

C̃ × [1]

��
D̃ × {1} // ∫[1][ϕ̃]

where we have denoted by [ϕ̃] ∶ [1] Ð→ Cat∆ the functor corresponding to the arrow

ϕ̃ ∶ C̃ Ð→ D̃. Inspecting the square 2.382.38 we now see that it is an actual pushout
square in Cat∆. Since ϕ̃ was chosen to be a cofibration in Cat∆ and Cat∆ is left
proper the square (2.382.38) is also a homotopy pushout square. The claim now follows
from the fact that N is a right Quillen equivalence and hence preserves homotopy
pushout squares consisting of fibrant objects. �

By Lemma 2.7.32.7.3 we have that Fun(ML
ϕ,E) ≃ Fun(ConeL

ϕ,E) is equivalent to the

category of triples (ψ,ψ′, τ) as above. We will then say that a functor ψ ∶ML
ϕ Ð→ E

is a left Kan extension if in the corresponding triple τ exhibits ψ′ as the left Kan
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extension of ψ along ϕ. In other words, ψ is a left Kan extension if it is initial in
the fiber of Fun(ML

ϕ,E) Ð→ Fun(C,E) above ψ∣C.
In the next theorem we will employ the following terminology. For each y ∈ D,

let us denote by Iy ∶= C ×M M/y. Inspecting the relative nerve construction we see
that there is a natural isomorphism of simplicial sets Iy ≅ C ×D D/y. The natural

map Iy Ð→ C canonically extends to a map I▷y Ð→M which sends the cone point
to y. We then have the following key statement:

Theorem 2.7.5 ([55, §4.3.3]). Let ψ ∶ E be a functor and suppose that for every

y ∈D the composed functor Iy Ð→ C
ψÐ→ E admits a colimit in E. Then

(1) There exists a left Kan extension ψ ∶ML
ϕ Ð→ E such that ψ∣C = ψ.

(2) An arbitrary functor ψ ∶ML
ϕ Ð→ E with ψ∣C = ψ is a left Kan extension if and

only if for every y ∈D the composed map I▷y Ð→MÐ→ E is a colimit cone.

Remark 2.7.6. It follows from Theorem 2.7.52.7.5 that if ϕ ∶ C Ð→ D is a functor and
D0 is a full subcategory of D such that ϕ factors through ϕ0 ∶ C Ð→ D0, then if
δ ∶ ψ⇒ ϕ∗ψ′ exhibits ψ′ ∶DÐ→ E as a left Kan extension of ψ along ϕ then δ also
exhibits ψ′∣D0 as a left Kan extension of ψ along ϕ0.

A useful property of left Kan extensions which we will need is the following, also
known as the pasting lemma for left Kan extensions:

Proposition 2.7.7. Let B
ϕÐ→ C

ρÐ→D be two composable functors and E another
∞-category. Suppose we are given three functors

B

ψB ��???????? C

ψC

��

D

ψD����������

E

and two natural transformations δ ∶ ψB ⇒ ϕ∗ψC and δ′ ∶ ψC ⇒ ρ∗ψD. Suppose
that δ exhibits ψC as a left Kan extension of ψB along ϕ. Then δ′ exhibits ψD

as a left Kan extension of ψC along ρ if and only if the composed transformation
ψB ⇒ ϕ∗ψC ⇒ ϕ∗ρ∗ψD exhibits ψD as a left Kan extension of ψB along ρ ○ ϕ.

A dual story exists for right Kan extensions by using the dual version of the
relative nerve construction (see Remark 2.5.72.5.7) to define a cartesian fibration

(2.39) MR
ϕ = N[ϕ]([1]) Ð→∆1

classified by the diagram (∆1)op Ð→ Cat∞ corresponding to [D ϕ←Ð C]. We then
have the dual statement of Theorem 2.7.52.7.5 phrased using limit cones instead of
colimits cones.

3. Symmetric monoidal ∞-categories

3.1. Introduction. Recall that a monoid is set M together with an associative
product ⋅ ∶M×M Ð→M which admits a unit 1 ∈M . We say that M is commutative
if x ⋅ y = y ⋅ x ∈M for every x, y ∈M . In many natural situations we are faced with
categories C which posses a similar structure, namely, we have a product operation
⊗ ∶ C×CÐ→ C which obeys similar axioms. Alas, in the case of categories, we do not
expect to have a product which is associative on the nose, but only up to a natural
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isomorphism. As a result, the definition of the notion of a monoidal product on a
category becomes slightly more elaborate:

Definition 3.1.1. Let C be a category. A monoidal structure on C consists of

(1) a product functor ⊗ ∶ C × CÐ→ C;
(2) an object 1 ∈ C, known as the unit object ;
(3) a natural isomorphism

ax,y,z ∶ (x⊗ y) ⊗ z
≅Ð→ x⊗ (z ⊗ y),

known as the associator ;
(4) natural isomorphisms

λx ∶ 1⊗ x
≅Ð→ x and ρx ∶ x⊗ 1

≅Ð→ x,

known as the left and right unitors.

We then require that the associator obeys the pentagon identity, which says that
the diagram
(3.1)

(w ⊗ x) ⊗ (y ⊗ z)

aw,x,y⊗z

((QQQQQQQQQQQQQQQQQQQQQQQQQQQ

((w ⊗ x) ⊗ y) ⊗ z

aw⊗x,y,z

66mmmmmmmmmmmmmmmmmmmmmmmmmmm

aw,x,y⊗Id

!!CCCCCCCCCCCCCCCCC
w ⊗ (x⊗ (y ⊗ z))

(w ⊗ (x⊗ y)) ⊗ z
aw,x⊗y,z // w ⊗ ((x⊗ y) ⊗ z)

Id⊗ax,y,z

=={{{{{{{{{{{{{{{{{

commutes, and that the associator and the unitors satisfy the triangle identity,
which says that the diagram

(x⊗ 1) ⊗ y
ax,1,y //

ρx⊗Id
%%LLLLLLLLLL

x⊗ (1⊗ y)

Id⊗λyyyrrrrrrrrrr

x⊗ y

commutes.

The situation becomes even more elaborate if we want a monoidal structure
which is commutative, or as it is usally called in this context, symmetric.

Definition 3.1.2. Let C be a category. A symmetric monoidal structure on C

is a monoidal structure (⊗,1, ax,y,z, λx, ρx) together with a natural isomorphism
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Bx,y ∶ x⊗ y
≅Ð→ y ⊗ x such that Bx,y ○By,x = Idx⊗y and such that the diagram

(x⊗ y) ⊗ z
ax,y,z //

Bx,y⊗Id

��

x⊗ (y ⊗ z)
Bx,y⊗z // (y ⊗ z) ⊗ x

ay,z,x

��
(y ⊗ x) ⊗ z

ay,x,z // y ⊗ (x⊗ z)
Id⊗Bx,z// y ⊗ (z ⊗ x)

commutes.

Examples of symmetric monoidal categories in nature are abundant: sets with
cartesian product (more generally, any category in which cartesian products exist),
sets with disjoint union (more generally, any category in which cocartesian products
exist), abelian groups with tensor product etc. Similarly, in higher category theory
we will often wish to consider ∞-categories equipped with a symmetric monoidal
structure, such as spaces with cartesian products, or chain-complexes with (derived)
tensor products. To make higher category theory useful in such situations we
need to be able to generalize Definition 3.1.23.1.2 to the realm of ∞-categories. This
is not a trivial task: indeed, the fact that in categories we had to replace the
associativity, unitality and symmetry axioms by their analogue “up to a natural
isomorphism” (and then require suitable coherence conditions) is just the tip of the
iceberg of what we can expect if we replace C with an ∞-category. For example, the
pentagon axiom (3.13.1) should now be replaced with a homotopy making the diagram
commute, and this homotopy should be part of the structure, thus prompting higher
coherences and so on. This approach becomes unfeasible at some point (especially
when the symmetric structure is introduced). Instead, we need to find a way
to encode all these coherences implicitly, similar to the way in which cocartesian
fibrations encode the coherence conditions of diagrams. In order to do this it will be
convenient to introduce the category of finite pointed sets. For n ≥ 0 we will denote
by ⟨n⟩ the object corresponding to the finite pointed set {0, ..., n} with 0 as its base
point. We will denote by Fin∗ the skeleton of the category of finite pointed sets
spanned by the objects ⟨n⟩ for n ≥ 0. We will denote by ⟨n⟩○ ∶= ⟨n⟩∖{0} = {1, ..., n}
the complement of the base point in ⟨n⟩.
Construction 3.1.3. Let C be a symmetric monoidal category. We construct a
category C⊗ whose

- objects are pairs (n, (x1, ..., xn)) consisting of a non-negative integer n and a
family of objects in C parameterized by ⟨n⟩○.

- maps from (n, (x1, ..., xn)) to (m, (y1, ..., ym)) are given by maps α ∶ ⟨n⟩ Ð→ ⟨m⟩
in Fin∗, together with, for every j = 1, ...,m, a map in C of the form

fj ∶ ⊗
i∈α−1(j)

xi Ð→ yj .

We will denote by π ∶ C⊗ Ð→ Fin∗ the natural projection (n, (x1, ..., xn)) ↦ ⟨n⟩.
We now claim that, similarly to the case of the Grothendieck construction des-

cribed in §2.42.4, the entire symmetric monoidal structure on C can be completely
reconstructed from C⊗ together with the functors π ∶ C⊗ Ð→ Fin∗ and the identifi-
cation of the fiber C⊗⟨1⟩ with C. To see this, we first observe the following:

Lemma 3.1.4. An edge (α,{fj}) ∶ (n, (x1, ..., xn)) Ð→ (m, (y1, ..., ym)) in C⊗ is
π-cocartesian if and only if each fj ∶ ⊗i∈α−1(j)xi Ð→ yj is an isomorphism. In
particular, π is a cocartesian fibration.
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Exercise 3.1.5. Prove Lemma 3.1.43.1.4.

By the Grothendieck correspondence (Theorem 2.4.72.4.7) we may associate with
π ∶ C⊗ Ð→ Fin∗ a pseudofunctor Fin∗ Ð→ Cat, which sends a finite pointed set ⟨n⟩
to the category Cn and a map of finite pointed sets α ∶ ⟨n⟩ Ð→ ⟨m⟩ to the functor α! ∶
Cn Ð→ Cm given by α!(x1, ..., xn) = (y1, ..., ym) with yj = ⊗i∈α−1(j)xi. In particular,

the monoidal product itself is encoded in the functor α! ∶ C2 Ð→ C associated to the
map α ∶ ⟨2⟩ Ð→ ⟨1⟩ given by α(0) = 0, α(1) = α(2) = 1, and the associator can be
reconstructed from the natural isomorphisms α! ○ (β1)! ≅ γ! ≅ (β2)! ○ α! associated
with the commutative square of finite pointed sets

⟨3⟩ β1 //

β2

��

γ

  AAAAAAAA
⟨2⟩

α

��
⟨2⟩ α // ⟨1⟩

where for j = 1,2 we denote by βj ∶ ⟨3⟩ Ð→ ⟨2⟩ is the unique pointed surjective map
such that β−1

j (j) = {j, j + 1}.

We may consider the association C ↦ C⊗ as an operation which transforms a
symmetric monoidal category to a cocartesian fibrations over Fin∗. However, not
every cocartesian fibration over Fin∗ can be obtained in this way: indeed, the fiber
C⊗⟨n⟩ over ⟨n⟩ (equivalently, the category associated to ⟨n⟩ by the corresponding

pseudofunctor) is always the n-fold cartesian product of the fiber C⊗⟨1⟩. To phrase

this condition more precisely let us introduce some terminology.

Definition 3.1.6. We will say that a morphism α ∶ ⟨n⟩ Ð→ ⟨m⟩ is active if α−1(0) =
{0} and that it is inert if α−1(j) ⊆ ⟨n⟩ contains exactly one element for every
j ∈ {1, ...n}.

Remark 3.1.7. Every morphism in Fin∗ can be factored as an inert morphism
followed by an active morphism in an essentially unique way. In addition, this
factorization is initial in the category of factorizations whose second map is active
and terminal in the category of factorizations whose first map is inert.

Notation 3.1.8. For an ⟨n⟩ ∈ Fin∗ and an i = 1, ..., n let us denote by ρi ∶ ⟨n⟩ Ð→ ⟨1⟩
the inert morphism such that (ρi)−1(1) = {i}.

We then have the following folk theorem:

Theorem 3.1.9. The association C ↦ C⊗ induces an equivalence between the 2-
category of symmetric monoidal categories, symmetric monoidal functors and sym-
metric monoidal natural transformations and the full sub-2-category of Funcoc(Fin∗)
spanned by the cocartesian fibrations D Ð→ Fin∗ with the following property: for
every ⟨n⟩ ∈ Fin∗ the functor

(ρ1
! , ..., ρ

n
! ) ∶D⟨n⟩ Ð→

n

∏
i=1

D⟨1⟩

determined by the maps ρ1, ..., ρn ∶ ⟨n⟩ Ð→ ⟨1⟩ is an equivalence of categories.

Remark 3.1.10. We have not defined terms “symmetric monoidal functor” appea-
ring in Theorem 3.1.93.1.9. It consists of a functor ϕ ∶ C Ð→ D between symmetric

monoidal categories together with a specified isomorphism 1D
≅Ð→ F(1C) and a
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specified natural isomorphism µx,y ∶ F(x)⊗F(y) Ð→ F(x⊗ y) which satisfy several
compatibility conditions with respect to the associators, unitors and symmetry iso-
morphisms of C and D. Theorem 3.1.93.1.9 tells us that this data is essentially the same
as the data of a functor C⊗ Ð→ D⊗ which preserves cocartesian edges, a notion
which is considerably simpler in comparison. This reflects the fact that the “fibra-
tion” picture encodes homotopy coherences in a much more efficient manner than
the “algebraic” picture. When passing to symmetric monoidal ∞-categories this
improvement makes a critical difference.

Theorem 3.1.93.1.9 suggests the following way to define the notion of a symmetric
monoidal ∞-category:

Definition 3.1.11. A symmetric monoidal ∞-category is a cocartesian fibration
π ∶ C⊗ Ð→ N(Fin∗) such that for every n the map

(ρ1
! , ..., ρ

n
! ) ∶ C⊗⟨n⟩ Ð→

n

∏
i=1

C⊗⟨1⟩

determined by the transition functors of ρ1, ..., ρn ∶ ⟨n⟩ Ð→ ⟨1⟩ (see Construction 2.4.192.4.19)
is an equivalence of ∞-categories. We will denote by C ∶= C⊗⟨1⟩ the fiber over 1, and

will refer to it as the underlying ∞-category of C⊗. In this situation we will also
say that π ∶ C⊗ Ð→ Fin∗ exhibits C as a symmetric monoidal ∞-category.

If π ∶ C⊗ Ð→ N(Fin∗) and π′ ∶ D⊗ Ð→ N(Fin∗) are two symmetric monoidal
∞-categories then we define a symmetric monoidal functor from C⊗ to D⊗ to be a
functor C⊗ Ð→D⊗ over N(Fin∗) which sends π-cocartesian edges to π′-cocartesian
edges.

Remark 3.1.12. The notation C⊗ in Definition 3.1.113.1.11 is merely suggestive in light
of the discussion in §3.13.1, we do not mean that C⊗ is obtained by applying some
construction to C.

Remark 3.1.13. Let C⊗ Ð→ N(Fin∗) be a symmetric monoidal ∞-category with
underlying ∞-category C = C⊗⟨1⟩. Using Construction 2.4.192.4.19 we see that the active

morphisms ⟨0⟩ Ð→ ⟨1⟩ and ⟨2⟩ Ð→ ⟨1⟩ determine functors

∆0 Ð→ C and ⊗ ∶ C × CÐ→ C

which are well-defined up to a contractible space of choices. The first of these
functors determines an object of C which we will denote by 1 and refer to as the
unit object of C. One can then check that the unit object 1 and the product ⊗ satisfy
the axioms of a symmetric monoidal category up to homotopy. In particular, the
homotopy category Ho(C) inherits a canonical symmetric monoidal structure.

3.2. Examples and constructions. In this section we will review some examples
and constructions of symmetric monoidal ∞-categories. We first note the following
immediate example:

Example 3.2.1. If C is an ordinary category then the nerve of the category C⊗

constructed in §3.13.1 is a symmetric monoidal ∞-category.

The following proposition provides a large source of symmetric monoidal ∞-
categories:
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Proposition 3.2.2 ([66, Proposition 4.1.7.4]). Let C⊗ Ð→ N(Fin∗) be a symmetric
monoidal ∞-category with underlying ∞-category C = C⊗⟨1⟩ and let W be a collection

of morphisms in C which contains all equivalences and is closed under 2-out-of-3.
Suppose that for every f ∶ xÐ→ y, f ′ ∶ x′ Ð→ y′ in W the map f⊗f ′ ∶ x⊗x′ Ð→ y⊗y′
is again in W . Then there exists a symmetric monoidal ∞-category D⊗ Ð→ N(Fin∗)
and a symmetric monoidal functor f ∶ C⊗ Ð→D⊗ such that

(1) for every symmetric monoidal ∞-category E⊗ Ð→ N(Fin∗) the induced map

Fun⊗(D⊗,E⊗) Ð→ Fun⊗(C⊗,E⊗)

is fully-faithful and its essential image consists of those symmetric monoidal
functors C⊗ Ð→ E⊗ such that the underlying functor CÐ→ E sends W to inver-
tible edges;

(2) the induced functor f⟨1⟩ ∶ CÐ→D on underlying ∞-categories exhibits D as the
localization of C with respect to W .

Remark 3.2.3. In the situation of Proposition 3.2.23.2.2, the existence of D such that (2)(2)
holds essentially follows from Remark 2.2.182.2.18, which says that the association (C,W ) ↦
C[W −1] can be made functorial and products preserving. Indeed, by the Lurie-
Grothendieck correspondence the cocartesian fibration C⊗ Ð→ Fin∗ corresponds to
a functor χ ∶ Fin∗ Ð→ Cat∞ given by the formula ⟨n⟩ ↦ Cn. The hypothesis in Pro-
position 3.2.23.2.2 implies that χ can be considered as a diagram of relative ∞-categories,
that is, a diagram in the ∞-category of ∞-categories equipped with a collection of
arrows. Performing localization levelwise we obtain a functor χ′ ∶ Fun∗ Ð→ Cat∞
which by the Lurie-Grothendieck correspondence can be encoded again as a co-
cartesian fibration D⊗ Ð→ N(Fin∗). Since localization preserves products D⊗ is
a symmetric monoidal ∞-category, which satisfies (2)(2) by construction. The main
non-trivial point of Proposition 3.2.23.2.2 is that D⊗ will actually also satisfy (1)(1).

A prominent source of examples of Proposition 3.2.23.2.2 comes from symmetric
monoidal model categories. These are model categories equipped with a closed
symmetric monoidal structure (that is, the tensor product has left adjoints in each
variable separately) which is compatible with the model structure in following sense:

(1) For every pairs of cofibrations f ∶ AÐ→ B,g ∶X Ð→ Y the pushout-product

A⊗ Y ∐
A⊗X

B ⊗X Ð→ B ⊗ Y

is a cofibration, which is furthermore a trivial cofibration if either f or g is
trivial.

(2) The unit 1 ∈M is cofibrant.

We note that in a symmetric monoidal model category the tensor product ⊗ does
not necessarily preserve weak equivalence in each variable separately, and so (M,W )
will not usually satisfy the hypothesis of Proposition 3.2.23.2.2. However, the axioms
above do imply that the full subcategory Mc ⊆M of cofibrant objects is closed under
tensor products (and contains the unit) and hence inherits a symmetric monoidal
structure. Furthermore, the pushout-product axiom (1)(1) implies that tensoring with
a cofibrant object X ⊗ (−) ∶M Ð→M is a left Quillen functor and hence preserves
weak equivalences between cofibrant objects. This means that (Mc,W c) satisfies
the hypothesis of Proposition 3.2.23.2.2 and so the ∞-category Mc[(W c)−1] inherits
a canonical symmetric monoidal structure (here we denotes by W c the collection
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of weak equivalences between cofibrant objects). Fortunately, it follows from the
general machinery of model categories that the natural map

Mc[(W c)−1] Ð→M[W −1] =M∞

induced by the inclusion Mc ⊆M is an equivalence of ∞-categories. We may hence
conclude that if M is a symmetric monoidal model category then the underlying
∞-category M∞ inherits a canonical symmetric monoidal structure.

Example 3.2.4. The Kan-Quillen model structure and the categorical model struc-
ture are both symmetric monoidal with respect to cartesian product. It then fol-
lows that S and Cat∞ inherit canonical symmetric monoidal structures (see Re-
mark 2.2.262.2.26). These symmetric monoidal structures are the corresponding cartesian
symmetric monoidal structures, see §3.33.3.

Example 3.2.5. Let R be a ring. Then the category Ch(R) of unbounded chain-
complexes over R can be endowed with the projective model structure in which the
weak equivalences are the quasi-isomorphisms and the fibrations are the levelwise
surjective maps. Furthermore, this model structure is compatible with tensor pro-
ducts of chain-complexes, and so Ch(R) is a symmetric monoidal model category.
The underlying ∞-category Ch(R)∞ then inherits a canonical symmetric monoidal
structure.

Another plentiful source of examples comes from symmetric monoidal simplicial
categories:

Definition 3.2.6. A symmetric monoidal simplicial category is a simplicial ca-
tegory C equipped with the same type of structure (⊗,1, a, λ, µ) as in the defini-
tion of an ordinary symmetric monoidal category (see Definition 3.1.23.1.2) only that
⊗ ∶ C×CÐ→ C is a simplicial functor and a, λ and µ are simplicial natural transfor-
mations (see Remark 2.1.22.1.2).

Construction 3.2.7. Let C be a symmetric monoidal simplicial category. We
construct a simplicial category C⊗ whose

- objects are pairs (n, (x1, ..., xn)) consisting of a non-negative integer n and a
family of objects in C parameterized by ⟨n⟩○;

- the simplicial set of maps from (n, (x1, ..., xn)) to (m, (y1, ..., ym)) is given by

∐
α∶⟨n⟩→⟨m⟩

n

∏
j=1

MapC(⊗i∈α−1(j)xi, yj),

where α ranges over all maps from ⟨n⟩ to ⟨m⟩ in Fin∗.

We will denote by π ∶ C⊗ Ð→ Fin∗ the natural projection (n, (x1, ..., xn)) ↦ ⟨n⟩,
which is a simplicial functor (where we consider Fin∗ as a simplicial category whose
mapping objects are discrete simplicial sets).

Proposition 3.2.8. Let C be a locally Kan symmetric monoidal simplicial category.
Then the map

N(C⊗) Ð→ N(Fin∗)
is a cocartesian fibration which exhibits N(C) as a symmetric monoidal ∞-category.

Example 3.2.9. The simplicial categories Kan and QC of ∞-groupoids and ∞-
categories respectively satisfy the assumptions of Proposition 3.2.83.2.8 with respect to
cartesian products. We hence obtain an induced symmetric monoidal structures
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on S = N(Kan) and Cat∞ = N(QC). These structures agree with those of Exam-
ple 3.2.43.2.4 (see [66, Corollary 4.1.7.16]) and both coincide with the respective cartesian
symmetric monoidal structures (see §3.33.3).

A large supply of symmetric monoidal simplicial categories comes from symme-
tric monoidal simplicial model categories. These are the symmetric monoidal model
categories M which admit a symmetric monoidal left Quillen functor ι ∶ Set∆ Ð→M,
in which case they automatically acquire the structure of a simplicial model cate-
gory (see Definition 2.2.212.2.21). In this case the simplicial enrichment associated to the
simplicial structure will endow M with the structure of a (symmetric monoida) sim-
plicial category. However, the resulting simplicial category will not be locally Kan
in general, and so we cannot apply Proposition 3.2.83.2.8 directly. On the other hand, we
have the full simplicial subcategory M○ ⊆ M spanned by fibrant-cofibrant objects,
which is locally Kan and satisfies further that N(M○) ≃M∞. Unfortunately, M○ will
generally not be closed under ⊗: the tensor product of two fibrant-cofibrant objects
will generally not be fibrant anymore. The solution to this problem is however not
complicated:

Proposition 3.2.10. Let M be a simplicial symmetric monoidal model category,
and let M⊗,○ ⊆ M⊗ denote the full subcategory spanned by those (n, (x1, ..., xn))
such that x1, ..., xn ∈M○. Then the map

N(M⊗,○) Ð→ N(Fin∗)

is a cocartesian fibration which exhibits N(M○) as a symmetric monoidal ∞-category.

Remark 3.2.11. If M is a simplicial symmetric monoidal model category then
N(M○) ≃ M∞ ≃ Mc[(W c)−1] can be endowed with a symmetric monoidal struc-
ture by either Proposition 3.2.23.2.2 or by Proposition 3.2.103.2.10. These two symmetric
monoidal structure are however equivalent to each other, see [66, Corollary 4.1.7.16].

3.3. cartesian and cocartesian symmetric monoidal structures. Let C be an
∞-category which admits finite coproducts, that is colimits for diagrams indexed by
finite sets. Then we can expect that C can be endowed with a symmetric monoidal
structure in which the monoidal product is given by the categorical coproduct.
Similarly, if C admits finite products then we can expect to have a symmetric
monoidal structure with the operation of cartesian products. In this section we will
see how to express these symmetric monoidal structures explicitly in the formalism
of symmetric monoidal ∞-categories.

We begin with the case of coproducts. Define a category Γ∗ as follows:

- The objects of Γ∗ are pairs (⟨n⟩ , i) where ⟨n⟩ ∈ Fin∗ and i ∈ ⟨n⟩○.
- A morphism in Γ∗ from (⟨n⟩ , i) to (⟨m⟩ , j) is a map of pointed sets α ∶ ⟨n⟩ Ð→
⟨m⟩ such that α(i) = j.

The category Γ∗ admits an obvious forgetful functor Γ∗ Ð→ Fin∗ sending (⟨n⟩ , i)
to ⟨n⟩.

Definition 3.3.1. Let C be an ∞-category. We define C∐ to be the simplicial set
whose n-simplices are pairs (σ, ρ) where σ ∶ ∆n Ð→ N(Fin∗) is an n-simplex of
N(Fin∗) and ρ ∶ ∆n×N(Fin∗) N(Γ∗) Ð→ C is a map of simplicial sets, where the fiber

product is taken with respect to σ. By construction the simplicial set C∐ comes
equipped with a map C∐ Ð→ N(Fin∗) sending (σ, ρ) to σ.
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We note that the vertices of C∐ can be identified with pairs (⟨n⟩ , x) where
⟨n⟩ ∈ Fin∗ and x ∶ {⟨n⟩} ×N(Fin∗) Γ∗ ≅ ⟨n⟩○ Ð→ C is a map, which we can identify

with a tuple x = (x1, ..., xn) of objects in C. Similarly, an arrow of C∐ consists of a

tuple (α, f) where α ∶ ⟨n⟩ Ð→ ⟨m⟩ is an arrow in N(Fin∗) and

(3.2) f ∶ ∆1 ×N(Fin∗) Γ∗ = N(Iα) Ð→ C

is a map, a data which we may identify with s triple (x, y,{fi}) where x = (x1, ..., xn)
is an n-tuple of objects in C, y = (y1, ..., ym) is an m-tuple of objects in C and
fi ∶ xi Ð→ yα(i) is a map for each i ∈ α−1(⟨m⟩○) ⊆ ⟨n⟩○.

Exercise 3.3.2. Suppose that C is a locally Kan simplicial category. Define a sim-
plicial category C∐ as follows: the objects of C∐ are pairs (n, (x1, ..., xn)) as in
Construction 3.2.73.2.7 and the simplicial mapping sets are given by

Map((n, (x1, ..., xn), (m, (y1, ..., ym)) = ∐
α∶⟨n⟩→⟨m⟩

m

∏
j=1

∏
i∈α−1(j)

MapC(xi, yj),

where α ranges over all maps from ⟨n⟩ to ⟨m⟩ in Fin∗. Show that there is a canonical
isomorphism of simplicial sets

N(C∐) ≅ N(C)∐

where the left hand side is constructed as in Definition 3.3.13.3.1.

Proposition 3.3.3 ([66, Proposition 2.4.3.3]). Let C be an ∞-category. Then π ∶
C∐ Ð→ N(Fin∗) is an inner fibration and an arrow

(α,{fi}) ∶ (⟨n⟩ , (x1, ..., xn)) Ð→ (⟨m⟩ , (y1, ..., ym))
as above is π-cocartesian if and only if for every j = 1, ...,m the collection of maps
fi ∶ xi Ð→ yj for i ∈ α−1(j) exhibit yj as the coproduct of {xi}i∈α−1(j). In addition,
if C admits finite coproducts then π is a symmetric monoidal structure on C, which
we call the cocartesian symmetric monoidal structure.

Proof. Let us show that π is an inner fibration. Consider a lifting problem of the
form

(3.3) Λni
ρ //

��

C∐

��
∆n σ //

;;w
w

w
w

w
N(Fin∗)

With 0 < i < n. The n-simplex σ determines a sequence of composable arrows

⟨k0⟩
α0Ð→ ⟨k1⟩

α1Ð→ ...
αn−1Ð→ ⟨kn⟩

in Fin∗. For j, j′ ∈ {0, ..., n} let us denote αj,j′ ∶ ⟨kj⟩ Ð→ ⟨kj′⟩ the composition

of αj , ..., αj′−1. By the construction of C∐ this lifting problem is equivalent to an
extension problem of the form

(3.4) Λni ×N(Fin∗) Γ∗ //

��

C

∆n ×N(Fin∗) Γ∗

99s
s

s
s

s
s



48 YONATAN HARPAZ

We note that ∆n ×N(Fin∗) Γ∗ can be identified with the nerve of a poset Iσ whose

objects are pairs (j, a) with j ∈ {0, ..., n} and a ∈ ⟨kj⟩○ and such that (j, a) ≤ (j′, a′) if
and only if j ≤ j′ and αj,j′(a) = a′. We then observe that m-simplices ∆m Ð→ N(Iσ)
are in bijections with pairs (τ, a) where τ ∶ ∆m Ð→ ∆n is an m-simplex in ∆n and

a ∈ ⟨kτ(0)⟩
○

is such that ατ(0),τ(m)(a) ∈ ⟨kτ(m)⟩
○
. Furthermore, such a simplex is

non-degenerate if and only if τ is a non-degenerate m-simplex of ∆n.
Let A ⊆ ⟨k0⟩○ be the subset containing those elements a ∈ ⟨k0⟩ such that α0,n(a) ∈

⟨kn⟩○. Using this explcit description we see that the non-degenerate simplices of

N(Iσ) that are not in Λni ×N(Fin∗) Γ∗ are either of the form (∆{0,...,n}, a) for a ∈ A or

of the form (∆{0,...,̂i,...,n}, a) for a ∈ A, for a fixed a the latter simplex is the i’th face
of the former, while all the other faces of the former are contained in Λni ×N(Fin∗)Γ∗.
It follows that the simplicial set N(In) is obtained from Λni ×N(Fin∗)Γ

∗ by performing

a pushout along Λin ⊆ ∆n for each a ∈ A. Since C is an ∞-category it follows that
the dotted extension exists in (3.43.4), and so the dotted lift exists in (3.33.3). We may
hence conclude that C∐ Ð→ N(Fin∗) is an inner fibration.

