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Let us recall the end of Ilan’s lecture. Let C be a Grothendieck site. Then
there exists a canonical geometric morphism

Γ∗ : Sh(C) � Set : Γ∗

where Γ∗ is the global sections functor and Γ∗ is the constant sheaf functor.
In particular the functor Γ∗ is left exact, i.e. it commutes with finite limits.
According to Tomer and Ilan’s theorem there exists a Quillen adjunction

LΓ : Pro (Sh(C)∆) � Pro (Set∆) : Pro(Γ∗∆)

with respect to the model structure constructed by Tomer and Ilan. Let ∗ ∈
Sh(C) be the terminal sheaf. We will call the pro-object LΓ(∗) the shape of C.
Let us consider some examples:

1. If C carries the trivial Grothendieck topology then LΓ(∗) is a constant
pro-space which is equal to the nerve of C.

2. Let X be a topological space and let C = Op(X) be the Grothendieck
site of open subsets of X. Then the image of LΓ(∗) in Ho(Set∆) is a
known object from topology called the shape of X. This object is useful
when studying spaces which are not homotopic to CW complexes. In
particular this construction provides a lift of this classical construction
form a pro-homotopy-type to a pro-simplicial set. Note that when X is
locally contractible then the cofibrant replacement of the terminal sheaf
is a constant pro-sheaf and so the shape of X is a simplicial set.

3. Let C be the étale site of a scheme X. Then the image of LΓ(∗) on
Ho(Set∆) is the étale homotopy type of Artin and Mazur. In particular
this construction provides a lift of this notion from a pro-homotopy-type
to a pro-simplicial set.

One should think of LΓ(∗) as a topological manifestation of the étale site C.
Note that the promotion of the étale homotopy type to a pro-simplicial set

is not new. It has been done before by Friedlander via the étale topological
type construction. However, Tomer and Ilan’s construction has the following
advantages:
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1. The passage from the non-directed category HC of hypercoverings to a
directed category is via a pre-cofinal functor

f : J −→ HC

In fact, f can be chosen to be surjective on objects, so that the pro-
simplicial promotion of the étale homotopy type is still ”parameterized
by hypercoverings”. In particular the various spaces in the diagram still
admit very concrete descriptions.

In some sense one can say that this promotion from pro-homotopy type
to a pro-simplicial set has virtually no price in terms of concreteness.
In Friedlander’s construction, however, the notion of a hypercovering is
replaced by a different and more complicated objects called rigid hyper-
coverings. In particular, rigid hypercoverings are much ”bigger” objects.

2. The new construction generalizes to the relative setting.

Let us now explain more carefully what we mean by a relative setting. Sup-
pose we have a base scheme S and we want to study schemes over S. In par-
ticular, given a scheme p : X −→ S over S, what would like to understand the
sections of p, i.e. maps ι : S −→ X such that p ◦ ι = Id. For example, if
S = Spec(K) for a field K then sections correspond to K-rational points. If
S = Spec(OK) where OK is the ring of integers of a number field then sections
correspond to K-integral points.

The fundamental idea is to understand the sections ι : S −→ X by translat-
ing the situation into the realem of homotopy theory. Recall that in homotopy
theory when one is presented with a map of topological spaces p : Y −→ Z one
can use obstruction theory in order to study the sections Z −→ Y . In particular
one has a sequence of obstructions which live in

Hn+1(Z, πn(F ))

where F is the homotopy fiber of p. If all these obstructions vanish then in
good cases this will imply the existence of a section ι : Z −→ Y . Further more,
one can compute the homotopy groups of the space of sections Sec(p) via a
spectral sequence of the forms

Hs(Z, πt(F ))⇒ πt−s(Sec(p))

Now the first attempt at translating an algebraic-geometric setting p : X −→
S to the homotopical setting can be by replacing both X and S by their homo-
topical realization, i.e. by the promotion of their étale homotopy type. However,
this approach will loose a lot of geometric information. In order to understand
why this happens consider the following example. Let p be the map

p : Spec(C) −→ A1
C

obtained by inclusion in 0. Since A1
C has a contractible étale homotopy type the

homotopical picture is trivial. However, p does not admit any section. More
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generally, one can explain this phenomenon by thinking of a map p : X −→ S as
a sheaf over S whose stacks are the geometric fibers of p. In homotopy theory,
one is working with homotopy fibers instead of actual fibers. This is equivalent
to saying that homotopy theory makes the sheaf into a ”homotopically locally
constant sheaf”. However in the setting of algebraic geometry a map p : X −→ S
will rarely encode a locally constant sheaf, because it can have very different
fibers. For example there can be bad fibers, or empty fibers.

In order to remedy this situation we will encode the setting p : X −→ S by
applying the construction of Tomer and Ilan to the geometric morphism

p∗ : Sh(X) � Sh(S) : p∗

One then have a Quillen adjunction

Lp : Pro (Sh(X)∆) � Pro (Sh(S)∆) : Pro (p∗∆)

We will call the pro-object Lp(∗) ∈ Pro (Sh(S)∆) the relative étale homotoyp
type of X with respect to S. This is a pro-simplicial sheaf over S. We can study
then study sections ι : S −→ X by comparing them to global sections of the pro-
simplicial sheaf Lp(∗) (i.e. to derived maps in Pro (Sh(X)∆) from the terminal
pro-sheaf to Lp(∗)).

By work of Tomer and Ilan this space of derived global sections will still
be relatively tractable. In particular one will have an obstruction theory with
obstructions lying in the continuous sheaf cohomology groups

Hn+1
c (S, πn(Lp(∗)))

Further more if a derived global section exists then the homotopy groups of the
space Map(∗, Lp(∗)) of derived global sections can be computed by a spectral
sequence of the form

Hs
c (S, πt(Lp(∗)))⇒ πt−s (Map(∗, Lp(∗)))

Note that these sheaf of homotopy groups can in good cases be computed as
well. By a unpublished results of Tomer and the author one can identify the
stacks of πt(Lp(∗)) with the (absolute) étale homotopy type of the geometric
fibers of p.

Here are some applications

Theorem 0.1. Let K be number field and X,Y two smooth geometrically con-
nected K-varieties. Then

(X × Y )(A)fin,Br = X(A)fin,Br × Y (A)fin,Br

Theorem 0.2. Let K be a number field and X a smooth geometrically connected
variety over K. Assume further that

πét
2 (X) = 0

Then

X(A)fin = X(A)fin,Br
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Theorem 0.3. Let X and K be as above and assume that πét
1 (X) is abelian

and that πét
2 (X) = 0 (e.g. X is an abelian variety or an algebraic torus). Then

X(A)fin−ab X(A)fin

X(A)Br X(A)fin,Br
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