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GEOMETRY AND ARITHMETIC OF CERTAIN LOG
K3 SURFACES

by Yonatan HARPAZ

Résumé. In this paper we describe a classification of smooth log K3
surfaces whose geometric Picard group is trivial and which can be
embedded as complements of simple normal crossing anti-canonical
divisors in del Pezzo surfaces. We show that such a log K3 surface can
be compactified into a del Pezzo surface of degree 5, with a compac-
tifying divisor a cycle of five (−1)-curves, and is in fact determined
up to isomorphism by the Galois action on the dual graph of the
compactifying divisor. When the ground field is the field of rational
numbers and the Galois action is trivial, we prove that the set of
integral points is not Zariski dense on any integral model. We also
show that the Brauer Manin obstruction is not the only obstruction
for the integral Hasse principle on such log K3 surfaces, even when
their compactification is “split”.

La géométrie et l’arithmétique de certains surfaces log K3

Résumé. Dans cet article, on décrit une classification de surfaces
log K3 lisses dont le groupe de Picard géométrique s’annule, et qui
peuvent être réalisées comme compléments de diviseurs anti-canonique
à croisements normaux simples dans les surfaces de del Pezzo. On
montre qu’une telle surface log K3 admet une compactification en une
surface de del Pezzo de degree 5, avec un lacet de cinq (−1)-courbes
comme complément, et qu’elle est déterminée à isomorphisme près
par l’action de Galois sur le graphe dual du lacet. Quand le corps
de base est le corps de nombres rationnels et l’action de Galois est
triviale, on montre que l’ensemble des points entiers n’est pas Za-
riski dense sur n’importe quel modèle entier. On montre également
que l’obstruction de Brauer-Manin n’est pas la seule obstruction au
principe de Hasse entier pour de telles surfaces log K3, même quand
ils admettent une compactification � scindée �.
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1. Introduction

Let k be a number field, S a finite set of places containing all archimedean

places and OS the ring of S-integers in k. By an OS-scheme we mean a

separated scheme of finite type over OS . A fundamental question in number

theory is to understand the set X(OS) of S-integral points. In this paper

we shall be interested in the case where X = X⊗OS
k is a smooth log K3

surface.

When studying integral points on schemes, the following two questions

are of great interest.

(1) Given an OS-scheme X, is the set X(OS) non-empty ?

(2) If the set X(OS) is non-empty, is it in any sense “large” ?

Let us begin with the second question. Consider the problem of counting

points of bounded height with respect to some height function. Informally

speaking, the behaviour of integral points on smooth log K3 surfaces is

expected to parallel the behaviour of rational points on smooth and proper

K3 surfaces. The following is one of the variants of a conjecture appearing

in [13] :

Conjecture 1.1 ([13]). — Let X be a K3 surface over a number field

k, and let H be a height function associated to an ample divisor. Suppose

that X has geometric Picard number 1. Then there exists a Zariski open

subset U ⊆ X such that

#{P ∈ U(k)|H(P ) 6 B} = O(log(B)).
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When considering integral points on smooth log K3 surfaces, one might

expect to obtain a similar logarithmic estimate for the growth of integral

points. We note that the minimal geometric Picard number a non-proper

smooth log K3 surface may attain is 0 (although this is by no means the

“generic” case, see Remark 2.11). We then consider the following conjec-

ture :

Conjecture 1.2. — Let k be a number field and S a finite set of places

of k containing the infinite places. Let X be a separated scheme over OS
such that X = X ⊗k X is a log K3 surface with Pic(X ⊗k k) = 0. Let H

be a height function associated to an ample divisor. Then there exists a

Zariski open subset U ⊆ X and a constant b such that

#{P ∈ X(Ok) ∩ U(k)|H(P ) 6 B} ' O
(
log(B)b

)
.

Our main goal in this paper is to give evidence for this conjecture. We

focus our attention on what can be considered as the simplest class of log

K3 surfaces, namely, those whose log K3 structure comes from a compac-

tification into a del Pezzo surface. We call such log K3 surfaces ample log

K3 surfaces.

The bulk of this paper is devoted to the classification of log K3 surfaces of

this “simple” kind over a general base field k of characteristic 0, under the

additional assumption that Pic(X ⊗k k) = 0. Our first result is that such

surfaces can always be compactified into a del Pezzo surface X of degree

5, with a compactifying divisor D = X \ X being a cycle of five (−1)-

curve. The Galois action on the dual graph of D then yields an invariant

α ∈ H1(k,D5), where D5 is the dihedral group of order 10, appearing here as

the automorphism group of a cyclic graph of length 5, and considered with

a trivial Galois action (so that H1(k,D5) is just the set of conjugacy classes

of homomorphisms Γk −→ D5). We then obtain the following classification

theorem :

Theorem 1.3 (See Theorem 3.21 and Theorem 3.23). — The element

α = αX ∈ H1(k,D5) does not depend on the choice of X. Furthermore,

the association X 7→ αX determines a bijection between the set of k-

isomorphism classes of ample log K3 surfaces of Picard rank 0 and the

Galois cohomology set H1(k,D5).

Our second main result is a verification of Conjecture 1.2 for ample log

K3 surface of Picard rank 0 corresponding to the trivial class in H1(k,D5).

More precisely, we have the following
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Theorem 1.4 (See Theorem 4.1). — Let X be a separated scheme of

finite type over Z such that X = X ⊗Z Q is an ample log K3 surface of

Picard rank 0 and such that αX = 0. Then the set of integral points X(Z)

is not Zariski dense.

We also give an example over Z in which αX 6= 0, and where integral

points are in fact Zariski dense. In particular, if Conjecture 1.2 holds in this

case then b must be at least 1. We would be very interested to understand

what properties of X control the value of b, when such a value exists.

Now consider Question (1) above, namely, the existence of integral

points. The study of this question often begins by considering the set of

S-integral adelic points

X(Ak,S)
def
=
∏
v∈S

X(kv)×
∏
v/∈S

X(Ov)

where X = X⊗OS
k is the base change of X to k. If X(Ak,S) = ∅ one may

immediately deduce that X has no S-integral points. In general, it can

happen that X(Ak,S) 6= ∅ but X(OS) is still empty. One way to account for

this phenomenon is given by the integral version of the Brauer-Manin

obstruction, introduced in [4]. To this end one considers the set

X(Ak,S)Br(X) def
= X(Ak,S) ∩X(Ak)Br(X)

given by intersecting the set of S-integral adelic points with the Brauer

set of X. When X(Ak,S)Br(X) = ∅ one says that there is a Brauer-Manin

obstruction to the existence of S-integral points.

Question 1.5. — Is there a natural class of OS-schemes for which we

should expect the integral Brauer-Manin obstruction to be the only one ?

If X is proper then the set of S-integral points on X can be identified

with the set of rational points on X. In this case, the class of smooth

and proper rationally connected varieties is conjectured to be a na-

tural class where the answer to Question 1.5 is positive (see [2]). If X is

not proper, then the question becomes considerably more subtle. One may

replace the class of rationally connected varieties by the class of log ra-

tionally connected varieties (see [16]). However, even for log rationally

connected varieties, the integral Brauer-Manin obstruction is not the only

one in general. One possible problem is that log rationally connected va-

rieties may have a non-trivial (yet always finite) fundamental group. In [3,

Example 5.10] Colliot-Thélène and Wittenberg consider a log rationally

connected surface X over spec(Z) with fundamental group Z/2. It is then

shown that the Brauer-Manin obstruction is trivial, but one can prove that
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integral points do not exist by applying the Brauer-Manin obstruction to

the universal covering of X. This can be considered as a version of the

étale-Brauer Manin obstruction for integral points. In [3, Example 5.9],

Colliot-Thélène and Wittenberg consider another surface X over spec(Z)

given by the equation

(1.1) 2x2 + 3y2 + 4z2 = 1.

This time X is simply-connected and log rationally connected, and yet

X(Z) = ∅ with no integral Brauer-Manin obstruction. This unsatisfactory

situation motivates the following definition :

Definition 1.6. — Let X be a smooth, geometrically integral variety

over a field k and let X ⊆ X be a smooth compactification such that

D = X \ X is a simple normal crossing divisor. Let Ck(D) be the geo-

metric Clemens complex of D (see [1, §3.1.3]). We will say that the

compactification (X,D) is split (over k) if the Galois action on Ck(D) is

trivial and for every point in Ck(D) the corresponding subvariety of D has

a k-point. We will say that X itself is split if it admits a split compactifi-

cation.

Example 1.7. — Let k = R and let f(x1, ..., xn) be a non-degenerate

quadratic form. The affine variety X given by

(1.2) f(x1, ..., xn) = 1

is split if and only if the equation f(x1, ..., xn) = 0 has a non-trivial solution

in k. Indeed, if f represents 0 over k then we have a split compactification

X ⊆ Pn given by f(x1, ..., xn) = y2. On the other hand, if f does not

represent 0 then the space X(k) is compact (with respect to the real to-

pology) and hence X cannot admit any split compactification. A similar

argument works when k is any local field.

Definition 1.8. — Let X be an OS-scheme. We will say that X is S-

split if X⊗Ov
kv is split over kv for at least one v ∈ S.

The class of S-split schemes appears to be more well-behaved with res-

pect to S-integral points. As example 1.7 shows, counter-example (1.1) is

indeed not S-split.

Question 1.9. — Is the integral Brauer-Manin obstruction the only

obstruction for a simply-connected S-split OS-schemes ?

Our last goal in this paper is to show that the answer to this question is

negative. More precisely :
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Theorem 1.10 (See §4.2). — Let S = {∞}. Then there exists an S-

split log K3 surface over Z for which X(Z) = ∅ and yet the integral Brauer-

Manin obstruction is trivial.

To the knowledge of the author this is the first example of a simply-

connected S-split OS-scheme for which the Brauer-Manin obstruction is

shown to be insufficient.

Despite Theorem 1.10, we do believe that the answer to Question 1.9 is

positive when one restricts attention to log rationally connected schemes.