Let us now consider a lifting problem as in (3.33.3) with i = 0 and such that ρ

sends the edge ∆{0,1} to an arrow given by (α, f) ∶ (⟨n⟩ , x) Ð→ (⟨m⟩ , y) as above,
where x ∶ ⟨n⟩○ Ð→ C can be identified with a tuple (x1, ..., xn), y ∶ ⟨m⟩○ Ð→ C can
be idetified with a tuple (y1, ..., ym) and

(3.5) f ∶ ∆1 ×N(Fin∗) Γ∗ = N(Iα) Ð→ C

can be identified with a collection of maps fi ∶ xi Ð→ yα(i) for each i ∈ α−1(⟨m⟩○) ⊆
⟨n⟩○. Such a lifting problem is then equivalent to an extension problem as in (3.43.4)
with i = 0. Let B ⊆ ⟨k1⟩○ be the subset containing those elements b ∈ ⟨k1⟩ such that
α1,n(b) ∈ ⟨kn⟩○. The non-degenerate simplices of N(Iσ) that are not in Λn0×N(Fin∗)Γ

∗

are either of the form (∆{0,...,n}, a) for a ∈ A or of the form (∆{1,...,n}, b) for b ∈ B.

In addition, all the faces of (∆{0,...,n}, a) are contained in Λn0 ×N(Fin∗) Γ∗ except

the 0’th face which is (∆{1,...,n}, α0(a)). We then see that N(Iσ) is obtained from
Λn0 ×N(Fin∗) Γ∗ by performing, for each b ∈ B, a pushout along a map of the form

(3.6) Sb ⋆ ∂∆{1,...,n} Ð→ Sb ⋆∆{1,...,n}

where Sb ⊆ A is the preimage of b. Hence to solve the extension problem (3.43.4) we
need to solve a series of extension problems of the form

(3.7) Sb ⋆ ∂∆{1,...,n} //

��

C

Sb ⋆∆{1,...,n}

99ssssss

Let xb ∶ Sb Ð→ C be the restriction of x ∶ ⟨n⟩ Ð→ C. The extension problem 3.73.7 is
equivalent to the extension problem

(3.8) ∂∆{1,...,n} //

��

Cxb/

∆{1,...,n}

::uuuuu

Let f b ∶ Sb ⋆∆{1} Ð→ C be the restriction of (3.23.2) to Sb ⋆∆{1} ⊆ ∆1 ×N(Fin∗) Γ∗. By

Corollary 2.6.92.6.9 we see that the extension problem 3.83.8 is solvable as soon as f b is
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initial in Cxb , that is, as soon as f b is a colimit diagram. We may thus conclude that
the edge (x, y,{fi}) is π-cocartesian if (and in fact only if) for each b ∈ ⟨m⟩○ the
collection of maps fa ∶ xa Ð→ yb for a ∈ Sb exhibit yb is the coproduct of {xa}a∈Sb .

Now assume that C has coproducts. In this case we have by the above that for
every (⟨n⟩ , (x1, ..., xn)) in C∐ and every α ∶ ⟨n⟩ Ð→ ⟨m⟩ there exists a cocartesian
edge (⟨n⟩ , (x1, ..., xn)) Ð→ (⟨m⟩ , (y1, ..., ym)) lying above α, and so π is a cocar-
tesian fibration. To finish the proof we need to check that the transition functors
along the inert maps ρi ∶ ⟨n⟩ Ð→ ⟨1⟩ induce an equivalence

(3.9) C∐⟨n⟩ ≃∏
i

C∐⟨1⟩.

Inspecting the definition 3.3.13.3.1 we now observe that base change

C∐ ×N(Fin∗) N(Fin∗)in Ð→ N(Fin∗)in

is canonically isomorphic to the relative nerve construction (see Definition 2.5.12.5.1)

of the functor (Fin∗)in Ð→ Set∆ which sends ⟨n⟩ to C⟨n⟩○ and each inert map
α ∶ ⟨n⟩ Ð→ ⟨m⟩ corresponding to an injection α′ ∶ ⟨m⟩○ Ð→ ⟨n⟩○ to the restriction

(α′)∗ ∶ C⟨n⟩○ Ð→ C⟨m⟩○

along α′. In particular, there is a canonical isomorphism of simplicial sets C∐⟨n⟩ ≅
C⟨n⟩○ and the transition functor ρi! ∶ C∐⟨n⟩ Ð→ C∐⟨1⟩ is equivalent to the projection to

the ith factor C⟨n⟩○ Ð→ C, hence the equivalence (3.93.9). �

Remark 3.3.4. Proposition 3.3.33.3.3 implies that C∐ is an ∞-category as soon as C is an
∞-category (even if C does not admit finite coproducts). The mapping spaces in C∐

can then be explicitly identified: given x = (x1, ..., xn) ∈ C∐⟨n⟩ and y = (y1, ..., ym) ∈
C∐⟨m⟩ we have a canonical isomorphism of simplicial sets

C∐
x/ ×N(Fin∗) C

∐
⟨m⟩ ≅ ∐

α∶⟨n⟩→⟨m⟩
∏

j∈⟨m⟩○
Cxj/,

where xj ∶= x∣α−1(j) ∶ α−1(j) Ð→ C is the restriction of x to the preimage of j. We
hence obtain a canonical equivalence of spaces

MapC∐((⟨n⟩ , x), (⟨m⟩ , y)) ≃ ∐
α∶⟨n⟩→⟨m⟩

∏
j∈⟨m⟩○

∏
i∈α−1(j)

MapC(xi, yj).

We now turn our attention to the case of products. Define a category Γ× as
follows:

- The objects of Γ× are pairs (⟨n⟩ , I) where ⟨n⟩ ∈ Fin∗ and I ⊆ ⟨n⟩○.
- A morphism in Γ× from (⟨n⟩ , I) to (⟨m⟩ , J) is a map of pointed sets α ∶ ⟨n⟩ Ð→
⟨m⟩ such that α−1(J) ⊆ I.

The category Γ× admits an obvious forgetful functor Γ× Ð→ Fin∗ sending (⟨n⟩ , I)
to ⟨n⟩.

Definition 3.3.5. Let C be an ∞-category. We define C̃× to be the simplicial set
whose n-simplices are pairs (σ, ρ) where σ ∶ ∆n Ð→ N(Fin∗) is an n-simplex of
N(Fin∗) and ρ ∶ ∆n ×N(Fin∗) N(Γ×) Ð→ C is a map of simplicial sets, where the

fiber product is taken with respect to σ. By construction the simplicial set C̃×

comes equipped with a map C̃× Ð→ N(Fin∗) sending (σ, ρ) to σ. We note that for

⟨n⟩ ∈ Fin∗ the fiber C̃×⟨n⟩ is canonically isomorphic to the simplicial set of functors
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N(Pn)op Ð→ C where Pn denote the poset of subsets of ⟨n⟩○. We then define

C× ⊆ C̃× be the subsimplicial set spanned by those vertices whose corresponding
functors ϕ ∶ N(Pn)op Ð→ C satisfy the following property: for every I ⊆ ⟨n⟩○ the
maps ϕ(I) Ð→ ϕ({i}) for i ∈ I exhibit ϕ(I) as the product in C of the objects
{ϕ({i})}.

Proposition 3.3.6 ([66, Proposition 2.4.1.5]). Let C be an ∞-category which admits
products. Then the projection C× Ð→ N(Fin∗) exhibits C× as a symmetric monoidal
∞-category whose underlying ∞-category is C×⟨1⟩ = C. We will refer to C× as the

cartesian symmetric monoidal structure.

4. ∞-Operads and their algebras

4.1. From colored operads to ∞-operads. Our goal in this section is to define
and study the notion of ∞-operad, which is a central object of interest in this course.
The notion of an ∞-operad is essentially an ∞-categorical version of the classical
notion of a colored symmetric operad. In this course all operads will be colored and
symmetric, and so we will generally omit these adjectives from our discussion. The
notion of an operad allows one to encode algebraic structures abstractly in a way
that is independent of the specific type of objects in which we will wish to realize
them. Similarly, an ∞-operad allows one to do so in a higher categorical manner,
so that the axioms of the algebraic structure can be imposed only up to coherent
homotopy. We begin with the basic definitions pertaining to the case of ordinary
categories.

Definition 4.1.1. A (colored, symmetric) operad O consists in

- a set Ob(O) of objects (sometimes called colors);
- for every finite set I, every I-indexed collection of objects {xi}i∈I and every

object y ∈ Ob(O) a set MulO({xi}, y), which we call the set of multimaps from
{xi}i∈I to y. We will generally denote such multimaps as arrows {xi}i∈I Ð→ y.

- for every finite collections {xi}i∈I and {yj}j∈J , every map of finite sets α ∶ I Ð→
J , and every object z ∈ Ob(O) a composition map

(4.1) [∏
j∈J

MulO({xi}i∈α−1(j), yj)] ×MulO({yj}j∈J , z) Ð→MulO({xi}i∈I , z).

- for every object x ∈ Ob(O) a designated identity multimap Idx ∈ MulO({x}, x)
which is (left and right) neutral with respect to the composition map above.

If I has cardinality n then we will say that {xi}i∈I Ð→ y is a multimap of arity
n. The composition rule is required to be associative in the following sense: for

every sequence of maps I
αÐ→ J

βÐ→ K of finite sets with γ = β ○ α, every triple of
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collections {xi}i∈I ,{yj}j∈J ,{zk}k∈K and every object w ∈ Ob(O), the diagram

∏
j∈J

Mul({xi}i∈α−1(j), yj) ×Mul({yj}j∈J ,w)

++WWWWWWWWWWWWWWWWWWWWWW

∏
j∈J

Mul({xi}i∈α−1(j), yj) × ∏
k∈K

Mul({yj}j∈β−1(k), zk) ×Mul({zk}k∈K ,w)

OO

��

Mul({xi}i∈I ,w)

∏
k∈K

Mul({xi}i∈γ−1(k), zk) ×Mul({zk}k∈K ,w)

33ffffffffffffffffffffffffffffff

commutes.

A map of operads ϕ ∶ OÐ→ P consists of a map of sets Ob(O) Ð→ Ob(P) together
with maps MulO({xi}i∈I , y) Ð→ MulP({ϕ(xi)}i∈I , ϕ(y)) for every finite collection
{xi}i∈I and object y, which are compatible with the composition operation and the
identity multimaps.

Remark 4.1.2. Every operad O has an underlying category whose objects are the
objects of O and whose morphism sets are given by Mul({x}, y). We may hence
consider an operad as a category with additional structure, namely, the multimaps
{xi}i∈I Ð→ y. Some authors hence use the term multicategory to talk about these
kinds of operads.

Example 4.1.3. Let C be a symmetric monoidal category. Then we may associate
to C an operad as follows: the objects of O are the objects of C and for every finite
collection {xi}i∈I and object y ∈ C we set

MulC({xi}i∈I , y) = HomC(⊗ixi, y).

We will refer to this operad as the underlying operad of C.

Warning 4.1.4. If C is a symmetric monoidal category then C can be completely
reconstructed from its underlying operad by the Yoneda lemma. However, if C

and D are two symmetric monoidal categories then a map of operads C Ð→ D is
generally not the same as a map of symmetric monoidal categories. The latter
is given by a symmetric monoidal functor while the former corresponds to a lax
symmetric monoidal functor from C to D.

The main motivation of the notion of an operad is that it can be used to encode
the information of an algebraic structure.

Definition 4.1.5. Let O be an operad and C a symmetric monoidal category. An
O-algebra in C is a map of operads OÐ→ C, where C is considered as an operad by
Example 4.1.34.1.3.

Example 4.1.6. If O has only multimaps of arity 1 then O is simply a category. In
this case an O-algebra in a symmetric monoidal category C is the same as a functor
of ordinary categories OÐ→ C.

Examples 4.1.7.
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(1) Let Com be the operad with a single object ∗ and such that the set of multimaps
MulCom({∗}i∈I ,∗) contains a single element for every finite set I (in particular,
Com is terminal in the category of operads). If C is a symmetric monoidal
category then the data of a Com-algebra in C consists of an object A ∈ C (the
image of ∗) together with maps ⊗i∈IAÐ→ A for every finite set I, which satisfy
a compatibility condition for every I Ð→ J . Unwinding the definition we see
that this is exactly the data of a commutative algebra structure on A.

(2) Let Triv be the operad with a single object ∗ and such that the only multimap
is the identity. Then a Triv-operad in a symmetric monoidal category C is
simply an object of C with no additional structure. We will refer to Triv as the
trivial operad.

(3) Let Poi be the operad with a single object ∗ and such that the set of multimaps
MulPoi({∗}i∈I ,∗) contains a single element if ∣I ∣ ≤ 1 and is empty otherwise.
Then the data of a Poi-algebra object in a symmetric monoidal ∞-category C

consists of an object A ∈ C together with a map 1Ð→ A from the unit of C. We
will refer to Poi as the operad of pointed objects.

(4) Let Ass be the operad with a single object ∗ and such that for a finite set I
the multimaps {∗}i∈I Ð→ ∗ are given by linear orderings on I (composition is
defined by concatenating linear orders). If C is a symmetric monoidal category
then the data of an Ass-algebra in C consists of an object A ∈ C (the image
of ∗) together with maps ⊗i∈IA Ð→ A for every finite linearly ordered set I,
which satisfy a compatibility condition for every order preserving map I Ð→ J .
Unwinding the definition we see that this is exactly the data of an associative
algebra structure on A.

(5) Let AssInv be the operad with a single object ∗ and for a finite set I, the
multimaps {∗}i∈I Ð→ ∗ are given by pairs (≤, ε) where ≤ is a linear order on
I and ε ∶ I Ð→ {−1,1} is an assignment of signs to each i ∈ I. Composition of
multimaps is given by the concatenation of linear orders, reversal of linear orders
according to signs, and multiplication of signs. For example, the composition
of the multimaps

{∗}i∈{1,2}
1<2,ε1=ε2=1 // {∗}i∈{1}

ε1=−1 // ∗

is the multimap

{∗}i∈{1,2}
2<1,ε1=ε2=−1 // ∗ .

Algebras over AssInv in a symmetric monoidal category C are known as algebras
with involution. They are given by an associative algebra object A equipped
with an isomorphism τ ∶ A Ð→ Aop, where Aop denotes the same algebra with
multiplication reversed.

The examples above all have a single object. Here are some examples with several
objects:

Examples 4.1.8.

(1) Given an operad O we can produce another operad MO such that Ob(MO) =
Ob(O)×{a,m}, and such that the set of multimaps MulMO({(xi, yi)}i∈I , (z,w))
is equal to the set MulO({xi}i∈I , z) if w = yi = a for all i or if w =m and yi =m
for exactly one i, and is empty otherwise. The data of an MO-algebra in C is
given by a pair A,M where A is an O-algebra and M is a functor from the
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underlying category of O to C, equipped with an action of A. We will refer to
M as an A-module, though the exact meaning of this notion depends on O. For
example, in the case of O = Com we get that A is a commutative algebra object
and M is an A-module in the usual sense. When O = Ass we have that A is an
associative algebra object and M is an A-bimodule.

(2) Let LAss ⊆ MAss be the sub operad with the same objects where we only take
those multimaps {(∗, yi)}i∈I Ð→ (∗,w) in MAss such that either w = yi = a or
such that w =m and in the corresponding linear ordering on I the unique i0 such
that yi0 = m is last. Then the data of an LAss-algebra in C is given by a pair
A,M where A is an associative algebra object and M is a left module over A.
If instead of last we required first then we would get a suboperad RAss ⊆ MAss
whose algebras are pairs of associative algebras and right modules.

(3) Given an operad O, let PO be the operad with the same objects as MO

and such that the set of multimaps MulPO({(xi, yi)}i∈I , (z,w)) is equal to
MulO({xi}i∈I , z) if w = yi = a or if w = m and yi = m for at most one i,
and is empty otherwise. Then the data of a PO-algebra in C is given by a
triple (A,M,f) where A is an O-algebra, M is an A-module (in the sense of (1)(1)
above) and f ∶ A Ð→M is a map of A-modules. For example, a PAss-algebra
consists of an associative algebra A, a bimodule M and a map of bimodules
f ∶ AÐ→M .

(4) As above, the operad PAss contains two suboperads PLAss,PRAss ⊆ PAss
whose algebras are given by pairs (A,M,f) where A is an associative algebra
object, M is a left (resp. right) module and f ∶ AÐ→M is a map of left (resp.
right) modules. In this case, the data of f is equivalent to that of a map in C of
the form 1Ð→M , and we may consider M as a left (resp. right) module object
in the symmetric monoidal category C1/ of pointed objects. We will refer to
such (left or right) modules as pointed modules.

When passing to a higher categorical setting, the notion of an algebraic structure
(say, on an object in a symmetric monoidal ∞-category C), is more subtle: we need
to let the axioms of our algebraic theory hold only up to a (specified) homotopy,
and these homotopies need to be compatible up to higher homotopies, etc. As
with previous types of constructions discussed in this course, trying to keep explicit
tabs on all coherence homotopies becomes unfeasible in general. We hence need
a formalism in which the notion of an algebraic structure could be defined in an
∞-categorical setting, such that all the required coherence homotopy will be taken
into account implicitly. The formalism of ∞-operads is meant to do exactly that.

The idea of how to encode ∞-operads can be traced back to Example 4.1.34.1.3: if
symmetric monoidal categories are a particular kind of operads, then it makes sense
to try to define ∞-operads by weakening the definition of a symmetric monoidal
∞-category. Recall that if C is an ordinary symmetric monoidal category then we
can view it as a symmetric monoidal ∞-category by constructing the category C⊗

over Fin∗ (see Construction 3.1.33.1.3) and then taking the nerve. A key observation is
that if we start with an operad O instead of a symmetric monoidal category then
we can still construct an analogous category O⊗ over Fin∗, only that in general it
will not be a cocartesian fibration.

Construction 4.1.9. Let O be an operad. The category O⊗ is defined as follows:

- its objects are pairs (n, (x1, ..., xn)) consisting of a non-negative integer n and
a family of objects in O parameterized by {1, ..., n}.
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- maps from (n, (x1, ..., xn)) to (m, (y1, ..., ym)) are given by maps α ∶ ⟨n⟩ Ð→ ⟨m⟩
in Fin∗, together with, for every j = 1, ..., n, a multimap in O of the form

fj ∶ {xi}i∈α−1(j) Ð→ yj .

We will denote by π ∶ O⊗ Ð→ Fin∗ the natural projection (n, (x1, ..., xn)) ↦ ⟨n⟩.

We emphasize that this time π is not a cocartesian fibration, i.e., not every edge
in Fin∗ admits cocartesian lifts. However, some edges in Fin∗ do have cocartesian
lifts: if α ∶ ⟨n⟩ Ð→ ⟨m⟩ is an inert map and (n, (x1, ..., xn)) is an object of O⊗ lying
over ⟨n⟩ then maps f ∶ (n, (x1, ..., xn)) Ð→ (m, (y1, ..., ym)) lying above α are given
by specifying, for each j = 1, ...,m, a map fj ∶ xi Ð→ yj in the underlying category
of O, where i ∈ {1, ..., n} is the unique element mapping to j by α. It is then not
difficult to check that f is π-cocartesian if and only if each fj is an isomorphism
in the underlying category of O. We then see that each inert map α ∶ ⟨n⟩ Ð→ ⟨m⟩
admits a cocartesian lift starting at an arbitrary object over ⟨n⟩. This means that

π becomes a cocartesian fibration when restricted to the subcategory Finin
∗ ⊆ Fin

consisting of all objects and all inert maps.
Similarly to the case of symmetric monoidal category, the operad O can be

completely reconstructed from the category O⊗ together with the forgetful functor
π ∶ O⊗ Ð→ Fin∗. For example, the underlying category of O can be identified with
the fiber O⊗

⟨1⟩ = π
−1(⟨1⟩). More generally, suppose that n ≥ 0 and for 1 ≤ i ≤ n let

ρi ∶ ⟨n⟩ Ð→ ⟨1⟩ be as in Notation 3.1.83.1.8. Since ρi is inert it has by the discussion
above an associated transition functor ρi! ∶ O⊗

⟨n⟩ Ð→ O⊗
⟨1⟩ (see Construction 2.4.192.4.19),

and the collection of transition functors ρi! determines an equivalence O⊗
⟨n⟩ ≃ (O⊗

⟨1⟩)
n.

Given an object in O⊗
⟨n⟩ we may hence identify it with a sequence x1, ..., xn ∈ O⊗

⟨1⟩
intrinsically. Furthermore, if x is an object of O⊗

⟨n⟩ which corresponds to the tuple

(x1, ..., xn) and y ∈ O⊗
⟨1⟩ ≃ O then maps from x to y in O⊗ which lie above the

unique active map ⟨n⟩ Ð→ ⟨1⟩ are in bijection with multimaps {xi}ni=1 Ð→ y in O.
Elaborating further along these lines one can also reconstruct the composition of
multimaps in O.

The discussion above, together with the definition of a symmetric monoidal ∞-
category (see Definition 3.1.113.1.11), suggest that we might attempt to define an ∞-
operad as an ∞-category O⊗ over Fin∗ which satisfies certain conditions. As far as
we know defining ∞-operads in this way was first done in by Lurie (see [66, §2.1.1]).

Definition 4.1.10. An ∞-operad is a map of ∞-categories π ∶ O⊗ Ð→ N(Fin∗)
such that the following conditions hold:

(1) For every x ∈ O⊗ lying above ⟨n⟩ and every inert map α ∶ ⟨n⟩ Ð→ ⟨m⟩ there
exists a π-cocartesian edge f ∶ xÐ→ y lying above α.

(2) For every n the transition functors ρ1
! , ..., ρ

n
! (whose existence is guaranteed by

(1)) induce an equivalence

O⊗
⟨n⟩

≃Ð→ (O⊗
⟨1⟩)

n

.

(3) Let y ∈ O⊗ be an object lying above ⟨m⟩ and for each j = 1, ...,m let fj ∶ y Ð→ yi
be a π-cocartesian edge lying above ρj . Then the maps {fj} exhibit y as the
relative product of y1, ..., ym in O⊗ over N(Fin∗) in the following sense: for
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every x ∈ O⊗ the square

MapO⊗(x, y) //

��

∏j MapO⊗(x, yi)

��
MapFin∗(⟨n⟩ , ⟨m⟩) // MapFin∗(⟨n⟩ , ⟨1⟩)

is a cartesian square in S.

In this case we will also say that π exhibits O⊗ as an ∞-operad.

Example 4.1.11. If O is an ordinary operad and O⊗ is obtained from O via con-
struction 4.1.94.1.9 then the map N(O⊗) Ð→ N(Fin)) exhibits N(O⊗) as an ∞-operad.
In particular, all the examples of (4.1.74.1.7) also yield examples of ∞-operads. We note
that Com⊗ is equivalent to Fin∗ itself and Poi⊗ is equivalent to the subcategory of
Fin∗ consisting of all objects and all maps α ∶ ⟨n⟩ Ð→ ⟨m⟩ such that ∣α−1(i)∣ ≤ 1 for
i = 1, ..., n. Similarly, Triv⊗ is simply the subcategory of Fin∗ consisting of all inert
maps.

Example 4.1.12. Let C be an ∞-category and let π ∶ C∐ Ð→ N(Fin∗) be as in
Definition 3.3.13.3.1. Then Proposition 3.3.33.3.3 implies that C∐ satisfies Condition (1) of
Definition 4.1.104.1.10. Arguing as in the final part of the proof of Proposition 3.3.33.3.3
we see that π ∶ C∐ Ð→ N(Fina ∗) is in fact an ∞-operad (even if C does not have
coproducts). We call C∐ the cocartesian ∞-operad of C.

Generalizing Example 4.1.114.1.11 we may also construct ∞-operads starting from
simplicial operads. Recall that a simplicial operad O is given by the simplicially
enriched version of Definition 4.1.14.1.1: we have a set of objects Ob(O) and for every
collection of objects {xi}i∈I indexed by a finite set I and every object y ∈ Ob(O), a
simplicial set MapO({xi}, y) of multimaps from {xi}i∈I to y. The composition of
multimaps is then given as in (4.14.1) by replacing sets with simplicial sets. Given a
simplicial operad O we may perform the analogue of Construction 4.1.94.1.9 to obtain
a simplicial category O⊗ whose

- objects are pairs (n, (x1, ..., xn)) consisting of a non-negative integer n and a
family of objects in O parameterized by {1, ..., n}.

- the simplicial set of maps from (n, (x1, ..., xn)) to (m, (y1, ..., ym)) is given by

∐
α∶⟨n⟩→⟨m⟩

n

∏
j=1

MulO({xi}i∈α−1(j), yj)

where α ranges over all maps from ⟨n⟩ to ⟨m⟩ in Fin∗.

As before we have the forgetful functor π ∶ O⊗ Ð→ Fin∗ sending (n, (x1, ..., xn)) to
⟨n⟩. In what follows we say that a simplicial operad O is locally Kan if the simplical
sets MulO({xi}, y) are all Kan.

Proposition 4.1.13. Let O be a locally Kan simplicial operad. Then the map
N(O⊗) Ð→ N(Fin∗) exhibits N(O⊗) as an ∞-operad. We will refer to the ∞-operad
N(O⊗) as the operadic nerve of O.

In §55 below we will use the operadic nerve construction in order to define the
little n-cube ∞-operads En, which serve as one of the main objects of interest in
this course.
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Definition 4.1.14. Let π ∶ O⊗ Ð→ N(Fin∗) be an ∞-operad. We will say that a
map f ∶ xÐ→ y in O⊗ is inert if it is π-cocartesian and π(f) is inert.

Definition 4.1.15. Let O⊗,P⊗ be two ∞-operads. A map of ∞-operads is a map
of ∞-categories O⊗ Ð→ P⊗ over N(Fin∗) which sends inert maps to inert maps.
We will refer to ∞-operad maps from O to P as O-algebras in P. We will denote
by AlgO(P) ⊆ FunN(Fin∗)(O⊗,P⊗) the full subcategory spanned by the ∞-operad
maps.

Remark 4.1.16. The terminology of Definition 4.1.154.1.15 is motivated by the example
where P⊗ = C⊗ is a symmetric monoidal ∞-category, in which case we should think
of ∞-operad maps O⊗ Ð→ C⊗ are the homotopy coherent analogue of the classical
notion of an algebra over an operad in a symmetric monoidal category.

Definition 4.1.17. Let Op denote the simplicial category whose objects are the
∞-operads and such that MapOp(O⊗,P⊗) = AlgO(P)≃. Then Op is locally Kan and
we define the ∞-category of ∞-operads to be its coherent nerve

Op∞ ∶= N(Op).

In [66] Lurie constructs a simplicial model category whose underlying ∞-category
is Op∞. Let us denote by Ein the collection of edges of N(Fin∗) which correspond
to inert maps. Given an ∞-operad π ∶ O⊗ Ð→ N(Fin∗) we will denote by O⊗,♮

the marked simplicial set whose underlying simplicial set is O⊗ and whose marked
edges are exactly the inert maps. We note that the map π then becomes a map of
marked simplicial sets π ∶ O⊗,♮ Ð→ (N(Fin∗),Ein).

Definition 4.1.18. Let p ∶ (X,E) Ð→ (Y,F ) be a map of marked simplicial sets
over (N(Fin∗),Ein). We will say that f is an operadic equivalence if for every
∞-operad O⊗ the induced map

Map♯N(Fin∗)((Y,F ), (O⊗)♯) Ð→Map♯N(Fin∗)((Y,F ), (O⊗)♯)

is an equivalence of Kan complexes, where Map♯N(Fin∗)(−,−) denotes the subsim-

plicial set of Map♯(−,−) spanned by the maps which preserve the projection to
N(Fin∗) (see §??).

Theorem 4.1.19 ([66, §2.1.4]). There exists a simplicial model structure on the
category (Set+∆)/(N(Fin∗),Ein) of marked simplicial sets over (N(Fin∗),Ein) whose
weak equivalences are the operadic equivalences, whose cofibrations are the mono-
morphisms and whose fibrant objects are those of the form O⊗,♮ for O⊗ an ∞-operad.
The underlying ∞-category of this model structure is naturally equivalent to Op∞.
We will refer to this model structure as the operadic model structure.

Recall that if C is an ∞-category which admits finite products then C can be en-
dowed with a canonical symmetric monoidal structure C× Ð→ N(Fin∗) in which the
monoidal operation is given by cartesian products (see §3.33.3). Since C× is canonically
determined by C (given that it has finite products), we might hope that the notion
of an algebra object in C (with respect to some ∞-operad O⊗) could be phrased
without making a reference to the theory of symmetric monoidal ∞-categories. To
make this precise let us introduce the following notion:

Definition 4.1.20. Let C be an ∞-category which admits finite products and let
O⊗ be an ∞-operad. An O-monoid in C is a functor ϕ ∶ O⊗ Ð→ C, such that for every
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x ∈ O⊗ and every collection of inert maps fi ∶ x Ð→ xi lying above ρi ∶ ⟨n⟩ Ð→ ⟨1⟩
the maps (fi)∗ ∶ ϕ(x) Ð→ ϕ(xi) exhibit ϕ(x) as the product of ϕ(x1), ..., ϕ(xn) in
C. We will denote by MonC(E) ⊂ Fun(C,E) the full subcategory spanned by the
C-monoid objects.

Given an ∞-category C which admits finite products, we may consider the as-
sociated cartesian symmetric monoidal ∞-category C× as representing the functor
O⊗ ↦MonO(C). More precisely, observe that the forgetful functor Γ× Ð→ Fin∗ ad-
mits a canonical section sending ⟨n⟩ to the pair (⟨n⟩ , ⟨n⟩○), and so by construction
we have a canonical map ϕ ∶ C× Ð→ C. We then have the following universal
characterization of C×:

Proposition 4.1.21. Let C be an ∞-category which admits finite products. Then
the functor ϕ ∶ C× Ð→ C is a monoid object in C. Moreover, this monoid object
is universal in the following sense: for every ∞-operad O⊗, composition with ϕ
induces an equivalence of ∞-categories

AlgO(C) ≃Ð→MonO(C)
where on the left hand side we consider C as endowed with the cartesian symmetric
monoidal structure C×.

We finish this section with the following proposition which gives a convenient
criterion for when a map of ∞-operads is an equivalence.

Definition 4.1.22. Let ϕ ∶ O⊗ Ð→ P⊗ be a map of ∞-operads. We will say that ϕ
is a Morita equivalence if restriction along ϕ induces an equivalence of ∞-categories

MonO(S) ≃Ð→MonP(S).

Proposition 4.1.23. Let ϕ ∶ O⊗ Ð→ P⊗ be a map of ∞-operads. Then the following
are equivalent:

(1) ϕ is an operadic equivalence.
(2) ϕ is an equivalence in the ∞-category Op∞.
(3) For every ∞-operad Q⊗, restriction along ϕ induces an equivalence of ∞-

categories AlgP(Q) ≃Ð→ AlgO(Q).
(4) The map O Ð→ P on underlying ∞-categories is essentially surjective, and

for every symmetric monoidal ∞-category C⊗, restriction along ϕ induces an

equivalence of ∞-categories AlgP(C)
≃Ð→ AlgO(C).

(5) ϕ is essentially surjective and a Morita equivalence (see Definition 4.1.224.1.22).

