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1 Introduction

In this lecture we wish to survey the problem of classifying up to diffeomorphism
all smooth oriented connected closed manifolds (which we shall call standard
manifolds from now on). This problem is of course too hard to be fully solved,
but there is a fairly sophisticated theory which is devoted to this subject.

One of the interesting aspects of this theory is the strong dependence on the
dimension of the manifold. It appears that dimensions 2 and 3 have a theory of
their own, dimension 4 has unique characteristics and dimensions 5 and up have
a completely different theory. Dimensions 0 and 1 are of course trivial - the only
standard manifolds in these dimensions are the point and S1 respectively. This
can be proven by a fairly elementary methods of topology.

This survey will not go into a lot of mathematical details and proofs, but
rather try in convey the main ideas in the theory.

2 Basic Notions - Cobordism, Surgery and Con-
nected Sum

Before we start with the survey we need to explain some of the basic notions and
tools we are about to use. The first notion which is fundamental to the study
of manifolds is that of a cobordism. This notion will admit several variants
throughout the survey, but in order to understand them we need to first give
the basic definition.

Definition 1. Let M1,M2 be two closed, oriented, smooth manifolds of dimen-
sion n. An (oriented) cobordism between M1 and M2 is an (n+1)-dimensional
smooth oriented manifold W with boundary ∂W and an orientation preserving
diffeomorphism f : M1

∐
M2 → W (where M2 denotes the manifold M2 with

the reverse orientation).

If there exists a cobordism between M1 and M2 we say that they are cobor-
dant to one another. This is easily seen to be an equivalence relation. A fun-
damental idea in the so called surgery theory is that two manifolds M1,M2
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are cobordant if and only if M2 can be obtained from M1 by a finite sequence
of operations called surgery steps:

Let M be an oriented n-dimensional standard manifold. Take some k =
0, ..., n−1 and let f : Sk×Dn−k →M be an embedding. Let M ′ be the manifold
obtained from M by removing the interiour of the Sk ×Dn−k embedded in M .
Thus M ′ is a manifold with boundary Sk × Sn−k−1. Let

N = M ′
∐

Sk×Sn−k−1

Dk+1 × Sn−k−1

be the manifold obtained by gluing M ′ to Dk+1 × Sn−k−1 along their common
boundary. The reverse orientation is needed to make the orientation of N
consistent. We then say that N is obtained form M by a k-dimensional surgery
step.

We claim that in that situation N is also cobordant to M . The appropriate
W can be constructed as follows: Define

W1 = M × I

W2 = N × I

D = Dk+1 ×Dn−k

Then

∂W1 = M
∐

M = M
∐M ′ ∐

Sk×Sn−k−1

Sk ×Dn−k


∂W2 = N

∐
N =

M ′ ∐
Sk×Sn−k−1

Dk+1 × Sn−k−1

∐N

∂D =
[
Sk ×Dn−k] ∐

Sk×Sn−k−1

[
Dk+1 × Sn−k−1

]
Thus we can consistently glue these three manifolds together:

W = W1

∐
M ′

W2

∐
∂D

D

and obtain an oriented manifold with boundary ∂W = M
∐
N , so M and N

are cobordant. By using Morse theory, one can show that each cobordism can
be partitioned into a finite composition of cobordisms of the form above, hence
two manifolds are cobordant if and only if one can be obtained from the other
by a finite sequence of surgery steps.

The last operation we wish to mention is the connected sum operation,
which is a particular case of a surgery step. Let M1,M2 be two standard oriented
manifolds of dimension n. Consider an embedding

f : S0 ×Dn →M1

∐
M2
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such that {0}×Dn is embedded in M1 and {1}×Dn is embedded in M2. Then
the manifold N which is obtained from f by the corresponding 0-dimensional
surgery step is called the connected sum of M1 and M2. Note that the re-
sulting manifold N is standard as well, and in particular connected, hence the
name connected sum. Further more, its oriented diffeomorphism type does not
depend on the choice of f .