More specifically, we offer the following integral analogue of the conjecture

of Colliot-Thélène and Sansuc (see [2]) :

Conjecture 1.11. — Let X be an S-split OS-scheme such that X =

X⊗OS
k is a simply connected, log rationally connected variety. If X(Ak,S)Br(X) 6=

∅ then X(OS) 6= ∅.

1.1. Acknowledgments

The author is grateful to the Fondation Sciences Mathématiques de Pa-

ris for its support, and to Olivier Wittenberg for numerous enlightening

conversations surrounding the topic of this paper.

2. Preliminaries

Let k be a field of characteristic 0. We will denote by k a fixed algebraic

closure of k and by Γk = Gal(k/k) the absolute Galois group of k. Given a

variety X over k and a field extension L/k, we will denote by XL = X⊗kL
the base change of X to L. Let us begin with some basic definitions.

Definition 2.1. — Let Z be a separated scheme of finite type over k.

By a geometric component of Z we mean an irreducible component of

Zk. The set C(Z) of geometric components of Z is equipped with a natural

action of Γk and we will often consider it as a Galois set. If Z ⊂ Y is an

effective divisor of smooth variety Y then we will say that Z has simple

normal crossing if each geometric component of Z is smooth and for

every subset I ⊆ C(Z) the intersection of {Di}i∈I is either empty or pure of

dimension dim(Z)−|I|+1 and transverse at every point. If dim(Z) = 1 this

means that each component of Z is a smooth curve and each intersection

point is a transverse intersection of exactly two components.
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Definition 2.2. — Let Y be a smooth surface over k and D ⊆ Y a

simple normal crossing divisor. The dual graph of D, denoted G(D), is

the graph whose vertices are the geometric components of D and whose

edges are the intersection points of the various components (since D is a

simple normal crossing divisor no self intersections or triple intersections are

allowed). Note that two distinct vertices may be connected by more than

one edge. We define the splitting field of D to be the minimal extension

L/k such that the action of ΓL on G(D) is trivial. In other words, the

minimal extension over which all components and all intersection points

are defined.

Definition 2.3. — Let X be a smooth geometrically integral surface

over k. A simple compactification of X is a smooth compactification

ι : X ↪→ X (defined over k) such that D = X \ X is a simple normal

crossing divisor.

Definition 2.4. — Let X be a smooth geometrically integral surface

over k. A log K3 structure on X is a simple compactification (X,D, ι)

such that

[D] +KX = 0

(where KX ∈ Pic(X) is the canonical class of X). A log K3 surface is

a smooth, geometrically integral, simply connected surface X equipped

with a log K3 structure (X,D, ι).

Remark 2.5. — The property of being simply connected in Definition 2.4

is intended in the geometric since, i.e., the étale fundamental group of the

base change Xk is trivial.

Remark 2.6. — Definition 2.4 is slightly more restrictive then other

definitions which appear in the literature (see, e.g, [9], [15]). In particular,

many authors do not require X to be simply-connected, but require instead

the weaker property that there are no global 1-forms on X which extend

to X with logarithmic singuliarites along D. In another direction, some

authors relax the condition that [D] + KX = 0 and replace it with the

condition that dimH0(X,n([D] + KX)) = 1 for all n > 0. In this more

general context one may consider Definition 2.4 as isolating the simplest

kind of log K3 surfaces. It will be interesting to extend the questions of

integral points considered in this paper to the more general setting as well.

Proposition 2.7. — Let X be a log K3 surface and (X,D, ι) a log K3

structure on X. Then either D = ∅ and X = X is a (proper) K3 surface or

D 6= ∅ and Xk is a rational surface.
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Démonstration. — If D = ∅ then X = X is proper and KX = KX = 0.

Since X is also simply connected it is a K3 surface. Now assume that

D 6= ∅. Since −KX = [D] is effective and X is smooth and proper it

follows that H0(X,mKX) = 0 for every m > 1, and hence X has Kodaira

dimension −∞. In light of Castelnuevo’s rationality criterion it will suffice

to prove that H1(Xk,Z/n) = 0 for every n, or better yet, that X is simply

connected. But this now follows from our assumption that X is simply-

connected : indeed, any irreducible étale covering of X must restrict to an

irreducible trivial covering over X, and must therefore have degree 1. �

Proposition 2.7 motivates the following definition :

Definition 2.8. — We will say that a log K3 structure (X,D, ι) is

ample if [D] ∈ Pic(X) is ample. Note that in this case X is a del Pezzo

surface. We will say that a log K3 surface is ample if it admits an ample

log K3 structure.

Remark 2.9. — Any ample log K3 surface is affine, as it is the com-

plement of an ample divisor. This observation can be used to show that

not all (non-proper) log K3 surfaces are ample. For example, if X −→ P1

is a rational elliptic surface (with a section) and D ⊆ X is the fiber over

∞ ∈ P1(k) then X = X \ D is a log K3 surface admitting a fibration

f : X −→ A1 into elliptic curves. As a result, any regular function on X is

constant along the fibers of f and hence X cannot be affine.

Now let X be a log K3 surface. Since Xk is assumed to be simply connec-

ted the middle term in the short exact sequence

0 −→ k[X]∗/(k[X]∗)n −→ H1(Xk,Z/n) −→ Pic(Xk)[n] −→ 0

vanishes, implying that Pic(Xk) is torsion free and k[X] is cotorsion free,

i.e., divisible. In particular, every invertible function on Xk is an n’th po-

wer of any n and hence constant. Since Pic(Xk) is torsion free and finitely

generated, it is isomorphic to Zr for some r. The integer r is called the Pi-

card rank of X. We note that this invariant should arguably be called the

geometric Picard number, but since it will be the only Picard rank under

consideration, we opted to drop the adjective “geometric”. The following

observation will be useful in identifying log K3 surfaces of Picard rank 0 :

Lemma 2.10. — Let X be a smooth, geometrically integral variety over

k and (X,D, ι) a simple compactification of X. Then the following condi-

tions are equivalent :

(1) Pic(Xk) = 0 and k
∗
[X] = k

∗
.
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(2) The geometric components of D form a basis for Pic(Xk).

Démonstration. — Let V be the free abelian group generated by the

geometric components of D. We may then identify H1
D(Y,Gm) with V ,

yielding an exact sequence

0 −→ k
∗
[X] −→ k

∗
[X] −→ V −→ Pic(Xk) −→ Pic(Xk) −→ 0.

Since X is proper we have k
∗
[X] = k

∗
. We hence see that condition (1)

above is equivalent to the map V −→ Pic(Xk) being an isomorphism. �

Remark 2.11. — Let X be a smooth proper rational surface and D ⊆ X
a simple normal crossing divisor such that [D] = −KX and such that the

components of D are of genus 0 and form a basis for Pic(Xk). By the

classical work of Looinjege ([11], see also [5, Lemma 3.2]), the pair (X,D) is

rigid, i.e., does not posses any first order deformations (nor any continuous

families of automorphisms). By Lemma 2.10 we may hence expect that

any type of moduli space of log K3 surfaces of Picard rank 0 will be 0-

dimensional. In particular, the classification problem for such surfaces over

a non-algebraically closed field naturally leads to various Galois cohomology

sets with coefficients in a discrete groups.

We shall now describe two examples of ample log K3 surfaces with Picard

rank 0.

Example 2.12. — Let X be the blow-up of P2 at a point P ∈ P2(k). Let

C ⊆ P2 be a quadric passing through P and let L ⊆ P2 be a line which does

not contain P and meets C at two distinct points Q0, Q1 ∈ P2(k), both

defined over k. Let C̃ be the strict transform of C in X. Then D = C̃ ∪ L
is a simple normal crossing divisor, and it is straightforward to check that

[D] = −KX . As we will see in Remark 3.29 below, the smooth variety

X = X \ D is simply connected, and so X is an ample log K3 surface.

Since [L] and [C̃] form a basis for Pic(Xk), Lemma 2.10 implies that X has

Picard rank 0.

To construct explicit equations for X, let x, y, z be projective coordinates

on P2 such that L is given by z = 0. Let f(x, y, z) be a quadratic form

vanishing on C and let g(x, y, z) be a linear form such that the line g = 0

passes through P and Q1. Then X is isomorphic to the affine variety given

by the equation

f(x, y, 1)t = g(x, y, 1).

By a linear change of coordinates we may assume that Q0 = (1, 0, 0) and

Q1 = (0, 1, 0), in which case the equation above can be written as

(axy + bx+ cy + d)t = ex+ f.
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For some a, b, c, d, e, f ∈ k. We will later see that the k-isomorphism type

of this surface does not depend, in fact, on any of these parameters.

Example 2.13. — Let L = k(
√
a) be a quadratic extension of k. Let

P0, P1 ∈ P2(L) a Gal(L/k)-conjugate pair of points and let X be the blow-

up of P2 at P0 and P1. Let L ⊆ P2 be a line defined over k which does not

meet {P0, P1} and let L1, L2 ⊆ P2 be a Gal(L/k)-conjugate pair of lines

such that L1 contains P1 but not P2 and L2 contains P2 but not P1. Assume

that the intersection point of L1 and L2 is not contained in L. Let L̃1, L̃2 be

the strict transforms of L1 and L2 in X. Then D = L∪ L̃1 ∪ L̃2 is a simple

normal crossing divisor, and it is straightforward to check that [D] = −KX .

As we will see in Remark 3.29 below the smooth variety X = X \ D is

simply connected and so X is an ample log K3 surface. Since [L], [L̃1] and

[L̃2] form a basis for Pic(Xk), Lemma 2.10 implies that X has Picard rank

0.

To construct explicit equations for X, let x, y, z be projective coordinates

on P2 such that L is given by z = 0. Let f1(x, y, z) and f2(x, y, z) be linear

forms defined over L which vanish on L1 and L2 respectively. Let g(x, y, z)

be a linear form defined over k such that the line g = 0 passes through P1

and P2. Then X is isomorphic to the affine variety given by the equation

f1(x, y, 1)f2(x, y, 1)t = g(x, y, 1).

By a linear change of variables (over k) we may assume that the intersection

point of L1 and L2 is (0, 0, 1) and that f(x, y) = x +
√
ay, in which case

the equation above becomes

(x2 − ay2)t = bx+ cy + d.