Proof (sketch). (1), (2) and (3) are equivalent essentially by construction and (3) ⇒
(4) ⇒ (5) by Proposition 4.1.214.1.21. To finish the proof we will show that (5) implies
(3). Let us hence assume that ϕ satisfies (5). Then ϕ is essentially surjective
and since O,P are ∞-operad it follows that ϕ is also essentially surjective on inert
arrows. It then follows that if Q⊗ is an ∞-operad then a functor P⊗ Ð→ Q⊗ over
N(Fin∗) is an ∞-operad map if and only if the composition O⊗ Ð→ P⊗ Ð→ Q⊗ is
an ∞-operad map. We are hence reduced to showing that the restriction functor
FunN(Fin∗)(P⊗,Q⊗) Ð→ FinN(Fin∗)(O⊗,Q⊗) is an equivalence of ∞-categories for
every Q⊗. For this it will suffice to show that the map O⊗ Ð→ P⊗ is an equivalence
of ∞-categories. Since we assumed that ϕ is essentially surjective it is left to check
that ϕ is fully-faithful. Since O⊗ and P⊗ are ∞-operads it will suffice to check that
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if x ∈ O⊗ and y ∈ O are objects then the induced map

(4.2) MapO⊗(x, y) Ð→MapP⊗(ϕ(x), ϕ(y))
is an equivalence of spaces. For i = 1, ..., n let fi ∶ x Ð→ xi be an inert map lying
above ρi ∶ ⟨n⟩ Ð→ ⟨1⟩, so that we can think of the mapping spaces appearing in (4.24.2)
as the spaces of multimaps {x1, ..., xn} Ð→ y and {ϕ(x1), ..., ϕ(xn)} Ð→ ϕ(y).
Summarizing the discussion so far what we need to check is that if ϕ satisfies (5)
then it induces an equivalences on all spaces of multimaps.

We now invoke some more advanced ∞-categorical machinery which states that
given x ∈ O the forgetful functor

evx ∶ MonO(S) Ð→ S

which sends an O-monoid in spaces to the space associated to the object x, admits
a left adjoint Fx ∶ S Ð→MonO(S) whose value on a given space Z is usually called
the free O-monoid generated from Z at x. Furthermore, these free monoids admit
an explicit description (see [66, §3.1.3]):

evy Fx(Z) = ∐
n≥0

[MapO((x, ..., x), y) ⋅Zn]hΣn

where (x, ..., x) denotes an object of O which corresponds to the tuple (x, ..., x)
under the (canonical) equivalence O⟨n⟩ ≃ On⟨1⟩, and Σn is the permutation group

on n elements which naturally act on MapO((x, ..., x), y) ⋅ Zn. In particular, if ϕ
induces an equivalence MonP(S) Ð→MonO(S) then it also induces an equivalence
Fx(Z) ≃ ϕ∗Fϕ(x)(Z) for every space Z. Setting Z = ∗ we obtain that ϕ induces an
equivalence

MapO((x, ..., x), y)hΣn Ð→MapP((ϕ(x), ..., ϕ(x)), ϕ(y))hΣn

for every n and hence an equivalence

MapO((x, ...., x), y) ≃ MapO((x, ..., x), y)hΣn ×(∗)hΣn
{∗} Ð→

MapO((ϕ(x), ..., ϕ(x)), ϕ(y))hΣn ×(∗)hΣn
{∗} ≃ MapP((ϕ(x), ..., ϕ(x)), ϕ(y))

for every n. This finishes the proof if the underlying ∞-category O is a connected
Kan complex. In general, to handle non-equivalent x1, ..., xn one can do a similar
argument using the left adjoint of the forgetful functor

evx1,...,xn ∶ MonO(S) Ð→ Sn

which sends an O-monoid in spaces to the n-tuple of spaces associated to the objects
x1, ..., xn. �

4.2. Weak ∞-operads and approximations. The notion of an ∞-operad defi-
ned above is somewhat rigid. It is hence useful sometimes to consider mild genera-
lizations, which are more amenable to various constructions. In this section we will
focus on one such notion, which we call a weak ∞-operad. This notion is somewhat
add-hoc (we are not aware of any literature using this particular definition), and
for the purposes of these notes it should be considered as merely a tool in order
to prove results on ∞-operads. However, we note that it does admits quite a few
interesting examples which arise naturally, and can be considered as a variant on
the theory of operator categories.

Recall that a map ι ∶ C0 Ð→ C of ∞-categories is called a subcategory of C if
the induced map MapC0

(x, y) Ð→ MapC(ι(x), ι(y)) has (−1)-truncated homotopy
fibers (that is, it is equivalent to an inclusion of a set of components). In this case
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we will often omit ι and simply write C0 ⊆ C (though we do not mean by this that
ι is injective on the level of simplicial sets). A subcategory C0 ⊆ C is called wide if
the induced map C≃0 Ð→ C≃ is an equivalence of ∞-groupoids. In this case we will

say that an arrow of C belongs to C0 if is equivalent in C∆1

to an arrow which is
in the image of C0. In particular, when C0 ⊆ C is a wide subcategory then every
equivalence in C belongs to C0.

Definition 4.2.1. Let C be an ∞-category. By a factorization system on C we will
mean two wide subcategories Cin,Cact ⊆ C, whose maps we call the inert and active
maps respectively, such that the following two conditions hold:

(1) Every morphism h ∶ xÐ→ z in C can be factored as a composition x
fÐ→ y

gÐ→ z
such that f is inert and g is active.

(2) For every commutative square in C of the form

(4.3) x //

f

��

z

g

��
y //

>>~
~

~
~

w

such that f is inert and g is active the space of dotted lifts is contractible.

Remark 4.2.2. The notion of a factorization system given in Definition 4.2.14.2.1 is
also sometimes called an orthogonal factorization system or a unique factorization
system. It is stronger than the notion of a weak factorization system commonly
found in litterature on model categories, in which the lifting solutions in (4.34.3) are
not required to be essentially unique.

Exercise 4.2.3. Let (Cin,Cact) be a unique factorization system on C.

(1) For a map h ∶ x Ð→ z let us denote by Cx//z ∶= (Cx/)/h the ∞-category of
factorizations

x
fÐ→ y

gÐ→ z

of f . Consider the full subcategory Cx//z ×Cx/ C
in
x/ ⊆ Cx//z consisting of those

factorizations h = g ○ f such that f is inert and the full subcategory Cx//z ×Cx/

Cact
/z ⊆ Cx//z consisting of those factorizations h = g ○ f such that g is active.

Show that if h = g ○ f is a factorization such that f is inert and g is active then
(f, g) is final when considered as an object of Cx//z ×Cx/ C

in
x/ and initial when

considered as an object of Cx//z ×C/z
Cact
/z .

(2) Deduce that for every morphism h ∶ xÐ→ z in C the full subcategory Eh ⊆ Cx//y
consisting of those factorizations

x
fÐ→ y

gÐ→ z

of h such that f ∈ Cin and g ∈ Cact, is a contractible Kan complex.

(3) Show that if x
fÐ→ y

gÐ→ z are two composable arrows such that f is inert then
g is inert if and only if g ○ f is inert. Similarly, if g is active then f is active if
and only if g ○ f is active.

Definition 4.2.4. A weak ∞-operad is an ∞-category C equipped with a facto-
rization system (Cin,Cact) and a full subcategory C0 ⊆ C such that the following
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condition hold: for every x ∈ C there exists a finite set Ix and a collection of maps
fi ∶ xÐ→ xi in Cin indexed by i ∈ Ix, such that xi ∈ Cin

0 and the associated functor

Ix
≃Ð→ Cin

x/ ×Cin Cin
0

is coinitial (where Cin
0 = C0 ∩ Cin is the preimage of C0 in Cin).

We will refer to maps of C which belong to Cin and as inert and active respecti-
vely, and to the objects of Cin

0 as the basics.

Definition 4.2.5. By a functor of weak ∞-operads we will mean a functor between
the underlying ∞-categories ϕ ∶ CÐ→D such that

- ϕ sends inert maps to inert maps, active maps to active maps, and basics to
basics;

- for every x ∈ C, the induced map Cin
x/ ×C Cin

0 Ð→Din
x/ ×D Din

0 is coinitial.

Remark 4.2.6. Let (C,Cin,Cact,C0) be a weak ∞-operad. The condition that
Cin
/x ×Cin Cin

0 admits a coinitial map from a finite set is equivalent to the condi-

tion that Cin
/x ×Cin Cin

0 decomposes as a finite disjoint union of ∞-categories, each of

which possesses an initial object. Let

(4.4) Ix ⊆ Cin
/x ×Cin Cin

0

be the full subcategory spanned by those objects which are initial in their compo-
nent. Then Ix is categorically equivalent to a finite set, and the inclusion (4.44.4) is
coinitial. In particular, up to categorical equivalence we may assume that the Ix in
Definition (4.2.44.2.4) are given by the canonical choice of (4.44.4). If ϕ ∶ CÐ→D is now a
functor that sends inerts to inerts, actives to actives and basics to basics then the
condition that ϕ is a map of weak ∞-operads is equivalent to the condition that
for every x ∈ C the functor ϕ maps Ix to Iϕ(x) bijectively.

Definition 4.2.7. Let (C,Cin,Cact,Cin
0 ) be a weak ∞-operad and let E be an ∞-

category with finite products. A C-monoid object in E is a functor ϕ ∶ CÐ→ E such
that ϕ∣Cin is a right Kan extension if ϕ∣Cin

0
(see §2.72.7). By Theorem 2.7.52.7.5 this is

equivalent to saying that for every x ∈ C the collection of maps fi ∶ ϕ(x) Ð→ ϕ(xi)
for i ∈ Ix exhibit ϕ(x) as the product in E of the objects {ϕ(xi)}i∈Ix .

Remark 4.2.8. If ϕ ∶ C Ð→ D is a functor of weak ∞-operads in the sense of
Definition 4.2.54.2.5 and E is any ∞-category with finite products then restriction along
ϕ sends D-monoids in E to C-monoids in E.

Example 4.2.9. For any factorization system (Cin,Cact) on C we can choose C0 = C

as our subcategory of basics and get an associated weak ∞-operad. We then have
MonC(E) = Fun(C,E) for every E.

Example 4.2.10. In any ∞-category C we have two canonical factorization systems:
the one where the inerts are the equivalences and the actives are all maps and the
one where the inerts are all maps and the actives are the equivalences. In addition,
any full subcategory C0 ⊆ C can serve as a subcategory of basics for the former, in
which case ψ ∶ C Ð→ E is a monoid object if and only if ψ(c) is terminal in E for
every c ∉ C0.

Example 4.2.11. If O⊗ Ð→ N(Fin∗) is an ∞-operad then the ∞-category O⊗ has an
associated structure of a weak ∞-operad where (O⊗)in consists of the inert maps,
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(O⊗)act consists of the active maps, and the subcategory of basics consists of the
objects which lie above ⟨1⟩.

Example 4.2.12. The category ∆op admits a structure of a weak ∞-operad, where
ρ ∶ [n] Ð→ [m] is active if ρ(0) = 0 and ρ(n) = m, is inert if it is of the form
ρ(i) = i + a for some a, and the full subcategory of basics is {[1]}. More generally,
the Leinster category of any perfect operator category is a weak ∞-operad.

There is a map of weak ∞-operads ∆op Ð→ Ass⊗ which sends [n] to the pointed
set {∗, (0,1), (1,2), ..., (n−1, n)} ≅ ⟨n − 1⟩ of consecutive edges in [n] (plus an extra
base point). Restriction along this map induces an equivalence

MonAss⊗(E)
≃Ð→Mon∆op(E)

for every ∞-category E with finite products.

Example 4.2.13. If C,D are two weak ∞-operads then the cartesian product C ×D

has a naturally associated weak ∞-operad structure, where a map (f, g) ∶ (x, y) Ð→
(x′, y′) is inert (resp. active) if and only if f is inert (resp. active) in C and g is
inert (resp. active) in D, and the full subcategory of basics is C0 ×D0 ⊆ C×D. If E
is an ∞-category with finite products then MonC×D(E) ≃ MonC(MonD(E)).

Definition 4.2.14. Let ϕ ∶ C Ð→ D be a functor of weak ∞-operads. We will say
that ϕ is a weak approximation if the following conditions holds:

(1) For every y ∈ C the homotopy fibers of Cact
/y Ð→Dact

/ϕ(y) are weakly contractible.

(2) The map ϕ−1Din
0 Ð→Din

0 is a localization map (Definition 2.2.132.2.13).

We will say that ϕ is a strong approximation if it is a weak approximation and the
map ϕ−1Din

0 Ð→Din
0 is an equivalence of ∞-categories.

Example 4.2.15. The map ϕ ∶ ∆op Ð→ Ass⊗ of Example 4.2.124.2.12 is a strong approxi-
mation. This follows from the fact that for every [n] ∈ ∆op the functor (∆op)act

/[n] Ð→
(Ass⊗)act

/ϕ([n]) is an equivalence of categories and (Ass⊗⟨1⟩)in ≃ ϕ−1(Ass⊗⟨1⟩)in ≃ ∗.

Remark 4.2.16. If ϕ ∶ C Ð→ D and ϕ′ ∶ C′ Ð→ D′ are weak approximations of weak
∞-operads then (ϕ,ϕ′) ∶ C × C′ Ð→D ×D′ is a weak approximation as well.

Remark 4.2.17. Consider a homotopy pullback square of ∞-categories

P
ϕ′ //

ψ′

��

C

ψ

��
D

ϕ // E

If C,D and E are given weak ∞-operad structures such that ϕ and ψ are weak
∞-operad maps then P inherits an associated weak ∞-operad structure where a
map in P is inert (resp. active) if and only if its image in C and D is inert (resp.
active) and P0 ∶= D0 ×hE0

C0. In this case, if ψ is a strong approximation then ψ′ is
a strong approximation.

Our main interest in weak approximations comes from the following result:

Proposition 4.2.18. Let ϕ ∶ C Ð→ D be a weak approximation map of weak ∞-
operads and let E be an ∞-category which admits small limits. Then the restriction

(4.5) ρ∗ ∶ MonD(E) Ð→MonC(E)
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is fully-faithful and its essential image consists of those monoid objects ψ ∶ CÐ→ E

such that ψ∣ϕ−1Din
0

factors through Din
0 . In particular, if ϕ is a strong approximation

then (4.54.5) is an equivalence of ∞-categories.

The proof of Proposition 4.2.184.2.18 will require two lemmas:

Lemma 4.2.19. Let ϕ ∶ C Ð→ D be a map of weak approximation of weak ∞-
operads. Then for every object y ∈ C and every map x Ð→ ϕ(y) in D, the full
subcategory X ⊆ C/y ×D/ϕ(y)

Dx//ϕ(y) spanned by those (g ∶ y′ Ð→ y, h ∶ x Ð→ ϕ(y′))
such that h is inert, is weakly contractible.

Proof. Let X0 ⊆ X be the full subcategory spanned by those (g ∶ y′ Ð→ y, h ∶ x Ð→
ϕ(y′)) such that in addition g is active in C. We then note that if (g, h) is an
object of X then the comma ∞-category (X0)(g,h)/ is equivalent to the ∞-category
of factorizations of g as g = g′′ ○ g′ such that ϕ(g′) is inert in D and g′′ is active in
C. This ∞-category admits an initial object, given by any factorization g = g′′ ○ g′
such that g′ is inert in C and g′′ is active in C (see Exercise 4.2.34.2.3). It then follows
that the inclusion X0 ⊆ X is cofinal (in fact, that it admits a left adjoint) and is
hence a weak homotopy equivalence. To show that X is weakly contractible it will
hence suffice to show that X0 is weakly contractible. We note that X0 maps to
the ∞-category of inert-active factorizations of f in D. The latter category is a
contractible Kan complex by Exercise 4.2.34.2.3 and so it will suffice to check that the
homotopy fiber over a given factorization x Ð→ x′ Ð→ ϕ(c) is weakly contractible.
But this follows directly from our hypothesis that ϕ is a weak approximation. �

Lemma 4.2.20. Let ϕ ∶ C Ð→ D be a functor of weak ∞-operads and set Cϕ ∶=
ϕ−1Din and C

ϕ
0 ∶= ϕ−1Din

0 . Then for every ∞-category E with limits and every
C-monoid object ψ ∶ CÐ→ E we have that ψ∣Cϕ is a right Kan extension of ϕ∣Cϕ0 .

Proof. Consider the full subcategory inclusion

(4.6) Cin
y/ ×C (Cϕ0 )in ⊆ C

ϕ
y/ ×C C

ϕ
0

where the left hand consists of those g ∶ y Ð→ y′ on the right hand side which are
furthermore inert in C (this subcategory is indeed full by Exercise 4.2.34.2.3(1)). We
claim that the inclusion (4.64.6) is coinitial. To see this, observe that for g ∶ y Ð→ y′

in C
ϕ
y/ ×C C

ϕ
0 the comma ∞-category [Cin

y/ ×C (Cϕ0 )in]/g can be identified with the

∞-category of factorizations

(4.7) y′′

g′′

��????????

y

g′
@@�������� g // y′

of g such that g′ is inert and ϕ(y′′) ∈D0. This ∞-category embeds in the ∞-category
Cy//y′ ×Cy/ C

in
y/ of all factorizations g = g′′ ○ g′ with g′ inert. By Exercise 4.2.34.2.3(2)

the latter has a final object given by any factorzation g = g′′ ○ g′ as in (4.74.7) such
that g′ is inert and g′′ is active. In this case, since g and g′ map to inert maps in
D we have by Exercise 4.2.34.2.3(1) that g′′ must map to a map in D which is both
inert and active, and hence an equivalence. It then follows that ϕ(y′′)D0 and so
the factorization (g′, g′′) belongs to [Cin

y/ ×C (Cϕ0 )in]/g. We may thus conclude that

the latter ∞-category has final objects and is therefore weakly contractible. The
inclusion (4.64.6) is consequently coinitial.
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It now follows from Theorem 2.7.52.7.5 that ψ∣Cϕ is a right Kan extension of ψ∣Cϕ0
if and only if ψ∣Cin is a right Kan extension of ψ∣(Cϕ0 )in . Since (Cϕ0 )in is a full

subcategory of Cin which contains Cin
0 the latter condition holds whenever ψ is a

C-monoid object, as desired. �

Proof of Proposition 4.2.184.2.18. Cϕ ∶= ϕ−1Din and C
ϕ
0 ∶= ϕ−1Din

0 be as in Lemma 4.2.204.2.20.
Let us say that a C-monoid ψ ∶ C Ð→ E is locally constant (relative to D) if ψ∣Cϕ0
factors through Din

0 . We will denote by Monloc
C (E) ⊆ MonC(E) the full subcate-

gory spanned by the locally constant monoid objects. By definition the restriction
functor (4.54.5) lands in locally constant C-monoids, thus yielding a functor

(4.8) ρ∗ ∶ MonD(E) Ð→Monloc
C (E)

The key idea of the proof is that (4.84.8) admits an inverse which is given by right
Kan extension along ϕ. More precisely, let

π ∶M ∶= N[ϕ]([1]) Ð→∆1

be the cartesian fibration (2.392.39) classified by the diagram (∆1)op Ð→ Cat∞ cor-

responding to [D ϕ←Ð C]. As we outlined in §2.72.7, the ∞-category of functors
MÐ→ E is equivalent to the ∞-category of triples (ψ,ψ′, δ) consisting of a functor
ψ ∶ C Ð→ E, a functor ψ′ ∶ D Ð→ E, and a natural transformation δ ∶ ψ′ ○ ϕ ⇒ ψ.
Consider the following two properties a functor ψ ∶MÐ→ E can have:

(1) ψ∣C is a locally constant monoid object and the natural transformation δ ∶
ψ′ ○ ϕ⇒ ψ exhibits ψ′ as a right Kan extension of ψ along ϕ.

(2) ψ∣D is a monoid object and the natural transformation δ ∶ ψ′ ○ ϕ ⇒ ψ is an
equivalence.

To prove that (4.84.8) is an equivalence it will suffice to show that for a given ψ ∶
MR
ϕ Ð→ E, Condition (1)(1) is equivalent to Condition (2)(2). Indeed, assume this claim

for the moment and let X ⊆ Fun(MR
ϕ ,E) be the full subcategory spanned by those

ψ which satisfy either of those equivalent conditions. Consider the diagram

(4.9) X

##HHHHHHHHHH

zzuuuuuuuuu

Monloc
C (E) MonD(E)

Since we assumed that E admits limits we have by Theorem 2.7.52.7.5 that every
ϕ ∶ C Ð→ E admits a right Kan extension ψ ∶ M Ð→ E. Since X is determines
by Condition (1)(1) the left diagonal projection in (4.94.9) is obtained from the cocar-

tesian fibration Fun(MR
ϕ ,E) ×Fun(C,E) Monloc

C (E) Ð→ Monloc
C (E) by restricting to

those objects which are final in their fiber, and is hence a trivial Kan fibration
by Exercise 2.6.102.6.10. On the other hand, since X is determined by Condition (2)(2)
the right diagonal map in 4.94.9 is obtained by restricting the cartesian fibration
Fun(MR

ϕ ,E) ×Fun(D,E) MonD(E) Ð→ MonD(E) to the full subcategory spanned by
those objects which are initial in their fiber, and is hence a trivial Kan fibra-
tion as well. In particular, (4.94.9) determines an equivalence between MonD(E) and

Monloc
C (E). This implies that (4.84.8) is an equivalence is well, since we can iden-

tify (4.84.8) up to homotopy with the composition of (any) section MonD(E) Ð→ X

and the projection XÐ→Monloc
C (E).
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We shall now prove that Condition (1)(1) and Condition (2)(2) are equivalent. Let ψ ∶
MÐ→ E be such that ψ∣C is a locally constant C-monoid object. By Theorem 2.7.52.7.5

the condition that ψ is a right Kan extension is equivalent to the condition that for

every x ∈ D the composed map (Mx/ ×M C)◁ Ð→M
ψÐ→ E is a limit diagram. Let

Ix ⊆Mx/×MC be the full subcategory spanned by those objects [xÐ→ y] ∈Mx/×MC

whose corresponding arrow f ∶ xÐ→ ϕ(y) in D is inert. We claim that the inclusion
Ix ⊆ Mx/ ×M C is coinitial. Concretely, what we need to check is that for every
arrow in D of the form f ∶ x Ð→ ϕ(y), the comma ∞-category (Ix)/f is weakly
contractible. This comma ∞-category can be identified with the full subcategory
X ⊆ C/y ×D/ϕ(y)

Dx//ϕ(y) consisting of the pairs (g ∶ y′ Ð→ y, h ∶ x Ð→ ϕ(y′))
such that h is inert, and is hence weakly contractible by Lemma 4.2.194.2.19 and our
assumption that ϕ is a weak approximation. We then get that the second part
of condition (1)(1) is equivalent to the condition that for every x ∈ D the restricted

diagram ψx ∶ I◁x Ð→ M
ψÐ→ E is a limit diagram. Using again Theorem 2.7.52.7.5 this

is equivalent to saying that δ∣Cϕ ∶ ϕ∗ψ′∣Cϕ ⇒ ψ∣Cϕ exhibits ψ′∣Din as a right Kan
extension of ψ∣Cϕ . Consider the commutative diagram

(4.10) C
ϕ
0

//

��

Din
0

��
Cϕ // Din

By Lemma 4.2.204.2.20 we have that ψ∣Cϕ is a right Kan extension of ψ∣Cϕ0 . Since Din
0 ⊆

Din is a full inclusion a double application of Proposition 2.7.72.7.7 and an application
of Remark 2.7.62.7.6 imply that Condition (1)(1) is equivalent to the following condition:

(1’) ψ∣C is a locally constant monoid object, ψ∣D is a monoid object, and the natural
transformation δ∣Cϕ0 ∶ ϕ∗ψ′∣Cϕ0 ⇒ ψ∣Cϕ0 exhibits ψ′∣Din

0
as a right Kan extension

of ψ∣Cϕ0 along ϕ0 ∶ Cϕ0 Ð→Din
0 .

Let us hence focus our attention on the restricted functor ϕ0 ∶ Cϕ0 Ð→Din
0 . Let

M0 = N[ϕ0]([1]) Ð→∆1

be the associated relative nerve, so that we have a natural inclusion of simplicial
sets M0 ⊆ M. Let ψ0 ∶= ψ∣M0 . Since ψ∣C is a C-monoid object Condition (2)(2)
can be checked only for objects in C

ϕ
0 . To finish the proof it will hence suffice to

show that ψ0 is a right Kan extension if and only if the natural transformation

δ∣Cϕ0 ∶ ϕ∗ψ′∣Cϕ0 ⇒ ψ∣Cϕ0 is an equivalence. Now since we assumed that ψ∣C is a locally

constant C-monoid object it follows that (ψ0)∣Cϕ0 factors through Din
0 . The desired

result now follows from assumption that the restriction functor Fun(Din
0 ,E) Ð→

Fun(Cϕ0 ,E) is fully-faithful since C
ϕ
0 Ð→Din

0 is assumed to be a localization functor.
�

We finish this section with the following result which allows one to relate two
different weak ∞-operad structures on the same ∞-category C.

Lemma 4.2.21. Let C be an ∞-category and let (Cin,Cact,C0) and (Cin′,Cact′,C1)
two weak ∞-operad structures on C such that Cin′ ⊆ Cin and Cact ⊆ Cact′. Let E be
an ∞-category with finite products. Then the following assertions hold:
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(1) Suppose that C1 = C0 and that for every morphism f ∶ x Ð→ y in Cin such

that y ∈ C0 and every factorization x
f ′Ð→ y′

f ′′Ð→ y of f such that f ′ is in Cin′

we have that y′ is in C0. Then ψ ∶ C Ð→ E is a monoid object with respect to

(Cin′,Cact′,C0) if and only if it is a monoid object with respect to (Cin,Cact,C0).

(2) Suppose that Cin′ = Cin,Cact′ = Cact and C0 ⊆ C1. Then ψ ∶ C Ð→ E is a monoid
object with respect to (Cin,Cact,C0) if and only if it is a monoid object with
respect to (Cin,Cact,C1) and in addition ψ∣Cin

1
is a right Kan extension of ψ∣Cin

0
.

Proof. Let us first prove (1). Let x ∈ C be an object and write Cin′
0 = Cin′∩C0. Then

our assumption implies that the inclusion Cin′
x/ ×C Cin′

0 ⊆ Cin
x/ ×C Cin

0 is coinitial. It

then follows that ψ ∶ C Ð→ E is a monoid object with respect to (Cin′,Cact′,C0) if
and only if it is a monoid object with respect to (Cin,Cact,C0).

To prove (2), we first note that the “if” direction follows from the pasting lemma
for right Kan extensions (Proposition 2.7.72.7.7). To show the “only if” direction note
that since Cin

1 ⊆ Cin is a full subcategory which contains Cin
0 we have by Remark 2.7.62.7.6

that if ψ ∶ CÐ→ E is a C-monoid object then ψ∣Cin
1

is a right Kan extension of ψ∣Cin
0

,

in which case ψ must also be a right Kan extension of ψ∣Cin
1

by Proposition 2.7.72.7.7. �

4.3. Tensor products of ∞-operads. Let O⊗,P⊗ be two ∞-operads. In this
section we will discuss how to associate to O⊗ and P⊗ a new ∞-operad Q⊗, called
the tensor product of O⊗ and P⊗, which enjoys the following mapping property: for
every symmetric monoidal ∞-category C we have a canonical equivalence

AlgQ(C) ≃ AlgO(AlgP(C)),
where AlgP(C) is endowed with a symmetric monoidal structure induced from that
of C. Recall first that if (I, i0) and (J, j0) are two finite pointed sets then their
smash product

I ∧ J = I × J/ [{i0} × J ∪ I × {j0}]
is the finite pointed set obtained from the cartesian product of I and J by collapsing
{i0} × J and I × {j0} to a point (which also serves as the base point of I ∧ J). The
operation of smash product determines a symmetric monoidal structure on the
category of finite pointed sets, and hence also on its skeleton Fin∗ spanned by
the finite pointed sets ⟨n⟩ for n ≥ 0. In particular, for ⟨n⟩ , ⟨m⟩ ∈ Fin∗ we have
⟨n⟩ ∧ ⟨m⟩ = ⟨n ⋅m⟩.

Construction 4.3.1. Let O⊗,P⊗ be ∞-operads. We define (AlgO(P))⊗ to be the
simplicial set whose n-simplices are pairs (σ, τ) where σ is an n-simplex of N(Fin∗)
and τ ∶ ∆n ×P⊗ Ð→ P⊗ is a map which fits in a commutative square

(4.11) ∆n ×P⊗

(σ,π)
��

τ // C⊗

��
N(Fin∗) ×N(Fin∗) ∧ // N(Fin∗)

and such that if f ∶ xÐ→ y is an inert map in P⊗ and i ∈ [n] then τ sends ∆{i} × f
to an inert map in P. One can then check that the projection Alg⊗O(P) Ð→ N(Fin∗)
given by (σ, τ) ↦ σ exhibits (AlgO(P))⊗ as an ∞-operad. We will refer to Alg⊗O(P)
as the ∞-operad of O-algebras in P.
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Remark 4.3.2. When C⊗ is a symmetric monoidal ∞-category Alg⊗O(C) is a symme-
tric monoidal ∞-category for every ∞-operad O. This is the “pointwise” symmetric
monoidal structure on algebras.

Definition 4.3.3. Let O⊗,P⊗,Q⊗ be ∞-operads. An a bifunctor of ∞-operads is
a commutative diagram of the form

(4.12) O⊗ ×P⊗

��

ϕ // Q⊗

��
N(Fin∗) ×N(Fin∗) ∧ // N(Fin∗)

such that for every inert morphism f ∶ x Ð→ y in O⊗ and every inert mor-
phism g ∶ z Ð→ w in P⊗, the arrow ϕ(f, g) is inert in Q⊗. We will denote by
BiFun(O⊗,P⊗;Q⊗) the full subcategory of FunN(Fin∗)(O⊗×P⊗,Q⊗) spanned by the
bifunctors.

Remark 4.3.4. For ∞-operads O⊗,P⊗,Q⊗ we have a canonical isomorphism of sim-
plicial sets

BiFun(O⊗,P⊗;Q⊗) ≃ AlgO(AlgP(Q)).
Definition 4.3.5. We will say that a bifunctor ϕ ∶ O⊗ × P⊗ Ð→ Q⊗ exhibits Q⊗

as the tensor product of O and P if for every ∞-operad R⊗, composition with ϕ
induces an equivalence of ∞-categories

AlgQ(R) ≃Ð→ BiFun(O⊗,P⊗;R⊗) ≅ AlgO(AlgP(R)).
It follows by standard arguments that if a tensor product of O⊗ and P⊗ exists

then it is essentially unique. To show that a tensor product always exists it is
convenient to employ the model structure of Theorem 4.1.194.1.19. In particular, if O⊗

and P⊗ are two ∞-operads then we may consider the cartesian product of marked
simplicial sets O⊗,♮×P⊗,♮ as an object of (Set+∆)/(N(Fin∗),Ein) via the composed map

O⊗,♮ ×P⊗,♮ Ð→ (N(Fin∗),Ein) × (N(Fin∗),Ein)
∧Ð→ (N(Fin∗),Ein).

The following is the a formal consequence of the model categorical setup of Theo-
rem 4.1.194.1.19:

Proposition 4.3.6. A bifunctor ϕ ∶ O⊗ × P⊗ Ð→ Q⊗ exhibits Q⊗ as the tensor
product of O⊗ and P⊗ if and only if the associated map

O⊗,♮ ×P⊗,♮ Ð→ Q⊗,♮

is a weak equivalence in (Set+∆)/(N(Fin∗),Ein) with respect to the operadic model struc-
ture of Theorem 4.1.194.1.19.

We note that Proposition 4.3.64.3.6 implies in particular that a tensor product of
O⊗ × P⊗ always exists: just take any fibrant replacement of O⊗,♮ × P⊗,♮ in the
operadic model structure.