3 Low Dimensional Theory - Geometrization

3.1 2 Dimensional Manifolds

The well known classification of standard 2 dimensional manifolds was com-
pleted already in the 19th century. They are classified by a single complete
invariant g ∈ N ∪ {0} which is called the genus of the manifold. In genus 0 we
have the sphere S2, in genus 1 we have the torus T2 and similarly in genus g we
have the surface obtained from S2 by attaching g ”handles” (or more precisely,
g surgery steps of dimension 0)

3.2 Geometrization

A model geometry is a simply connected, smooth orientable manifold M
together with a transitive orientation preserving action of a connected Lie group
G on it with compact stabilzer. A model geometry is called maximal if there
is no G′ ) G acting on M which satisfies these conditions.

It turns out that M is a model geometry if and only if it admits a complete
homogenious riemannian metric, in which case G is the identity component of
the isometry group Iso(M) (this is why it is called a ”geometry”). A maximal
model geometry admits a unique riemannian metric which is G-invariant. In
particular M admits a unique G invariant measure induced by that riemannian
metric.

A geometric structure on a smooth oriented manifold M is a covering X →
M such that X is a maximal model geometry. A manifold is called geometric
if it has such a structure (or, equivalently, if its universal cover is a maximal
model geometry).

Since M is naturally locally diffeomorphic to X it inherits its riemannian
structure and the corresponding measure form. We say that a geometric man-
ifold has finite volume if that measure is finite. This is a weaker condition
then M being compact.

In dimension 2 there are exactly 3 model geometries which admit free finite-
volume quotients:

1. Spherical Geometry: X = S2, G = SO(3).

2. Euclidean Geometry: X = R2, G = Iso(R2)+.

3. Hyperbolic Geometry: X = H2, G = SL2(R) = SO(1, 2)+.
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It turns out that every standard 2-manifold is geometric. S2 is model geom-
etry on its own is the universal cover of itself. The universal cover of T2 is R2

and the universal cover of each standard 2-manifold with g > 1 can be identified
with the hyperbolic plane H2.

The question now is, can this geometrization method be extended to higher
dimensions?

3.3 3 Dimensional Manifolds

In dimension 3 we can still work with the geometrization technic. In contrast
to the simple 2-dimensional case, here not every standard 3-manifold is geomet-
ric. First we need to decompose our manifold into a connected sum of prime
manifolds (those which can’t be non-trivially decomposed as connected sums).
This can be done in a unique way up to order and copies of S3. We then have
Thurston geometric conjecture:

Conjecture 1. Let M be a standard 3-dimensional manifold. Then we can
embed in M a finite number of incompressible tori (i.e. tori embeddings which
induce injections on the fundamental group) such that each component of the
complement has a finite-volume geometric structure.

Thurston also classified all the model geometries in 3 dimensions which have
finite-volume free quotients. It turns out that there are 8 such model geometries.
For every model geometry, except for the hyperbolic one, there exists a complete
classification of finite-volume geometric manifolds with that geometry.

The 3 isotropic (H = SO(3)) geometries are:

1. Spherical: X = S3, G = SO(4).

The geometric manifolds with this model geometry are all compact and are
charaterized by the fact that they have a finite fundamental group. They
admit a riemannian structure with constant positive sectional curvature.

2. Euclidean: X = R3, G = SO(3)×̃R3.

The finite-volume manifolds of this geometry are also all compact. They
admit a flat riemannian metric.

3. Hyperbolic: X = H3, G = SO(1, 3)+.

This is the less understood class of geometric manifolds and is under vivid
investigation. These manifolds admit a riemannian metric with constant
negative sectional curvature.

There are 4 geometries with stabilizer SO(2):

1. Spherical-Euclidean: X = S2 × R, G = SO(3)× R.

2. Hyperbolic-Euclidean: X = H2 × R, G = SO(1, 3)+ × R.

3. X = S̃L2(R), G =
(
S̃L2(R)× R

)
/Z
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4. The nil geometry: M = U3(R), G = U3(R)×̃SO(2) (where U3(R) is the
unipotent group of 3 × 3 matrices over R, also known as the Heisenberg
group).