We will later see that the k-isomorphism type of this surface only depends

on the quadratic extension L/k, i.e., only on the class of a mod squares.

3. Geometry of ample log K3 surfaces with Picard rank 0

Let k be a field of characteristic 0. The goal of this section is to classify all

ample log K3 surfaces X/k whose Picard rank is 0. We begin in §3.1, where

we consider the following question : given a log K3 surface, how unique is

the choice of a log K3 structure ? To answer this question it is convenient

to organize the various log K3 structures into a category Log(X). We

note that the categorical structure here is somewhat degenerate : between

every two log K3 structures there is at most a single morphism. We may

hence consider Log(X) also as a partially order set, or a poset. The main
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result of 3.1 is that the poset Log(X) is cofiltered. In this context this

statement is equivalent to the following concrete claim : for every two log

K3 structures on X, there is a third log K3 structure which dominates both

of them. In fact, we will prove a more precise result (see Theorem 3.10) :

for every two log K3 structures on X, we can pass from one to the other

by a sequence of blow-ups and blow-downs of a particular type, which,

following [5], we call corner blow-ups/blow-downs.

The above result allows one to easily relate any two log K3 surfaces,

and can hence be considered as stating a type of uniqueness for log K3

structures. We will continue this approach in §3.2, where we will show that

any ample log K3 surface of Picard number 0 admits a log K3 structure

of a particular form, namely, a log K3 structure (X,D, ι) such that X is

a del Pezzo surface of degree 5 and D is a cycle of five (−1)-curves (see

Proposition 3.16). Identifying the automorphism group of a cyclic graph

of length 5 with the Dihedral group D5 of order 10, the Galois action on

D naturally yields an invariant α ∈ H1(k,D5). The uniqueness result of

§3.1 then comes into play in showing that this invariant depends only on

X itself. The main classification theorem is subsequently formulated and

proven in §3.3 (see Theorem 3.23). Finally, in §3.4 we consider some special

cases where the invariant α ∈ H1(k,D5) has a particularly simple form, and

give explicit equations for the associated log K3 surfaces.

3.1. The category of log K3 structures

Definition 3.1. — Let X be a log K3 surface. We will denote by

Log(X) the category whose objects are log K3 structures (X,D, ι) and

whose morphisms are maps of pairs f : (X,D) −→ (X
′
, D′) which respect

the embedding of X.

Between every two objects of Log(X) there is at most one morphism. We

may hence think of Log(X) as a partially ordered set (poset), where we

say that (X,D, ι) > (X
′
, D′, ι′) if there exists a morphism f : (X,D) −→

(X
′
, D′) in Log(X). Let us recall the following notion

Definition 3.2. — Let A be a partially ordered set. One says that A is

cofiltered if for every two elements x, y ∈ A there exists an element z ∈ A
such that z > x and z > y.

Our main motivation in this section is to show that if X is a log K3

surface then the partially ordered set Log(X) of log K3 structures on X is
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cofiltered : every two log K3 structures are dominated by a common third

(see Corollary 3.11 below). In that sense the choice of a log K3 structure

on a given log K3 surface is “almost unique”. We begin with the following

well-known statement (see the introduction section in [5]), for which we

include a short proof for the convenience of the reader.

Proposition 3.3. — Let X be a smooth, projective, (geometrically)

rational surface over k and D ⊆ X a simple normal crossing divisor such

that [D] = −KX . Then one of the following option occurs :

(1) D is a geometrically irreducible smooth curve of genus 1.

(2) The geometric components of D are all of genus 0, and the dual

graph of D is a circle containing at least two vertices.

Démonstration. — Since this is a geometric statement we may as well

extend our scalars to k. According to [6, Lemma II.5] the underlying curve

of D is connected. Now let D0 ⊆ D be a geometric component and let

E ⊆ D be the union of the geometric components which are different from

D′. Since [D0]+[E] = [D] is the anti-canonical class the adjunction formula

tells us that

2− 2g(D0) = [D0] · ([D]− [D0]) = [D0] · [E]

Since D0 and E are effective divisors without common components it fol-

lows that [D0] · [E] > 0 and hence either g(D0) = 1 and [D0] · [E] = 0 or

g(D0) = 0 and [D0] · [E] = 2. Since D is connected it follows that D is

either a genus 1 curve or a cycle of genus 0 curves. �

Let us now establish some notation. Let X be a log K3 surface of Picard

rank 0 equipped with a log K3 structure (X,D, ι). We will denote by d =

[D]·[D] and n = rank(Pic(Xk)). We note that since Pic(Xk) = 0 the surface

X cannot be proper and so Proposition 2.7 implies that Xk is rational. It

follows that d and n are related by the formula n = 10 − d. We will refer

to d as the degree of the log K3 structure (X,D, ι). If (X,D, ι) is ample

then d > 0.

Since X has Picard rank 0, Lemma 2.10 implies that the number of

geometric components of D is equal to n. According to Proposition 3.3, we

either have that D is a smooth curve of genus 1 and d = 9 or D is a cycle

of n > 2 genus 0 curves. The case where D is a curve of genus 1 and d = 9

cannot occur, because then X = P2 and no genus 1 curve forms a basis for

Pic(P2). Hence D is necessarily a cycle of n genus 0 curves. In particular,

we have the following corollary :
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Corollary 3.4. — LetX be a log K3 surface of Picard rank 0 equipped

with an ample log K3 structure (X,D, ι) of degree d. Then 1 6 d 6 8 and

D is a cycle of 10− d genus 0 curves.

Definition 3.5. — Let X be a log K3 surface equipped with a log

K3 structure (X,D, ι). If D1, ..., Dn are the geometric components of D,

numbered compatibly with the cyclic order of the dual graph G(D) of D

(see Proposition 3.3), then we will denote by ai = [Di] · [Di]. Following

the terminology of [5] we will refer to (a1, ..., an) as the self-intersection

sequence of (X,D, ι). We note that the self-intersection sequence is well-

defined up to a dihedral permutation.

Example 3.6. — Let X be a log K3 surface of the form described in

Example (2.12), and let (X,D, ι) be the associated log K3 structure. Then

X is a del Pezzo surface of degree 8 and the components of D consist of

a rational curve L with self intersection 1 and a rational curve C̃ with

self intersection 3, both defined over k. Furthermore, by construction the

intersection points of C̃ and L are defined over k. It follows that the self-

intersection sequence of (X,D, ι) is (3, 1) and the Galois action on G(D)

is trivial.

Example 3.7. — Let X be a log K3 surface of the form described in

Example (2.13), and let (X,D, ι) be the associated log K3 structure. Then

X is a del Pezzo surface of degree 7 and the components of D consist of a

rational curve L with self intersection 1 and two Gal(k(
√
a)/k)-conjugate

rational curves L̃1, L̃2, defined over k(
√
a), each with self intersection 0. We

hence see that the self-intersection sequence of (X,D, ι) is (0, 0, 1) and the

Galois action on G(D) factors through the quadratic extension k(
√
a)/k,

where the generator of Gal(k(
√
a)/k) acts by switching the two 0-curves.

In particular, the splitting field of D is k(
√
a).

We shall now consider a basic construction which allows one to change

the log K3 structure of a given log K3 surface by performing blow-ups and

blow-downs. We will see below that any two log K3 structures on a given

log K3 surface can be related to each other by a sequence of such blow-ups

and blow-downs.

Construction 3.8. — Let X be a log K3 surface and let (X,D, ι) be a

log K3 structure on X of degree d and self-intersection sequence (a1, ..., an).

If the intersection point Pi = Di ∩ Di+1 is defined over k, then we may

blow-up X at Pi and obtain a new simple compactification (X
′
, D′, ι′). It is

then straightforward to verify that [D′] = −KX
′ and hence (X

′
, D′, ι′) is a
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log K3 structure of degree d− 1 and self-intersection sequence (a1, ..., ai −
1,−1, ai+1 − 1, ai+2, ..., an). If ai, ai+1 6= −1 then a direct application of

the adjunction formula shows that P cannot lie on any (−1)-curve of X.

If in addition (X,D, ι) is ample and d > 1 then (X
′
, D′, ι′) is ample by

the Nakai–Moishezon criterion. Following the notation of [5] we will refer

to such blow-ups as corner blow-ups.

Alternatively, if n > 3 and for some i = 1, ..., n, the geometric component

Di is a (−1)-curve defined over k, then we may blow-down X and obtain a

new simple compactification (X
′
, D′, ι′). It is then straightforward to verify

that [D′] = −KX
′ and hence (X

′
, D′, ι′) is a log K3 structure of degree d+1

and self-intersection sequence (a1, ..., ai−1 + 1, ai+1 + 1, ai+2, ..., an). Fur-

thermore, if (X,D, ι) is ample then so is (X
′
, D′, ι′). Following the notation

of [5] we will refer to such blow-downs as corner blow-downs.

Remark 3.9. — Let X be a log K3 surface of Picard rank 0 and let

(X,D, ι) be an ample log K3 structure on X. Let X
′ −→ X be a new log

K3 structure obtained by a corner blow-up (see Construction 3.8). It is

then clear that the Galois action on the dual graph of D is trivial if and

only if the Galois action on the graph of D′ is trivial. In particular, corner

blow-ups preserve the splitting field of the compactification.

Theorem 3.10. — Let X be a log K3 surface and let (X,D, ι) and

(X
′
, D′, ι′) be two log K3 structures. Then (X

′
, D′, ι′) can be obtained

from (X,D, ι) by first performing a sequence of corner blow-ups and then

performing a sequence of corner blow-downs.

Démonstration. — Clearly we may assume that D and D′ are not empty.

Since k has characteristic 0 we may find a third simple compactification

(Y,E, ιY ), equipped with compatible maps

Y
p

����
��
��
�� q

  @
@@

@@
@@

@

X X
′

where both p and q can be factored as a sequence of blow-down maps

(defined over k)

(Y,E) = (Xm, Dm)
pm−→ (Xm−1, Dm−1)

pm−1−→ . . .
p1−→ (X0, D0) = (X,D)

and

(Y,E) = (X
′
k, D

′
k)

qk−→ (X
′
k−1, D

′
k−1)

qk−1−→ . . .
q1−→ (X

′
0, D

′
0) = (X

′
, D′)
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such that the center of pi is contained in Di−1 and the center of qj is

contained in D′j−1. Furthermore, we may choose Y to be such that the

m+k attains its minimal possible value. Since D and D′ are simple normal

crossing divisors it follows that each Di and D′j are simple normal crossing

divisors. We further note that every geometric fiber of either p or q is

connected.