Remark 4.3.7. Let ϕ ∶ O⊗ × P⊗ Ð→ Q⊗ be a bifunctor of ∞-operads such that the
induced map (O⊗)⟨1⟩×(P⊗)⟨1⟩ Ð→ Q⊗⟨1⟩ is essentially surjective. It then follows from

Proposition 4.1.234.1.23 that ϕ exhibits Q⊗ as the tensor product of O⊗ and P⊗ if and if
the induced map

MonQ(S) Ð→MonO(MonP(S))
is an equivalence of ∞-categories.
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Unfortunately, fibrant replacements in the operadic model structure are not very
explicit in general and not easy to compute. One way to overcome this issue is by
using the construction of wreath products.

Construction 4.3.8. Let O⊗,P⊗ be two ∞-operads. Then P⊗ is in particular
an ∞-category and we may defined the simplicial set (P⊗)∐ as in definition 3.3.13.3.1.
We note that (P⊗)∐ is now equipped with two different maps to N(Fin∗): one is
the projection π ∶ (P⊗)∐ Ð→ N(Fin∗) associated to the construction (−)∐ as in
Definition 3.3.13.3.1, and the other is the composed map

ρ ∶ (P⊗)∐ Ð→ N(Fin)∐ Ð→ N(Fin),
where the first map is induced by the ∞-operad structure P⊗ Ð→ N(Fin∗) and
the second is the map N(Fin)∐ Ð→ N(Fin) which sends a tuple (⟨n1⟩ , ..., ⟨nk⟩) to
⟨n1 + ... + nk⟩. We then define the wreath product of O⊗ and P⊗ to be the fiber
product

O⊗ ≀P⊗ //

��

(P⊗)∐

π

��
O⊗ // N(Fin∗)

and we equip O⊗ ≀ P⊗ with the map to N(Fin∗) determined by the projection to
(P⊗)∐ followed by ρ ∶ (P⊗)∐ Ð→ N(Fin∗).

We can identify an object of O⊗ ≀ P⊗ with a tuple (x, (y1, ..., yn)) where x is
an object of O⊗ lying above ⟨n⟩ ∈ N(Fin∗) and y1, ..., yn are objects of P⊗. A
morphism in O⊗ ≀ P⊗ from (x, (y1, ..., yn)) to (x′, (y′1, ..., y′n′)) is given by a map
f ∶ x Ð→ x′ in O⊗ lying above a map α ∶ ⟨n⟩ Ð→ ⟨n′⟩ together with a collection of
maps gi ∶ yi Ð→ y′α(i) in P⊗ for every i ∈ α−1(⟨n′⟩○). We will say that such a map

is inert if f is inert in O⊗ and each gi is inert in D⊗.
The projection Γ∗ Ð→ Fin∗ determines a map P⊗ × N(Fin∗) Ð→ (P⊗)∐ given

informally by the formula (y, ⟨n⟩) ↦ (y, ..., y). We then obtain a commutative
diagram

(4.13) O⊗ ×P⊗
ϕ //

&&LLLLLLLLLL O⊗ ≀P⊗

yyrrrrrrrrrr

N(Fin∗)

Theorem 4.3.9 ([66, Theorem 2.4.4.3]). Let O⊗ and P⊗ be two ∞-operads and
let Ein be the set of of inert arrows in O⊗ ≀ P⊗. Then (4.134.13) determines a weak
equivalence

O⊗,♮ ×P⊗,♮ Ð→ (O⊗ ≀P⊗,Ein)
in the operadic model structure of Theorem 4.1.194.1.19.

We will not prove Theorem 4.3.94.3.9 here. We will however prove the following
variant, which is sufficient for our needs, concerning the closely related notion of
monoid objects. For this, let us consider the ∞-categories O⊗ × P⊗ and O⊗ ≀ P⊗ as
weak ∞-operads (see §4.24.2). More precisely, we may consider each of O⊗ and P⊗

as a weak ∞-operad by Example 4.2.114.2.11, and then consider the cartesian product
O⊗×P⊗ as a weak ∞-operad by Example 4.2.134.2.13. To put a weak ∞-operad structure
on the wreath product we use the following construction:
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Definition 4.3.10. Let O⊗ be an ∞-operad and C a weak ∞-operad. Define their
wreath product as O⊗≀C ∶= O⊗×N(Fin∗)C

∐. We then endow O⊗≀C with the structure of
a weak ∞-operad by stating that a map (f,{gi}) ∶ (x, c1, ..., cn) Ð→ (y, d1, ..., dn) is
inert (resp. active) if f ∶ xÐ→ y is inert (resp. active) in O⊗ and each gi ∶ ci Ð→ dα(i)
is inert (resp. active) in C (where α is the image of f in N(Fin∗)). We define the
subcategory of basics in O⊗ ≀ C to consist of the objects of the form (x, c) where
x ∈ O⊗ lies above ⟨1⟩ ∈ N(Fin∗) and c belongs to C0.

We propose the following variant of Theorem 4.3.94.3.9:

Theorem 4.3.11. Let E be an ∞-category which admits small limits. Then re-
striction along the map ϕ ∶ O⊗ ×P⊗ Ð→ O⊗ ≀P⊗ induces an equivalence

MonO⊗≀P⊗(E) ≃Ð→MonO⊗×P⊗(E) ≃ MonO⊗(MonP⊗(E)).

Proof. The idea of the proof is to first replace the weak ∞-operad structures on
O⊗ × P⊗ and O⊗ ≀ P⊗ by coarser ones (i.e., ones in which there are more inert
maps). With these new weak ∞-operad structures the map ϕ will becomes a strong
approximation (see Definition 4.2.144.2.14), and so we will be able to deduce a comparison
from Proposition 4.2.184.2.18. We will then use Lemma 4.2.214.2.21 to relate the result back
to the original weak ∞-operad structures.

We define the coarse weak ∞-operad structure on O⊗ × P⊗ to be the product
structure (Example 4.2.134.2.13) associated to the operadic structure on O⊗ (Exam-
ple 4.2.114.2.11) and the trivial weak ∞-operad structure on P⊗ in which all maps are
inert and P0 = P (see Examples 4.2.104.2.10 and 4.2.94.2.9). Similarly, we define the coarse
weak ∞-operad structure on O⊗ ≀P⊗ by taking the wreath weak ∞-operad structure
(Definition 4.3.104.3.10) associated to the same trivial weak ∞-operad structure on P⊗.

We now claim that ϕ is a strong approximation of weak ∞-operads with respect
to the coarse structures. For this we first need to check ϕ that for every (x, y) ∈
O⊗ ×P⊗ the induced map

(4.14) ((O⊗ ×P⊗)coarse

act
)/(x,y) Ð→ ((O⊗ ≀P⊗)coarse

act
)/(x,(y,...,y))

has weakly contractible homotopy fibers. But this is true because the map (4.144.14)
is in fact an equivalence of ∞-categories: both the left and right hand side are
equivalent to (O⊗

act)/x because the active maps in the coarse structure on P⊗ are
only the equivalences. To show that ϕ is in fact a strong approximation we now
note that the subcategory of coarse-basics and coarse-inert maps in O⊗ ≀ P⊗ is
(O⊗

⟨1⟩)
≃ ×{⟨1⟩} P

⊗ ⊆ O⊗ ×N(Fin) (P⊗)∐, and its inverse image in O⊗ × P⊗ is exactly

the same ∞-category, considered as a subcategory of O⊗ ×P⊗ in the obvious way.
We thus established that ϕ is a strong approximation. It then follows from

Proposition 4.2.184.2.18 that restriction along ϕ induces an equivalence

(4.15) Moncoarse
O⊗≀P⊗(E) ≃Ð→Moncoarse

O⊗×P⊗(E) ≃ MonO⊗(FunP⊗(E)).
We now wish to compare coarse O⊗ ≀P⊗-monoid objects with fine O⊗ ≀P⊗-monoid

objects. Define the mixed weak ∞-operad structure O⊗ ≀P⊗ to be the one in which
the active-inert factorization is the one of the fine structure while the subcategory
of basics is the one of the coarse. In particular, the subcategory of mixed basics

with mixed inert maps can be identified with (O⊗
⟨1⟩)

≃ × (P⊗)in. We may readily

verify that this is indeed a weak ∞-operad structure. Applying Lemma 4.2.214.2.21(1)
we may deduce that a functor ψ ∶ O⊗ ≀P⊗ Ð→ E is a monoid object with respect to
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the coarse structure if and only if it is a monoid object with respect to the mixed
structure. Applying Lemma 4.2.214.2.21(2) we may identify fine monoid objects with the
full subcategory

(4.16) Monfine
O⊗≀P⊗(E) ⊆ Monmixed

O⊗≀P⊗(E) ≃ Moncoarse
O⊗≀P⊗(E)

spanned by those coarse monoid objects ψ ∶ O⊗≀P⊗ Ð→ E such that ψ∣(O⊗

⟨1⟩
)≃×(P⊗)in

is

a right Kan extension of ψ∣(O⊗

⟨1⟩
)≃×(P⊗

⟨1⟩
)≃ . Unwinding the definitions we see that the

equivalence (4.154.15) identifies the full subcategory (4.164.16) with the full subcategory of
MonO⊗(Fun(P⊗,E)) spanned by those O⊗-monoid objects in Fun(P⊗,E) which take
their values in the full subcategory MonP⊗(E). The desired result now follows. �

5. The little cube ∞-operads

5.1. Definitions and basic properties. In this section we will introduce and
study the basic properties of the little n-cube ∞-operads En.

Definition 5.1.1. Let U,V ⊆ Rn be two subsets of Rn. We will say that a map
f ∶ U Ð→ V is a rectilinear embedding if it is an open embedding which is given by
a formula of the from

(5.1) f(x1, ..., xn) = (a1x1 + b1, ..., anxn + bn)
with ai, bi ∈ R such that ai > 0. If {Ui}i∈I is a collection open subsets of Rn indexed
by a finite set I and V ⊆ Rn is another open subset then we will say that a map
f ∶ ∐iUi Ð→ V is a rectilinear embedding if it is an open embedding and the
restriction of f to each Ui is rectilinear. We will denote by Rect(∐i∈I Ui, V ) the
space of rectilinear embeddings endowed with the topology as a subspace of (R2n)I .

Definition 5.1.2. Let E∆
n denote the simplicial operad with a single object ◻n and

such that

MulE∆
n
({◻n}i∈I ,◻n) = Sing(Rect(◻n × I,◻n)),

where Sing denotes the singular simplicial set functor. Composition is given by the
composition of rectilinear embeddings.

We note that since the singular complex of a space is always a Kan the simplicial
operad E∆

n is locally Kan.

Definition 5.1.3. We define the little n-cube ∞-operad to be the operadic nerve

E⊗n ∶= N((E∆
n )⊗).

By Proposition 4.1.134.1.13 we have that E⊗n is indeed an ∞-operad.

Variant 5.1.4. Definition 5.1.25.1.2 could naturally be made (and historically this was
the way it was done) in the setting of topological operads rather than simplicial,
that is, operads in which the sets of multimaps are replaced by topological spaces.
In particular, we may define the topological variant Etop

n of the little n-cube operad
to be the topological operad with a single object ◻n and such that

MulEtop
n

({◻n}i∈I ,◻n) = Rect(◻n × I,◻n).

We then have that E∆
n is obtained form Etop

n by applying the functor Sing to all
spaces of multimaps.
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Variant 5.1.5. For n ≥ 1 the little n-cube ∞-operads admit a natural variant where
we also consider cubes with partial boundary. More precisely, let ◻n∂ = [0,−1)×◻n−1

and let E∆
n,,∂ denote the simplicial operad with two objects object ◻n,◻n∂ and such

that

MulE∆
n
({Xi}i∈I , Y ) = Sing(Rect(∐

i

Xi, Y )),

for Xi, Y ∈ {◻n,◻n∂}. We note that there are no open embeddings from ◻n∂ to ◻n
and that every open embedding from ◻n to ◻n∂ is contained in (0,1) × ◻n−1. We
define E⊗n,∂ to be the operadic nerve of E∆

n,∂ , and refer to it as the operad of little

n-cubes with boundary.

Example 5.1.6. When n = 0 we have ◻0 = (−1,1)0 ≃ ∗, the space with one point
by convention. For a finite set I the space Rect(◻0 × I,◻0) is empty if ∣I ∣ > 1 and
consist of a single point if ∣I ∣ ≤ 1. In particular, E∆

0 is isomorphic to the operad Poi
of Example 4.1.74.1.7(5), whose algebras are pointed objects, and E⊗0 is isomorphic to
the operadic nerve of Poi.

Example 5.1.7. When n = 1 we have ◻1 = (−1,1). In this case every rectilinear
embedding f ∶ ◻1 × I Ð→ ◻1 determines a unique linear ordering on I by i ≤ i′ ⇔
f(0, i) ≤ f(0, i′). This association determines a map of simplicial operads

(5.2) E∆
1 Ð→ Ass,

which in turn determines a map of simplicial categories

(5.3) (E∆
1 )⊗ Ð→ Ass⊗ .

We claim that (5.35.3) is a Dwyer-Kan equivalence. Since it is bijective on objects it
will suffice to show that (5.25.2) induces a weak equivalence on spaces of multimaps.
Suppose that ∣I ∣ = k. Then we can identify the map

MulE∆
1
({◻1}i∈I ,◻1) Ð→MulAss({∗}i∈I ,∗)

with the projection

Z × Iso({1, ..., k}, I) Ð→ Iso({1, ..., k}, I),
where Z ⊆ Rect(◻1 × {1, ..., k},◻1) is the subspace consisting of those rectilinear
embeddings f ∶ ◻1 × {1, ..., k} Ð→ ◻1 such that f(0, i) ≤ f(0, i′) whenever i ≤ i′.
It will hence suffice to show that Z is contractible. Indeed, Z can be identified
with the convex subset of R2k consisting of those (a1, b1, ..., ak, bk) ∈ R2k such that
ai > 0, b1 > −1 + a1, bi > bi−1 + ai−1 + ai and bk < 1 − ak. We consequently obtain an
equivalence of ∞-operads

E⊗1
≃Ð→ N(Ass⊗).

Example 5.1.8. Similarly to E⊗1 , the ∞-operad E⊗1,∂ also has discrete spaces of

multimaps, and is equivalent in turn to the nerve of the ordinary operad PRAss
of Example 4.1.84.1.8(4), whose algebras are given by a pair of an associative algebra
object and a pointed right module over it.

Definition 5.1.9. Given an open n-manifold M (see Definition 6.1.16.1.1), we will
denote by Conf(I,M) the space of all injective maps I Ð→ M , endowed with
the topology as a subspace of M I . We will refer to the points of Conf(I,M) as
configurations to the Conf(I,M) itself as the configuration space of M .
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Lemma 5.1.10. Let I be a finite set. Then the map ev0 ∶ Rect(◻n × I,◻n) Ð→
Conf(I,M) obtained by restricting along I = {(0, ...,0)} × I ↪ ◻n × I is a homotopy
equivalence.

Proof. Given a configuration f ∶ I Ð→ ◻n let us denote by

ε(f) = min
i,i′∈I

min
j=1,...,n

∣fj(i) − fj(i′)∣

the minimum distance between the points in f(I) (in the taxi-driver metric) and
by

ε′(f) = min
i∈I

min
j=1,...,n

(1 − ∣fj(i′)∣)

the minimum distance between the points in f(I) and the boundary of the cube.

Let ε′′(f) = min(ε(f),ε′(f))
2

and let

ϕ ∶ Conf(I,M) Ð→ Rect(◻n × I,◻n)
be the map which sends f ∶ I Ð→ ◻n to the rectilinear embedding

ϕf(x1, ..., xn, i) = f(i) + ε′′(f)(x1, ..., xn).
Then ϕ is continuous (since min is continuous) and ev0 ϕf = f . To finish the proof it
suffices to note that the map g ↦ ϕev0(g) from Rect(◻n × I,◻n) to Rect(◻n × I,◻n)
is homotopic to the identity. An explicit homotopy is given by

Ht(g)(x1, ..., xn, i) = (bi1 + ai1(t)x1, ..., b
i
n + ain(t)xn),

where aij(t) = taij+(1−t)ε′′(ev0(g) and aij , b
i
j are the constants determining g∣◻n×{i}.

�

Corollary 5.1.11. The space Rect(◻n × I,◻n) ≃ Conf(I,◻n) is (n− 2)-connected.

Proof. We argue by induction on ∣I ∣. If I = ∅ then the space Conf(I,◻n) is a
singleton. Otherwise, let i0 ∈ I be an element and consider the projection

(5.4) Conf(I,M) Ð→ Conf(I ′,M).
where I ′ = I ∖ {i0}. Then (5.45.4) is a Serre fibration whose base is (n − 2)-connected
by the induction hypothesis. By the long exact sequence in homotopy groups it
will suffice to show that the fibers are (n − 2)-connected. Now the fiber over a
configuration f ∶ I ′ Ð→ ◻n is given by ◻n∖f(I ′). To finish the proof we hence need
to verify that the complement of a finite number of points in ◻n is (n−2)-connected.
In fact, it is a classical result that the complement of k points in ◻n is homotopy
equivalent to a wedge of k spheres of dimension n − 1. We note that when n ≤ 2
this can be verified by hand. When n ≥ 3 the proof is classical using Van-Kampen’s
theorem and Alexander’s duality. �

For every n ≥ 0 the identification ◻n+1 ≅ ◻n×(−1,1) determines a map of simpli-
cial operads E∆

n Ð→ E∆
n+1 which acts on spaces of operations by taking the product

with (−1,1). We then obtain a map of ∞-operads E⊗n Ð→ E⊗n+1. Using Corol-
lary 5.1.115.1.11 and the fact that weak equivalences in the operadic model structure of
Theorem 4.1.194.1.19 are closed under filtered colimits we can now deduce the following:

Corollary 5.1.12. The colimit of the sequence

(5.5) E0 Ð→ E1 Ð→ E2 Ð→ ...

in the ∞-category Op∞ is equivalent to the terminal ∞-operad Com⊗.
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With Corollary 5.1.125.1.12 in mind we will sometimes denote N(Com⊗) also by E∞.
We can think of (5.55.5) as a sequence interpolating between the associative operad
Ass⊗ ≃ E1 and the commutative operad Com⊗ ≃ E∞. In particular, it encodes
algebraic structures with higher and higher levels of commutativity.

5.2. Dunn’s additivity theorem. Our goal in this section is to formulate and
prove Dunn’s additivity theorem, which identifies En as the n-fold tensor product
of E1 with itself. We can phrase this idea informally as follows: providing an En-
algebra structure on an object x in a symmetric monoidal ∞-category C is equivalent
to providing a collection of n associative algebra structures which commute with
each other.

In the definition below we use the fact that the simplicial operad E∆
n has a

single object, and so we can identify the objects of the simplicial category (E∆
n )⊗

of Construction 4.1.94.1.9 with the objects of Fin∗.

Definition 5.2.1. For integers n, k ≥ 0 let

ϕ∆
n,k ∶ (E∆

n )⊗ × (E∆
k )⊗ Ð→ (E∆

n+k)⊗

be the map of simplicial categories which sends the object (⟨m⟩ , ⟨l⟩) to the object
⟨m ⋅ l⟩ and for every pair of maps α ∶ ⟨m⟩ Ð→ ⟨m′⟩ and β ∶ ⟨l⟩ Ð→ ⟨l′⟩ sends the
component

∏
i∈⟨m′⟩○

Sing Rect(◻n × α−1(i),◻n) × ∏
j∈⟨l′⟩○

Sing Rect(◻k × β−1(j),◻k)

of Map(E∆
n )⊗×(E∆

k
)⊗((⟨m⟩ , ⟨l⟩), (⟨m′⟩ , ⟨l′⟩)) to the component

Sing Rect(◻n+k × α−1(i) × β−1(j),◻n+k) ⊆ Map(E∆
n+k

)⊗(⟨m ⋅ l⟩ , ⟨m′ ⋅ l′⟩)

via the rule (fi, gj) ↦ fi × gj . Passing to coherent nerves we obtain a bifunctor of
∞-operads.

(5.6) E⊗n ×E⊗k

��

ϕn,k // E⊗n+k

��
N(Fin∗) ×N(Fin∗) ∧ // N(Fin∗)

Theorem 5.2.2 (Dunn’s additivity theorem). The bifunctor (5.65.6) exhibits En+k
as the tensor product of En and Ek.

The remainder of this section is devoted to the proof of Theorem 5.2.25.2.2. Let
us consider En+k as a weak ∞-operad with its operadic weak structure of Exam-
ple 4.2.114.2.11, and En ×Ek as a weak ∞-operad endowed with the product structure of
Example 4.2.134.2.13. Combining Proposition 4.1.234.1.23 and Proposition 4.1.214.1.21 it will suffice
to show that restriction along (5.65.6) induces an equivalence of ∞-categories

(5.7) MonE⊗
n+k

(S) ≃Ð→MonE⊗n×E⊗k
(S) ≃ MonE⊗n(MonEk(S)),

where S denotes the ∞-category of spaces. Our first step is to reduce the higher
categorical complexity of the problem by replacing E⊗n by a suitable discrete model.

Definition 5.2.3. Let D⊗
n be the operadic nerve of the ordinary colored operad

whose objects are the open subcubes of ◻n (i.e., the images of rectilinear embed-
dings). Given a collection of subcubes U1, ..., Un ⊆ ◻n and an additional subcube
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V ⊆ ◻n we let Mul({Ui}, V ) be a singleton if all the Ui’s are contained in V and
are pairwise disjoint and empty otherwise.

We note that each subcube of ◻n is homeomorphic to ◻n via a unique rectilinear
homeomorphism (by which we mean a map given by a formula as in (5.15.1)). This
yields a map of ∞-operads

(5.8) ρ ∶ D⊗
n Ð→ E⊗n .

We now have the following lemma:

Proposition 5.2.4. The map (5.85.8) is a weak approximation in the sense of De-
finition 4.2.144.2.14 (where we consider both sides as endowed with the weak operadic
structure of Example 4.2.114.2.11).

Before we prove Proposition 5.2.45.2.4 we will need to require some results concerning
nerves of coverings of topological spaces. For this, let X be a topological space. We
will denote by O(X) the poset of open subsets of X. Let P ⊆ O(X) be an open
covering of X. We may then consider P as partially ordered set, with the order of
inclusion. Suppose that for every x ∈ X the subposet {U ∈ P ∣x ∈ U} is connected.
Then the canonical map

(5.9) colim
U∈P

U Ð→X

is a homeomorphism of topological spaces. We can informally express this statement
by saying that X is obtained by gluing the various opens U ∈ P . We note that the
colimit in (5.95.9) is the strict colimit calculated in the ordinary category of topological
spaces. It is natural to ask for a homotopical analogue of this statement, that is,
to look for conditions which insure that the canonical map

(5.10) hocolim
U∈P

U Ð→X

will be a weak homotopy equivalence. We then recall the following result:

Theorem 5.2.5 ([66, A.3.1]). Let X be a topological spaces, let P be a poset and
P Ð→ O(X) a map of poset. Suppose that for every x ∈ X the subposet {α ∈ P ∣x ∈
Uα} is weakly contractible. Then the map (5.105.10) is a weak homotopy equivalence.

Remark 5.2.6. In Theorem 5.2.55.2.5 one can replace P by an arbitrary ∞-category
equipped with a functor P Ð→ O(X). The reason why we chose the formulation
with posets is for simplicity of exposition, and since this covers all the cases we will
need in these notes.

The proof of this statement uses some machinery related to the theory of ∞-
topoi, and we will not recall its proof. Let us note however that this question
was also addressed in classical algebraic topology, usually in the setting where P
is assumed to be closed under intersections (this condition automatically insures
that subposet {U ∈ P ∣x ∈ U} is weakly contractible for every x ∈ X. In this case
the homotopy colimit appearing in (5.95.9) was then described using a specific model,
known as the Čech nerve of the covering, as follows. Given P , one first forms the
simplicial space C●(P ) such that

Cn(P ) = ∐
(U1,...,Un)∈Pn+1

n

⋂
i=1

Ui.
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It can then be shown that the geometric realization of this simplicial space is a
model for the homotopy colimit 5.105.10. The following can the be proven using clas-
sical methods (in particular, partitions of unity, which is why the assumption of
paracompactness was needed):

Theorem 5.2.7 (see, e.g.,[33, Corollary 4G.2]). Let X be a paracompact topological
spaces and P ⊆ O(X) an open covering. Then the natural map

∣C●(P )∣ Ð→X

is a homotopy equivalence.

Remark 5.2.8. In Theorem 5.2.75.2.7 we did not assume that P is closed under inter-
section since this was not assumed in the classical setting and is not needed for
the claim of Theorem 5.2.75.2.7 to hold. The condition that P is closed under finite
intersections is only needed for the identification of ∣C●(P )∣ with hocolimU∈P U .

Remark 5.2.9. Suppose that P ⊆ O(X) is an open covering which satisfies the
following property: for every x ∈ X and every U,V ∈ P there exists a W ∈ P
such that x ∈ W ⊆ U ∩ V . Then for every x ∈ X the subposet {U ∈ P ∣x ∈ U} is
filtered (every finite subset has a lower bound) and is hence weakly contractible.
In this particular case one can construct a hypercovering U● Ð→X such that ∣U●∣ ≃
hocolimU∈P U and prove Theorem 5.2.55.2.5 using direct arguments (not invoking ∞-
topos machinery), see [22].

Corollary 5.2.10. Let M be a manifold and O(M) the poset of open subsets of
M . Let I be a finite set and P ⊆ O(M)I be a subposet satisfying the following
properties:

(1) For every (Ui)i∈I ∈ P , we have Ui ∩Uj = ∅ for i ≠ j.
(2) For each configuration f ∶ I Ð→ M there exists an element (Ui)i∈I ∈ P such

that f(i) ∈ Ui.
(3) If (Ui)i∈I and (Vi)i∈I are two elements in P and f ∶ I Ð→M is a cofiguration

such that f(i) ∈ Ui ∩ Vj then there exists a (Wi)i∈I ∈ P such that f(i) ∈Wi.

Then the natural map

hocolim
(Ui)i∈I∈P

∏
i∈I

Conf({i}, Ui) Ð→ Conf(I,M)

is a homotopy equivalence.

Proof. The association (Ui)i∈I ↦ ∏i∈I Conf({i}, Ui) determines an injective fully-
faithful map from the poset P to the poset of open subsets of Conf(I,M). The
desired result is now provided by Theorem 5.2.55.2.5 (in the situation of Remark 5.2.95.2.9).

�

Proof of Proposition 5.2.45.2.4. We first note that E⊗⟨1⟩ ≃ ∗ and ϕ−1E⊗⟨1⟩ = D⊗
⟨1⟩ has a final

object and is hence weakly contractible. This implies that the map D⊗
⟨1⟩ Ð→ E⊗⟨1⟩ is

a localization map. We hence just need to check Condition (1) of Definition 4.2.144.2.14,
namely, that for every collection of subcubes U1, ..., Um the functor

(5.11) (D⊗
n)act

/(U1,...,Um) Ð→ (E⊗n)act
/⟨m⟩

has weakly contractible homotopy fibers. We first observe that both the left and
right hand sides are products of the corresponding ∞-categories for the individual
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Ui’s. In other words, we may assume that m = 1. Consider the commutative
triangle

(5.12) (D⊗
n)act

/U
//

$$JJJJJJJJJ
(E⊗n)act

/⟨1⟩

yyttttttttt

(E⊗n)act

The right diagonal map is a right fibration whose fiber over the object ⟨l⟩ ∈ (E⊗n)act

is a Kan complex which is naturally equivalent to the singular complex of Rect(◻n×
⟨l⟩○ ,◻n). It will hence suffice to show that (5.125.12) induces a weak homotopy equi-
valence between homotopy fibers above every ⟨l⟩ ∈ (E⊗n)act. Let Xl Ð→ (D⊗

n)act
/U be

the homotopy fiber of the left diagonal map over ⟨l⟩ ∈ (E⊗n)act. Unwinding the de-
finitions we see that (D⊗

n)act
/U can be identified with the subposet of O(U) spanned

by those open subsets which are finite disjoint unions of subcubes. Let us call such
open subsets multi-subcubes. Under this identification the left diagonal map can be
written as V ↦ π0(V ). We may then identify Xl with the ∞-category of pairs (V, ρ)
where V is a multi-subcube of U and ρ ∶ ◻n × ⟨l⟩○ Ð→ V is a rectilinear embedding
which induces a bijection of π0. Equivalently, we can describe the objects of Xl as
pairs ((V1, ..., Vl), (ρ1, ..., ρl)) where V1, ..., Vl are pairwise disjoint open subcubes of

U and ρi ∶ ◻n Ð→ Vi is a rectilinear embedding. Let us denote by X l ⊆ O(U)⟨l⟩○ the

subposet spanned by the pairwise disjoint tuples of subcubes (V1, ..., Vl) ∈ O(U)⟨l⟩○ ,
so that we have a forgetful functor Xl Ð→X l (which is in fact an equivalence) given
by ((V1, ..., Vl), (ρ1, ..., ρl)) ↦ (V1, ..., Vl). To finish the proof we now need to check
that the canonical map

hocolim
(V1,...,Vl)∈Xl

∏
i∈⟨l⟩○

Rect(◻n × {i}, Vi) Ð→ Rect(◻n × ⟨l⟩○ , U)

is a weak homotopy equivalence. In light of Lemma 5.1.105.1.10 we may replace rectilinear
embeddings by configuration spaces and prove instead that the canonical map

hocolim
(V1,...,Vl)∈Xl

∏
i∈⟨l⟩○

Conf({i}, Vi) Ð→ Conf(⟨l⟩○ , U)

is a weak homotopy equivalence. But this now follows from Corollar 5.2.105.2.10 since
every intersection of cubes is either empty or a cube, and every cofiguration of
points is covered by at least one tuple of subcubes. �

Corollary 5.2.11. The restriction functor

MonE⊗n(S) Ð→MonD⊗n(S)
is fully-faithful and its essential image is spanned by those D⊗

n-monoid objects ψ ∶
D⊗
n Ð→ S which are locally constant in the sense that the restriction to (D⊗

n)⟨1⟩
sends every arrow to an equivalence of spaces.

We now note that the bifunctor of ∞-operads of Definition 5.2.15.2.1 can also be
defined on the level of D⊗

n . Indeed, it is simply given by the functor of ordinary
categories

(5.13) D⊗
n ×D⊗

k Ð→ D⊗
n+k

which sends ((Ui)i∈⟨m⟩○ , (Vj)j∈⟨l⟩○ to (Ui × Vj)(i,j)∈⟨m⟩○×⟨l⟩○ (where we identified

⟨m⟩○ × ⟨l⟩○ with (⟨m⟩ ∧ ⟨l⟩)○).
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Let us now recall from §4.34.3 the formation of wreath products. We then observe
that (5.135.13) factors as

D⊗
n ×D⊗

k Ð→ D⊗
n ≀D⊗

k Ð→ D⊗
n+k

where the second functor sends

((U1, ..., Um), ({V 1
1 , ..., V

1
l1}, ...,{V

m
1 , ..., V mlm}) ↦ (Ui × V ij )i∈⟨m⟩○,j∈⟨li⟩○ .

We can consider D⊗
n ≀D⊗

k as a weak ∞-operad with respect to the wreath product
structure of Definition 4.3.104.3.10.

Proposition 5.2.12. The composed map

(5.14) D⊗
n ≀D⊗

m Ð→ D⊗
n+k Ð→ E⊗n+k

is a weak approximation of weak ∞-operads.

