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1 Limits and colimits

Let C be an ordinary category, I a small category and p : I −→ C a functor. The
process of defining limits and colimits of p goes through the notions of over and
under slice categories. In particular, in order to define what is a limit of p
we need to define the category C/p of objects over p: these are objects C ∈ C

equipped with a compatible collection of structure maps αi : C −→ p(i). A map
in C/p from (C, {αi}) to (D, {βi}) is a map f : C −→ D such that βi ◦ f = αi
for every i. One can then define a limit of p to be a terminal object of C/p.
Similarly, one can define the category Cp/ of objects under p and define a
colimit of p to be an initial object of Cp/.

Remark 1.0.1. When I = {∗} is the trivial category then functors p : I −→ C are
simply given by the objects p(∗) = C ∈ C. In this case we will denote C/p,Cp/
simply by C/C ,CC/.

In order to generalize these construction to ∞-categories we first need to
understand how to construct over and under slice categories. This will be done
by using an appropriate notion of join between simplicial sets. Unlike the case
for topological spaces, there is more than more natural way to define the join of
simplicial sets. In [8] Lurie describes two different (yet equivalent) constructions,
each with its own technical advantages and disadvantages. In this lecture we
have chosen to work with the less common construction (the one called ”the
alternative construction” in [8]) because it will facilitate the comparison between
the notions of limits/colimits in ∞-categories and the corresponding notion of
homotopy limits/colimits in simplicial categories.

Let K,L be two simplicial sets. We define their join K � L ∈ Set∆ by

K � L = K
∐

K×L×{0}

K × L×∆1
∐

K×L×{1}

L

For a fixed simplicial set K, the functors (•) � K and K � (•) are colimit
preserving functors from Set∆ to (Set∆)K/. The right adjoints of these functors
will give us the desired over and under slice constructions. More explicitly, given
a map of simplicial sets p : K −→ C (considered as an element of (Set∆)K/) we

will denote by C/p,Cp/ the simplicial sets given by

(C/p)n = Hom(Set∆)K/
(∆n �K,C)
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and
(Cp/)n = Hom(Set∆)K/

(K �∆n,C)

Remark 1.0.2. The slice construction commutes with mapping objects in the
following sense. Let p : K −→ C be a map of simplicial sets and let L be
a simplicial set. Let pK : K × L −→ K be the natural projection and let
p′ : K −→ CL the map associated to p◦pK . Then one has a natural isomorphism

(Cp/)L
∼=−→ (CL)p

′/

Furthermore, this isomorphism is compatible with the natural projections to
CL.

Remark 1.0.3. In the notation of Remark 1.0.2 let q : L −→ C be an additional
map. Then we see that the fiber of the natural map

(Cp/)L −→ CL

over q is isomorphic to the fiber of the natural map

(C/q)K −→ CK

over p, and both are isomorphic to the mapping space

MapCK×L(p ◦ pK , p ◦ pL)

To establish a solid ground one should first prove that Cp/ and C/p are ∞-
categories. In fact, a stronger claim is true:

Theorem 1.0.4. Let C be an ∞-category, let ι : K0 ↪→ K be an inclusion of
simplicial sets and let p : K −→ C be a map. Then the induced map of under
categories

f : Cp/ −→ Cpι/

is a left fibration. Furthermore, if ι is right anodyne then f is a trivial Kan
fibration. The dual statement holds for the map of over categories

g : C/p −→ C/pι

Theorem 1.0.4 tells us that Cp/ −→ C is not only an inner fibration (implying
in particular that Cp/ is an ∞-category) but that it actually a left fibration, i.e.
that it corresponds to some functor from C to spaces. This functors can be
recovered by looking at the fiber of Cp/ −→ C over some point C ∈ C. In light
of Remark 1.0.3 (with L = ∆0) this fiber in turn is naturally isomorphic to the
mapping space

MapCK (p, C)

where C : K −→ C is the constant map taking value C.
One now defines limits and colimits as follows.
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Definition 1.0.5. Let C be an∞-category and p0 : K −→ C a map. A diagram
p : K �∆0 −→ C extending p0 is a colimit diagram if the corresponding object
p ∈ Cp/ is initial. Similarly, a diagram p : ∆0 �K −→ C extending p0 is called
a limit diagram if the corresponding object p ∈ C/p is terminal.

Remark 1.0.6. Let C be an ∞-category. If C has an initial object then the
sub-simplicial set Cinitial ⊆ C spanned by initial objects is an ∞-category whose
mapping spaces are contractible. It follows from the basic theory of∞-categories
that Cinitial is a contractible Kan complex. Similarly, the subcategory of terminal
objects is either empty or contractible. This means that the limit and colimit
are unique up to a contractible choice.

Remark 1.0.7. Let C be an ∞-category and C ∈ C be an object. Then one can
show that C is initial if and only if the map

f : CC/ −→ C

is a trivial Kan fibration. It follows that a diagram p : K �∆0 −→ C extending
p0 is a colimit diagram if and only if the natural map

Cp/ −→ Cp0/

is a trivial Kan fibration.