According to Proposition 3.3, D is either a geometrically irreducible

smooth curve of genus 1 or a cycle of genus 0 curves. Let us first treat

the case where D is a curve of genus 1. Let D̃ be the strict transform of D

in Y . Since D̃ has genus 1 the image q(D̃) cannot be a point, and hence

q(D̃) = D′. Since D′ is smooth and the fibers of q are connected q must

induce an isomorphism D̃
∼=−→ D′. It follows that the birational transfor-

mation X //___ X
′

extends to an well-defined map X −→ X
′
. Arguing

the same in the other direction we get that X
′ //___ X is everywhere

defined as well and hence we get an isomorphism X ∼= X
′
. In particular,

the desired result holds vacuously.

Now assume that D is a cycle of genus 0 curves. By the above argument

D′ must be a cycle of genus 0 curves as well. In particular, the dual graphs

G(D) and G(D′) are circles. We shall now define for each i = 0, ...,m

a simple circle Ci ⊆ G(Di) as follows. For i = 0 we set C0 = G(D0).

Now suppose that Ci ⊆ G(Di) has been defined for some i > 0. Recall that

Xi+1 is obtained from Xi by blowing up a point on Di. If the blow-up point

is not an intersection point corresponding to an edge of Ci then the strict

transforms of the components in Ci form a simple circle in G(Di+1) and we

define Ci+1 to be the resulting circle. If the blow-up point is an intersection

point corresponding to an edge of Ci then the sequence of strict transforms

of the components in Ci forms a simple chain, and we may close this chain to

a simple circle by adding the exceptional curve ofXi+1. We then define Ci+1

to be the resulting circle. Similarly, we may define a circle C ′j ⊆ G(D′j) for

j = 0, ..., k. These constructions yield two simple circles in the dual graph

G(E) = G(Dm) = G(D′k), which must coincide since H1(|G(E)|,Z) ∼= Z
(where | • | denotes geometric realization) and so G(E) cannot contain

two distinct simple circles. In particular, the geometric components of D′i
which belong to C ′i are exactly the geometric components which are images

of geometric components lying in Cm ⊆ G(Dm) = G(D′k).

We now claim that the minimality of (Y,E) implies that Ci = G(Di) for

every i. Indeed, let i0 > 0 be the smallest index such that Ci0 6= G(Di0).

This means that Xi0 is obtained from Xi0−1 by blowing up a point P ∈
Di0−1 which lies on exactly one geometric component D0

i0−1 ⊆ Di0−1. We
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may then define inductively D0
i ⊆ Di for i > i0 to be the strict transform

of D0
i−1. This gives us in particular a component E0 = D0

m in E = Dm. Let

j0 be the smallest index such that the image of E0 in D′j0 is 1-dimensional.

We may now define for each j > j0 the component D1
j ⊆ D′j to be the

image of E0. In addition, we may define for each i > i0 the curve Ti ⊆ Di

which is the inverse image of P , and for each j > j0 the curve T ′j ⊆ D′j
which is image of Tm ⊆ Dm = E. We note that Ti need not be irreducible,

but must be connected. By construction, no geometric component of Ti is

a vertex of Ci and no geometric component of T ′i is a vertex of C ′i. We

now claim that Tj0 is a point. If j0 = 0 then this follows from the fact

that every component of D′0 is a vertex of C ′0. If j0 > 0 then by the choice

of j0 the map qj0 : X
′
j0 −→ X

′
j0−1 must be the blow-down of D1

j0
. Since

D′j0−1 has simple normal crossings it follows that D1
j0

can have at most two

intersection points with other components of D′j0 . Since D1
j0

belongs to the

circle C ′j0 it already has two intersection points with components in C ′j0 ,

and hence these must be the only intersection points on D1
j0

. This implies

that T ′j0 is a point (otherwise there would be a third intersection point of

D1
j0

with some component of T ′j0).

Let r be the number of components of Tm ⊆ Dm. We now observe that

for i > i0 the only component of Di which meets a component of Ti is D0
i ,

and that for j > j0 the only component of D′j which meets a component of

T ′j is D1
j . We may hence rearrange the order of blow-ups and blow-downs

so that the components of Tm are added in steps i = m− r + 1, ...,m and

are blown-down in steps j = k, ..., k − r+ 1. The minimality of (Y,E) now

implies that r = 0. It follows that Ci = G(Di) for every i as desired, and

hence C ′j = G(D′j) for every j as well. In particular, E is a circle of curves,

(Y,E) is obtained from (X,D) by a sequence of blowing up intersection

points, and (X
′
, D′) is obtained from (Y,E) by a sequence of blowing down

components. �

Corollary 3.11. — Let X be a log K3 surface. Then the category

Log(X) of log K3 structures on X is cofitlered. In particular, if (X,D, ι)

and (X
′
, D′, ι′) are two log K3 structures then there exists a third log

K3 structure (Y,E, η) equipped with maps p : (Y,E) −→ (X,D) and

q : (Y,E) −→ (X
′
, D′) which respect the embedding of X.

Corollary 3.12. — Let X be a log K3 surface. Then the splitting

fields of all log K3 structures on X are identical. In particular, the splitting

field is an invariant of X itself.

Démonstration. — Combine Theorem 3.10 and Remark 3.9. �
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3.2. The characteristic class

In this subsection we will focus our attention on ample log K3 surfaces of

Picard rank 0. We will show that every such surface admits an ample log K3

structure of degree 5 and self-intersection sequence (−1,−1,−1,−1,−1).

Associated with such a log K3 structure is a natural characteristic class

α ∈ H1(k,D5). We will show that this class is independent of the choice

of a log K3 structure, and is hence an invariant of X itself. We begin with

some preliminary lemmas.

Lemma 3.13. — Let X be a log K3 surface of Picard rank 0 and let

(X,D, ι) be a log K3 structure on X of degree d and self-intersection se-

quence (a1, ..., an). Then ∑
i

ai = 3d− 20.

Démonstration. — Since the geometric components of D form a cycle we

have

d = [D] · [D] =

n∑
i=1

[Di] · [Di] + 2

n−1∑
i=1

[Di][Di+1] + 2[Dn] · [D0] =
∑
i

ai + 2n

and so ∑
i

ai = d− 2n = 3d− 20

as desired. �

Corollary 3.14. — Let X be a smooth, simply connected surface and

(X,D, ι) an ample log K3 structure on X of degree d. Then d > 5.

Démonstration. — Let (a1, ..., an) be the self-intersection sequence of

(X,D, ι). Since X is a del Pezzo surface we have that ai > −1 for every

i = 1, .., n. By Lemma 3.13 we get that

3d− 20 =
∑
i

ai > −n = d− 10

and so d > 5, as desired. �

Proposition 3.15. — Let X be a log K3 surface of Picard rank 0 and

let (X,D, ι) be an ample log K3 structure of degree 8. Then (X,D, ι) has

self-intersection sequence (3, 1).

Démonstration. — Let us write D = D1 ∪ D2 with D1, D2 the geome-

tric components. According to Lemma 2.10 the classes {[D1], [D2]} form

a basis for Pic(Xk). Let (a1, a2) be the self-intersection sequence of D.
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By Lemma 3.13 we have a1 + a2 = 4. Since X is a del Pezzo surface we

have ai > −1. Hence, up to switching [D1] and [D2], the only options

for (a1, a1) are (5,−1), (4, 0), (3, 1) and (2, 2). By Proposition 3.3 we have

[D1] · [D2] = 2. Hence the intersection matrix of D1 and D2 is given by

M =

(
a1 2

2 a2

)
.

Since D1, D2 form basis the determinant of this matrix must be ±1. We

hence see that the only option for the self-intersection sequence is (a1, a2) =

(3, 1). �

We are now in a position to show that any ample log K3 surface of

Picard rank 0 admits a log K3 structure of of self-intersection sequence

(−1,−1,−1,−1,−1).

Proposition 3.16. — Let X be an ample log K3 surface of Picard

rank 0. Then X admits an ample log K3 structure of degree 5 and self-

intersection sequence (−1,−1,−1,−1,−1).

Démonstration. — Let (X,D, ι) be an ample log K3 structure on X of

degree d > 5 and self-intersection sequence (a1, ..., an). First assume that

d = 5. By Lemma 3.13 we have a1 + a2 + a3 + a4 + a5 = −5. Since X is a

del Pezzo surface each ai > −1 and so ai = −1 for every i = 1, ..., 5.

Now assume that d = 6. In this case n = 4 and by Lemma 3.13 we have

a1 + a2 + a3 + a4 = −2 and hence D contains either two or three (−1)-

curves. The possible self-intersection sequences, up to a dihedral permuta-

tion, are then (−1,−1, 0, 0), (−1, 0,−1, 0) and (−1,−1,−1, 1). Let us show

that the self-intersection sequence (−1, 0,−1, 0) cannot occur. For this, one

may base change to k. One may then blow-down the two (−1)-curves and

obtain a new ample log K3 structure of degree 8 and self-intersection se-

quence (2, 2). According to Proposition 3.15 this is impossible. It follows

that the self-intersection sequence of (X,D, ι) is either (−1,−1, 0, 0) or

(−1,−1,−1, 1).

If the self-intersection sequence is (−1,−1, 0, 0) then the intersection

point P of the two 0-curves must be Galois invariant. We may then perform

a corner blow-up at P and obtain new ample log K3 structure of degree 5

and self-intersection sequence (−1,−1,−1,−1,−1). If the self-intersection

sequence is (−1,−1,−1, 1) then the (−1)-curve that meets two other (−1)-

curves must be defined over k. We may then blow it down to obtain a new

ample log K3 structure of degree 7 and self-intersection sequence (0, 0, 1).