The last geometry is called the sol geometry and its stabilizer is trivial. In that
geometry X = G is the the solvable Lie group given by the extension

1→ R2 → G→ R→ 1

where R acts on R2 by

t 7→
(
et 0
0 e−t

)
In 2002 a ground breaking article of Gregory Perelman appeared which

proves the geometrization conjecture. This article is better known for proving
the Poincare conjecture which is a particular case of the geometrization conjec-
ture (because the geometrization conjecture implies that each simply connected
3-manifold is a connected sum of model geometries, but the only compact model
geometry is S3).

The idea behind Perelman’s proof is the following: Suppose that M is a
riemannian manifold with metric tensor g. One can calculate another symmetric
2-tensor Ric(g) ∈ Γ(Sym2(T ∗M)) which is called the Ricci curvature. Then one
can consider a differential equation on a time dependent metric gt defined by

∂gt
∂t

= Ric(g)

It turns out that a short time solution of this equation exists and it makes
the metric gt more and more homogeneous (for some reason it behaves like
the heat equations, for which the heat distribution becomes more and more
uniform).

The problem is that a long term solution may not exists because the metric
gt will become singular in finite time. The proof then proceeds to use surgery in
order to remove the singular part from the manifold and cut the manifold into
several pieces such that each piece has a long term solution which converges to
a locally homogeneous metric. Then one shows that the universal cover of such
a piece is a model geometry.

4 The Notorious Dimension 4

In dimension 4 the geometrization technic no longer works, and we are faced
with a lot of manifolds which do not admit a geometric structure. Further more,
the full classification problem is virtually impossible, because it can be shown
that every finitely presented group can be realized as a fundamental group of
a standard 4-manifold. Thus the classification of standard 4-manifold is at
least as hard as the classification of finitely presented groups, which is not only
extremely complicated but also not computationally decidable.
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Our hope now is to try to classify the simply connected standard 4-
manifolds. It turns out that this task can be fully accomplished for (closed)
topological manifolds, but is far from being solved in the smooth category.

Let us start with a classification of homotopy types of simply-connected 4-
dimensional orientable closed topological manifolds. If M is such a manifolds
then

H0(M) = H4(M) = Z

and
H1(M) = H3(M) = 0

from poincare duality. Since M is simply connected π2(M) must be torsion
free and isomorphic to H2(M). Thus H2(M) = Zm for some m. We have the
intersection pairing Q : H2(M)×H2(M)→ Z which is a unimodular symmetric
bilinear form. It turns out that this Q characterizes the homotopy type of M
completely:

Theorem 1. Two closed simply connected orientable 4-manifolds are homotopic
if and only if their intersection forms are isomorphic.

Proof. Our first step will be to pass from a manifold M to a homotopy equivalent
CW complex X. Let

f :
∨
m

S2 →M

be a map which induces an isomorphism on π2. We can move f a bit so it won’t

be onto, and then we have some open ball
o

D4⊆M which is not in the image of
f . Consider

M0 = M\
o

D4

which is a manifold with boundary ∂M = S3. By Mayer-Vietoris we get that
H4(M0) = 0 and Hi(M0) = Hi(M) for any i 6= 4. Further more by Van-
Kampen’s theorem we see that M0 is simply-connected as well. Thus the map
f is a map between two simply-connected CW-complexes which induces iso-
morphism on all the homology groups. By Whitehead’s theorem it induces a
homotopy equivalence ∨

m

S2 ∼= M0

Let
ϕ : M0 →

∨
m

S2

be a homotopy inverse. Let X a CW-complex obtained by gluing a D4 to
∨
m S

2

via the map ϕ|∂M . Then X 'M and the data of the intersection form of M is
encoded in the cup product on the second cohomology of X.

Let Z be the classifying space (CP∞)m = K(Zm, 2). It has a CW-structure
with cells only in even dimensions and its 2-skeleton is

∨
m S

2. The cohomology
ring of Z is a polynomial ring on m degree 2 variables.
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We identify the set of 2k-cells as a Z-basis for H2k(Z). Now consider the
map

T : H4(Z)→ π2

(∨
m

S2

)
defined by assigning to each 4-cell its gluing map. This map must be onto,
because π3(Z) = 0 and must have no kernel because π4(Z) = 0 and Z has now
cells of dimension 5.