Our purpose now is to relate this definition of limit/colimit to the more clas-
sical definition of homotopy limits/colimits in the setting of simplicial categories.
To fix notations let us consider the case of colimits.

We hence obtain the following result:

Theorem 1.0.8. Let C be a fibrant simplicial category. Let p0 : K −→ N(C) be a
diagram and p′0 : C(K) −→ C the corresponding functor of simplicial categories.
Let C ∈ C be an object and

T : p′0 −→ C

a natural transformation (where C : C(K) −→ C is the constant functor at C)
and let p : K � ∆0 −→ C be the map determined by T . Then p is a colimit
diagram if and only if T exhibits C as a homotopy colimit of p′0, i.e., if and only
if for each D ∈ C the induced transformation

T∗ : MapC(C,D) −→ MapC(p′0(−), D)

exhibits MapC(C,D) as the homotopy limit holimk∈C(k) MapC(p′0(k), D).

Proof. Let ι : ∆0 −→ K �∆0 be the natural inclusion and consider the diagram
of slice categories

Cp/

ψ

""D
DD

DD
DD

D
ϕ

||zz
zz
zz
zz

Cpι/

""E
EE

EE
EE

EE
Cp0/

||yy
yy
yy
yy
y

C
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We first observe that ι is right anodyne. This is due to the fact that ι is a
pushout of the map

K ×∆{1} ↪→ K ×∆1

which in turn is a product of K and the right anodyne map ∆{1} ↪→ ∆1 (note
the class of right anodyne maps is closed under pushout-products against inclu-
sions). Hence we get from Theorem 1.0.4 that ϕ is a trivial Kan fibration. Now
let D ∈ C be an object, determining a vertex D ∈ N(C) (which we will denote
by the same name). Taking fibers over D we obtain a diagram of Kan simplicial
sets

Map
N(C)(K�∆

0)(p,D)

ψD

))RRR
RRR

RRR
RRR

R
ϕD

vvlll
lll

lll
lll

l

MapN(C)(C,D) MapN(C)K (p0, D)

where ϕD is a weak equivalence. By inverting ϕD in Ho(Set∆) we obtain a well
defined morphism

ρD
def
= [ψD] ◦ [ϕD]−1 : MapN(C)(C,D) −→ MapN(C)K (p0, D)

in Ho(Set∆). This morphism describes the effect of pre-composing with the map
p0 −→ C determined by T . We now observe that by Remark 1.0.7 the diagram
p is a colimit diagram if and only if ϕ is a trivial Kan fibration, i.e. if and only
if the map ϕD is a weak equivalence for every D. Alternatively, we can phrase
this as saying that p is a colimit diagram if and only if ρD is an isomorphism for
every D. We now employ a final manipulation to the data above by observing
that MapN(C)K (p0, D) can also be identified with the fiber of the map

(N(C)/D)K −→ N(C)K

over the point p0 ∈ CK . In other words, MapCK (p0, D) can be identified with
the space

MapSet/K

(
K,N(C)/D ×N(C) K

)
of sections of the right fibration f : (N(C))/D ×N(C) K −→ K. Now recall that
Set/K can be endowed with the contravariant model structure in which every
object is cofibrant and the fibrant objects are exactly the right fibration. As a
result, we can identify the mapping space above with the corresponding derived
mapping space.

We have a Quillen equivalence between Set/K and the projective model

structure on Set∆
C(K). Furthermore, under this Quillen equivalence the object

K −→ K maps to the terminal functor and the right fibration N(C)/D ×C K
corresponds (up to equivalence) to the functor k 7→ MapC(C)(p

′
0(k), D) from

C(K) to Set∆. Hence we obtain a natural weak equivalence

MapSet/K

(
K,N(C)/D ×C K

)
' MaphSet∆

C(K)(∗,Map(p′0(−), D)) = holimk∈C(k) Map(p′0(k), D)
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The resulted morphism

MapC(C,D) ' MapN(C)(C,D) −→ holimk∈C(k) Map(p′0(k), D)

in Ho(Set∆) induced by ρD can be identified with the one induced by T . The
desired result now follows.

2 Adjunctions

Let us start with the basic definition:

Definition 2.0.9. Let C,D be ∞-categories. An adjunction between them is
a Cartesian-coCartesian fibration

q : M −→ ∆1

together with equivalences ι0 : C −→ q−1(0) and ι1 : C −→ q1(1).