Proof. Let us first establish Condition (2) of Definition 4.2.144.2.14. For this, we note that
the functor D⊗

n ×D⊗
k Ð→ D⊗

n ≀D⊗
k identifies (D⊗

n)⟨1⟩ ×(D⊗
k )⟨1⟩ with a full subcategory

of (D⊗
n ≀D⊗

k )⟨1⟩, and this inclusion is coinitial. In addition (D⊗
n)⟨1⟩ × (D⊗

k )⟨1⟩ has a

final object. It then follows that D⊗
n ≀ D⊗

k is weakly contractible and so the map
(D⊗

n ≀D⊗
k )⟨1⟩ Ð→ (E⊗n+k)⟨1⟩ ≃ ∗ is a localization map.

We shall now prove that Condition (2) of Definition 4.2.144.2.14 holds. Fix an object
X = ((U1, ..., Um), ({V 1

1 , ..., V
1
l1
}, ...,{V m1 , ..., V mlm})) ∈ D⊗

n ≀D⊗
k , and set l = ∑i li. We

need to show that the functor

(5.15) (D⊗
n ≀D⊗

k )act
/X Ð→ (E⊗n+k)act

/⟨l⟩

has weakly contractible homotopy fibers. We first observe that both the left and
right hand sides of (5.155.15) factor as the product over i = 1, ...,m of the respective
∞-categories for Xi ∶= (Ui,{V i1 , ..., V 1

i1
}) on the left and li on the right. We may

hence assume that m = 1. Consider the commutative triangle

(5.16) (D⊗
n ≀D⊗

k )act
/(U,{V1,...,Vl})

//

((QQQQQQQQQQQQ
(E⊗n+k)act

/⟨l⟩

xxrrrrrrrrrr

(E⊗n+k)act

The right diagonal map is a right fibration whose fiber over the object ⟨l′⟩ ∈
(E⊗n+k)act is a Kan complex which is naturally equivalent to the singular complex of

Rect(◻n × ⟨l′⟩○ ,◻n × ⟨l⟩○). It will hence suffice to show that (5.125.12) induces a weak
homotopy equivalence between homotopy fibers above every object ⟨l′⟩ ∈ (E⊗n+k)act.
Let us denote by Xl′ Ð→ (D⊗

n ≀ D⊗
k )act

/(U,{V1,...,Vl}) the homotopy fiber of the left

diagonal map over ⟨l′⟩ ∈ (E⊗n)act. To identify this homotopy fiber let us define
V ∶= ∐j∈⟨l⟩○ Vj ⊆ ◻k × ⟨l⟩○ and consider the open subset

X = U × V ⊆ ◻n × ◻k × ⟨l⟩○ = ◻n+k × ⟨l⟩○

equipped with its two projections p ∶X Ð→ U and q ∶X Ð→ V . Let O(X,U) denote
the poset of pairs (W,U ′) where W is an open subset of X and U ′ is open subset of
U which contains the image of W via the projection p ∶X Ð→ U , where we consider
O(X,U) as ordered by inclusion. The association

((U1, ..., Um), ({V 1
1 , ..., V

1
l1}, ...,{V

m
1 , ..., V mlm})) ↦ (⋃

i,j

Ui × V ij ,⋃
i

Ui)
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identifies (D⊗
n ≀D⊗

k )act
/(U,{V1,...,Vl}) with the subposet Ocube(X,U) ⊆ O(X,U) spanned

by those pairs (W,U ′) which satisfy the following properties:

(1) U ′ is a disjoint union of subcubes U1, ..., U1 ⊆ U .
(2) For each component Ui ⊆ U ′ the inverse image W ∩ p−1(Ui) ⊆ X of Ui in W

factors as a product Ui × V ′ where V ′ ⊆ V is a (possibly empty) union of
subcubes V i1 , ..., V

i
li

.

Under the identification (D⊗
n ≀D⊗

k )act
/(U,{V1,...,Vl}) ≃ O

cube(X,U) the left diagonal map

in (5.165.16) can be written as (W,U ′) ↦ π0(W ). We may then identify Xl′ with the ∞-
category of pairs (W,U ′, ρ) where (W,U ′) ∈ Ocube(X,U) and ρ ∶ ◻n×⟨l′⟩○ Ð→W is a
rectilinear embedding which induces a bijection of π0. Equivalently, we can describe
the objects of Xl as tuples ((W,U ′), η, (ρ1, ..., ρl)) where (W,U ′) ∈ Ocube(X,U), η ∶
⟨l′⟩○ ≅Ð→ π0(W ) is a bijection of sets and ρi ∶ ◻n+k Ð→W η

i is a rectilinear embedding,
where by W η

i we mean the component of W determined by η(i) ∈ π0(W ).
Let X0

l′ be the full subcategory of Xl′ spanned by those ((W,U ′), η, (ρ1, ..., ρl))
such that the map W Ð→ U ′ is surjective on π0. The inclusion X0

l′ ⊆ Xl′ admits a
right adjoint Xl′ Ð→ X0

l′ which sends ((W,U ′), η, (ρ1, ..., ρl)) to ((W,p(W )), η, (ρ1, ..., ρl)),
and is hence a weak homotopy equivalence. It will hence suffice to show that the
map

X0
l′ Ð→ (E⊗n+k)act

/⟨l⟩ ×(E⊗
n+k

)act {⟨l′⟩}
is a weak homotopy equivalence.

Let us denote by X
0

l′ the poset of pairs ((W,U ′), η) where (W,U ′) ∈ Ocube(X,U),
W Ð→ U ′ is surjective on π0 and η ∶ ⟨l′⟩○ ≅Ð→ π0(W ) is a bijection. In particular

we have a natural forgetful functor X
0

l′ Ð→ X l′ (which is an equivalence). Given

((W,U ′), η) ∈ X0

l′ the multi-subcube U ′ ⊆ U is completely determined by W (as its

image). We then see that the association ((W,U ′), η) ↦ (W η
i )i∈⟨l′⟩○ identifies X

0

l′

with a certain subposet of O(X)⟨l′⟩
○

. We shall henceforth adopt this identification
implicitly. To finish the proof it is left to check that the canonical map

hocolim
(W1,...,Wl′)∈X

0

l′

∏
i∈⟨l′⟩○

Rect(◻n × {i},Wi) Ð→ Rect(◻n × ⟨l′⟩○ ,X)

is a weak homotopy equivalence. In light of Lemma 5.1.105.1.10 we may replace rectilinear
embeddings by configuration spaces and prove instead that the canonical map

hocolim
(W1,...,Wl′)∈X

0

l′

∏
i∈⟨l′⟩○

Conf({i},Wi) Ð→ Conf(⟨l′⟩○ ,X)

is a weak homotopy equivalence. We would like now to invoke Corollary 5.2.105.2.10
as in the proof of Proposition 5.2.45.2.4. The only additional detail we need to verify
(which was obvious in the case of Proposition 5.2.45.2.4) is that for every configuration

f ∶ ⟨l′⟩○ Ð→ X there exists a (W1, ...,Wl′) ∈ X
0

l′ such that f(i) ∈ Wi. To see

this, let I ⊆ U be the image of the composed map ⟨l′⟩○ fÐ→ X
pÐ→ U . We may

then identify I with ⟨m⟩○ for some m (embedded in U) and we let α ∶ ⟨l′⟩ Ð→
⟨m⟩ be the corresponding active surjective map. Then we may choose small n-
cubes neighborhoods {Ui}i∈⟨m⟩○ for each i ∈ ⟨m⟩○ such that Ui ∩ Ui′ = ∅ when

i ≠ i′. For each i ∈ ⟨m⟩○ let Ji ⊆ V be the image of the subset α−1(i) ⊆ ⟨l′⟩○

under the composed map ⟨l′⟩○ Ð→ X
qÐ→ V . We may then choose small k-cubes

neighborhoods {Vj}j∈Ji for each j ∈ Ji such that Vj ∩ Vj′ = ∅ when j ≠ j′. The
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object (Uα(j) × Vj)j∈⟨l′⟩○ ∈ Ocube(X)⟨l′⟩
○

then belongs to X
0

l′ and the corresponding

open subset of Conf(⟨l′⟩○ ,X) contains the configuration f , as desired. �

Proof of Theorem 5.2.25.2.2. We would like to show that (5.75.7) is an equivalence of ∞-
categories. Consider the commutative diagram

(5.17) MonE⊗
n+k

(S) //

''OOOOOOOOOOO
MonE⊗n≀E⊗k

(S)

��

≃ // MonE⊗n(MonE⊗
k
(S))

��
MonD⊗n≀D⊗k

(S) ≃ // MonD⊗n(MonD⊗
k
(S))

where the right horizontal maps are equivalences by Theorem 4.3.114.3.11. By Proposi-
tion 4.2.184.2.18 and Proposition 5.2.125.2.12 the left diagonal map in (5.175.17) is fully-faithful
and its essential image is spanned by those monoid objects ψ ∶ D⊗

n ≀ D⊗
k Ð→ S

which send every arrow in (D⊗
n ≀ D⊗

k )⟨1⟩ to an equivalence. On the other hand, by
Proposition 4.2.184.2.18, Proposition 5.2.45.2.4 and Remark 4.2.164.2.16 the right most vertical
arrow is fully-faithful and its essential image is spanned by those monoid objects
ψ ∶ D⊗

n ×D⊗
k Ð→ S which send every arrow in (D⊗

n)⟨1⟩×(D⊗
k )⟨1⟩ to an equivalence. To

finish the proof it will hence suffice to show that if a monoid object ψ ∶ D⊗
n ≀D⊗

k Ð→ S

sends every arrow in (D⊗
n)⟨1⟩ × (D⊗

k )⟨1⟩ to an equivalence then it sends every arrow

in (D⊗
n ≀ D⊗

k )⟨1⟩ to an equivalence. Indeed, let ψ ∶ D⊗
n ≀ D⊗

k Ð→ S be such a monoid

object. Then for every object ((U1, ..., Um), ({}, ...,{V }, ...,{})) in (D⊗
n ≀D⊗

k )⟨1⟩ the
map

ψ((U1, ..., Um), ({}, ...,{V }, ...,{})) ≃Ð→ ψ(Ui0 , V ) ∏
i0≠i∈⟨m⟩○

ψ(Ui,{})

induced by the inert map (U1, ..., Um), ({}, ...,{V }, ...,{}) Ð→ (Ui0 , V ) and the inert
maps (U1, ..., Um), ({}, ...,{V }, ...,{}) Ð→ (Ui,{}) for i ≠ i0, is an equivalence. In
addition, the monoid condition also implies that ψ(Ui,{}) ≃ ∗. We may then
conclude that ψ sends every inert map of the form

(5.18) ((U1, ..., Um), ({}, ...,{V }, ...,{})) Ð→ (Ui0 , V )

to an equivalence. By the 2-out-of-3 rule we then get that ψ sends every map

(5.19) (U ′, V ′) Ð→ ((U1, ..., Um), ({}, ...,{V }, ...,{}))

whose domain is in (D⊗
n)⟨1⟩ × (D⊗

k )⟨1⟩ to an equivalence. We now observe that any

object in (D⊗
n ≀D⊗

k )⟨1⟩ receives at least one map from an object in (D⊗
n)⟨1⟩×(D⊗

k )⟨1⟩.
Applying again the 2-out-of-3 argument we may conclude that ψ sends every map
in (D⊗

n ≀D⊗
k )⟨1⟩ to an equivalence, as desired. �

Remark 5.2.13. Letting either k or n to be 0 in Theorem 5.2.25.2.2 we recover the claim
that E0 ⊗ En ≃ En ⊗ E0 ≃ En, and so the forgetful functors MonEn(MonE0(E)) Ð→
MonEn(E) and MonE0(MonEn(E)) Ð→ MonEn(E) are equivalences for every ∞-
category with finite products E. More generally, if C⊗ is a symmetric monoidal
∞-category then the forgetful functors

AlgEn(AlgE0
(C)) ≃Ð→ AlgEn(C)

≃←Ð AlgE0
(AlgEn(C))

are equivalences.
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Remark 5.2.14. A variant of the argument in the proof of Theorem 5.2.25.2.2 shows that
E⊗n+k,∂ ≃ E⊗n,∂ ⊗ E⊗k . In particular, by example 5.1.85.1.8 we may identify En,∂-algebras

in C with En-algebras in AlgE1,∂
(C) ≃ AlgPRAss(C).

5.3. May’s recognition principle. Let (X,x0) be a pointed connected topologi-
cal space. Then the loop space

ΩX ∶= {p ∶ [−1,1] Ð→X ∣p(−1) = p(1) = x0},
equipped with the compact open topology, acquires a natural action of the topologi-
cal little 1-cube operad Etop

1 (see Variant 5.1.45.1.4), which can be described as follows:
given a rectilinear embedding f ∶ ◻1 × I Ð→ ◻1, the corresponding map

f∗ ∶ ∏
i∈I

ΩX Ð→ ΩX

sends {pi}i∈I to the path q ∶ [−1,1] Ð→ X which is given by q(x) = pI(f−1(t)) if
t is in the image of f and q(t) = x0 otherwise. Here we consider ◻1 = (−1,1) as a
subspace of [−1,1] and pI ∶ ◻1 × I Ð→X is the map pI(t, i) = pi(t). More generally,
the n-fold loop space

ΩnX ∶= Ω(Ω(⋯(ΩX))) ≅ {p ∶ [−1,1]n Ð→X ∣p(∂[−1,1]n) = x0}
acquires a similarly defined action of Etop

n . A famous theorem of May (related to a
large body of work of Boardman and Vogt on the topic) identifies the Etop

n -monoid
objects in Top which can be obtained in this way. To formulate May’s result we
will need the following definition:

Definition 5.3.1. Let X be a topological space equipped with an action of Etop
n

for n ≥ 1. We will say that X is group-like if for every rectilinear embedding
f ∶ ◻n × {1,2} Ð→ ◻n the map

X ×X
(pr1,f∗) // X ×X

is a homotopy equivalence, where pr1 ∶ X ×X Ð→ X is the projection to the first
coordinate and f∗ ∶X ×X Ð→X is the map associated to f by the action of Etop

n .

Theorem 5.3.2 (May [77]). Let X be a space equipped with an action of Etop
n . Then

the following conditions are equivalent:

(1) X is of the form ΩnY for some pointed (n − 1)-connected topological space Y .
(2) X is group-like.

Theorem 5.3.25.3.2 gives an important relation between the theory of Etop
n -monoids

in spaces and the theory of iterated loop spaces, and was historically one of the
motivations behind the introduction of the little n-cube operads. It is often referred
to as May’s recognition principle, since it can be considered as giving an internal
characterization of n-fold loop spaces in terms of the structure they acquire, which
then allows one to recognize them without knowing any explicit delooping. We
would like to formulate and prove May’s theorem in the setting of ∞-operads. For
this, let us first define the notion of being group-like in a more general context:

Definition 5.3.3. Let ψ ∶ E⊗n Ð→ E be an En-monoid object in E for n ≥ 1. We
will say that ψ is group-like if for every active f ∶ ⟨2⟩ Ð→ ⟨1⟩ in E⊗n the map

(5.20) ψ(⟨2⟩)
(ρ1

∗
,f∗) // ψ(⟨1⟩) × ψ(⟨1⟩)

is an equivalence.
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Example 5.3.4. In the situation of Definition 5.3.35.3.3, suppose that E = S is the ∞-
category of spaces. Given a monoid object ψ ∶ E⊗n Ð→ S let X ∶= ψ(⟨1⟩) ∈ S be its
underlying space. The map (5.205.20) can then be identified up to equivalence with a
map of the form

(5.21) X ×X
(pr1,f∗) // X ×X

where pr1 ∶X×X Ð→X is the projection on the first component and f∗ ∶X×X Ð→
X is the multiplication induced by f . Now the map (5.215.21) respects the projection
on the first component on both sides. By the long exact sequence in homotopy
groups we have that (5.215.21) is an equivalence if and only if it induces an equivalence
on homotopy fibers of pr1 over every x ∈X. Given a particular x ∈X, the induced
map on homotopy fibers over x can be identified with the map

(5.22) {x} ×X fx // {x} ×X

given by f -multiplication by x. We may thus conclude that X is group-like if and
only if for every active f ∶ ⟨2⟩ Ð→ ⟨1⟩ in E⊗n , the operation of f -multiplication by any

point x ∈X is an equivalence. Replacing f with the composition ⟨2⟩ τÐ→ ⟨2⟩ fÐ→ ⟨1⟩,
where τ lies over the map in N(Fin∗) which switches 1 and 2, we see that this is
equivalent to saying that f -multiplication by x from the left or from the right is an
equivalence for every f and x. Finally, this condition does not depend on f , since
Map(E⊗n)act(⟨2⟩ , ⟨1⟩) is either connected (when n > 1) or has exactly two components

(when n = 1) which are then switched by pre-composition with τ . We note that any
choice of f induces a structure of a monoid on π0(X), and the condition that every
point acts invertibly from the left and from the right is equivalent to the condition
that π0(X) is in fact a group.

In order to prove May’s recognition principle it will be convenient to replace
E⊗n by a suitable strong approximation of it. Recall first that E⊗1 ≃ N(Ass⊗) (see
Example 5.1.75.1.7). In addition, the category ∆op has a natural structure of a weak ∞-
operad (see Example 4.2.124.2.12) and we have a strong approximation map ∆op Ð→ Ass⊗

(see Example 4.2.154.2.15). By Proposition 4.2.184.2.18 the restriction functor

MonAss(E)
≃Ð→Mon∆op(E)

is an equivalence of ∞-categories. We note that we may also model En-monoids
in this way using the additivity theorem. More precisely, let us consider the n-
fold product (∆op)n = ∆op × ... × ∆op equipped with the product weak ∞-operad
structure of Example 4.2.134.2.13. By Remark 4.2.164.2.16 the map (∆op)n Ð→ (Ass⊗)n is
again a strong approximation and so

(5.23) Mon(∆op)n(E) ≃ Mon(Ass⊗)n(E) ≃ Mon(E⊗1 )n(E) ≃ MonEn(E)

by Theorem 5.2.25.2.2.
We can also construct a similar type of strong approximation for the ∞-operad

E0. Consider the one-arrow category [1] = ● // ● equipped with the weak ∞-
operad structure in which all maps are active, only the isomorphisms are inert,
and the basics are {1} ⊆ [1]. We have a natural map of weak ∞-operads [1] Ð→
Poi⊗ which sends 0 to ⟨0⟩ and 1 to ⟨1⟩. This map a strong approximation since
it induces an equivalence on active over-categories (and the second condition of
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Definition 4.2.144.2.14 is clear). We may then conclude that

Mon[1](E) ≃ MonPoi(E) ≃ MonE0(E).
Unwinding the definitions we see that Mon[1](E) ⊆ Fun([1],E) is the full subcate-
gory spanned by those arrows xÐ→ y in E such that x is final. Fixing a final object
∗ we then have a natural equivalence Mon[1](E) ≃ E∗/.

Definition 5.3.5. Let E be an ∞-category with finite products. We will say
that a (∆op)n-monoid object N(∆op)n Ð→ E is group-like if it corresponds to
a group-like En-monoid object under the equivalence (5.235.23). We will denote by
Mongr

(∆op)n(E) ⊆ Mon(∆op)n(E) the full subcategory spanned by the group-like ∆op-

monoid objects.

Remark 5.3.6. Unwinding the definitions we see that a ∆op-monoid object ψ ∶
N(∆op) Ð→ E is group-like if and only if the map

(5.24) ψ([2]) ≃Ð→ ψ([1]) × ψ([1])
induced by the faces {0,1} ⊆ [2] and {0,2} ⊆ [2] is an equivalence.

Remark 5.3.7. In the situation of Remark 5.3.65.3.6, if ψ ∶ N(∆op) Ð→ E is group-like
then an a-priori stronger condition automatically holds: for every n the collection of
maps ρi ∶ ψ([n]) Ð→ ψ({0, i}) for i ≠ 0 exhibit ψ([n]) as the product∏i≠0 ψ({0, i}).
To see this let us argue by induction on n (the case n = 2 of (5.245.24) being the
base). Indeed, suppose the claim is true for some n ≥ 2. The monoid condition

implies that ψ([m]) ≃ ∏m−1
i=0 ψ({i, i + 1}) for every m and hence that ψ([m]) ≃

ψ({0, ..., i}) × ψ({i, ...m}) for every 0 ≤ i ≤ m. Combining this with the induction
hypothesis we then conclude that

ψ([n + 1]) ≃ ψ({0, ..., n}) × ψ({n,n + 1}) ≃ ∏
i=1,...,n

ψ({0, i}) × ψ({n,n + 1}) ≃

∏
i=1,...,n−1

ψ({0, i} × ψ({0, n, n + 1}) ≃ ∏
i=1,...,n+1

ψ({0, i}),

as desired.

In order to formulate May’s recognition principle ∞-categorically we would like
to view the formation of iterated loop spaces not as a topological construction but
rather as a higher categorical one, namely, as a form of a homotopy limit.

Definition 5.3.8. Let E be an ∞-category. We will say that a square of the form

y //

��

∗
p

��
∗ p

// x

exhibits y as the loop object of x at p if ∗ is a final object and the square is cartesian
in E. In this case we will also informally write y ≃ Ωpx, or even y ≃ Ωx if the base
point is implied.

Example 5.3.9. Consider the category Top of topological spaces equipped with the
model structure in which the weak equivalences are the weak homotopy equivalences
and the fibrations are Serre fibrations. Given a pointed space (X,x0), the inclusion
{x0} Ð→X can be replaced with a fibration ev1 ∶ Px0 Ð→X where Px0 is the space
of paths in X starting from x0, and ev1 is given by evaluating at the end point.
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One can then compute the homotopy pullback {x0} ×hX {x0} as the fiber product
Px0 ×X {x0} ≅ ΩX. In particular, Definition 5.3.85.3.8 specializes to the classical notion
of a loop space in the case E = S.

Let now E be an ∞-category which admits final objects and pullbacks. We would
like to express the idea that loop objects Ωpx in E carry a canonical structure of
a group-like E1-monoid object (in particular, this structure has nothing specific to
do with topological spaces). For this it will be convenient to work in the following
setting: let ∆+ denote the enlargement of ∆ obtained by including also the empty
linearly ordered set [−1] ∶= ∅ ∈ ∆op

+ . For −1 ≤ k ≤ m let us denote by ∆[m,k] ⊆ ∆+
the full subcategory spanned by the objects [k], [k + 1], ..., [m], so that ∆[k,m] ⊆ ∆
when k ≥ 0. We note that ∆[−1,0] has two objects and a unique non-zero arrow

[−1] Ð→ [0]. In particular, N(∆[−1,0]) ≅ ∆1. We then have the following:

Proposition 5.3.10. Let E be an ∞-category with a final object ∗ ∈ E and let
ψ ∶ N(∆op

+ ) Ð→ E be a diagram. Then the following are equivalent:

(1) ψ([0]) ≃ ∗ and ψ is a right Kan extension of ψ∣∆op

[−1,0]
.

(2) ψ∣∆op is a group-like ∆op-monoid object and ψ∣(∆op

[−1,1]
)in is a right Kan exten-

sion of ψ∣(∆op

[0,1]
)in .

Proof. Let us say that a map in ∆op
+ is inert if it is either an inert map of ∆op or a

map whose codomain is [−1]. We note that any map whose codomain is [0] is inert
and hence any map in ∆op

+ whose codomain is in ∆op
[−1,0] is inert. In particular, for

n ≥ 1 the functor

(∆op
+ )in

[n]/ ×∆op
+

∆op
[−1,0] Ð→ (∆op

+ )[n]/ ×∆op
+

∆op
[−1,0]

is an isomorphism, and hence the second part of Condition (1) is equivalent to the
condition that ψ′∣(∆op

+
)in is a right Kan extension of ψ′∣∆op

[−1,0]
. By the pasting lemma

for Kan extensions (Proposition 2.7.72.7.7) and Remark 2.7.62.7.6 we see that Condition (1)
is equivalent to the conjunction of the following three conditions

(1a) ψ([0]) ≃ ∗;
(1b) ψ∣(∆op

+
)in is a right Kan extension of ψ∣(∆op

[−1,1]
)in ; and

(1c) ψ∣(∆op

[−1,1]
)in is a right Kan extension of ψ∣∆op

[0,1]
.

Similarly, Condition (2) above is equivalent to the conjunction of Condition (1c)
and the following three conditions:

(2a) ψ∣(∆op)in is a right Kan extension of ψ∣(∆op

[0,1]
)in ;

(2b) ψ∣(∆op

[0,1]
)in is a right Kan extension of ψ∣{1}; and

(2c) the map ψ([2]) Ð→ ψ({0,1}) × ψ({0,2}) of (5.245.24) is an equivalence.

Now for n ≥ 2 the full subcategory inclusions

(5.25) (∆op)in
[n]/ ×∆op ∆op

[0,1] ⊆ (∆op
+ )in

[n]/ ×∆op
+

∆op
[−1,1]

is coinitial: this follows from the fact that the only object in the right hand side
which is not in the left hand side is final and the left hand side is weakly contractible.
It then follows from Theorem 2.7.52.7.5 that Condition (1b) is equivalent to Condition
(2a). Furthermore, since there are no inert maps from [0] to [1] in ∆op, the
same theorem implies that Condition (1a) is equivalent to Condition (2b). To
finish the proof it will suffice to show that Condition (1) implies Condition (2c).



LITTLE CUBE ALGEBRAS AND FACTORIZATION HOMOLOGY COURSE NOTES 83

Let I ⊆ (∆op
+ )in

[2]/ be the full subcategory containing (∆op
+ )[2]/ ×∆op

+

∆op
[−1,0] and in

addition the objects corresponding to the inclusions {0,1},{0,2} ⊆ {0,1,2}. Let

ψ′ ∶ IÐ→∆op
+

ψÐ→ E

be the composed diagram. Condition (1) implies that ψ′ is a right Kan extension
of its restriction to (∆op

+ )[2]/ ×∆op
+

∆op
[−1,0] and so by Theorem 2.7.52.7.5 and Proposi-

tion 2.7.72.7.7 the composed map

I◁ Ð→∆op
+

ψÐ→ E

is a limit diagram. Let J ⊆ I be the full subcategory spanned by the objects
corresponding to the inclusions {0},{0,1},{0,2} ⊆ {0,1,2}. Then it is easy to
check that J is coinitial in I. We may hence conclude that the composed map

J◁ Ð→∆op
+

ψÐ→ E

is a limit diagram. Since ψ([0]) ≃ ∗ is final this exactly means that the map
ψ([2]) Ð→ ψ({0,1}) × ψ({0,2}) ≃ ψ({0,1}) ×ψ({0}) ψ({0,2} is an equivalence, as
desired. �

Definition 5.3.11. Given an ∞-category E with a final object we will denote by

E∗ ∶= Mon[1](E)

the ∞-category of [1]-monoids in E. We will refer to these monoids as pointed
objects in E.

Construction 5.3.12. Let E be an ∞-category with a terminal object ∗ ∈ E. Define
XE ⊆ Fun(N(∆op

+ ),E) to be the full subcategory spanned by those functors ψ ∶
N(∆op

+ ) Ð→ E such that ψ([0]) ≃ ∗ and ψ is a right Kan extension of ψ∣∆op

[−1,0]
. We

may then identify the ∞-category E∗ of Definition 5.3.115.3.11 with the full subcategory
E∗ ⊆ Fun(N(∆op

[−1,0],E) spanned by those ψ ∶ N(∆op
[−1,0]) Ð→ E such that ψ([0]) ≃ ∗.

Consider the diagram

XE

≃

  AAAAAAAA

xxrrrrrrrrrrr

MonN(∆op)(E) E∗

where the left diagonal map is given by restriction along ∆op ⊆ ∆op
+ (and is well-

defined in light of Proposition 5.3.105.3.10), and the right diagonal map is given by
restriction along ∆op

[−1,0] ⊆ ∆op
+ . By Remark 2.7.22.7.2 the right diagonal map is a trivial

Kan fibration. Choosing a section for this trivial Kan fibration we hence obtain a
functor

Ω̃E ∶ E∗ Ð→MonN(∆op)(E),
well-defined up to a contractible space of choices. Let us denote by

ΩE ∶ E∗
Ω̃EÐ→MonN(∆op)(E) Ð→ E

the composed functor, where the second functor is given by evaluation at [1] ∈ ∆op.
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Lemma 5.3.13. Let Forget ∶ E∗ Ð→ E be the functor which sends [∗ Ð→ x] ∈ E∗ to
x. Then there exists a cartesian square of the form

(5.26) ΩE
//

��

∗

τ

��
∗ τ

// Forget

in the ∞-category Fun(E∗,E) such that for every [∗ Ð→ x] ∈ E∗ the square

(5.27) ΩE(x) //

��

∗(x)

τx

��
∗(x) τx

// x

exhibits ΩE(x) as the loop object of x at τx.

Proof. Recall that Ω̃E is given by first choosing a section s ∶ E∗ Ð→ XE for the
trivial Kan fibration XE Ð→ E∗ and then applying the restriction functor XE Ð→
MonN(∆op)(E). In particular, for every [∗ Ð→ x] ∈ E∗ the functor sx ∶ N(∆op

+ ) Ð→ E

is a right Kan extension of (sx)∣N(∆op

[−1,0]
) and sx([0]) ≃ ∗. Let I ∶= (∆op

+ )[1]/ ×∆op
+

∆op
[−1,0], so that we can identify I with the category

●

��● // ●.
The adjunction between the cone and slice constructions yields a natural map
σ ∶ I◁ Ð→∆op

+ which sends the cone point to [1]. We may then consider the map

ρ ∶ E∗ × I◁ Ð→ E

given by the formula ρ(x, i) = sx(σ(i)). The adjoint map I◁ Ð→ Fun(E∗,E) can
then be depicted as a square of the form (5.265.26) which has the desired properties
by Theorem 2.7.52.7.5, since sx is a right Kan extension of (sx)∣N(∆op

[−1,0]
) and sx([0]) is

final in E. �

In light of Lemma 5.3.135.3.13 we can consider the functor Ω̃E ∶ E∗ Ð→ Mon∆op(E)
as a refinement of the “loop functor” E∗ Ð→ E (which is well-defined by up to a
contractible space of choices) to a functor which takes values in ∆op-monoids. In

other words, Ω̃E encodes a natural ∆op-monoid structure (equivalently, associative
monoid structure, or an E1-structure) on the loop object of every x ∈ E.

We shall now apply the machinery above to the case E ∶= S of spaces. Let us
denote by S0

∗ ⊆ S∗ the full subcategory spanned by the pointed connected spaces.

Proposition 5.3.14. The functor

(5.28) Ω̃0 ∶= Ω̃S ∶ S∗ Ð→Mon∆op(S)
of Construction 5.3.125.3.12 restricts to an equivalence between the full subcategory S0

∗ ⊆
S∗ on the left hand side and the full subcategory Mongr

∆op(S) ⊆ Mon∆op(S) on the
right hand side.
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Before we prove Proposition 5.3.145.3.14 let us recall a certain important property of
the ∞-category of spaces.

Definition 5.3.15. Let C,D be two ∞-categories and ϕ,ψ ∶ CÐ→D two functors.
We will say that a natural transformation τ ∶ φ⇒ ψ is cartesian if for every arrow
f ∶ xÐ→ y in C the square

(5.29) φ(x) //

��

ψ(x)

��
φ(y) // ψ(y)

is cartesian in D.

Proposition 5.3.16. Let I be an ordinary category and p, q ∶ N(I) Ð→ S two I-
indexed diagram of spaces. Let p, q ∶ N(I)▷ Ð→ S be two colimits cones extending p
and q respectively and let τ ∶ p⇒ q be a natural transformation. If τ ∶= τ ∣I ∶ p⇒ q
is cartesian then τ is cartesian.