Since π3(Z) = π4(Z) = 0 there exists a unique map up to homotopy

g : X → Z

which extends the identity on the the 2-skeletons. Let [X] ∈ H4(X) = Z be the
generator of the unique 4-cell and let [ϕ] ∈ π3(

∨
m S

2) be the homotopy class of
ϕ|∂M . Then it is easy to see that

[ϕ] = T (g∗[X])

But since g induces the identity on the second homology, and since the 4’th
cohomology of Z is spanned by cup products of second cohomology classes we
see that the cup product determines g∗[X] completely. Thus it determines [ϕ],
which determines the homotopy type of X.

It turns out that classification up to homeomorphism is very close to the
homotopy classification. This topological classification is due mainly to M.
Freedman who proved in 1982 the following theorem:

Theorem 2. For any integral symmetric unimodular form Q there exists a
closed oriented simply-connected topological 4-manifold that has Q as its inter-
section form.

1. If Q is even (i.e. Q(v, v) is even for every v) then there exists exactly one
such manifold.

2. If Q is odd, then there are exactly 2 such manifolds and at least one of
them does not admit any smooth structure.

So we see that in order to understand the topological category, we need to
understand unimodular symmetric forms. For indefinite forms, we have the
following classification of Serre:

Theorem 3. Let Q be an indefinite symmetric unimodular form.

1. If Q is odd then it is isomorphic to

m[1] + n[−1]

for some m,n 6= 0.
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2. If Q is even then it is isomorphic to

m(E±8 ) + nH

where

H =
(

0 1
1 0

)
and E8 is a form on Z8 which appears in the root system of the Lie group
E8.

Unfortunately, no classification exists for definite forms, and in fact there is a
huge amount of irreducible definite forms, even in relatively small ranks. Inter-
estingly, this difficulty disappears in the smooth category. We have Donaldson
theorem which appeared only one year after Freedman’s article:

Theorem 4. If a (smooth) standard 4-manifold has a definite intersection form,
then that form is either m[1] or m[−1] for some m.

Since we can take connected sums of CP 2 and we can tuggle the orientation
we see that we can actually obtain all these forms. The proof of Donaldson
theorem makes use of notions which actually come from theoretical physics,
and in particular 4-dimensional QFT and Yang-Mills theory.

Now suppose that M has at least one smooth structure. Can we classify
all of its smooth structures? This gap is the most difficult to understand in
dimension 4. In dimensions 0-3 every topological manifold has a unique smooth
structure. In dimensions higher then 4 every topological manifold has at most
finitely many non-diffeomorphic smooth structures, and the surgery theory we
shall learn later on works pretty well.

In dimension 4, however, many simple topological manifolds admit infinitely
many and even uncountably many smooth structures. In fact, no known 4-
manifolds admit only finitely many smooth structure. In particular R4 admits
uncountably many smooth structures.

5 Dimension 5 and up - Surgery Theory

5.1 Introduction

We now come to the general theory for studying manifolds in dimensions ≥ 5.
As in dimension 4 we see that classifying all the manifolds is at least as hard as
classifying finitely presented groups, so we shall concentrate on simply connected
manifolds. The theory we shall describe here can be generalized to some extent
to the non simply connected case, but we shall not address this issue here, so
for us all manifolds from now on are simply connected.

The general framework for classifying standard manifolds is to compare the
smooth category to the homotopy category. First note that each smooth man-
ifold can be triangulated, so its homotopy type is a homotopy type of a CW-
complex of the same dimension. Thus we have a forgetful functor from the
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category of smooth manifolds to the homotopy category of spaces which have
the homotopy type of CW-complexes.

Suppose for a minute that the algebraic topologists have finished all their
work and have a complete classification of all the homotopy types in the CW
category. The gap to classifying standard manifolds can be described in two
parts:

1. Classify CW homotopy types which are obtained as the homotopy types
of standard manifolds.

2. For each CW homotopy type obtained in part 1, classify all standard
manifolds with that homotopy type.

The theory which tries to attack the first question is called obstruction
theory. The idea is to define invariants of homotopy types which need to
vanish in order for that homotopy type to be that of a standard manifold. Such
invariants are called obstructions. After developing the obstruction theory we
shall use a boundary-relative version of it in order attack the second question.