In this log K3 structure the two intersection points which lie on the 1-curve

must be defined over k as a pair. We may then perform a corner blow-up
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at these two points to obtain an ample log K3 structure of degree 5 and

self-intersection sequence (−1,−1,−1,−1,−1). This covers the case d = 6.

Let us now assume that d = 7. In this case n = 3 and by Lemma 3.13

we have a1 + a2 + a3 = 1. The possible self-intersection sequences (up

to permutation) are then (−1,−1, 3), (−1, 0, 2), (−1, 1, 1) and (0, 0, 1). We

now claim that the self-intersection sequences (−1,−1, 3) and (−1, 1, 1)

cannot occur. Working again over k, we may blow-down one of the (−1)-

curves and get an ample log K3 structure of degree 8 and self-intersection

sequence (0, 4) in the first case and self-intersection sequence (2, 2) in the

second. According to Proposition 3.15, this is impossible. We next observe

that (−1, 0, 2) has a trivial symmetry group and that the symmetry group

of (0, 0, 1) fixes the vertex between the two 0-curves. In particular, in either

case there must exist an intersection point which is Galois invariant and

which does not lie on any (−1)-curve. Performing a corner blow-up at this

point we obtain an ample log K3 structure of degree 6 and we can proceed

as above.

Let us now assume that d = 8. By Proposition 3.15 the self-intersection

sequence must be (1, 3). Blowing up the two intersection points we get an

ample log K3 structure of degree 6, and we may proceed as above. �

Remark 3.17. — Let X be a log K3 surface and let (X,D, ι) be an

ample log K3 structure with splitting field L (see Definition 2.2). Combining

Proposition 3.16 and Corollary 3.12 we may conclude that X admits an

ample log K3 structure of self-intersection sequence (−1,−1,−1,−1,−1)

and splitting field L.

Remark 3.18. — According to [14, Theorem 2.1] every del Pezzo surface

of degree 5 is rational over its ground field. Proposition 3.16 now implies

that every ample log K3 surface of Picard rank 0 has a point defined over

k.

According to Proposition 3.16 every ample log K3 surface of Picard rank

0 admits an ample log K3 structure (X,D, ι) such that X is a del Pezzo

surface of degree 5 and D is a cycle of five (−1)-curves. Recall that we have

denoted by G(D) the dual graph of D. In particular, in this case G(D) is

a circle of length 5. Let

D5 =
〈
σ, τ |στσ−1 = τ−1, τ5 = 1

〉
be the dihedral group of order 10. A choice of two neighbouring vertices

v0, v1 ∈ G(D) yields an isomorphism Tv0,v1 : D5 −→ Aut(G(D)) which

sends τ to a the rotation of G(D) that maps v0 to v1 and τ to the reflection

of G(D) which fixes v0. Since Aut(G(D)) acts transitively on the set of
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ordered pairs of neighbours in G(D) it follows that the isomorphism Tv0,v1
is well-defined up to conjugation.

Definition 3.19. — Let X be a smooth log K3 surface. Given an ample

log K3 structure (X,D, ι) of self-intersection sequence (−1,−1,−1,−1,−1)

we will denote by

ρX : Γk −→ Aut(G(D))

the action of the Galois group Γk on the dual graph G(D) of D. Choosing

two neighbouring vertices v0, v1 ∈ G(D) we denote by

ρv0,v1
X

def
= T−1

v0,v1 ◦ ρX : Γk −→ D5

the corresponding composition. As explained above, Tv0,v1 is independent

of the choice of v0, v1 up to conjugation. We will denote by

αX
def
= [ρv0,v1

X
] ∈ H1(Γk,D5)

the corresponding non-abelian cohomology class (which is independent of

v0, v1) and will refer to it as the characteristic class of the log K3 struc-

ture X.

Our next goal is to show that αX does not depend on the choice of

a log K3 structure (X,D, ι). We begin by observing that the geometric

realization |G(D)| of the graph G(D) is a topological space homeomor-

phic to the 1-dimensional circle, and hence the first singular homo-

logy group H1(|G(D)|,Z) (see [8, §2]) is isomorphic to Z. The indu-

ced action of Aut(G(D)) in H1(|G(D)|,Z) ∼= Z yields a homomorphism

χ : Aut(G(D)) −→ {1,−1}. Elements of Aut(G(D)) which are mapped to

1 acts via orientation preserving maps, i.e., via rotation of the circle, while

elements which are mapped to −1 act via orientation reversing maps, i.e.,

via reflections. We will generally refer to elements of the first kind as rota-

tions and elements of the second kind as reflections.

Given an isomorphism Tv0,v1 : D5

∼=−→ Aut(G(D)) as above we may

identify χ with the homomorphism (denoted by the same name)

χ : D5 −→ {1,−1}

which sends τ to 1 and σ to −1. We note that this identification does not

depend on the choice of (v0, v1). We will refer to χ as the sign homo-

morphism. The sign homomorphism χ : D5 −→ {1,−1} induces a map

χ∗ : H1(Γk,D5) −→ H1(Γk, µ2). Given a log K3 structure (X,D, ι) of

self-intersection sequence (−1,−1,−1,−1,−1) we hence obtain a quadra-

tic character χ∗(αX) ∈ H1(Γk, µ2). As a first step towards the invariance

of αX we will show that χ(αX) is independent of X.
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Proposition 3.20. — Let X be an ample log K3 surface of Picard

rank 0 and let (X,D, ι) be a log K3 structure of self-intersection sequence

(−1,−1,−1,−1,−1). Then for every large enough l, the second l-adic co-

homology with compact support H2
c (Xk,Ql) is isomorphic to Ql and the

action of Γk on Ql is given by the quadratic character χ(αX).

Démonstration. — Since Br(Xk) = 0 the Kummer sequence yields a

canonical isomorphism H2(Xk,Z/l
n) ∼= Pic(Xk)/ln for every prime l and

integer n > 1. On the other hand, since D is a union of curves which meet

each other transversely we have a short exact sequence

0 −→ T (k) −→ Pic(Dk) −→ Pic(D̃k) −→ 0

where D̃ is the normalization of D and T is a suitable algebraic torus, in

this case of dimension 1 (see, e.g, [7, Proposition 1.9]). Since D is a curve we

have Br(Dk) = 0 and since T (k) is divisible the Kummer sequence yields a

natural isomorphism H2(Dk,Z/l
n) ∼= Pic(Dk)/ln ∼= Pic(D̃k)/ln. Now D̃k is

just the disjoint union of geometric components of D, and since the images

of these components form a basis for Pic(Xk) it now follows that the map

H2(Xk,Z/l
n) −→ H2(Dk,Z/l

n) is an isomorphism for every n, implying

that H2
(
Xk,Ql

)
−→ H2

(
Dk,Ql

)
is an isomorphism as well. Now consider

the canonical long exact sequence of cohomology with compact support :

... −→ H1
c

(
Xk,Ql

)
−→ H1

(
Xk,Ql

)
−→ H1

(
Dk,Ql

)
−→

−→ H2
c

(
Xk,Ql

)
−→ H2

(
Xk,Ql

)
−→ H2

(
Dk,Ql

)
−→ H3

c

(
Xk,Ql

)
−→ ...

Since Xk is simply connected we now obtain an isomorphism of Galois

modules

H1
(
Dk,Ql

) ∼= H2
c

(
Xk,Ql

)
.

Let us first assume that the image of ρX : Γk −→ Aut(G(D)) is either

trivial or generated by a reflection. In this case the Galois action on D

must fix one of the intersection points P ∈ D. Since Dk is a cycle of 5

rational curves, and each rational curve is simply connected, we see that

the category of finite étale coverings of D can be identified with the cate-

gory of finite coverings of the dual graph of D (where we say that a map

of graphs is covering if it induces a covering map after geometric realiza-

tion). We may hence identify π1(Dk, P ) with the pro-finite completion of

the fundamental group of G(D), namely, with Ẑ. Furthermore, the Ga-

lois action on π1(Dk, P ) is given by the action of Γk on π1(|G(D)|, P )

via ρX . In particular, the action of Γk on π1(Dk, P ) ∼= Ẑ is given by

the character Γk
ρX−→ Aut(G(D))

χ−→ {1,−1}. We may hence identify

H2
c

(
Xk,Ql

) ∼= H1
(
Dk,Ql

)
with Hom(Ẑ,Zl) ⊗ Ql ∼= Ql and we get that
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the Galois action is given by the quadratic character [χ∗αX ] ∈ H1(Γk, µ2),

as desired.

Let us now assume that the image of ρX is not trivial and not gene-

rated by a reflection. In this case the image of ρX is either the rotation

subgroup or all of Aut(G(D)). It will suffice to prove the claim for a single

large enough l. We may hence assume that l − 1 is not divisible by 5. Let

H ⊆ Aut(G(D)) be the image of ρX . If H contains a reflection (i.e., if

H = Aut(G(D))) then let H0 ⊆ H be a subgroup generated by a reflec-

tion. If H does not contain a reflection (i.e., H is the rotation subgroup

of Aut(G(D))), we let H0 = {1} ⊆ H be the trivial subgroup. Let L/k be

the field extension of degree [H : H0] = 5 corresponding to the subgroup

ρ−1

X
(H0) ⊆ Γk and let ρL : ΓL −→ H0 be the natural map. By the argument

above we know that ΓL acts on H2
c (Xk,Ql) ∼= Ql via the map

ΓL
ρL−→ H0

χ|H−→ {1,−1} −→ Q∗l .

It follows that Γk acts on H2
c (Xk,Ql) via ρX . We need to prove that the

induced action of H on Ql is via χ. If H = Aut(G(D)) then since Aut(Ql) =

Q∗l is abelian and χ exhibits {1,−1} as the abelianization of Aut(G(D))

we get that any action of H on Ql factors through χ. It is hence left to

show that the action of H is non-trivial. But this follows from the fact

that in this case H0 ⊆ H is the subgroup generated by a single reflection,

and hence the restricted map χ|H0
: H0 −→ {1,−1} is an isomorphism. If

H ⊆ Aut(G(D)) is the cyclic subgroup of rotations than we note that by

our assumption Q∗l contains no 5-torsion elements and hence every action

of H on Ql is trivial, and in particular given by the trivial homomorphism

χ|H . �

Finally, we may now show that αX is independent of X.