Proof. This is a classical fact. One way to prove this is by representing p and q
by actual colimit diagrams of simplicial sets and τ by a natural transformation
which is levelwise a minimal Kan fibration. In this case all the squares (5.295.29) will
necessarily be cartesian squares in simplicial sets, at which point it will be enough
to verify the 1-categorical analogue of the result for the category of simplicial sets.
There we can reduce to checking it for sets, which is clear. �

Proof of Proposition 5.3.145.3.14. By Remark 2.7.22.7.2 it will suffice to show that the follo-
wing conditions are equivalent for a given functor ψ ∶ N(∆op

+ ) Ð→ S:

(i) ψ([−1]) is connected and ψ belong to X.
(ii) ψ∣N(∆op) is a group-like monoid object and ψ is a left Kan extension of ψ∣N(∆op).

Suppose first that ψ∣∆op is a group-like monoid object and that ψ is a left Kan
extension of ψ∣∆op . Then ψ([−1]) is the geometric realization of the simplicial
object ψ∣∆op and since ψ([0]) ≃ ∗ is in particular connected it follows that ψ([−1])
is connected. To show that Condition (i) holds it will suffice by Proposition 5.3.105.3.10
to show that ψ∣(∆op

[−1,0,1]
)∈ is a right Kan extension of ψ∣∆op

[−1,0]
, which means, more

concretely, that we need to check that the square

(5.30) ψ([1]) //

��

ψ([0])

��
ψ([0]) // ψ([−1])

is cartesian. Let ρ ∶ ∆op
+ Ð→ ∆op

+ be the functor [n] ↦ [n] ∗ [0] ≃ [n + 1] obtained
by concatenation with [0], and let ρ∗ψ ∶ ∆op

+ Ð→ S∗ be obtained by precomposing
with ρ. The natural transformation ρ⇒ Id (whose value at [n] identifies [n] as the
prefix of length n in ρ(n)) induces a natural transformation ρ∗ψ Ð→ ψ. We now
claim that the restricted natural transformation ρ∗ϕ∣∆op ⇒ ϕ∆op is cartesian in the
sense of Definition 5.3.155.3.15. Unwinding the definition of ρ what we need to check is
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that for every σ ∶ [n] Ð→ [m] the square

(5.31) ψ([m] ∗ [0]) //

��

ψ([n] ∗ [0])

��
ψ([m]) // ψ([n])

is cartesian. We now note that the collection of σ ∶ [n] Ð→ [m] in ∆ for which (5.315.31)
is cartesian is closed under composition, and if it contains σ and σ′ ○ σ then it
contains σ′. It will hence suffice to show that (5.315.31) is cartesian for maps of the
form σ ∶ {i} ↪ [n]. In this case, the square (5.315.31) becomes

(5.32) ψ({i, n + 1}) //

��

ψ({0, ..., n + 1})

��
ψ({i}) // ψ({0, ..., n})

We note that the monoid condition implies that ψ([m]) ≃ ∏m−1
j=0 ψ({j, j + 1}) and

hence that ψ([n + 1]) ≃ ψ({0, ..., i}) × ψ({i, ..., n + 1}) and ψ([n]) ≃ ψ({0, ..., i}) ×
ψ({i, ..., n}). To show that (5.325.32) is cartesian it will hence suffice to show that

(5.33) ψ({i, n + 1}) //

��

ψ({i, ..., n + 1})

��
ψ({i}) // ψ({i, ..., n})

is cartesian. This now follows from Remark 5.3.65.3.6, according to which, when ψ is
group-like, ψ([m]) decomposes as ∏j ψ({0, j}) for every [m]. We now note that
ρ∗ψ is a colimit diagram since it is a split simplicial object. By Proposition 5.3.165.3.16
we may thus conclude that ρ∗ϕ⇒ ϕ is a cartesian natural transformation. Taking
the edge [0] Ð→ [−1] in ∆op

+ we recover that (5.305.30) is cartesian, as desired.
Let us now assume that (i) holds. Then ψ∣∆op is a group-like monoid object by

Proposition 5.3.105.3.10. Since S admits colimits it follows from Theorem 2.7.52.7.5 that there
exists a functor ψ′ ∶ ∆op

+ Ð→ S and a natural transformation δ ∶ ψ∣∆op ⇒ ψ′∣∆op

exhibits ψ′ as a left Kan extension of ψ∣∆op along ∆op ⊆ ∆op
+ . This means, in

particular, that (ψ′, δ) is initial in the ∞-category of left extensions of ψ∣∆op , and
so there exists a natural transformation δ′ ∶ ψ′ ⇒ ψ such that δ′∣∆op ○ δ = Id. To
finish the proof it will suffice to show that δ′ is an equivalence. Now since the
inclusion ∆op ⊆ ∆op

+ is fully-faithful we know that δ∣∆op is an equivalence. It will
then be enough to verify that δ′([−1]) ∶ ψ′([−1]) Ð→ ψ([−1]) is an equivalence.
Now ψ′ satisfies (ii) by construction and so by the argument above it also satisfies
(i). By Proposition 5.3.105.3.10 we then have that ψ′∣(∆op

[−1,1]
)in is a right Kan extension of

ψ′∣∆op

[−1,0]
. Since the same is true for ψ this means that the map δ′([1]) ∶ ψ′([1]) Ð→

ψ([1]) is equivalent to the looping of the map δ′([−1]) ∶ ψ′([−1]) Ð→ ψ([−1]).
Since the latter is a map between connected spaces and δ′([1]) is an equivalence it
follows that δ′([−1]) is also an equivalence, as desired. �

For n ≥ 1 let us denote by

(5.34) Ω̃n ∶ Mon(∆op)n(S)∗ Ð→Mon∆op(Mon(∆op)n(S))
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the functor of Construction 5.3.125.3.12 applied to Mon(∆op)n(S). Let us denote by

Mon(∆op)n(S)0
∗ ⊆ Mon(∆op)n(S) the full subcategory spanned by those (∆op)n-

monoid objects in S whose underlying object is connected. The statement of Pro-
position 5.3.145.3.14 can now be bootstrapped from S to Mon(∆op)n(S):

Corollary 5.3.17. For every n ≥ 1 the functor (5.345.34) restricts to an equivalence
between the full subcategory Mon(∆op)n(S)0

∗ ⊆ Mon(∆op)n(S) on the left hand side
and the full subcategory Mongr

∆op(Mon(∆op)n(S)) ⊆ Mon∆op(Mon(∆op)n(S)) on the
right.

Proof. Let us denote by

(5.35) Ω̃
(∆op)n
0 ∶ Mon(∆op)n(S∗) Ð→Mon(∆op)n(Mon∆op(S))

the functor induced by (5.285.28) upon taking (∆op)n-monoid objects on both sides.
Since S0

∗ ⊆ S∗ is a full subcategory closed under finite products Proposition 5.3.145.3.14

implies that the functor Ω̃
(∆op)n
0 restricts to an equivalence between Mon(∆op)n(S0

∗)
and Mon(∆op)n(Mongr

∆op(S∗)). It will hence suffice to show that under the identifi-
cations

Mon(∆op)n(S∗) ≃ Mon(∆op)n(S)∗
and

Mon(∆op)n(Mon∆op(S)) ≃ Mon(∆op)n+1(S) ≃ Mon∆op(Mon(∆op)n(S)),

the functor Ω̃
(∆op)n
0 is homotopic to Ω̃n, and the full subcategory Mon(∆op)n(Mongr

∆op(S))
corresponds to the full subcategory Mongr

∆op(Mon(∆op)n(S)). Now the second claim
follows from the fact that for every ∞-category E with finite products the forget-
ful functor Mon(∆op)n(E) Ð→ E preserves products and detects equivalences, and
so in both cases the group-like condition is detected by the forgetful functor to
Mongr

∆op(S). To prove the first claim let

Xn ∶= XMon(∆op
)
n(S) ⊆ Fun(N(∆op

+ ),Mon(∆op)n(S))

be as in Construction 5.3.125.3.12, so that the functor Ω̃n is defined by choosing a section
to the trivial Kan fibration Xn Ð→Mon(∆op)n(S)∗ and then restricting to ∆op. By
the uniqueness of sections to trivial Kan fibration it will now suffice to show that
under the identification

Fun(N(∆op
+ ),Mon(∆op)n(S)) ≃ Mon(∆op)n(Fun(N(∆op

+ ),S)),
the full subcategory Xn on the left hand side corresponds to the full subcate-
gory Mon(∆op)n(X0) on the right hand side. Unwinding the definitions, this is
a direct consequence of Theorem 2.7.52.7.5 and the fact that the forgetful functor
Mon(∆op)n(S) Ð→ S detects equivalences and preserves limits (because the inclu-
sion Mon(∆op)n(S) ⊆ Fun((∆op)n,S) preserves limits and the evaluation ev[1] ∶
Fun((∆op)n,S) Ð→ S preserves limits). �

We will say that an ∞-category E is pointed if it contains an object ∗ ∈ E which
is both initial and final. In this case we will refer to such an object as a zero object.
Now suppose that E is an ∞-category with a final object. Then the forgetful functor

(5.36) E∗ Ð→ E

is a left fibration whose fiber over x ∈ E is equivalent to the full subgroupoid of E/x
spanned by those y Ð→ x such that y is final. This ∞-groupoid is contractible if
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and only if E is pointed. In this case, (5.365.36) is even a trivial Kan fibration by (the
dual of) Proposition 2.6.82.6.8.

Construction 5.3.18. Let E be a pointed ∞-category. Then (5.365.36) is a trivial
Kan fibration and so we may fix a section

ρ ∶ EÐ→ E∗.

The choice of ρ is unique up to a contractible space of choices.

Example 5.3.19. By Remark 5.2.135.2.13 it follows that Mon(∆op)n(E) ≃ MonEn(E) is a
pointed ∞-category for every ∞-category with limits E. A zero object is given by
the the terminal object of E equipped with its unique En-monoid structure.

Now for every n ≥ 1 let us denote by
(5.37)

Ω̃∗
n ∶ Mon(∆op)n(S)

ρ // Mon(∆op)n(S)∗
Ω̃n // Mon∆op(Mon(∆op)n(S)) ≅ Mon(∆op)n+1(S)

the composition of Ω̃n with the section ρ of Construction 5.3.185.3.18. We may then
define the iterated loop functor Ω̃n ∶ S∗ Ð→ Mon(∆op)n(S) to be the composed
functor

(5.38) Ω̃n ∶ S∗
Ω̃0 // Mon∆op(S)

Ω̃∗

1 // ⋯
Ω̃∗

n−1 // Mon(∆op)n(S) .

Let Sn∗ ⊆ S∗ be the full subcategory spanned by those pointed spaces which are
n-connected (i.e., have no homotopy groups in degree ≤ n). We may now deduce
the following version of May’s recognition principle:

Corollary 5.3.20. For every n ≥ 1 the iterated loop functor (5.385.38) restricts to
an equivalence between the full subcategory Sn∗ ⊆ S∗ of pointed n-connected spaces
and the full subcategory Mongr

(∆op)n(S) ⊆ Mon(∆op)n(S) of group-like (∆op)n-monoid

objects.

Proof. For k = 1, ..., n let us denote by Monn−k(∆op)k(S) ⊆ Mon(∆op)k(S) the full

subcategory spanned by those (∆op)k-monoids whose underlying space is (n − k)-
connected. Combining Proposition 5.3.145.3.14 and Lemma 5.3.135.3.13 we may conclude that
the functor (5.285.28) restricts to an equivalence

Ω̃0 ∶ Sn∗
≃Ð→Monn−1

∆op(S),
where we use the fact that any (n − 1)-connected (and so in particular connected)
∆op-monoid in spaces is automatically group-like by Example 5.3.45.3.4. Similarly,
by Proposition 5.3.145.3.14 for every k = 1, ..., n − 1 the functor (5.375.37) restricts to an
equivalence

Ω̃∗
k ∶ Monn−k(∆op)k

≃Ð→Monn−k−1
(∆op)k+1(S).

The desired result now follows by composing these equivalences. �

6. Factorization homology

6.1. Manifolds and framings.

Definition 6.1.1. Let n ≥ 1 be an integer. By an n-manifold we will mean a
paracompact Hausdorff space M such that each x ∈ M either has a neighborhood
homeomorphic to ◻n or has a neighborhood homeomorphic to ◻n∂ . We will say that
M is open if every point has a neighborhood homeomorphic to ◻n.
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If M is an n-manifold then we will denote by ∂M ⊆M the subspace consisting of
those points which have neighborhoods homeomorphic to ◻n∂ , and refer to ∂M as the
boundary of M . We note that ∂M is an open (n − 1)-manifold and M○ ∶=M ∖ ∂M
is an open n-manifold. We emphasize that we do not require M nor ∂M to be
compact. Given two n-manifolds with boundary we will denote by Emb(M,N) the
space of open embeddings of M in N , endowed with the compact-open topology.

Definition 6.1.2. We will denote by Mfld∆
n the simplicial category whose objects

are the n-manifolds and such that

MapMfld∆
n
(M,N) = Sing Emb(M,N).

We will denote by Mfldn = N(Mfld∆) the coherent nerve of Mfld∆, and refer to
it as the ∞-category of n-manifolds. We will denote by Mfld○n ⊆ Mfldn the full
subcategory spanned by the open n-manifolds.

Let us denote by Top(n) ⊆ Emb(◻n,◻n) the subspace consisting of all homeo-
morphisms from ◻n to ◻n. Then Top(n) is a topological group and the inclusion
Top(n) ⊆ Emb(◻n,◻n) is a continuous homomorphism of topological monoids. We
recall the following fundamental result in geometric topology:

Theorem 6.1.3 (Kister-Mazur). The inclusion Top(n) ⊆ Emb(◻n,◻n) is a homo-
topy equivalence.

A direct consequence of Theorem 6.1.36.1.3 is that the monoid π0 Emb(◻n,◻n) is
a group, and hence every embedding ◻n Ð→ ◻n is invertible up to isotopy. Let
BTop∆(n) ⊆ Mfld∆

n be the full subcategory spanned by ◻n. It then follows that
the coherent nerve

BTop(n) ∶= N(BTop∆(n))
is a Kan complex, which by Theorem 6.1.36.1.3 we can identify with the classifying space
of the topological group Top(n) (hence the notation).

Construction 6.1.4. Given an n-manifold M ∈Mfldn we will denote by

M ∶= (Mfldn)/M ×Mfldn BTop(n)
equipped with its projection

p ∶M Ð→ BTop(n).
We will refer to M as the underlying space of M , and say that p is the classifying
map for the tangent bundle of M .

Remark 6.1.5. The map p ∶M Ð→ BTop(n) is a right fibration by construction and

since BTop(n) is a Kan complex it follows that M is a Kan complex and p is a Kan
fibration.

Proposition 6.1.6. The Kan complex M is naturally homotopy equivalent to
Sing(M).

The proof of Proposition 6.1.66.1.6 will make use of the notion of a germ of an
embedding. For 0 < ε < 1 let us denote by ◻n(ε) ∶= (−ε, ε)n ⊆ ◻n.

Definition 6.1.7. Let M be an n-manifold and I a finite set. We define

Germ(I,M) ∶= colim
k

Sing Emb(◻n(1/2k) × I,M),

and refer to it as the simplicial set of I-germs in M .
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Lemma 6.1.8. Let M be an n-manifold and I be a finite set. Then the natural
map

Sing Emb(◻n × I,M) ≃Ð→ Germ(I,M).
is a homotopy equivalence of Kan complexes.

Proof. It will suffice to show that for every k ≥ 0 the map Sing Emb(◻n(1/2k) ×
I,M) Ð→ Sing Emb(◻n(1/2k+1) × I,M) is a homotopy equivalence. Indeed, this
follows from the fact that for every ε < ε′ the inclusion i ∶ ◻n(ε) ⊆ ◻n(ε′) is an
isotopy equivalence: it admits an inverse p ∶ ◻n(ε′) Ð→ ◻n(ε) such that p ○ i is in
the path component of the identity in Emb(◻n(ε),◻n(ε)) and i ○ p is in the path
component of the identity in Emb(◻n(ε′),◻n(ε′)). �

Remark 6.1.9. Using a suitable variant of the isotopy extension theorem it can be
shown that for every finite set I the evaluation at 0 map

Emb(◻n × I,M) Ð→ Conf(I,M)
is a Serre fibration, and so the map

Sing Emb(◻n × I,M) Ð→ Sing Conf(I,M)
is a Kan fibration. Since every n-simplex and every horn have finitely many non-
degenerate simplices it follows that the map

Germ(I,M) Ð→ Sing Conf(I,M)
is a Kan fibration as well.

Proof of Proposition 6.1.66.1.6. Consider the simplicial functor Sing ∶ Mfld∆
n Ð→ Kan

which sends M to Sing(M) and acts on mapping spaces via the natural map
Sing Emb(M,N) Ð→ Map(SingM,SingN). Let Sing∞ ∶ Mfldn Ð→ S be the in-
duced functor on coherent nerves. Then Sing∞ induces a map of Kan complexes

M ∶= (Mfldn)/M ×Mfldn BTop(n) Ð→ S/SingM ×S B

where B ⊆ S is the full subcategory spanned by the contractible Kan complex
Sing(◻n).

Let j ∶ ◻n Ð→ M be a map in Mfldn, which we can identify with an object
of (Mfldn)/M ×Mfldn BTop(n). Then the induced map j∗ ∶ MapMfldn(◻

n,◻n) Ð→
MapMfldn(◻

n,M) can be identified with the inclusion of the homotopy fiber of the
map

MapMfldn(◻
n,M) = (Mfldn)/M ×Mfldn {◻n} Ð→ (Mfldn)/M ×Mfldn BTop(n)

over j. The same statement holds for S with respect the base point determined by
Sing(j) ∶ Sing◻n Ð→ SingM . We then obtain a commutative diagram
(6.1)

MapMfldn(◻
n,◻n) j∗ //

��

MapMfldn(◻
n,M) //

��

(Mfldn)/M ×Mfldn BTop(n)

��
MapS(Sing◻n,Sing◻n) //

≃
��

MapS(Sing◻n,SingM) ≃ //

≃
��

S/SingM ×S B

Sing◻n // SingM
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in which the first two rows are fiber sequences of spaces and the bottom verti-
cal maps are given by evaluating at 0 ∈ Sing◻n, and are weak equivalences since
Sing◻n ≃ ∗ in S. The middle right horizontal map is then an equivalence since
its fibers MapS(Sing◻n,Sing◻n) are contractible. I will now suffice to show that
the right most vertical map is an equivalence. For this, it will suffice to show that
the left square is homotopy cartesian for every j ∶ ◻n ↪ M , or alternatively, that
the left external rectangle is homotopy cartesian. By Lemma 6.1.86.1.8 we may instead
prove that the equivalent square

(6.2) Germ(∗,◻n) //

��

Germ(∗,M)

��
Sing◻n // SingM

is homotopy cartesian, where the horizontal maps are induced by the fixed embed-
ding j ∶ ◻n Ð→ M . But this is because the right vertical map in (6.26.2) is a Kan
fibration (see Remark 6.1.96.1.9) and the square itself is strictly cartesian. �

Definition 6.1.10. By a tangent structure we will mean a Kan complexB equipped
with a Kan fibration π ∶ B Ð→ BTop(n).

Definition 6.1.11. Let B Ð→ BTop(n) be a tangent structure and let M be an
open n-manifold. A B-framing of M is a lift of the form

B

��
M

::v
v

v
v

v π // BTop(n)

Example 6.1.12. When B Ð→ BTop(n) is an equivalence the notion of a B-framing
is vacuous. On the other extreme, when B ≃ ∗ the notion of a B-framing coincides
with a trivialization of the tangent bundle.

Example 6.1.13. When B Ð→ BTop(n) is the universal covering of BTop(n), a
B-framing is the same as an orientation. Similarly, when B is the 2-connected
covering of BTop(n) a B-framing is a topological spin structure.

Example 6.1.14. By smoothing theory, when n ≠ 5 the data of a smooth structure
on M is equivalent to the data of a framing with respect to the map BGL(n) Ð→
BTop(n), and the data of a piecewise linear structure is equivalent to the data of
a framing with respect to the map BPL(n) Ð→ BTop(n).

Example 6.1.15. If N is an open n-manifold then we can take B = N with the map
π ∶ N Ð→ BTop(n) classifying the tangent bundle, in which case we will simplify

notation and write N -framing instead of N -framing. Then any open immersion
M Ð→ N (i.e., a continuous map which is locally a homeomorphism) gives an
N -framing on M , although not every N -framing is obtained this way (e.g., the
R1-framing of S1 cannot be obtained by an immersion of S1 in R1). Note however
that by the Yoneda lemma every N -framing on ◻n is equivalent to one which comes
from an immersion, and even an embedding, of ◻n in N .

It what follows it will be useful to have a notion of a framing for n-manifolds with
possibly non-empty boundary. Consider the full subcategory BTop∂(n) ⊆ Mfldn
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spanned by the objects ◻n,◻n∂ . Given an n-manifold M we define the right fibration

π ∶M∂ ∶= (Mfldn)/M ×Mfldn BTop∂(n) Ð→ BTop∂(n).
To understand this fibration it will be useful to extend the construction of germs to
cubes with boundary. For 0 < ε < 1 let us denote by ◻n∂(ε) ∶= [0, ε)×(−ε, ε)n−1 ⊆ ◻n∂ .

Definition 6.1.16. Let M be an n-manifold, I a finite set and X ∶ I Ð→ {◻n,◻n∂}
an I-tuple of objects of BTop∂(n). We define

Germ(X,M) ∶= colim
k

Sing Emb (∐
i∈I
Xi(1/2k),M),

and refer to it as the simplicial set of boundary X-germs in M . We will also denote
by Germ∂(I,M) ∶= Germ(◻n∂ ,M) where ◻n∂ ∶ I Ð→ {◻n,◻n∂} denotes the constant
tuple with value ◻n∂ .

Lemma 6.1.17. Let M be an n-manifold, I a finite set and X ∶ I Ð→ {◻n,◻n∂}
and I-tuple of objects of Top∂(n). Then the natural map

Sing Emb (∐
i∈I
Xi,M) ≃Ð→ Germ(X,M).

is a homotopy equivalence of Kan complexes.

Proof. Same proof as Lemma 6.1.86.1.8. �

Remark 6.1.18. Using a suitable variant of the isotopy extension theorem it can be
shown that for every finite set I the evaluation at 0 ∈ ◻n∂ map

Emb(◻n∂ × I,M) Ð→ Conf(I, ∂M)
is a Serre fibration, and so the map

Sing Emb(◻n∂ × I,M) Ð→ Sing Conf(I, ∂M)
is a Kan fibration. Since every n-simplex and every horn have finitely many non-
degenerate simplices it follows that the map

Germ∂(I,M) Ð→ Sing Conf(I, ∂M)
is a Kan fibration as well.

Lemma 6.1.19. Let M be an n-manifold with boundary ∂M , I a finite set and
X ∶ I Ð→ {◻n,◻n∂} and I-tuple of objects of Top∂(n). Let I0 ⊆ I be the set of those
indices which map to ◻n and I1 ⊆ I the indices that map to ◻n∂ . Then the restriction
map

(6.3) Emb (∐
i∈I
Xi,M) Ð→ Emb ( ◻n ×I0,M○) ×Emb ( ◻n−1 ×I1, ∂M)

is a weak homotopy equivalence.

Proof. By Lemma 6.1.86.1.8 and Lemma 6.1.176.1.17 we may instead prove that the map of
simplicial sets

(6.4) Germ(X,M) Ð→ Germ(I0,M○) ×Germ(I1, ∂M)
is a weak homotopy equivalence. We first observe that on the level of simplicial
sets Germ(X,M) breaks as a product of Germ∂(I1,M) and Germ(I0,M). It will
hence suffice to show that the restriction map

(6.5) Germ∂(I1,M) Ð→ Germ(I1, ∂M)
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is a weak equivalence of Kan complexes. Let ι ∶ ◻n∂×I1 Ð→M be an open embedding
and consider the commutative square
(6.6)

∏
i∈I1

Germ∂({i},◻n∂ × {i}) //

��

∏
i∈I1

Germ({i},◻n−1 × {i})

��

// ∏
i∈I1

Conf({i},◻n−1
∂ × {i})

��
Germ∂(I1,M) // Germ(I1, ∂M) // Conf(I1, ∂M)

where the vertical maps are induced by ι. The right square is cartesian on the level
of simplicial sets and is also homotopy cartesian since the right bottom horizontal
map is a Kan fibration (see Remark 6.1.96.1.9). For the same reason the external
rectrangle is homotopy cartesian (see Remark 6.1.186.1.18). We may hence conclude
that the left square is homotopy cartesian. In particular, the homotopy fibers of
the top left horizontal map are the same as those of the bottom left horizontal map.
Since every vertex of Germ(I1, ∂M) is in the image of the vertical map for at least
one ι ∶ ◻n∂ × I1 Ð→M it will now suffice to show that the top left horizontal map is
a homotopy equivalence of Kan complexes. Since this map breaks as a product of
maps which just need to show that

Germ∂(∗,◻n∂) Ð→ Germ(∗,◻n−1).
is a homotopy equivalence of Kan complexes. For this, it will suffice to show that
for every ε > 0 the map of topological spaces

(6.7) Emb(◻n∂(ε),◻n∂) Ð→ Emb(◻n−1(ε),◻n−1).
We claim that in this case the map

(6.8) [0, ε) × (−) ∶ Emb(◻n−1,◻n−1) Ð→ Emb([0, ε) × ◻n−1, [0, ε) × ◻n−1)
given by taking the product with [0, ε) is a homotopy inverse to (6.36.3). Indeed,
the composition of (6.36.3) after (6.86.8) is the identity, and the composition of (6.86.8)
after (6.36.3) is homotopic to the identity via the homotopy f ↦ ft where

ft(s, x)i ∶= { (s, f0(x)) s ≤ t
g−1
t f(gt(s, x)) s ≥ t ,

Here we use the coordinates s ∈ [0, ε) and x ∈ ◻n−1, f0 ∶ ◻n−1 Ð→ ◻n−1 the restriction
of f to s = 0 and gt ∶ [t, ε) × ◻n−1 Ð→ [0, ε) × ◻n−1 is the homeomorphism given by
gt(r, x) = ( r−t

ε−t , x). �

Let

(6.9) q ∶ BTop∂(n) Ð→∆1

be the unique map which sends ◻n to 0 and ◻n∂ to 1.

Lemma 6.1.20. The map (6.96.9) is a right fibration classified by the functor [1] Ð→
Cat∞ depicted by the arrow BTop(n−1) Ð→ BTop(n) induced by taking the product
with (−1,1).

Proof. Let BTop∆
+ (n) ⊆ BTop∆

∂ (n) be the full subcategory spanned by ◻n∂ and let

BTop+(n) ∶= N(BTop∆
+ (n)) be its coherent nerve. Consider the functor

(6.10) ι ∶ BTop∆
+ (n) Ð→ BTop∆(n)
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which sends ◻n∂ to ◻n and any open embedding f ∶ ◻n∂ Ð→ ◻n∂ to the open em-

bedding ◻n ≅Ð→ (0,1) × ◻n−1 Ð→ (0,1) × ◻n−1 where the first arrow is the unique
rectilinear homeomorphism of this form and the second is obtained by restricting
f . We then observe that BTop∂(n) is naturally equivalent to the Grothendieck
construction ∫[1][ι] where [ι] ∶ [1] Ð→ Cat∆ is the functor corresponding to the

arrow of simplicial categories ι ∶ BTop∆
+ (n) Ð→ BTop∆(n). It then follows by Pro-

position 2.5.92.5.9 that BTop∂(n) ×∆1 ∆{0} ≅ BTop(n),BTop∂(n) ×∆1 ∆{1} ≅ BTop+(n)
and q ∶ BTop∂(n) Ð→∆1 is a right fibration classified by the arrow

(6.11) N(ι) ∶ BTop+(n) Ð→ BTop(n).
It will hence suffice to show that ι is weakly equivalent in the arrow category of
Cat∆ to the functor BTop∆(n − 1) Ð→ BTop∆(n) induced by taking the product
with (−1,1). To see this, observe that the latter functor factors as

BTop∆(n − 1) ηÐ→ BTop∆
+ (n) ιÐ→ BTop∆(n)

where η is induced by taking the product with [0,1). It will hence suffice to show
that η is a Dwyer-Kan equivalence, that is that the map

(6.12) [0,1) × (−) ∶ Emb(◻n−1,◻n−1) Ð→ Emb([0,1) × ◻n−1, [0,1) × ◻n−1)
is a weak homotopy equivalence. But this now follows from Lemma 6.1.196.1.19 by the
2-out-of-3 property. �

By Lemma 6.1.206.1.20 the composed map M∂ Ð→ BTop∂(n) Ð→ ∆1 is also a right

fibration. We note that the fiber M∂ ×∆1 ∆{0} is naturally isomorphic to the
simplicial set M . Let us denote by

∂M ∶=M∂ ×∆1 ∆{1}

the fiber over ∆{1} ⊆ ∆1. The map (6.116.11) then naturally extends to a commutative
square of Kan complexes:

(6.13) ∂M

��

// M

��
BTop+(n) // BTop(n)

We will refer to ∂M as the underlying boundary of M .

Remark 6.1.21. By Proposition 6.1.66.1.6 we have that M ≃ Sing(M○) ≃ SingM and by
Lemma 6.1.196.1.19 the map

Emb(◻n∂ ,M) Ð→ Emb({0} × ◻n−1, ∂M)
is a homotopy equivalence, and hence ∂M is naturally equivalent to the Kan com-
plex ∂M obtained by performing Construction 6.1.46.1.4 to the (n − 1)-manifold ∂M .

In particular, ∂M ≃ Sing ∂M by Proposition 6.1.66.1.6. Furthermore, one can show that
under these identification the top horizontal map in (6.136.13) is homotopic to the map
Sing ∂M Ð→ SingM induced by the inclusion ∂M Ð→M .

Definition 6.1.22. By a boundary tangent structure we will mean a right fibration
of the form

B∂ Ð→ BTop∂(n).
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We will generally like to think of boundary tangent structure as a commutative
diagram of ∞-groupoids

(6.14) ∂B //

��

B

��
BTop+(n) // BTop(n)

where B ∶= B∂ ×∆1 ∆{0} and ∂B ∶= B∂ ×∆1 ∆{1}.

Definition 6.1.23. Given a boundary tangent structure B∂ Ð→ BTop∂(n) and an
n-manifold M , a B∂-framing on M is a lift of the form

B∂

��
M∂

::t
t

t
t

t
π // BTop∂(n)

Remark 6.1.24. If ∂B = ∅ then any B∂-framed n-manifold is open, and the notion
of a B∂-framing coincides with a B-framing. In particular, we may consider the
condition of being an open n-manifold as a special case of framing.

Example 6.1.25. If N is an n-manifold then we can take B∂ = N∂ equipped with
its natural map to BTop∂(n). Similarly to Example 6.1.156.1.15, if U is either ◻n or ◻n∂ ,

then the data of an N∂-framing on U is essentially equivalent to the data of an
open embedding U Ð→ N .

We close this section with the following lemma, which we will invoke several
times in the subsequent sections. Upon first contemplating the following lemma,
the reader is encouraged to take M = ∗.