5.2 Obstruction Theory

One of the characteristics of the homotopy type of a standard manifold is that
its homology admits a fundamental class which induces Poincare duality. Thus
if we want to take a CW-complex and ask whether it is homotopy equivalent to
a standard manifold it needs to have such a fundamental class. In particular,
we define:

Definition 2. An n-dimensional Poincare complex is a finite n-dimensional
connected CW-complex X together with a class [X] ∈ Hn(X,Z), called the fun-
damental class of X, such that the cap product induces a Z[π1(X)]-module
isomorphism

∩[X] : Hk(X̃,Z) ∼= Hn−k(X̃,Z)

where X̃ is the universal cover of X.

In these notes we restrict ourselves to the simply connected case, so all
Poincare complexes we shall consider will be simply connected. The question
we now wish to ask is the following:

Question 1. Given an n-dimensional Poincare complex X (for n ≥ 5), when
is it homotopy equivalent to a standard manifold?

5.2.1 The K-Theory Obstruction

A fundamental invariant which smooth manifolds have and general topological
spaces don’t is the tangent bundle TM → M . This bundle defines an element
[TM ] in the stable (or reduced) K group K̃0(M). Its inverse [TM ]−1 can be
given a geometric meaning via embeddings of M in Eulidean spaces Rn+k.
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By a well know theorem every standard n-manifold can be embedded in a
Euclidean space i : M → Rn+k for some k. The Euclidean structure on Rn+k

enables us to define the normal bundle ν on M . Since TM ⊕ ν ∼= i∗TRn+k we
see that ν represents the iverse of [TM ] in K̃0(M).

Suppose now that one has an n-dimensional Poincare complex X. If we had
some homotopy equivalence

M
'→ X

with M a standard n-manifold then it would induce an isomorphism

K̃0(M) ∼= K̃0(X)

which would in particular identify some element in K̃0(X) corresponding to
[TM ]−1 ∈ K̃0(M). Thus our first step in order to find a homotopy equivalence
M
'→ X is to identify such possible elements in K̃0(X).
The idea is to try to mimic the construction of [TM ]−1 via embeddings.

Every CW -complex X can be triangulated and thus can be embedded in some
Rn+k. Further more, we can find an embedding f : X ↪→ Rn+k such that X is a
retract of some neighborhood f(X) ⊆ N which is an n+k-dimensional manifold
with boundary ∂N .

In this scenario N is usually called a tubular neighborhood of X. If we
restrict this retraction to p : ∂N → X we obtain a map with homotopy fiber
Sk, i.e. a spherical fibration. It turns out that the class [p] of this fibration in
the stable spherical K-group K̃0

s (X) is independent of the choice of embedding.
It is called the Spivak normal fibration of X.

The group K̃0
s (X) is defined as the group of isomorphism classes of orientable

spherical fibrations with the join product operation modulu trivial fibrations. It
can be defined via classifying spaces as follows: let SG(k) be the group of ori-
entation preserving self homotopy equivalences of Sk. Then we have functorial
operation induced by the suspension map

Σ : [Sk, Sk]→ [ΣSk,ΣSk] =→ [Sk+1, Sk+1]

which takes orientation preserving homotopy equivalences to orientation pre-
serving homotopy equivalences, hence inducing a map Σ : SG(k)→ SG(k + 1).
Taking the direct limit

SG = lim
k→∞

SG(k)

we obtain the structure group of spherical fibration. We then have

K̃0
s (X) = [X,BSG]

We have a natural operation which takes a k-dimensional vector bundle
E → X and turns it into a spherical bundle SE → X. Concretely we can
construct it by putting a continuous riemannian metric on E and defining

SE = {(x, v)|‖v‖ = 1}
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The isomorphism class of the spherical fibration obtained is independent of the
choice of metric. This induces a group homomorphism

S : K̃0(X)→ K̃0
s (X)

This map can also be obtained via the map of classifying spaces

BSO → BSG

induced by the natural inclusion

SO ↪→ SG

corresponding to the natural action of SO(n) on Sn.
In the case of a standard manifold M and an embedding i : M ↪→ Rn+k

with tobular neighborhood N and normal bundle ν we can see that the spherical
fibration ∂N →M can be identified with Sν. This means that [s] = S([TM ]−1)
which is a purely K-theoretical property of M hence depending only on the
homotopy type of M .