Theorem 3.21. — Let X be a log K3 surface and let (X,D, ι) and

(X
′
, D′, ι′) be two ample log K3 structures of self-intersection sequence

(−1,−1,−1,−1,−1). Then the dual graphs G(D) and G(D′) are Galois

equivariantly isomorphic. In particular, αX = αX′ in H1(Γk,D5).

Démonstration. — By Theorem 3.10 we may find a third log K3 struc-

ture (Y,E, ιY ), equipped with compatible maps

Y
p

����
��
��
�� q

  @
@@

@@
@@

@

X X
′
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where both p and q can be factored as a sequence of blow-down maps. In

particular, every geometric fiber of either p (resp. q) is connected, and hence

the pre-image under p (resp. q) of every connected subscheme is connected.

Let D0, ..., D4 be the geometric components of D and let D′0, ..., D
′
4 be the

components of D′. Let D̃0, ..., D̃4 be the strict transform of the Di’s in Y

and let D̃′0, ..., D̃
′
4 be the strict transform of the D′i’s in Y .

Let Λ ⊆ Γk be the kernel of ρX and let L/k be the finite Galois extension

determined by Λ. By Proposition 3.20 ρX′(Λ) is contained in the rotation

subgroup of Aut(G(D′)). Since each D̃i is defined over L we get that q(D̃i)

is either a component of D′, or a point of D′, which in either case are

defined over L. Since any rotation in Aut(G(D′)) acts freely on the set of

points over any field, it follows that Λ is contained in the kernel of ρX′ .

Applying the argument in the other direction we may conclude that Λ is

equal to the kernel of ρX′ . In particular, all the D′i are defined over L.

Now if Λ = Γk then clearly G(D) and G(D′) are equivariantly isomorphic

(and αX = αX′ = 0). If ρX(Γk) ⊆ Aut(G(D)) is a group of order 2

generated by a reflection then by the above the same is true for ρX′(Γk)

and the desired isomorphism follows from Proposition 3.20. We may hence

assume that Γk acts transitively on the geometric components of both D

and D′.

Since X is not proper and E cannot be a genus 1 curve, we get from

Proposition 2.7 and Proposition 3.3 that E is a cycle of genus 0 curves. We

will say that two components E0, E1 ⊆ E are p-neighbours if they can be

connected by a consecutive chain of components E0, F1, F2, .., Fn, E1 such

that p(Fi) is a point for every i = 1, ..., n. Similarly, we define the notion

of q-neighbours. Now if D̃i and D̃j are p-neighbours then Di ∩Dj must be

non-empty. Conversely, if P ∈ Di∩Dj is an intersection point then p−1(P )

is connected and must be a chain of curves in E (on which p is constant)

which meets both D̃i and D̃j . It follows that D̃i and D̃j are p-neighbours

if and only if Di and Dj are neighbours in D.

We now consider two possible cases. The first case is when D̃0 coincides

with one of the D̃′i. Since the Galois action is transitive on geometric com-

ponents we then have that each D̃i coincides with one of the D̃′j . This

implies that two components E0, E1 ⊆ E are p-neighbours if and only if

they are q-neighbours. By the above we get that the associated Di 7→ q(D̃i)

determines a Galois equivariant isomorphism G(D) ∼= G(D′), as desired.

Now assume that D̃0 does not coincides with one of the D̃′i. In this

case, Galois invariance implies that the sets {D̃0, ..., D̃4} and {D̃′0, ..., D̃′4}
are disjoint. Since the Galois action is also transitive on intersection point
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we may deduce that for each intersection point P of D the curve p−1(P )

must contain D̃′j for exactly one j. Since p−1(P ) is connected it follows

that q(p−1(P )) = D′j . Now let Ĝ(D) denote the graph whose vertices are

the intersection points of D and whose edges are the components of D.

It follows that the association P 7→ q(p−1(P )) determines a Galois equi-

variant isomorphism of graphs Ĝ(D) ∼= G(D′). Since Ĝ(D) and G(D) are

equivariantly isomorphic (e.g., by sending each component to the antipodal

intersection point) we may conclude that G(D) and G(D′) are equivariantly

isomorphic.

�

3.3. The classification theorem

Relying on Proposition 3.16 and Theorem 3.21 we may now make the

following definition :

Definition 3.22. — Let X be an ample log K3 surface of Picard rank

0. We will denote by αX ∈ H1(k,D5) the characteristic class αX as-

sociates to any log K3 structure (X,D, ι) of self-intersection sequence

(−1,−1,−1,−1,−1).

Our goal in this subsection is to prove the following theorem :

Theorem 3.23. — The association X 7→ αX determines a bijection

between the set of k-isomorphism classes of ample log K3 surfaces of Picard

rank 0 and the cohomology set H1(k,D5).

The proof of Theorem 3.23 will occupy the rest of the subsection. We

begin by a combinatorial result concerning the configuration of (−1)-curves

on del Pezzo surfaces of degree 5.

Proposition 3.24. — Let X be a del Pezzo surface of degree 5. Then

there exist exactly 12 cycles of five (−1)-curves on Xk, and the automor-

phism group of X acts transitively on the set of such cycles. Furthermore, if

D0, ..., D4 is such a cycle then the (−1)-curves which are not in {D0, ..., D4}
form a cycle D′0, ..., D

′
4 of length 5 such that Di meets D′j if and only if

j = 2i mod 5.

Démonstration. — It is well known that X has exactly ten (−1)-curves

and that two (−1)-curves are either skew or meet transversely at a single

point. The intersection graph of the (−1)-curves is the Petersen graph :
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Figure 3.1. The Petersen graph

Let C0, C1 be the external pentagon and internal pentagons in the Peter-

sen graph. Then C0 and C1 each form a cycle of length five. Furthermore,

each vertex of C0 is connected by an edge to exactly one vertex of C1, and

vice versa. Now consider a cycle C = 〈v0, ..., v4〉 of length five which is not

C0 or C1. Without loss of generality we may assume that v0 ∈ C0 and

v4 ∈ C1. Since two edges connecting C0 and C1 cannot have a common

vertex it follows that the intersection of C with C0 either consists of the

segment 〈v0, v1〉 or the segment 〈v0, v1, v2〉. We claim that for each choice

of three consecutive vertices w0, w1, w2 ∈ C0 there exists a unique cycle of

length five C = 〈v0, ..., v4〉 such that vi = wi for i = 0, 1, 2. Indeed, there

could be at most one such cycle because v3, v4 ∈ C1 are completely deter-

mined by the fact that v3 is connected to w2 and v4 is connected to w0.

On the other hand, direct examination shows that this choice indeed gives

a cycle, i.e., that v3 and v4 are connected in C1. It follows that there are

exactly five cycles of length five whose intersection with C0 contains three

vertices and by applying the above argument to C1 instead of C0 we see

that there are also exactly five cycles of length five whose intersection with

C0 contains two vertices. We have hence counted all together (including C0

and C1 themselves) exactly 12 cycles of length five.

Now it is known that the automorphism group G = Aut(Xk) of Xk

is isomorphic to S5. Furthermore, the action of G on the graph of (−1)-

curves identifies G with the isomorphism group of the Petersen graph. Let

H ⊆ G be the subgroup of those transformations mapping C0 to itself. The

automorphism group of a cycle of length five is D5 and direct observation

shows that each transformation in D5 can be extended to an automorphism

of the Petersen graph, and hence to an automorphism of Xk. It follows that

H ∼= D5 and hence H has exactly 12 cosets in G, which means that G acts

transitively on the set of cycles of length five.

It will now suffice to show the desired property for just one cycle of length

five. In particular, it is straightforward to verify the property for the cycle

C0, with the remaining vertices forming the cycle C1. �
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We are now in a position to establish the first half of Theorem 3.23,

namely, that the invariant αX ∈ H1(Γk,D5) determines X up to a k-

isomorphism.

Theorem 3.25. — Let X,Y be an ample log K3 surfaces of Picard rank

0. If αX = αY then X is k-isomorphic to Y .

Démonstration. — Let (X,D, ι) and (Y ,E, ι) be ample log K3 struc-

tures of degree 5 and self-intersection sequence (−1, ...,−1) on X and Y

respectively. Let D0, ..., D4 be the geometric components of D, considered

as a cycle of (−1)-curves. By Proposition 3.24 the (−1)-curves of X which

are not in {D0, ..., D4} form a cycle D′0, ..., D
′
4 of length five, such that Di

meets D′j if and only if j = 2i mod 5. It follows that the association i 7→ 2j

identifies the Galois action on the cycle D′0, ..., D
′
4 with the Galois action

on the cycle D0, ..., D4. We may hence extend the equivariant isomorphism

of the dual graphs of D and E to an equivariant isomorphism of the graphs

of (−1)-curves of X and Y . By the general theory of del Pezzo surfaces of

degree 5, every such isomorphism is induced by an isomorphism X
∼=−→ Y ,

yielding the desired isomorphism X
∼=−→ Y . �

Our next goal is to show that any class α ∈ H1(k,D5) is the characteristic

class of some ample log K3 surface of Picard rank 0. We begin with a few

lemmas that will help us determine when certain open varieties are simply-

connected.

Lemma 3.26. — Let

K
f //

g

��

H

��
G // P

be a pushout square of groups. If the map f is surjective and the map g

vanishes on the kernel of f then the map G −→ P is an isomorphism.

Démonstration. — By the universal property of pushouts it will suffice

to show that for every homomorphism of groups ϕ : G −→ N there exists

a unique homomorphism of groups ψ : H −→ N such that ψ ◦ f = ϕ ◦ g.

But this now follows directly from the fact ϕ ◦ g vanishes on the kernel of

f and that f is surjective. �

Lemma 3.27. — Let Y be a smooth, connected algebraic variety (not

necessarily proper) over an algebraically closed field k of characteristic 0

and let D ⊆ Y be a smooth irreducible divisor. Assume that Y contains

a smooth projective rational curve C ⊆ Y which meets D transversely at
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exactly one point. Let W = Y \ D. Then the induced map πét
1 (W,Q) −→

πét
1 (Y,Q) is an isomorphism.