Lemma 6.1.26. Let p ∶ N Ð→ M be a continuous map from an n-manifold N to
an m-manifold M . Let I be a finite set, X ∶ I Ð→ {◻n,◻n∂} an I-tuple of objects of
Top∂(n). Let Disj(M) ⊆ O(M) be the full subposet spanned by those open subsets
V ⊆M which are homeomorphic to disjoint unions of copies of ◻n and ◻n∂ and let
P ⊆ O(N)I ×Disj(M) be the full subposet spanned by those pairs ({Ui}i∈I , V ) such
that Ui ≅ Xi, the Ui’s are pairwise disjoint, and p(Ui) ⊆ V . Then the canonical
maps
(6.15)
hocolim

({Ui},V )∈P
∏
i∈I

Emb(Xi, Ui) Ð→ hocolim
V ∈Disj(M)

Emb(∐
i∈I
Xi, p

−1(V )) Ð→ Sing Emb (∐
i

Xi,N)

are both weak homotopy equivalences.

Proof. It will suffice to show that the composed map in (6.156.15) is a weak homotopy
equivalence: the left map can then be recovered by replacing N with p−1(V ) and
M with a point and the right map will follow by the 2-out-of-3 rule. Let I0 ⊆ I be
the subset of those i’s such that Xi = ◻n and let I1 = I0 ∖ I0. By Lemma 6.1.176.1.17,
to show that the composed map in (6.156.15) is a weak homotopy equivalence we may
instead show that the canonical map
(6.16)

hocolim
({Ui},V )∈P

∏
i∈I0

Germ({i}, Ui) × ∏
i∈I1

Germ∂({i}, Ui) Ð→ Germ(I0,N) ×Germ∂(I1,N)
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is a weak homotopy equivalence. Consider the commutative square
(6.17)

hocolim
({Ui},V )∈P

∏
i∈I0

Germ({i}, Ui) ∏
i∈I1

×Germ∂({i}, Ui) //

��

Germ(I0,N) ×Germ∂(I1,N)

��
hocolim

({Ui},V )∈P
∏
i∈I0

Sing Conf({i}, Ui) × ∏
i∈I1

Sing Conf({i}, ∂Ui) // Sing Conf(I0,N) × Sing Conf(I1, ∂N)

We now observe that the natural transformation

∏
i∈I0

Germ({i}, Ui)×∏
i∈I1

Germ∂({i}, Ui) Ð→ ∏
i∈I0

Sing Conf({i}, Ui) ∏
i∈I1

Sing Conf({i}, ∂Ui)

of functors from P to spaces is cartesian in the sense of Definition 5.3.155.3.15 since
it is cartesian on the level of simplicial sets and is levelwise a Kan fibration by
Remarks 6.1.96.1.9 and 6.1.186.1.18. By Proposition 5.3.165.3.16 we may conclude that (6.176.17) is
homotopy cartesian. It will hence suffice to show that the bottom map in (6.176.17) is
a weak homotopy equivalence. By Theorem 5.2.55.2.5 it will suffice to show that the for
every pair of configurations f0 ∶ I0 Ð→ N and f1 ∶ I1 Ð→ ∂N , the subposet

{({Ui}, V ) ∈ P ∣f0(i) ⊆ Ui, f1(i′) ∈ Ui′}
is weakly contractible. Indeed, this poset is filtered since N is an n-manifold and
M is an m-manifold.

�

6.2. Little cube algebras with tangent structures. In this section we will
discuss some variants of the little n-cube ∞-operad where we incorporate a tangent
structure. Algebras over these variants are closely related to algebras of the little n-
cube ∞-operad: they can be described as certain “twisted” families of En-algebras.

Definition 6.2.1. Let E∆
Top(n) be the simplicial operad with a single object ◻n and

such that

MulE∆
Top(n)

({◻n}i∈I ,◻n) = Sing Emb(◻n × I,◻n).

Remark 6.2.2. We point out that the difference between Definition 6.2.16.2.1 and Defi-
nition 5.1.25.1.2 is that in the former the embeddings are not assumed to be rectilinear.

Since the singular complex of a space is always a Kan complex the simplicial
operad E∆

Top(n) is locally Kan.

Definition 6.2.3. We define the unframed little n-cube operad

E⊗Top(n) ∶= N (E∆
Top(n))

to be the operadic nerve of E∆
Top(n). Identifying rectilinear embeddings as a subspace

of all embeddings we obtain a natural map of ∞-operads

E⊗n Ð→ E⊗Top(n).

Example 6.2.4. When n = 0 every embedding ◻0×I Ð→ ◻0 is rectilinear and we have
E⊗

Top(0) = E⊗0 . When n = 1 the spaces Emb(◻1 × I,◻1) are homotopy equivalent to

discrete spaces and E⊗
Top(1) is equivalent to the operadic nerve of the ordinary operad

AssInv of Example 4.1.74.1.7(5) which controls the theory of algebras with involution.
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We may identify the underlying simplicial category of E∆
Top(n) with the simplicial

category BTop∆(n) of §6.16.1. We note that the natural map Emb(◻n × I,◻n) Ð→
∏i∈I Emb(◻n,◻n) induces a map of simplicial categories

(E∆
Top(n))

⊗ Ð→ BTop∆(n)∐,

where BTop(n)∐ is defined as in Exercise 3.3.23.3.2. Taking coherent nerves and using
Exercise 3.3.23.3.2 we obtain a map of ∞-operads

(6.18) E⊗Top(n) Ð→ BTop(n)∐.

To relate this construction to the little n-cube ∞-operad E⊗n , let us denote by

Rect∆(n) the underlying simplicial category of E∆
n , that is, the simplicial category

with a single object ◻n and such that MapRect∆(n)(◻n,◻n) = Sing Rect(◻n,◻n).
Since the mapping spaces in Rect∆

n are contractible we have that Rect(n) ∶= N(Rect∆(n))
is a contractible Kan complex. We then obtain a commutative square of simplicial
categories

(6.19) (E∆
n )⊗ //

��

Rect∆(n)∐

��
(E∆

Top(n))⊗ // BTop∆(n)∐

which, after passing to coherent nerves, yields a square

(6.20) E⊗n //

��

Rect(n)∐

��
E⊗

Top(n)
// BTop(n)∐

of ∞-operads (see Example 4.1.124.1.12), in which the top right corner is equivalent to
the terminal ∞-operad N(Com⊗) (since Rect(n) is a contractible Kan complex).

Proposition 6.2.5. The square (6.206.20) is a homotopy pullback square of ∞-operads.
In particular, we may identify E⊗n with the homotopy fiber of the map E⊗

Top(n) Ð→
BTop(n)∐.

Proof. We first note that all four ∞-operads appearing in (6.206.20) have underlying
∞-categories which are Kan complexes, and hence have the property that a map
in any of them is inert if and only if its image in N(Fin∗) is inert. It follows that if
O⊗ is an ∞-operad then any map of ∞-categories from O⊗ to any of the ∞-operads
in (6.206.20) will automatically preserve inert maps, and hence will automatically be a
map of ∞-operads. It will hence suffice to show that (6.206.20) is a homotopy pullback
square of ∞-categories. Since the coherent nerve is a right Quillen functor we may
instead show that (6.196.19) is a homotopy pullback square of simplicial categories. We
note that all four simplcial categories in (6.196.19) have the same set of objects as Fin∗.
Comparing Construction 4.1.94.1.9 and the construction in Exercise 3.3.23.3.2 it will now



98 YONATAN HARPAZ

suffice to show that for every ⟨m⟩ ∈ Fin∗ the square of Kan complexes

(6.21) Sing Rect(◻n × ⟨m⟩○ ,◻n) //

��

∏
i∈⟨m⟩○

Sing Rect(◻n × {i},◻n)

��
Sing Emb(◻n × ⟨m⟩○ ,◻n) // ∏

i∈⟨m⟩○
Sing Emb(◻n × {i},◻n)

is a homotopy cartesian. To show this, let us extend this square to a diagram of
the form

(6.22) Sing Rect(◻n × ⟨m⟩○ ,◻n) //

��

∏
i∈⟨m⟩○

Sing Rect(◻n × {i},◻n)

��
Sing Emb(◻n × ⟨m⟩○ ,◻n)

≃

��

// ∏
i∈⟨m⟩○

Sing Emb(◻n × {i},◻n)

≃
��

Germ(⟨m⟩○ ,◻n)

��

//∏
i

Germ({i},◻n)

��
Sing Conf(⟨m⟩○ ,◻n) //∏

i

Sing Conf({i},◻n)

where the vertical maps in the middle square are equivalences by Lemma 6.1.86.1.8. In
particular, the middle square is homotopy cartesian. Similarly, the vertical maps
in the external rectangle are equivalences by Lemma 5.1.105.1.10, and so the external
rectangle is homotopy cartesian. By the pasting lemma for homotopy cartesian
square, to show that the top square in (6.226.22) is homotopy cartesian it will suffice
to show that the bottom square in (6.226.22) is homotopy cartesian. But this is indeed
true since the right vertical map in this right most square is a Kan fibration (see
Remark 6.1.96.1.9) and the right most square itself is cartesian on the level of simplicial
sets. �

Definition 6.2.6. Let B Ð→ BTop(n) be a tangent structure (Definition 6.1.106.1.10).
We define the ∞-operad E⊗B by the pullback square

E⊗B //

��

B∐

��
E⊗

Top(n)
// BTop(n)∐

We will refer to E⊗B as the B-framed little cube ∞-operad.

Remark 6.2.7. When B Ð→ BTop(n) is an equivalence we have that E⊗B ≃ E⊗
Top(n).

On the other extreme, when B ≃ ∗ we have by Proposition 6.2.56.2.5 that E⊗B ≃ E⊗n .
For this reason the ∞-operad E⊗n is also called sometimes the framed little cube
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∞-operad. We may hence think of the ∞-operads E⊗B as interpolating between E⊗n
and E⊗

Top(n) by allowing various intermediate tangent structures.

We would like to understand the relation between the notions of En-algebras
and ETop(n)-algebras in a symmetric monoidal ∞-category C⊗, or, more generally,
EB-algebras for some tangent structure B Ð→ BTop(n). For this, let us restrict
attention for the moment to the case where C⊗ ∶= E× is the cartesian symmetric
monoidal ∞-category associated to an ∞-category with finite products E. In other
words, let us try to understand the notion of an E⊗Top-monoid in E in terms of the

notion of an E⊗n-monoid in E. For this, we will once again make use of the theory
of weak ∞-operads introduced in §4.24.2.

Let us consider the Kan complex B as a weak ∞-operad in which every map
is both inert and active and B0 = B. We may then endow the cartesian product
N(Fin∗) × B with the product weak ∞-operad structure of Example 4.2.134.2.13. The
projection Γ∗ Ð→ Fin∗ determines a map

(6.23) N(Fin∗) ×B Ð→ B∐

given informally by the formula (⟨n⟩ , b) ↦ (b, ..., b). It is straightforward to verify
that this is map of weak ∞-operads in the sense of Definition 4.2.54.2.5 (we note that
in both cases the active and inert maps are determined in N(Fin∗)).
Definition 6.2.8. Let B Ð→ BTop(n) be a tangent structure. We define ∫B E⊗n to
be any ∞-category sitting in a homotopy pullback square of the form

(6.24) ∫B E⊗n //

��

N(Fin∗) ×B

��
E⊗B // B∐

We will consider ∫B E⊗n as a weak ∞-operad via the pullback structure of Re-
mark 4.2.174.2.17.

Warning 6.2.9. The maps E⊗B Ð→ B∐ and N(Fin∗) ×B Ð→ B∐ are generally not
categorical fibrations. To obtain an explicit model for ∫B E⊗n one needs to first
replace these maps by categorical fibrations and then take the actual product of
simplicial sets.

Remark 6.2.10. When B ≃ ∗ we have ∫B E⊗n ≃ E⊗B ≃ E⊗n by Proposition 6.2.56.2.5.

We then have the following key observation:

Proposition 6.2.11. The map ∫B E⊗n Ð→ E⊗B is a strong approximation of weak
∞-operads (see Definition 4.2.144.2.14).

Proof. By Remark 4.2.174.2.17 it will suffice to show that the map (6.236.23) is a strong
approximation. We first show that (6.236.23) is a weak approximation, that is, we need
to show that for every (⟨m⟩ , b) ∈ N(Fin∗) ×B the induced map

(6.25) (N(Fin∗) ×B)act
/(⟨m⟩,b) Ð→ (B∐)act

/(b,...,b)

has weakly contractible homotopy fibers. But this is true because the map (6.256.25) is
in fact an equivalence of ∞-categories: indeed, we can consider (6.256.25) as a map over
N(Fin∗)act

/⟨m⟩, and for a given active α ∶ ⟨m′⟩ Ð→ ⟨m⟩, the map on homotopy fibers

over α induced by (6.256.25) is given by the diagonal map ∗ ≃ B/b Ð→ ∏i∈m′ B/b ≃ ∗.
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To show that (6.236.23) is in fact a strong approximation we simply note that both for
N(Fin∗) ×B and B∐ the basics are those objects which lie above ⟨1⟩ ∈ N(Fin∗), a
map is inert if and only if its image in N(Fin∗) is inert, and the subcategories of
basics and inert maps identifies on both sides with the Kan complex B. �

Applying Proposition 4.2.184.2.18 we now get the following:

Corollary 6.2.12. Let E be an ∞-category which admits limits. Then the re-
striction functor

MonE⊗
B
(E) ≃Ð→Mon∫B E⊗n(E)

is an equivalence of ∞-categories.

We now unwind the definitions to see what the notion of an ∫B E⊗n-monoid in E

actually is. Consider the composed map

(6.26) π ∶ ∫
B
E⊗n Ð→ N(Fin∗) ×B Ð→ B.

Without loss of generality we may assume that we have chosen ∫B E⊗n such that
π is a categorical fibration. Since B is a Kan complex the map (6.266.26) is then
automatically a cocartesian fibration. Let us denote by E⊗b the fiber of π over
b ∈ B. We then have a commutative diagram

E⊗b //

��

{b} ×N(Fin∗)

��
∫B E⊗n //

��

B ×N(Fin∗)

��
E⊗B

��

// B∐

��
E⊗

Top(n)
// BTop(n)∐

in which all squares are homotopy cartesian, and so the external rectangle is ho-
motopy cartesian. This yields an identification E⊗b ≃ E⊗n by Proposition 6.2.56.2.5. The
cocartesian fibration π then corresponds to a functor χ ∶ B Ð→ Cat∞, all of whose
fibers are equivalent to E⊗n . Furthermore, since π factors through the projection
N(Fin∗) ×B Ð→ B we see that the transition functors α! ∶ E⊗b Ð→ E⊗b′ respect the
projection to N(Fin∗). Since they are all equivalences they must also preserve inert
maps. In particular, all the transition functors are maps of ∞-operads E⊗b Ð→ E⊗b′ .
We may then consider χ as a B-indexed diagram of ∞-operads, all of which are
equivalent to E⊗n .

To translate this into an a description of the notion of an ∫B E⊗n-monoid object
in E we note first that since (6.266.26) is a cocartesian fibration the data of a functor
ψ ∶ ∫B E⊗n Ð→ E can be identified with the data of a compatible B-indexed family
of functors E⊗b Ð→ E. Unwinding the definitions we see that such a ψ is a monoid
object if and only if each ψ∣E⊗

b
is an E⊗b -monoid object. We may hence conclude

that ∫B E⊗n-monoid objects in E correspond to compatible families ψb ∈ MonE⊗
b
(E)
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of E⊗b -monoid objects. By Proposition (6.2.116.2.11) this description is valid for E⊗B as
well.

Remark 6.2.13. Using a suitable generalization of Proposition 4.2.184.2.18 one can show
that the same description holds also for E⊗B-algebra objects in symmetric monoidal
∞-categories which are not necessarily cartesian. More generally, for every ∞-
operad O⊗ the collection of maps E⊗b Ð→ E⊗B induces an equivalence of ∞-categories

AlgEB(O) ≃ lim
b∈B

AlgEb(O).

This, in turn, implies that the collection of maps E⊗b Ð→ E⊗B exhibit E⊗B as the
colimit of the family {E⊗b }b∈B in Op∞.

Example 6.2.14. When B = BTop(n) the fibration ∫BTop(n)E
⊗
n Ð→ BTop(n) enco-

des an action of the simplicial group Sing Top(n) ⊆ Sing Emb(◻n,◻n) on the little
n-cube ∞-operad E⊗n . On the level of spaces of operations, under the homotopy
equivalence

MapE⊗n(⟨m⟩ , ⟨1⟩) ≃ Sing Emb(◻n × ⟨m⟩ ,◻n) ≃ Sing Conf(⟨m⟩○ ,◻n)

of lemma 5.1.105.1.10, the action of Sing Top(n) is given by the natural action of the
topological group Top(n) on the configuration space Conf(⟨m⟩○ ,◻n). Given an
E⊗n-monoid in an ∞-category with finite products E, this action induces an action
of Sing Top(n) on the ∞-category MonE⊗n(E), which for σ ∈ Sing Top(n) we may

denote as ψ ↦ ψσ. The data of an ∫B E⊗n-monoid object in E can then be informally
described as the data of an E⊗n-monoid ψ together with a compatible family of
equivalences Tσ ∶ ψ ≃ ψσ for σ ∈ Sing Top(n).

Remark 6.2.15. In general, while each fiber E⊗b is equivalent to E⊗n , this equi-
valence cannot be chosen compatibly over B. In other words, the B-family of
∞-operads ∫B E⊗n Ð→ B is not equivalent to the constant family E⊗n × B. In
particular, when B = BTop(n) the corresponding action of Sing Top(n) on E⊗n
is not equivalent to the constant action. For example, when n = 1 the group
Top(2) ≅ Homeo(D2,D2) contains S1 as the subgroup of rotations. The restricted
action of S1 on Conf({0,1},◻n) ≅ Conf({0,1},D2) is very far from being trivial:
choosing any base point in Conf({0,1},D2), the action of S1 yields a homotopy
equivalence S1 Ð→ Conf({0,1},D2). We hence cannot say that a ∫B E⊗n is given by
a family of E⊗n-monoids (that is by a functor B Ð→ MonE⊗n(E)), but rather by a
twisted family, where the twisting is determined by the map B Ð→ BTop(n).

Remark 6.2.16. The data of a Kan fibration π ∶ B Ð→ BTop(n) is the homotopy

coherent way of describing a space B̃ equipped with an action of Sing Top(n) (the

space B̃ is then given by the homotopy fiber of π over ◻n ∈ BTop(n)). We may
then combine the descriptions of Example 6.2.146.2.14 and Remark 6.2.156.2.15 as follows: an

∫B E⊗n-monoid object in E can be informally describe as a family {ψb}b∈B̃ of E⊗n-

monoids in E, parameterized by B̃, which is equivariant with respect to the actions
of Sing Top(n) on B̃ and MonE⊗n(E). In particular, we have a compatible family of

equivalences Tb,σ ∶ ψb
≃Ð→ ψσσ(b) for b ∈ B̃ and σ ∈ Sing Top(n).

We finish this section with a useful variant of the above construction for the
∞-operads E⊗n,∂ of little cubes with boundary (see Variant 5.1.55.1.5).
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Definition 6.2.17. Let E∆
Top∂(n) be the simplicial operad with two objects ◻n,◻n∂

and such that

MulE∆
Top∂ (n)

({Xi}i∈I , Y ) ∶= Sing Emb(∐
i

Xi, Y )

for Xi, Y ∈ {◻n,◻n∂}. We will denote by

E⊗Top∂(n) ∶= N(E∆
Top∂(n))

the operadic nerve of E∆
Top∂(n).

We note that the underlying ∞-category (E⊗
Top∂(n)

)⟨1⟩ of E⊗Top∂(n)
can be identi-

fied with the ∞-category BTop∂(n) described in §6.16.1, and that we have a natural
map of ∞-operads

E⊗BTop∂(n) Ð→ BTop∂(n)∐

constructed exactly like the map (6.186.18) above.

Construction 6.2.18. Given a boundary tangent structure B∂ Ð→ Top∂(n) (see
Definition 6.1.226.1.22) we define the ∞-operad E⊗B∂ by the pullback square

E⊗B∂
//

��

B∐∂

��
E⊗

Top∂(n)
// BTop∂(n)∐

Example 6.2.19. If B∂ ×∆1 ∆{1} = ∅ then E⊗B∂ ≃ E⊗B where B ∶= B∂ ×∆1 ∆{0}.

Example 6.2.20. If B∂ Ð→ BTop∂(n) is an equivalence then E⊗B∂ ≃ E⊗
Top∂(n)

. On

the other hand, if the composed map B∂ Ð→ BTop∂(n) Ð→ ∆1 is an equivalence
then E⊗B∂ ≃ E⊗n,∂ . This can be proven using a similar argument to the one used in

the proof of Proposition 6.2.56.2.5.

Remark 6.2.21. Arguing using suitable weak ∞-operadic models as above one can
extract a description of E⊗B∂ -monoids in an ∞-category E in the spirit of Re-

mark 6.2.156.2.15. More precisely, given a boundary tangent structure B∂ Ð→ Top∂(n)
the map

χn ∶ B ∶= B∂ ×∆1 ∆{0} Ð→ BTop(n)
determines a family {E⊗b }b∈B of ∞-operads (all equivalent to E⊗n), and the map

χn−1 ∶ ∂B ∶= B∂ ×∆1 ∆{1} Ð→ BTop+(n) ≃ BTop(n − 1)
determines a family {E⊗c }c∈∂B of ∞-operads (all equivalent to E⊗n−1). Furthermore,
the commutativity of the square (6.146.14), determines, in a compatible manner, for
each c ∈ ∂B with image b ∈ B, a bifunctor of ∞-operads E⊗1 × E⊗c Ð→ E⊗b , which
is equivalent to the standard bifunctor (5.65.6), and hence exhibits E⊗b as the tensor
product E1⊗Ec (by Theorem 5.2.25.2.2). The data of an E⊗B∂ -monoid in E then consists

of two families {Xb}b∈B and {Yc}c∈∂B , where each Xb is an Eb-monoid, each Yc is
an Ec-monoid, and such that for every c ∈ ∂B with image b ∈ B, we have a right
action of Xb on Yc, where we identify Xb with an E1-monoid in Ec-monoids via the
given identification Eb ≃ E1 ⊗Ec at c.
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Remark 6.2.22. Given a boundary tangent structure π ∶ B Ð→ BTop∂(n), the
description in Remark 6.2.216.2.21 can be used in order to express E⊗B∂ as the colimit in
Op∞ of a certain diagram

B∂
πÐ→ BTop∂(n) Ð→ Op∞

where the second arrow can be informally described by the formula ◻n ↦ E⊗n and
◻n∂ ↦ E⊗n,∂ .

6.3. Little cube algebras over manifolds.

Definition 6.3.1. Let M be an n-manifold. We define

E⊗M ∶= E⊗Top∂(n) ×BTop∂(n)∐ M
∐
∂

to be the ∞-operad associated to the boundary tangent structureM∂ Ð→ BTop∂(n)
as in Construction 6.2.186.2.18. We will refer to E⊗M as the M -framed little cube ∞-
operad.

Example 6.3.2. When M = ◻n we have E⊗M ≃ E⊗n and when M = ◻n∂ we have
E⊗M ≃ E⊗n,∂ .

Example 6.3.3. If n = 1 and M = I = [0,1] is the unit interval then the notion of
an E⊗I -algebra in a symmetric monoidal ∞-category C is equivalent to the data of a
triple (A,M0,M1) where A is an associative algebra object, M0 is a pointed right
A-module and M1 is a pointed left A-module (see Example 4.1.84.1.8(4)).

As discussed in §6.26.2, the notion of an EM -algebra in a symmetric monoidal ∞-
category C⊗ can be described via certain twisted families of En-algebras and En−1-
algebras, parameterized byM and ∂M respectively, where the nature of the twisting
is determined by the map π ∶ M∂ Ð→ BTop∂(n) which classifies the topological
tangent bundle of (M,∂M). In light of 6.1.66.1.6, we may expect that EM -algebras
will admit a more geometric description in terms of the manifold M itself (as

opposed to its homotopical avatar M∂). To see this, we will define a certain discrete
approximation to the ∞-operad E⊗M .

Definition 6.3.4. Let Dord
M be the ordinary operad whose objects are pairs (U,ρ)

where U ∈ {◻n,◻n∂} and ρ ∶ U Ð→ M is an open embedding. Given objects

(X1, ρ1), ..., (Xm, ρm), (Y, η) ∈ Dord
M , a multimap {(Xi, ρi}} Ð→ (Y, η) is given by a

commutative diagram

(6.27) ∐iXi

(ρ1,...,ρm) ""FFFFFFFF
// Y

η
~~~~~~~~~~

M

where the horizontal arrow is an open embedding. We note that for any given
(X1, ρ1), ..., (Xm, ρm), (Y, η), there is at most one multimap {(Xi, ρi} Ð→ (Y, η)
(which is the case exactly when the images of ρ1, ..., ρm are disjoint and contained
in the image of η). We will denote by D⊗

M ∶= N((Dord
M )⊗) the operadic nerve of Dord

M .

Construction 6.3.5. We define Mfldord
n to be the ordinary category with the

same objects as Mfldn and such that HomMfldord
n

(M,N) is the set Embord(M,N)
of open embeddings M Ð→ N (considered without any topology). In other words,

Mfldord
M is obtained from Mfld∆

M by replacing each mapping simplicial set by its set
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of vertices. We will denote by BTopord
∂ (n) ⊆ Mfldord

n the full subcategory spanned

by {◻n,◻n∂}, and by BTopord(n),BTopord
+ (n) ⊆ BTopord

∂ (n) the full subcategories
spanned by ◻n and ◻n∂ respectively. Given an n-manifold M we will then denote
by

M
ord

∂ ∶= (Mfldord)/M ×Mfldord
n

BTopord
∂ (n).

By construction we have a natural map Mfldord
n Ð→Mfld∆

n which induces a map

N(Mord

∂ ) Ð→M∂ .

Remark 6.3.6. The map BTopord
∂ (n) Ð→ ∆1 which sends ◻n to 0 and ◻n∂ to 1 is

a cartesian fibration corresponding to the arrow ιord ∶ BTopord
+ (n) Ð→ BTopord(n)

defined analogously to (6.106.10). It then follows that the composed map

(6.28) M
ord

∂ Ð→ BTopord
∂ (n) Ð→∆1

is a cartesian fibration. We may identify the fiber of (6.286.28) over ∆{0} with poset of

opens in M which are homeomorphic to ◻n and the fiber over ∆{1} with the poset
of opens in M which are homeomorphic to ◻n∂ .

For X1, ...,Xn, Y ∈ {◻n,◻n∂} the map Embord(∐iXi, Y ) Ð→ Sing Emb(∐iXi, Y )
determines a map of simplicial operads Dord

M Ð→ E∆
Top∂(n) (which, in particular,

forgets the embedding in M) and hence a map of ∞-operads

D⊗
M Ð→ E⊗Top∂(n).

In addition, the underlying ∞-category (D⊗
M)⟨1⟩ is naturally isomorphic to the nerve

of M
ord

∂ , and we have a natural map D⊗
M Ð→ (Mord

∂ )∐ which sends a multimap as
in (6.276.27) to the collection of commutative triangles

(6.29) Xi

ρi   BBBBBBB
// Y

η
~~~~~~~~~~

M

Now consider the commutative square of ∞-operads

(6.30) D⊗
M

//

��

E⊗
Top∂(n)

��
M
∐
∂

// BTop∂(n)∐

where the left vertical map is given by the composition D⊗
M Ð→ (Mord

∂ )∐ Ð→M
∐
∂ .

The square (6.306.30) then induces a map of ∞-operads

(6.31) D⊗
M Ð→M

∐
∂ ×BTop(n)∐ E⊗Top(n) = E⊗M

Proposition 6.3.7. The functor

(6.32) ι ∶Mord

∂ Ð→M∂

has weakly contractible homotopy fibers.
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Proof. Consider the commutative triangle

(6.33) M
ord

∂
ι //

$$JJJJJJJJJJ
M∂

zzuuuuuuuuuu

BTop∂(n)

The right vertical map is right fibration and hence its homotopy fibers, which are
also its actual fibers, are ∞-groupoids. It will hence suffice to show that (6.336.33)
induces an equivalence on homotopy fibers over every object of BTop∂(n). Let us
hence fix such an object V ∈ {◻n,◻n∂}. Then the (homotopy) fiber of the right
diagonal map in (6.336.33) can be identified with Sing Emb(V,M), while the homotopy

fiber XV Ð→ M
ord

∂ of the left diagonal map over V can be modeled by the full

subcategory of the comma ∞-category (Mord

∂ )V / ∶= BTop∂(n)V / ×BTop∂(n) M
ord

∂

spanned by those (ρ ∶ U Ð→ M,η ∶ V Ð→ U) such that η is an equivalence in

BTop∂(n). Let XV ⊆Mord

∂ be the full subcategory spanned by those ρ ∶ U Ð→M

such that U = V ∈ {◻n,◻n∂}. We may identify XV with the full subposet of O(M)
spanned by those open subsets which are homeomorphic to either ◻n or ◻n∂ . Then

the forgetful map XV Ð→ XV is a left fibration which corresponds to the functor
χ([ρ ∶ U Ð→M]) = Sing Emb(V,U) (where we note that any embedding V Ð→ U is
an isotopy equivalence when U = V ). In particular, XV is a model for the homotopy

colimit of χ ∶ XV Ð→ S. We may then identify the map on homotopy fibers over V
induced by (6.336.33) with the natural map

(6.34) hocolim
[ρ∶UÐ→M]∈XV

Sing Emb(V,U) Ð→ Sing Emb(V,M)

This map is a weak equivalence by Lemma 6.1.266.1.26 applied to the map p ∶M Ð→ ∗
(with ∣I ∣ = 1), and so the desired result follows. �

Proposition 6.3.8. The map (6.316.31) is a weak approximation in the sense of De-
finition 4.2.144.2.14.

Proof. Condition (2) of Definition 4.2.144.2.14 follows from (6.3.76.3.7). We shall now prove
that Condition (1) holds. Arguing as in the proof of Proposition 5.2.45.2.4 it will suffice
to show that for every ρ ∶ V Ð→M in (D⊗

M)⟨1⟩ ⊆ D⊗
M , the map

(D⊗
M)act

/ρ Ð→ (E⊗M)act
/ρ

has weakly contractible homotopy fibers. We first note that the map (E⊗M)act Ð→
(E⊗

Top∂(n)
)act is a right fibration (since it is the pullback of a right fibration), and

hence the map

(E⊗M)act
/ρ Ð→ (E⊗Top∂(n))

act
/V

is a trivial Kan fibration. On the other hand, a direct inspection shows that the
map (D⊗

V )act
/ Id Ð→ (D⊗

M)act
/ρ induced by ρ is an isomorphism of simplicial sets. It will

hence suffice to show that the map

(D⊗
V )act

/ Id Ð→ (E⊗Top∂(n))
act
/V
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has weakly contractible homotopy fibers. Consider the commutative diagram

(6.35) (D⊗
V )act

/ Id
//

&&MMMMMMMMMM
(E⊗

Top∂(n)
)act
/V

wwooooooooooo

(E⊗
Top∂(n)

)act

Since the right diagonal map is a right fibration it will suffice to show that the
horizontal arrow in (6.356.35) induces a weak equivalence on homotopy fibers over any

object U ∈ (E⊗
Top∂(n)

)act, which we can identify with a tuple (U1, ..., Ul) of objects

of Top∂(n) by choosing cocartesian lifts to ρi ∶ ⟨n⟩ Ð→ ⟨1⟩. We now note that the

(homotopy) fiber of the right diagonal map over U = (U1, ..., Ul) is naturally equi-
valent to Sing Emb(∐iUi, V ). To describe the homotopy fiber of the left diagonal
map, let PV ⊆ O(V ) be the subposet consisting of those open subsets W ⊆ V which

are (abstractly) homeomorphic to either ◻n or ◻n∂ . Let XU ⊆ P ⟨l⟩○
V be the subpo-

set spanned by those tuples (W1, ...,Wl) ∈ (PV )⟨l⟩○ such that Wi = Ui ∈ {◻n,◻n∂}
and the Wi’s are pairwise disjoint. Unwinding the definitions as in the proof of
Proposition 5.2.45.2.4 we see that the map induced by (6.356.35) on homotopy fibers over
(U1, ..., Ul) can be identified with the canonical map

(6.36) hocolim
(W1,...,Wl)∈XU

∏
i∈⟨l⟩○

Sing Emb(Ui,Wi) Ð→ Sing Emb(∐
i

Ui, V )

This map is a weak equivalence by Lemma 6.1.266.1.26 applied to the map p ∶ V Ð→ ∗
(with I = ⟨l⟩○), and so the desired result follows.