We thus obtain the first obstruction for a Poincare complex to be a homotopy
equivalent to a manifold: its Spivak normal fibration must factor through
some vector bundle. This obstruction can be formulated as follows. We have
a fibration of structure groups which are actually infinite loop spaces:

1→ SO → SG→ SG/SO → 1

Thus SG/SO is also an infinite loop space and for each X we obtain a long
exact sequence of abelian groups

[X,SO]→ [X,SG] π
X

→ [X → SG/SO]
∂X
0→

[X,BSO] S→ [X,BSG] Bπ
X

→ [X → B(SG/SO)]
∂X
1→

[X,BBSO]→ ...

Note that [X,BSO] = K̃0(X), [X,BSG] = K̃0
S(X) and the map between them

is S. Thus we can write an exact sequence

0→ coker(πX)
∂X
0→ K̃0(X) S→ K̃0

s (X) Bπ
X

→ ker(∂X1 )→ 0

We thus obtain a K-theoretical obstruction group ker(∂X1 ) and an obstruc-
tion element BπX([s]) ∈ ker(∂X1 ) which needs to vanish in order for X to be
homotopy equivalent to a manifold. This obstruction shall be called the K-
obstruction. There exist examples X for which this obstruction can be calcu-
lated and proved to be non-zero, so this obstruction is not trivial.

A natural question now rises: is this the only obstruction to X being homo-
topy equivalent to a standard manifold?
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5.2.2 Normal Maps

Suppose that we have an n-dimensional poincare complex X for which the K-
obstruction vanishes. Let p : E → X be an (orientable) vector bundle such
that [SE] is the spivak normal fibration. We can define the disk bundle DE
as either the mapping cylinder of p|SE or by putting a continuous riemannian
metric and defining

DE = {(x, v)|‖v‖ ≤ 1}

We then define the Thom space to be DE/SE. The point [SE] ∈ Th(E)
is denoted by ∞.

Now suppose we choose an orientation on E. We then have a prefered
orientation on each fiber Ex which gives us a prefered generator to

Hk(DEx, SEx) ∼= Z

Define the Thom class of E to be the unique class ω ∈ Hk(DE,SE) which
restrict to our prefered generator on each Hk(DEx, SEx).

The fundamental property of Thom spaces is the Thom isomrphism the-
orem:

Theorem 5. Let p : E → X be an oriented k-dimensional vector bundle over a
finite connected CW complex, with Thom class ω ∈ Hk(Th(E)). Then the cap
product induces isomorphisms

ω∩ : Hm+k(DE,SE) ∼= Hm(DE)

for each m ≥ 0.

This theorem is true for more general base spaces X, but we will not need
this here. Note that we have an inclusion X ↪→ DE as the zero section,
and this inclusion is a homotopy equivalence. Furhter more we can identify
Hm+k(DE,SE) with the reduced homology H̃m+k(Th(E)). Thus we can write
this isomorphism as

Hm(X) ∼= H̃m+k(Th(E)) ∼= Hm+k(Th(E))

where the last equality is because we assume k > 0. Note in particular that a
choice of a fundamental class [X] ∈ Hn(X) and a choice of an orientation on E
forces a choice of a fundamental class [Th(E)] ∈ Hn+k(Th(E)).

Now consider an element [ϕ] ∈ πn+k(Th(E),∞) represented by a map ϕ :
Sn+k → Th(E) which is transversal at X, i.e. we can locally trivialize the
bundle so that after projecting ϕ to the fiber DRk we get a submersion.