Démonstration. — By choosing a large enough algebraically closed field

which contains both k and the field of complex numbers C, and using the

invariance of the fundamental group by base change between algebraically

closed fields (see [10, Tag 0BQC]), we may reduce to the case where k = C.

Furthermore, by the Riemann existence theorem it will suffice to show

the claim for the topological fundamental group of the associated space of

complex points.

Let P be the intersection point of C and D. Since C meets D transversely

we may find a tubular neighborhood D(C) ⊆ U ⊆ Y (C) such that U∩C(C)

is a tubular neightborhood of P in C(C). Furthermore, we may find a

retraction r : U −→ D(C) such that U ∩ C(C) = r−1(P ) and such that

r exhibits U as a disc bundle over D(C) (isomorphic to the disc bundle

associated to the normal bundle of D(C) in Y (C)). Let E = U ∩W (C) and

let q : E −→ D(C) be the restriction of r to E, so that q is fiber bundle

whose fibers are punctured discs (and in particular homotopy equivalent to

S1). Let F = q−1(P ) and Q ∈ F be a point. Using Van-Kampen’s theorem

and the fact that r : U −→ D(C) is a homotopy equivalence we obtain a

pushout square of groups

π1(E,Q)
q∗ //

i∗

��

π1(D(C), Q)

��
π1(W (C), Q) // π1(Y (C), Q)

Since q : E −→ D(C) is a fiber bundle whose fiber F = q−1(P ) is connected

it follows that the sequence of groups

π1(F,Q) −→ π1(E,Q) −→ π1(D) −→ 1

is exact. Since F is contained in the contractible space C(C) ∩W (C) ∼=
A1(C) (recall that C ∼= P1 by assumption) it follows that the composed

map π1(F,Q) −→ π1(W (C), Q) is the trivial map. By Lemma 3.26 it follows

that the map

π1(W (C), Q) −→ π1(Y (C), Q)

is an isomorphism as desired. �

Corollary 3.28. — Let X be a simply connected algebraic variety

over an algebraically closed field k of characteristic 0. Let D ⊆ X be a

simple normal crossing divisor with geometric components D0, ..., Dn−1.
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Assume that for every i = 0, ..., n− 1 there exists a smooth rational curve

Ei such that Di meets Ei transversely at one point and Di ∩ Ej = ∅ if

i < j. Then X = X \ D is simply connected.

Démonstration. — For each r = 0, ..., n let Xr = X \ [∪i<rDi], so that

in particular X0 = X and Xn = X. Let Q ∈ Xn be a closed point. For

each r = 0, ..., n − 1 we may apply Lemma 3.27 with Y = Xr, D = Dr

and C = Er and deduce that the map πét
1 (Xr+1, Q) −→ πét

1 (Xr, Q) is an

isomorphism. Since X is simply connected it follows by induction that each

Xr is simply connected, and in particular X = Xn is simply connected, as

desired. �

Remark 3.29. — Corollary 3.28 can be used to show that the sur-

faces considered in Examples (2.12) and (2.13) are (geometrically) sim-

ply connected. In Example (2.12) we may apply Corollary 3.28 with E0

the inverse image of any line in P2 other than L and E1 the exception

curve above P . In Example (2.13) we may apply Corollary 3.28 with E0

the inverse image of any line in P2 other than L and E1, E2 the exceptional

curves above P1 and P2 respectively.

Corollary 3.30. — Let X be a del Pezzo surface of degree 5 and let

D ⊆ X be a cycle of five (−1)-curves. Then X \ D is simply connected.

Démonstration. — We first note that any two (−1)-curves on X which

meet each other do so transversely. The desired result now follows by com-

bining Proposition 3.24 and Corollary 3.28. �

Lemma 3.31. — Let X be a del Pezzo surface of degree 5. If D0, ..., D4

is a cycle of (−1)-curves then [D0], ..., [D4] forms a basis for Pic(Xk) and∑
i[Di] = −KX .

Démonstration. — By Proposition 3.24 it will suffice to prove this for a

single choice of cycle. Since this is a geometric property we may as well

extend our scalars to k and identify X with the blow-up of P2 and four

suitably generic points P1, P2, P3, P4 ∈ P2(k). For i = 1, 2, 3 let Li ⊆ Xk

be the strict transform of the line in P2 passing through Pi and Pi+1 and

for j = 1, ..., 4 let Ej be the exceptional curve associated to Pj . Then

we have a cycle of (−1)-curves given by 〈L1, E2, L2, E3, L3〉. It is then

straightforward to verify that these curves form a basis for Pic(Xk), and

that
∑
i[Di] = −KX . �

We now have what we need in order to establish the second half of

Theorem 3.23.
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Theorem 3.32. — Let k be a field of characteristic 0 and let ρ : Γk −→
D5 be a homomorphism. Then there exists a log K3 surface X and an

ample log K3 structure (X,D, ι) on X whose self-intersection sequence is

(−1,−1,−1,−1,−1) and such that ρk = ρ.

Démonstration. — Let X be the blow-up of P2 at 4 points in general

position which are all defined over k. Then X is a del Pezzo surface of

degree 5. Let G be the incidence graph of (−1)-curves on X (which is

isomorphic to the Petersen graph, see 3.3). By our construction the Galois

action on G is trivial. It is well-known that the action of Aut(Xk) on G

induces an isomorphism Aut(Xk) ∼= Aut(G). Let us now choose a cycle C

of length five in G, and let H ⊆ G be the stabilzer of this cycle. Then H is

isomorphic to D5. Composing ρ : Γk −→ D5 with the inclusion D5
∼= H ⊆ G

we obtain a homomorphism σ : Γk −→ Aut(G) ∼= Aut(Xk). Twisting X by

σ we obtain a new del Pezzo surface Xσ over k. Since σ factors through the

stabilizer of C we see that C will be Galois stable in X
σ
. Let D be the union

of (−1)-curves in C. It now follows from Proposition 3.24, Lemma 2.10,

Lemma 3.31 and Corollary 3.28 that X = X \ D is a log K3 surface.

Furthermore, by construction we have ρX = ρ. �

We are now in a position to deduce our main result of this subsection.

Proof of Theorem 3.23. — By Theorem 3.32 every element α ∈ H1(k,D5)

is the characteristic class αX of some ample log K3 surface of Picard rank

0. By Theorem 3.25 the invariant αX determines X up to an isomorphism.

It follows that the association X 7→ αX determines a bijection between the

set of k-isomorphism types of ample log K3 surfaces of Picard rank 0 and

the Galois cohomology set H1(k,D5). �

3.4. Quadratic log K3 surfaces

Definition 3.33. — Let X be an ample log K3 surface of Picard rank

0. We will say that X is quadratic with character χ ∈ H1(X,µ2) if there

exists a homomorphism f : {1,−1} −→ D5 such that αX = f∗(χ).

Remark 3.34. — By Remark 3.17 we see that a log K3 surface X of

Picard rank 0 is quadratic if and only if X admits an ample log K3 struc-

ture with a quadratic splitting field L/k, in which case χ is the quadratic

character associated to L.

Definition 3.35. — Given a non-zero element a ∈ k∗ we will denote by

[a] ∈ H1(k, µ2) the class corresponding to the quadratic extension k(
√
a)/k.
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Proposition 3.36. — Let X be a log K3 surface of Picard rank 0 which

is quadratic with character χ = [a] ∈ H1(k, {1,−1}). Then X is isomorphic

over k to the affine surface in A3 given by

(3.1) (x2 − ay2)t = y − 1

Démonstration. — Equation (3.1) is a particular case of Examples (2.13)

and (3.7) and hence defines a log K3 surface which possess an ample log K3

structure (X,D, ι) of self-intersection sequence (0, 0, 1) and splitting field

k(
√
a). By Remark 3.34 we see that X is quadratic with character χ = [a].

Finally, by Theorem 3.25 it follows that every quadratic log K3 structure

with character [a] is isomorphic to X. �

Proposition 3.37. — Let X be an ample log K3 surface of Picard rank

0. If αX = 0 then X is k-isomorphic to the affine surface in A3 given by

the equation

(3.2) (xy − 1)t = x− 1

Démonstration. — Equation (3.2) is a particular case of Examples (2.12)

and (3.6) and hence defines a log K3 surface which possess an ample log

K3 structure (X,D, ι) of self-intersection sequence (3, 1) and splitting field

k. By Remark 3.34 we see that X is quadratic with character χ = 0, and

hence αX = 0. By Theorem 3.25 it follows that every log K3 structure with

αX = 0 is isomorphic to X. �

4. Integral points

4.1. Zariski density

Our goal in this section is to prove the following theorem :

Theorem 4.1. — Let X be a separated scheme of finite type over Z
such that X = X ⊗Z Q is an ample log K3 surface of Picard rank 0 and

trivial characteristic class. Then the set of integral points X(Z) is not Zariski

dense.

Démonstration. — According to Proposition 3.37 X is isomorphic over

k to the affine surface in A3 given by the equation

(4.1) (xy − 1)t = x− 1

Hence the coordinates x, y, t determine three rational functions fx, fy, ft
on the scheme X which are regular when restricted to X. It follows that
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the poles of fx, fy and ft are all “vertical”, i.e., they are divisors of the

form M = 0 for M ∈ Z. In particular, there exists divisible enough M

such that for every P ∈ X(Z) the values Mfx(P ),Mfy(P ) and Mft(P )

are all integers. Given an 0 6= M ∈ Z, we will say that a number x ∈ Q
is M -integral if Mx ∈ Z. We will say that a solution (x, y, t) of (4.1) is

M -integral if each of x, y and t is M -integral. Now by the above there exists

an M 6= 0 such that (fx(P ), fy(P ), fz(P )) is an M -integral solution of (4.1)

for every P ∈ X(Z). It will hence suffice to show that for every 0 6= M ∈ Z,

the set of M -integral solutions of (4.1) is not Zariski dense (in the affine

variety (4.1)).