Let us begin by trying to connect the definition above with classical notion
of adjunction. First observe that since q is a coCartesian fibration the diagram

C×∆{0}
ι0 //

��

M

��
C×∆1 //

::u
u

u
u

u
∆1

admits a lift as T : C ×∆1 −→ M such that T ({C} ×∆1) is q-coCartesian for
every C ∈ C. Furthermore, such a lift is unique up to a contractible ambiguity.
The map T can interpreted as a natural transformation between ι0 to a map of
the form ι1 ◦ f where f : C −→ D is a map. Similarly, since q is Cartesian the
diagram

D×∆{1}
ι1 //

��

M

��
D×∆1 //

::u
u

u
u

u
∆1

admits a Cartesian lift S : D×∆1 −→M, leading to a functor g : D −→ C which
is again unique up to a contractible ambiguity. Now let R : C × Λ2

2 −→ M be
the map whose restriction to C×∆{0,2} is T and whose restriction to C×∆{1,2}

is S ◦ (f × Id∆1). Then the diagram

C× Λ2
2

��

// M

��
C×∆2 //

;;x
x

x
x

x
∆1
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admits a lift as indicated since R sends {C} ×∆{1,2} to a q-Cartesian edge for
each C ∈ C. This results in a map u : IdC −→ g ◦ f in CC, which we naturally
call the unit map. Similarly, one can obtain a counit map f ◦ g −→ IdD.
These unit and counit maps can be shown to satisfy the unit-counit axioms
up to a a choice of a map between natural transformation, which again satisfy
compatibility conditions among them selves and so on. The beauty of higher
category theory is that all this higher structure can be encoded by the map
M −→ ∆1 and can be reconstructed from it up to a contractible ambiguity.

Definition 2.0.10. In the notation above we will say that f is left adjoint
to g and g is right adjoint to f . We will also that there exists an adjunction
between f and g.

Let us now explain the relation between adjunctions and mapping spaces as
in the classical picture. Keeping the notation from above, let C ∈ C be an object
and let α : ι0(C) −→ ι1(f(C)) be the map in M determined by T . Consider the
diagram

Mα/ ×M D

ψ

((QQ
QQQ

QQQ
QQQ

Q
ϕ

wwnnn
nnn

nnn
nnn

Mι0(C)/ ×M D Mι1(f(C))/ ×M D

(2.1)

The map ψ is a trivial Kan fibration because the inclusion ∆{1} ↪→ ∆1 is right
anodyne. The map ϕ is a trivial Kan fibration because α is a q-coCartesian
edge. Now let D ∈ D be an object. By taking the respective fibers over D we
obtain an equivalence span, which can be transformed into an isomorphism in
Ho(Set∆) of the form

MapM(ι0(C), ι1(D)) ∼= MapD(f(C), D)

Applying a similar argument for g : D −→ C we obtain another isomorphism in
Ho(Set∆)

MapM(ι0(C), ι1(D)) ∼= MapD(C, g(D))

Hence we obtain the classical isomorphism

MapD(f(C), D) −→ MapD(C, g(D))

Note that this isomorphism in Ho(Set∆) is uniquely determined. However, if
we want to construct actual maps of simplicial sets then we need to make some
choices (like choosing a section for the trivial Kan fibrations ϕ,ψ). This choices
will replacement the uniqueness of the classical picture with uniqueness up to a
contractible ambiguity in the ∞-picture.

Note that diagram 2.1 can be interpreted as saying that left fibration Mι0(C)/×M

D −→ D is equivalent to a corepresentable left fibration. In fact, all we needed
for that is that α is q-coCartesian. In fact, this property is practically the defi-
nition of q-coCartesian edges. These considerations can be put together to form
a proof of the following:
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Proposition 2.0.11. Let q : M −→ ∆1 be an inner fibration and ι0 : C −→
q−1(0), ι1 : D −→ q−1(1) be equivalences. Then

1. q is coCartesian if and only if for every C ∈ C the left fibration

Mι0(C)/ ×M D −→ D

is corepresentable (up to equivalence).

2. q is Cartesian if and only if for every D ∈ D the right fibration

M/ι1(D) ×M C −→ C

is representable (up to equivalence).

Corollary 2.0.12. Let f : C −→ D be a map. Then f admits a right adjoint if
and only if for every C ∈ C the right fibration

C×D Df(C)/

is representable. A similar criterion exists for left adjoints.

We now wish to prove that if f : C −→ D is left adjoint to some g : D −→ C

then f respects colimits. The key point is that Cartesian and coCartesian fibra-
tions are stable under exponentiation. Hence if q : M −→ ∆1 is an adjunction
between f and g and K is a simplicial set then MK −→ (∆1)K is again Cartesian
and coCartesian. Pulling back along the diagonal embedding ∆1 −→ (∆1)K we
obtain a Cartesian/coCartesian fibration

qK : MK ×(∆1)K ∆1 −→ ∆1

The maps ι0, ι1 then induce equivalences CK
'−→ q−1

k (0) and ι1 : DK −→ q−1
K (1)

and so we get an adjunction between fK : CK −→ DK and gK : DK −→ CK .
The same can be done with K � ∆0 instead of K. Rapping these arguments
together with our insights from the previous lecture one can obtain the following
result:

Theorem 2.0.13. Let f : C −→ D be a functor which is left adjoint to g :
D −→ C. Then f preserves all colimits which exists in C and g preserves all
limits which exist in D.
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