�

Let us say that a map

U //

  AAAAAAAA V

~~}}}}}}}}

M

in (D⊗
M)⟨1⟩ is an isotopy equivalence if the open embedding U Ð→ V is an equi-

valence when considered as an arrow in Mfldn. Combining Proposition 6.3.86.3.8 and
Proposition 4.2.184.2.18 we may now conclude the following:

Corollary 6.3.9. Let E be an ∞-category which admits limits. Then the restriction
map

MonE⊗
M
(E) Ð→MonD⊗

M
(E)

is fully-faithful and its essential image consists of those D⊗
M -monoids ψ ∶ D⊗

M Ð→ E

whose restriction to (D⊗
M)⟨1⟩ sends isotopy equivalences to equivalences.

Remark 6.3.10. The content of Corollary 6.3.96.3.9 can be informally summarized as
follows: the data of an EM -monoid in E is given associating to every open subset
U ⊆M homeomorphic to either ◻n or ◻n∂ an object AU ∈ E and for every inclusion
V1 ∪ ... ∪ Vm ⊆ U such that Vi ∩ Vj = ∅ a map AV1 × ... ×AVm Ð→ AU which is an
equivalence when the inclusion is an isotopy equivalence.

Remark 6.3.11. The statement of Corollary 6.3.96.3.9 also holds for EM -algebra objects
in a general symmetric monoidal ∞-category. This can be proven using a suitable
generalization of Proposition 4.2.184.2.18.
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6.4. Factorization homology. Throughout this section, let us fix a symmetric
monoidal ∞-category C⊗. We wish to impose certain conditions regarding colimits
in C. For this we will need the following notion:

Definition 6.4.1. Let K be a simplicial set. We will say that K is sifted if the
diagonal map K Ð→K ×K is cofinal (see Definition 2.6.112.6.11).

Example 6.4.2. The category ∆op is sifted.

We now impose the following hypothesis on C:

Hypothesis 6.4.3. C admits sifted colimits (that is, colimits indexed by sifted
simplicial sets). In addition, the tensor product functor ⊗ ∶ C × C Ð→ C preserves
sifted colimits in each variable separately.

We are now almost ready to define factorization homology. We first observe that
the active part (E⊗

Top(n))
act of E⊗

Top(n) can be identified with the full subcategory

of Mfldn spanned by those n-manifolds which are homeomorphic to a finite disjoint
union of n-cubes. We will denote by

E(M) ∶= (Mfldn)/M ×Mfldn (E⊗Top∂(n))
act.

It will be useful to also have a discrete version of E(M). Let D⊗
Top∂(n)

be the ∞-

operad corresponding to the ordinary operad whose objects are ◻n,◻n∂ and whose
multimaps are given by the sets

MulD⊗
Top∂ (n)

({Xi}i∈I , Y ) = Embord(∐
i

Xi, Y ).

Define Disj(M) ∶= (Mfldn)/M ×Mfldn (E⊗
Top∂(n)

)act, so that the natural map

D⊗
Top∂(n) Ð→ E⊗Top∂(n)

induces a natural map

(6.37) Disj(M) Ð→ E(M).
Lemma 6.4.4. Let M be an n-manifold. Then the following holds:

(1) The map (6.376.37) is cofinal.
(2) The ∞-category E(M) is sifted.

Proof. Consider the pair of functors

(6.38) Disj(M) Ð→ E(M) Ð→ E(M) ×E(M).
We wish to show that both are cofinal. For this, it will suffice to show that first
map Disj(M) Ð→ E(M) and the composed map Disj(M) Ð→ E(M) × E(M) are
both cofinal. To make the proof more efficient we can organize these two claims
under a common generalization. Suppose that G is a finite group and p ∶ M̃ Ð→M
is a G-covering map (so that M̃ is also an n-manifold). Then for every open
embedding ρ ∶ ∐iUi Ð→ M with I a finite set and Ui ∈ {◻n,◻n∂} the pullback

Ui ×M M̃ Ð→ Ui of p then canonically splits as the projection Ui × Ji Ð→ Ui where
Ji = π0(Ui ×M M̃) is naturally endowed with the structure of a G-torsor. The
association ({Ui}i∈I , ρ) ↦ ({Ui × {j}}i∈I,j∈Ji , p∗ρ) then determines a functor from

Disj(M) to Disj(N), where p∗ρ ∶ X ×M M̃ Ð→ N denotes the projection on the
right component. It will then suffice to show that the composed map

(6.39) Disj(M) Ð→ Disj(M̃) Ð→ E(M̃)
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is cofinal. Indeed, taking G to be the trivial group and p to be the identity map
M Ð→M we get that the first map in (6.386.38) is cofinal, and taking G = Z/2 and p
to be the split 2-covering M∐M Ð→M we get that the composed map in (6.386.38)
is cofinal (where we note that E(M∐M) can be naturally identified with E(M) ×
E(M)). Let us now prove that the composed map in (6.396.39) is indeed cofinal.

We fix a finite set I and an object η ∶ V ∶= ∐i∈I Vi Ð→ M̃ of E(M̃). Consider

the comma ∞-category Disj(M)η/ ∶= E(M̃)η/ ×E(M̃) Disj(M). We need to show

that Disj(M)η/ is weakly contractible. We remark that the category Disj(M) is in
fact a poset which can be identified with the poset of open subsets of M which are
homeomorphic to a finite disjoint union of ◻n and ◻n∂ . To simplify notation, let us
hence denote a general object (J,{Uj}j∈J , ρ ∶ ∐j Uj Ð→ M) of Disj(M) simply as
U ⊆M , where U ∶= ∐j Uj is understood as an open subset of M of the above form.
The projection Disj(M)η/ Ð→ Disj(M) is then a left fibration corresponding to the
functor

U ↦Map(Mfldn)/N (V,U×MM̃) ≃ hofibη[Sing Emb(V,U×MM̃) Ð→ Sing Emb(V, M̃)].

Since the base change functor hofibη ∶ S/Sing Emb(V,M̃) Ð→ S preserves homotopy

colimits (this is a general property of base change functors in spaces) and using
Theorem 2.6.62.6.6 it will suffice to show that the canonical map

hocolim
U∈Disj(M)

Sing Emb(V,U ×M M̃) Ð→ Sing Emb(V, M̃)

is a weak homotopy equivalence. This map is a weak equivalence by Lemma 6.1.266.1.26
applied to the map p ∶ M̃ Ð→M , and so the desired result follows. �

Given two n-manifolds M,N , let us denote by Embloc(M,N) the space of those
maps M Ð→ N which restrict to an open embedding on each connected compo-
nent of M (endowed with the compact open topology). We define Mfldloc

n be the
coherent nerve of the simplicial category whose objects are n-manifolds and whose
mapping spaces are given by Sing Embloc(M,N). We then see that the active part

(BTop(n)∐)act of BTop(n)∐ can be identified with the full subcategory of Mfldloc
n

spanned by the finite disjoint unions of n-cubes. In addition, given an n-manifold
M we have a natural isomorphism of simplicial sets

(M∐)act ≅ (Mfldloc
n )/M ×Mfldloc

n
(BTop(n)∐)act.

The functor Mfldn Ð→Mfldloc
n then induces a commutative square

E(M) //

��

(E⊗
Top(n))

act

��
(M∐)act // (BTop(n)∐)act

which determines a map of ∞-categories

r ∶ E(M) Ð→ (E⊗M)act.

Suppose now that A ∶ E⊗M Ð→ C⊗ is an EM -algebra in C. We would like to consider
A as a functor that takes values in C, as apposed to C⊗. For this, we observe
that ⟨1⟩ is final when considered as an object of Finact

∗ , and so there is a unique
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natural transformation between (E⊗M)act Ð→ N(Finact
∗ ) and the constant functor

(E⊗M)act Ð→ {⟨1⟩} ⊆ N(Finact
∗ ). We hence obtain a diagram of the form

(6.40) (E⊗M)act ×∆{0}

��

A // C⊗

��
(E⊗M)act ×∆1

77ooooooo
// N(Finact

∗ )

Since π ∶ (C⊗)act Ð→ N(Finact
∗ ) is a cocartesian fibration we can lift this natural

transformation in an essentially unique way to a π-pointwise natural transformation
in C⊗ from A to other functor (E⊗M)act Ð→ C⊗ which factors through the fiber
C = (C⊗)⟨1⟩ ⊆ C⊗. We will denote the resulting functor by

A ∶ (E⊗M)act Ð→ C.

We note that A can be informally described by the formula x↦ A(x1)⊗...⊗A(xm),
where x ∈ (E⊗M)act denotes an object lying over ⟨m⟩ which corresponds to the tuple
(x1, ..., xm) under the equivalence (E⊗M)⟨m⟩ ≃ ∏i∈⟨m⟩○(E⊗M)⟨1⟩.

Definition 6.4.5. We define the factorization homology ∫M A of M with coeffi-
cients in A as the colimit

∫
M
A ∶= colim

E(M)
r∗A ∈ C.

Remark 6.4.6. In light of Lemma 6.4.46.4.4 restriction along Disj(M) Ð→ E(M) induces
an equivalence

∫
M
A ≃ colim

U∈Disj(M)
A(U).

Remark 6.4.7. If B∂ Ð→ BTop∂(n) be a boundary tangent structure and M carried
a B∂-framing then we have a map of ∞-operads ϕ ∶ E⊗M∂

Ð→ E⊗B∂ , and so any E⊗B∂ -

algebra can be pulled back to an E⊗M -algebra to which we can take factorization
homology. In this case we will denote ∫M ϕ∗A simply by ∫M A. for example, if
A is an E⊗

Top(n)-algebra then A admits a factorization homology along any open

n-manifold, and if M is an open ∗-framed manifold then any E⊗n-algebra admits a
factorization homology along M .

Remark 6.4.8. The formation of factorization homology can be made functorial in
M in the following sense. Suppose that A ∶ E⊗

Top(n) Ð→ C is an ETop(n)-algebra

object. By Theorem 2.7.52.7.5, Lemma 6.4.46.4.4 and our Hypothesis 6.4.36.4.3 the functor
A ∶ (E⊗

Top(n))
act Ð→ C associated to A as above admits a left Kan extension

(6.41) ∫(−)
A ∶Mfldn Ð→ C

along (E⊗
Top(n))

act Ð→Mfldn which is given on objects by the factorization homo-

logy M ↦ ∫M A (see Remark 6.4.76.4.7).

Remark 6.4.9. In the situation of Remark 2.7.52.7.5, it follows from Lurie’s theory of
operadic left Kan extensions (using our base hypothesis 6.4.36.4.3 and Lemma 6.4.46.4.4)
that the left Kan extension (6.416.41) refines to a map of ∞-operads

(6.42) ∫(−)
A ∶ (Mfldn)⊗ Ð→ C⊗
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In this particular case one can even show that (6.426.42) is a symmetric monoidal func-
tor, that is, it preserves all cocartesian edges over N(Fin∗). This eventually follows
from the fact that ifM =M0∐M1 then the rule that sends (X0 Ð→M0,X1 Ð→M1)
to X0∐X1 Ð→M determines an equivalence

(E⊗Top(n))
act
/M0

× (E⊗Top(n))
act
/M1

≃Ð→ (E⊗Top(n))
act
/M .

Remark 6.4.10. In the situation of Remark 6.4.96.4.9, if we replace Mfldn by the ∞-
category MfldB∂n of B∂-framed manifolds for some boundary tangent structure B∂
and A ∶ E⊗B∂ Ð→ C is an EB∂ -algebra object then the association M ↦ ∫M A can
also be made into a symmetric monoidal functor

∫(−)
A ∶ (MfldB∂n )⊗ Ð→ C⊗.

Example 6.4.11 ([11, Corllary 3.12]). Let I be the unit interval. Recall (see Ex-
ample 6.3.36.3.3) that an E⊗I -disk algebra in C is equivalent to the data of a triple
(A,M0,M1) where A is an associative algebra object in C, M0 is a right A-module
in C1C/ and M1 is a left A-module in C1C/. In this case we have a natural equivalence

∫
M

(A,M0,M1) ≃M0 ⊗AM1

Our next goal is to discuss the Fubini property of factorization homology. For
this, we will need to introduce the notion of a bundle map of manifolds with boun-
dary.

Suppose first that N is an open k-manifold and E is an n-manifold, possibly
with boundary. Then we have the notion of a manifold bundle map from E to N ,
which is, by definition a map p ∶ E Ð→ N such that for every open embedding
ρ ∶ ◻k Ð→ N the pullback ρ∗E ∶= E ×N ◻k Ð→ ◻k admits a trivialization of the form
τ ∶ ρ∗E ≅ P ×◻k with P an (n−k)-manifold (here by trivialization we simply mean
that τ commutes with the respective projections to ◻k). In this case the association

[ρ ∶ ◻k Ð→ N] ↦ E ×N ◻k determines a DN -algebra object in Mfld∂n, which we shall
call [p−1]. The local triviality of E now implies that all the 1-ary operations act
on [p−1] by equivalences, and by Remark 6.3.116.3.11 we have that [p−1] descends to an

essentially unique N -disk algebra object in Mfld∂n.
We would like to have a similar story when N is a k-manifold which is not

necessarily open (i.e., can have a boundary).

Definition 6.4.12. Let N be an k-manifold. By a manifold ∂-bundle over N we
shall mean a map E Ð→ N with E an n-manifold and such that the following
conditions hold:

(1) For every open embedding ρ ∶ ◻k Ð→ N the pullback ρ∗E Ð→ ◻k admits a
trivialization of the form ρ∗E ≅ P × ◻k with P a (n − k)-manifold.

(2) For every open embedding ρ ∶ ◻k∂ Ð→ N the pullback ρ∗E Ð→ ◻k∂ admits an
identification of the form

ρ∗E

  BBBBBBBB
≅ // P × ◻k−1

(f,Id)
{{wwwwwwwwww

◻k∂
where P is an (n − k + 1)-manifold equipped with a continuous map f ∶ P Ð→
[0,1).
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In this case we will also say that p ∶ E Ð→ N is a ∂-bundle map.

Remark 6.4.13. If E Ð→ N is a manifold ∂-bundle then E×N (N∖∂N) Ð→ (N∖∂N)
is a manifold bundle in the usual sense. Furthermore, if ρ ∶ ∂N × [0,1) Ð→ N is
a tubular neighborhood of the boundary of N then the composed map ρ∗E Ð→
∂N × [0,1) Ð→ ∂N is a manifold bundle as well.

Example 6.4.14. If N is 1-dimensional then the boundary of N is 0-dimensional.
In this case condition (2) of Definition 6.4.126.4.12 is vacuous, and so p ∶ E Ð→ N is a
∂-bundle map if and only if it restricts to a bundle map over the interior of N .

Remark 6.4.15. If we consider fiber bundles over N as analogous to locally constant
sheaves, then the notion of a ∂-bundle can be considered as analogous to sheaves
on N which are constructible with respect to the stratification ∂N ⊆ N .

Example 6.4.16. It is worthwhile to spell out what do ∂-manifold bundles over the
unit interval I look like. Let M be a n-manifold and P an (n−1)-manifold. We will
say that an open embedding ρ ∶ (0,1) × P Ð→M is a right P -collar if ρ([ε,1) × P )
is closed in M for every ε ∈ (0,1). Similarly, we will say that ρ is a left P -collar if
ρ((0, ε] × P ) is closed in M for every ε ∈ (0,1).

If M0,M1 are two n-manifolds, ρ0 ∶ (0,1) × P ↪ M0 a right P -collar and ρ1 ∶
(0,1) × P ↪ M1 a left P -collar then the topological space M ∶= M0∐(0,1)×P M1

is again an n-manifold which contains M0 and M1 as submanifolds. Following [11]
we will refer to M as the collar gluing of M0 and M1 along (0,1) × P . In this
case, M admits a natural ∂-bundle map M Ð→ [0,1] which extends the projection
(0,1)×P Ð→ (0,1) and maps M0∖Im(ρ0) and M1∖Im(ρ1) to 0 and 1, respectively.

On the other hand, if p ∶M Ð→ [0,1] is any ∂-bundle then by definition p∣(0,1) ∶
(0,1) ×I M Ð→ (0,1) splits as a product (0,1) ×I M ≅ (0,1) × P . If we now set
M0 = p−1[0,1) and M1 = p−1(0,1] then the embedding (0,1) × P ↪ M0 is a right
collar, the embedding (0,1) × P ↪M1 is a left collar and M ≅M0∐(0,1)×P M1 is a

collar gluing of M0 and M1 along (0,1) × P .

We shall now explain how the notion of a ∂-bundle can be used to construct EN -
algebras. Suppose that p ∶ E Ð→ N is a manifold ∂-bundle and that E is equipped
with a B∂-framing for some boundary tangent structure B∂ Ð→ BTop∂(n). Then
the association [ρ ∶ U ↪ N] ↦ U ×N E for U ≅ ◻n,◻n∂ determines a DN -algebra

object [p−1] in MfldB∂n . The local models of Definition 6.4.126.4.12 imply that the 1-
ary operations coming from inclusions of ◻n in ◻n or ◻n∂ in ◻n∂ act on [p−1] by
equivalences, and so by Remark 6.3.116.3.11 we have that [p−1] descends to an essentially

unique EN -algebra object in MfldB∂n .

If F ∶ (Mfld∂Bn )⊗ Ð→ C⊗ is a symmetric monoidal functor then the composed
functor p∗F ∶= F ○ [p−1] ∶ E⊗N Ð→ C gives an [∂N → N]-algebra in C. This con-
struction can be used to produce a variety of interesting examples of cube algebras
over manifolds. We will also make use of it in order to formulate the Fubini pro-
perty of factorization homology and to define the property of being a homology
theory for manifolds in §6.56.5.

Let B∂ Ð→ BTop∂(n) be a boundary tangent structure and let A be an EB∂ -
algebra. Let M be a B∂-framed n-manifold and N a k-manifold. Given a ∂-bundle
map p ∶M Ð→ N , let us denote by p∗A ∶ E⊗N Ð→ C the composed functor

E⊗N
[p−1]Ð→ (MfldB∂n )⊗

∫(−)AÐ→ C⊗
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where [p−1] is the EN -algebra object in MfldB∂n associated to p ∶M Ð→ N as above.

Proposition 6.4.17 (The Fubini property, [11, Proposition 3.23]). In the above
setting the natural map

(6.43) ∫
N
p∗AÐ→ ∫

M
A

is an equivalence.

Proof. By Remark 6.4.66.4.6 the left hand side of (6.436.43) is given by an iterated colimit

∫
N
p∗A ≃ colim

U∈Disj(N)
p∗A(U) ≃ colim

U∈Disj(M)
colim

V ∈Disj(p−1(U))
A(V )

which can be assembled to a single colimit indexed by the full subposet Disj(p) ⊆
Disj(M) × Disj(N) spanned by those pairs (V,U) such that p(V ) ⊆ U , since the
forgetful functor Disj(p) Ð→ Disj(N) is the cocartesian fibration classifying the
functor U ↦ Disj(p−1(U)) (this follows from a general fubini property of colimits
along cocartesian fibrations). To show that (6.436.43) is an equivalence it will hence
suffice to show that the composed functor

Disj(p) Ð→ Disj(M) Ð→ E(M),
is cofinal. Let us hence fix a finite set I and an object ι ∶W ∶= ∐iWi Ð→M of E(M).
Then the comma ∞-category Disj(p)ι/ sits in a left fibration Disj(p)ρ/ Ð→ Disj(p)
which classifies the functor

(U,V ) ↦ hofibι [Sing Emb(W,V ) Ð→ Sing Emb(W,M)] .
Since the base change functor hofibι ∶ S/Sing Emb(W,M) Ð→ S preserves homotopy
colimits we may instead show that the natural map

(6.44) hocolim
(U,V )∈Disj(p)

Sing Emb(W,V ) Ð→ Sing Emb(W,M)

is a weak homotopy equivalence. The homotopy colimit in (6.446.44) can then be
rebroken into an iterated colimit:

(6.45) hocolim
U∈Disj(N)

hocolim
V ∈Disj(p−1(U)

Sing Emb(W,V ) Ð→ Sing Emb(W,M).

We may then factor 6.456.45 into a composition of two maps
(6.46)
hocolim
U∈Disj(N)

hocolim
V ∈Disj(p−1(U))

Sing Emb(W,V ) Ð→ hocolim
U∈Disj(N)

Emb(W,p−1(U)) Ð→ Sing Emb(W,M).

We now observe that the first map in (6.466.46) is a weak homotopy equivalence by
Lemma 6.1.266.1.26 applied to the identity map p−1(V ) Ð→ p−1(V ) and the second map
is a weak homotopy equivalence by Lemma 6.1.266.1.26 applied to the identity map
N Ð→ N . �

Example 6.4.18. The Fubini property can help us to decipher what is the factoriza-
tion homology along the circle. We first note that by Remark 6.2.136.2.13 the notion of
an ES1-algebra object in C is equivalent to that of a pair (A, τ) where A is an associ-
ative algebra A and τ ∶ AÐ→ A is an automorphism (associated to the monodromy
along the circle). The projection p ∶ S1 Ð→ [−1,1] on the x-axis is a ∂-bundle map
and the E[−1,1]-algebra p∗(A, τ) can be identified with the triple (Aop⊗A,A−1,A1)
where A−1 is a copy of A considered as a pointed right Aop ⊗ A-module and A1

is a copy of A considered as a pointed left Aop ⊗ A-module via the equivalence
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(Id⊗τ) ∶ Aop⊗AÐ→ Aop⊗A. By the Fubini property and Example 6.4.116.4.11 we then
have that

∫
S1

(A, τ) ≃ ∫[−1,1]
p∗(A, τ) ≃ A⊗Aop⊗A A

is the τ -twisted Hochschild homology of A.

6.5. Axiomatic characterization of factorization homology. In this section
we will focus attention on open n-manifolds, i.e., those which do not have boundary.
Following [11], our goal is to consider homology theories on suitably framed open n-
manifolds. For this we will need to isolate a particular full subcategory of Mfldn
spanned by manifolds which can be built in finitely many steps by gluing disks of
various dimensions. This gluing is defined via the notion of a collar gluing spelled
out in Example 6.4.166.4.16.

Let ∂◻k denote the boundary of the n-cube, which is homeomorphic to the
(k−1)-sphere (where ∂◻0 = ∅ by convention). We have a canonical right ∂◻k-collar
(0,1) × ∂◻k ↪ ◻k embedded as the complement of {0} ⊂ ◻k. Let M0 be an open
n-manifold. If ρ ∶ (0,1) × ∂ ◻k ×◻n−k ↪M0 is a left [∂ ◻k ×◻n−k]-collar then we will
say that

M = ◻k × ◻n−k ∐
(0,1)×∂◻k×◻n−k

M0

is obtained from M0 by adding an open handle of index k.

Definition 6.5.1. Let M be an open n-manifold. We will say that M is of finite
type if it can be obtained from ∅ by adding finitely many open handles. We will
denote by Mfldfin

n ⊆ Mfldn the full subcategory spanned by open n-manifolds of
finite type. Similarly, if B Ð→ BTop(n) is a tangent structure then we will denote by

MfldB,fin
n ∶= MfldBn ×Mfldn Mfldfin

n . We note that the inclusion MfldB,fin
n ⊆ MfldBn is

fully faithful and its essential image is spanned by those B-framed open n-manifolds
which are of finite type.

Example 6.5.2. Adding to M0 an open handle of index 0 is simply taking the
coproduct M = M0∐◻n. In particular, the n-disk ◻n is an n-manifold of finite
type.

Example 6.5.3. ∂ ◻k+1 ×◻n−k is obtained from ◻k × ◻n−k ≅ ◻n by adding a single
open handle of index k. In particular, ∂ ◻k+1 ×◻n−k is an n-manifold of finite type.

Warning 6.5.4. The notion of an open handle is closely related, but not identical,
to the notion of a handle studied in classical geometric topology, which is usually
applied only to compact manifolds. However, if M is a compact manifold with a
finite handle decomposition in the classical sense, then the interior of M is of finite
type in the sense of Definition 6.5.16.5.1. In particular, it is known that any closed
manifold of dimension ≠ 4 has a finite handle decomposition, and is hence of finite
type. On the other hand, in dimension 4 a closed manifold admits a finite handle
decomposition if and only if it is smoothable.

Definition 6.5.5. We will say that a manifold ∂-bundle p ∶ M Ð→ N is open if
M is open, and we will say that p has finite type if for every U ⊆ N which is
homeomorphic to either ◻k or ◻k∂ the fiber product M ×N U has finite type.

Now let C be as in Hypothesis 6.4.36.4.3 and let B Ð→ BTop(n) be a tangent struc-
ture. In this section we will describe a certain class of symmetric monoidal functors
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MfldB,fin
n Ð→ C which are called homology theories in [11]. The defining property of

these functors is that they satisfy ⊗-excision, a term we shall now define.

Definition 6.5.6. Let F ∶ MfldB,fin
n Ð→ C be a symmetric monoidal functor. We

will say that F satisfies ⊗-excision if for every open finite type ∂-bundle p ∶M Ð→ I
the induced map

∫
I
p∗F Ð→ F(M)

is an equivalence, where p∗F is the composed functor E⊗B
[p−1]Ð→ (MfldB,fin

n )⊗ FÐ→ C⊗

as above.

Remark 6.5.7. In light of Example 6.4.116.4.11 and Example 6.4.166.4.16 we may also (somew-
hat informally) phrase the ⊗-excision property as saying that for every collar gluing
M =M0∐(0,1)×P M1 of finite type open n-manifolds the induced map

F(M0) ⊗F((0,1)×P ) F(M1) Ð→ F(M)
is an equivalence.

Definition 6.5.8. Let B Ð→ BTop(n) be a tangent structure and C a presentably
symmetric monoidal ∞-category. A B-framed homology theory is a symmetric
monoidal functor F ∶ MfldB,fin

n Ð→ C which satisfies ⊗-excision. We will denote by

H(MfldB,fin
n ,C) ⊆ Fun⊗(MfldB,fin

n ,C) the full subcategory spanned by the B-framed
homology theories.

Example 6.5.9. Let B Ð→ BTop(n) be a boundary tangent structure and let A be

a B-disk algebra. Then the symmetric monoidal functor ∫(−) ∶ (MfldB,fin
n )⊗ Ð→ C⊗

described in Remark 6.4.96.4.9 is a B-framed homology theory. This follows immediately
from Proposition 6.4.176.4.17.

Remark 6.5.10. If F ∶ MfldB,fin
n Ð→ C is a symmetric monoidal functor then F∣E⊗

B

is by definition an E⊗B-algebra object. Remark 6.4.86.4.8 then furnishes a symmetric
monoidal natural transformation

∫(−)
F∣E⊗

B
⇒ F(−)

of symmetric monoidal functors MfldB,fin
n Ð→ C.

We now come to the main result of this talk.

Theorem 6.5.11 ([11]). Let F ∶MfldB,fin
n Ð→ C be a homology theory for manifolds

and let A = F∣E⊗
B

be the associated B-disk algebra in C. Then the natural map

(6.47) ∫
M
AÐ→ F(M)

of Remark 6.5.106.5.10 is an equivalence for every B-framed n-manifold M of finite type.

Proof. We prove by double induction on the open handle decomposition of M . For
integers 0 ≤ k,m let us say that an open manifold M has type (k,m) if it can be
obtained from ∅ by adding finitely many handles of index ≤ k out of which at most
m handles are of index exactly k. We first note that an open n-manifold is of type
(0,1) if and only if it is the n-disk, and the map (6.476.47) is an equivalence in this
case by definition.
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Now suppose we have proven that (6.476.47) is an equivalence for every B-framed
manifold of type (k,m) where either k > 0 or k = 0 and m ≥ 1, and let M be a
B-framed manifold of type (k,m+1). Then by definition there exists an n-manifold
M0 of type (k,m) and a left [∂ ◻k ×◻n−k]-collar ρ ∶ (0,1) × ∂ ◻k ×◻n−k ↪M0 such
that

M ∶= ◻k × ◻n−k ∐
(0,1)×∂◻k×◻n−k

M0.

In this case the B-framing on M restricts to B-framings on M0, (0,1)×∂ ◻k ×◻n−k
and ◻k×◻n−k, so that we can consider all of them as B-framed sub-manifolds of M .
Let p ∶M Ð→ [0,1] be the manifold ∂-bundle of Example 6.4.166.4.16, which is open and
of finite type by construction (see Example 6.5.36.5.3 and Example 6.5.26.5.2), and consider
the diagram

(6.48) ∫I p∗A //

≃
��

∫I p∗F

≃
��

∫M A // F(M)

in which the vertical maps are equivalences since F and ∫(−)A are homology theories.

To show that the bottom horizontal map is an equivalence it will hence suffice to
show that the top vertical map is an equivalence. We now observe that if U ⊆ I is
an open subset homeomorphic to either ◻1 or ◻1

∂ then p−1(U) is an open manifold

which is homeomorphic to either M0, ◻k × ◻n−k ≅ ◻n or (0,1) × ∂ ◻k ×◻n−k, which
are manifolds of types (k,m), (k − 1,2) and (0,1), respectively By the induction
hypothesis the map

∫
U
p∗AÐ→ F(U)

is an equivalence for every such U ⊆ I, and so the top vertical map of (6.486.48) is
an equivalence, as desired. We may hence conclude that (6.476.47) is an equivalence
for every manifold of type (k,m + 1). By induction on m we now get that (6.476.47)
is an equivalence for every manifold of type (k,m′) for m′ ≥ 0, and hence for
every manifold of type (k + 1,0). By induction on k we now get that (6.476.47) is an
equivalence for any open n-manifold of finite type, as desired. �

Corollary 6.5.12 ([11, Theorem 3.24]). Restriction along E⊗B ↪ (MfldB,fin
n )⊗ de-

termines an equivalence

H(MfldB,fin
n ,C) ≃Ð→ AlgEB(C)

between B-framed homology theories with values in C and EB-algebra objects in C.

Remark 6.5.13. We focused in this section on open n-manifolds, but there is no
obstacle in extending the notion of homology theories, as well as Theorem 6.5.116.5.11
and Corollary 6.5.126.5.12, to the case of n-manifolds with boundary. To do so, one just
needs to spell out what it means for an n-manifold with boundary to be of finite
type, a notion which can be formulated using suitable handles with boundary.

7. Poincaré-Koszul duality

7.1. Factorization homology with support.

7.2. En-suspension and En-loops.



116 YONATAN HARPAZ

7.3. Nonabelian Poincaré duality (after Lurie).

7.4. Poincaré-Koszul duality for dg-algebras (after Francis and Ayala).
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