Since the function f(y) = y−1
y on R \ {0} converges to 1 as y goes to

either ±∞ it follows that there exists a positive constant C > 0 such that∣∣∣y−1
y

∣∣∣ < C for every y such that |y| > 1. We now claim that if (x, y, t) is a

M -integral solution then either |y| < 2M or |x− 1| < 2C or t = 0. Indeed,

suppose that (x, y, t) is an M -integral triple such that |y| > 2M > 1,

|x− 1| > 2C, and |t| > 1
M . Then

∣∣∣y−1
y

∣∣∣ < C 6 |x−1|
2 and hence

|(xy − 1)t| = |(x− 1)y + (y − 1)||t| > 1

2
|(x− 1)y||t| > |x− 1|,

which means that (x, y, t) is not a solution to (4.1). It follows that all the

M -integral solutions of (4.1) lie on either the curve t = 0, or on the curve

x − 1 = i for |i| < 2C an M -integral number, or the curve y = j for

|j| < 2M an M -integral number. Since this collection of curves is finite it

follows that M -integral solutions to (4.1) are not Zariski dense. �

Theorem 4.1 raises the following question :

Question 4.2. — Is it true that X(Z) is not Zariski dense for any inte-

gral model of any log K3 surface of Picard rank 0 ?

We shall now show that the answer to question 4.2 is negative. Theorem

I of [12] implies, in particular, that there exists a real quadratic number

field L = Q(
√
a), ramified at 2 and with trivial class group, such that the

reduction map O∗L −→ (OL/p)∗ is surjective for infinitely many prime ideals

p ⊆ OL of degree 1 over Q. Given such an L, we may find a square-free

positive integer a ∈ Q such that L = Q(
√
a). Now let X be the ample log

K3 surface over Z given by the equation

(4.2) (x2 − ay2)t = y − 1.

We now claim the following :

Proposition 4.3. — The set X(Z) of integral points is Zariski dense.
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Démonstration. — Let p = (π) ⊆ OL be an odd prime ideal of degree 1

such that O∗L −→ (OL/p)∗ is surjective and let p = NL/Q(π). We note that

L is necessarily unramified at p. Let r ∈ F∗p be the image of the residue class

of
√
a under the (unique) isomorphism OL/p ∼= Fp. Let σ ∈ Gal(L/Q) be a

generator. Then the image of the residue class of
√
a under the isomorphism

OL/σ(p) ∼= Fp is necessarily −r.
By our assumption on L there exists a u ∈ O∗L such that the residue

class of uσ(π) mod p is equal to 2r. Since L is ramified at 2 there exists

x0, y0 ∈ Z such that uσ(π) = x0 +
√
ay0. Let x0, y0 ∈ Fp be the reductions

of x0 and y0 mod p respectively. By construction we have x0 − ry0 = 0

and x0 + ry0 = 2r and hence x0 = r and y0 = 1. It follows that y0 − 1 is

divisible by p and since x2
0 − ay2

0 = NL(uσ(π)) = ±p there exists a t0 ∈ Z
such that

(x2
0 − ay2

0)t0 = y0 − 1.

In particular, the triple (x0, y0, t0) is a solution for (4.2). Let Cp ⊆ X be

the curve given by the additional equation x2 − ay2 = p. We have thus

found an integral point on Cp. By multiplying u with units whose image in

OL/p is trivial we may produce in this way infinitly many integral points

on Cp. Now any irreducible curve in X is either equal to Cp = Cp ⊗Z Q
for some p or intersects each Cp at finitely many points. Our construction

above produces infinitely many p’s for which Cp has infinitely many integral

points, and hence X(Z) is Zariski dense, as desired. �

We end this section with the following question :

Question 4.4. — Does conjecture 1.2 hold for the surface (4.2) ? If so,

what is the appropriate value of b ?

4.2. A counter-example to the Brauer-Manin obstruction

Let k = Q and S = {∞}. In this subsection we will prove Theorem 1.10,

by constructing a log K3 surface over Z which is S-split and for which

the integral Brauer-Manin obstruction is insufficient to explain the lack of

integral points.

Let a, b, c, d,m ∈ Z and set ∆ = ad − bc. Assume that acm∆ 6= 0.

Consider the affine scheme X ⊆ A3
Z given by the equation

(4.3) ((ax+ b)y +m)t = cx+ d.

Then X = X⊗Z Q is a particular case of Example (2.13) and and is hence

an ample log K3 surface of Picard rank 0 with αX = 0. In this section we
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will show that the Brauer-Manin obstruction is not enough to explain the

failure of the integral Hasse principle for schemes of this type.

Note that when the equation cx + d = 0 is soluble mod m (e.g. when c

is coprime to m) then X has an integral point with y = 0. Furthermore, if

ax0 + b = ±1 for some x0 then we have a solution with x = x0 and z = 1.

Otherwise, there don’t seem to be any obvious integral points on X. We

note that by the same argument X always has a real point and if a, c are

coprime than X has a Zp-point for every p.

As in the proof of Proposition 3.20 we may use the long exact sequence as-

sociated to cohomology with compact support to prove thatH2
c (XQ,Z/n) ∼=

Z/n with trivial Galois action. By Poincare duality with compact support

we get that H2(XQ,Z/n(2)) ∼= Z/n as well, and hence H2(XQ,Z/n(1)) ∼=
Z/n(−1). Since Pic(XQ) = 0 and Q[X]∗ = Q it follows from the Hochschild-

Serre spectral sequence and the above that the algebraic part of the Brauer

group of X is trivial and that

Br(X)/Br(Q) =
(

Br
(
XQ

))ΓQ
= (Q/Z(−1))ΓQ ∼= Z/2.

Let us now exhibit a specific generator. Consider the quaternion algebra

on X given by

A =

(
−c(ax+ b)

∆
,

(ax+ b)y +m

m

)
Then it is straightforward to check that A is unramified in codimension 1

and hence unramified by purity. Furthermore, the residue of A along the

curve C0 ⊆ A2 given by (ax + b)y + m = 0 is the class of the restriction

− c(ax+b)
∆ |C0 , which is non-trivial (and in fact a generator of H1(C0,Z/2) ∼=

Z/2). We may hence conclude that A is a generator of Br(X).

Now assume that a, b, c, d are pairwise coprime and such that there exists

a prime q dividing both c and m exactly once (and hence a, b, d,∆, cm are all

units mod q). Reducing mod q the function f becomes f(x, y) = (ax+ b)y

and the function g becomes g(x) = d. The equation defining X⊗Z Fq then

becomes

(ax+ b)yz = d.

with a, b, d non-zero, and so ax + b, y and z are invertible functions on

XFq . Direct computation shows that the residue of A mod q is the class

[ c
∆my] ∈ H1(XFq

,Z/2). It is then clear that the evaluation map

evA : X(Zp) −→ Z/2
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is surjective. This means that A poses no Brauer-Manin obstruction to the

existence of an integral point (as noted above our assumptions imply in

particular that X has an integral points everywhere locally).

Proof of Theorem 1.10. — Consider the scheme X given by the equation

((11x+ 5)y + 3)z = 3x+ 1.

Here a, b, c, d = 11, 5, 3, 1 and ∆ = −4. We claim that X(Z) = ∅. Indeed,

observe that |11x + 5| > |3x + 1| + 3 for every x ∈ Z. Now assume that

(x0, y0, z0) was a solution. Then z0 would have to be non-zero and so we

would obtain

|11x0 + 5| > |3x0 + 1|+ 3 > |(11x0 + 5)y0 + 3|+ 3 > |11x0 + 5||y0|

which implies |y0| = 0. But this is impossible because then 3z0 would

be equal to 3x0 + 1. It follows that X(Z) = ∅ as desired. By the above

we also know that X(AS)Br(X) 6= ∅ and hence the integral Brauer-Manin

obstruction is trivial. Furthermore, since αX = 0 it follows that X is S-

split. �
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(2014), p. 765-778.

[8] A. Hatcher, Algebraic topology, Cambridge University Press, 2002.

[9] S. Iitaka, “On logarithmic k3 surfaces”, Osaka Journal of Mathematics 16 (1979),
p. 675-705.

[10] A. J. de Jong & collaborators, “stacks project”, http://stacks.math.
columbia.edu, 2017.

[11] E. Looijenga, “Rational surfaces with an anti-canonical cycle”, Annals of Mathe-
matics (1981), p. 267-322.

ANNALES DE L’INSTITUT FOURIER

http://stacks.math.columbia.edu
http://stacks.math.columbia.edu


GEOMETRY AND ARITHMETIC OF CERTAIN LOG K3 SURFACES 35

[12] W. Narkiewicz, “Units in residue classes”, Archiv der Mathematik 51 (1988),
no. 3, p. 238-241.

[13] R. Van Luijk, “Batyrev-manin conjecture for k3 surfaces”, available at : http:
//pub.math.leidenuniv.nl/~luijkrmvan/K3Banff/talks/Luijk.pdf.

[14] A. Várilly-Alvarado, “Arithmetic of del pezzo surfaces”, in Birational Geometry,
Rational Curves, and Arithmetic, Springer, 2013, p. 293-319.

[15] D.-Q. Zhang, “On iitaka surfaces”, Osaka Journal of Mathematics 24 (1987), no. 2,
p. 417-460.

[16] Y. Zhu, “Log rationally connected surfaces”, preprint arXiv :1412.2665, 2014.

Yonatan HARPAZ
Institut des Hautes Études Scientifiques
Le Bois-Marie 35, route de Chartres
91440, Bures-sur-Yvette
France
https://sites.google.com/site/yonatanharpaz/

SUBMITTED ARTICLE : LOG*K3*SURFACE*FINAL*AIF*OLD*TITLE.TEX

http://pub.math.leidenuniv.nl/~luijkrmvan/K3Banff/talks/Luijk.pdf
http://pub.math.leidenuniv.nl/~luijkrmvan/K3Banff/talks/Luijk.pdf
https://sites.google.com/site/yonatanharpaz/

	1. Introduction
	1.1. Acknowledgments

	2. Preliminaries
	3. Geometry of ample log K3 surfaces with Picard rank 0
	3.1. The category of log K3 structures
	3.2. The characteristic class
	3.3. The classification theorem
	3.4. Quadratic log K3 surfaces

	4. Integral points
	4.1. Zariski density
	4.2. A counter-example to the Brauer-Manin obstruction
	BIBLIOGRAPHY