This transversality condition implies that the preimage of the zero section
ϕ−1(X) ⊆ Sn+k is an n-dimensional manifold M , so we get a map

ϕ|M = f : M → X
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The pullback f∗E of E can be identified with the normal bundle ν of the in-
clusion M ↪→ Sn+k under the standard riemannian metric on Sn+k. Thus
the normal bundle is orientable, which means that M inherits an orientation
[M ] ∈ Hn(M) from the standard orientation of Sn+k. Thus M is a standard
manifold, and we have a bundle map

ν
f→ E

↓ ↓
M

f→ X

which is an isomorphism on fibers. Such objects are called Normal maps
with respect to E. We can also define cobordisms of such objects (M1, ν1, f, f),
(M2, ν1, f, f) by taking some normal bundle ν of rank k on a cobordism W :
M1 ∼M2 which extends ν1, ν2.

ν
f→ E

↓ ↓
W

f→ X

It turns out that the image f∗[M ] is exactly the image of ϕ∗[Sn+k] under the
Thom isomorphism. Since we want f to be as close as possible to a homotopy
equivalence, it is natural to want that f∗[M ] = [X]. This can be achieved in
following way:

Recall that the Spivak fibration was obtained via an embedding i : X ↪→
Rn+k and a tubular neighborhood i(X) ⊆ N such that s : ∂N → X was
homotopy equivalent to our fibration. It is easy to see that the retraction
N → X is the associated disk bundle of s and thusN/∂N is homotopy equivalent
to Th(s).

Construct a collapse map c : Rn+k → Th(s) by extending the quotient map
N → N/∂N to Rn+k such that all the points outside n are mapped to [∂N ].
Extend c so Sn+k = Rn+k ∪ {∞} by sending ∞ to [∂N ] as well.

It can be shown that the resulting element [c] ∈ πn+k(Th(s)) satisfies the
requirement that the image of c∗[Sn+k] under the Thom isomorphism is exactly
[X]. Thus we can use [c] in order to construct a normal map f : M → X
satisfying f∗[M ] = [X]. Such maps are called normal maps of degree 1.

In fact, it turns out that the existence of such [c] ∈ πn+k(Th(s)) characterizes
the Spivak fibration. Thus every degree 1 map from a manifold to X can be
obtained in this way.

5.2.3 The L-Theory Obstruction

Now suppose that we have a normal map of degree 1

ν
f→ E

↓ ↓
M

f→ X
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We wish to know whether or not its cobordism class contains a homotopy equiva-
lence. Just like regular cobordism, here we can also produce each normal cobor-
dism by a finite sequence of normal surgery steps. A k-dimensional normal
surgery step on a normal map (M,ν, f, f) is constructed from a commutative
diagram

Sk ×Dn−k → Dk+1 ×Dn−k

q ↓ ↓ Q
M

f→ X

such that the left vertical arrow is an embedding. Let

M ′ = M\Int(q(Sk ×Dn−k))

and
N = M ′

∐
Sk×Sn−k−1

Dk+1 × Sn−k

the manifold obtained from M via regular surgery on q. The map Q enables us
to extend the map f from M ′ to whole of N , and it can be showed that this
map is also of degree 1.

We now wish to extend the normal bundle ν from M ′ to N . Recall that ν
was given as the normal bundle of some embedding i : M ↪→ Rn+m, so we wish
to extend this embedding to N by maybe extending the range from Rn+m to
Rm+n+1 via the standard inclusion.

Note that Q gives a trivialization of q∗ν which is unique up to homotopy
(i.e. determines an element in πk(SO(m)). Let ω be the normal bundle to
q(Sk) in M . The the extension of q|Sk to Sk × Dn−k gives a trivialization of
ω, again unique up to homotopy (i.e determines an element in πk(SO(n− k))).
These two trivializations determine a trivialization of q∗ν ⊕ ω, which can be
identified with the normal bundle to i(Sk) in Rn+m. Let us call this trivialization
x ∈ πn(SO(m+ n− k)).

By using some standard embedding technics we can show that since this
bundle is trivial we can extend the embedding i : M ′ ↪→ Rn+m to N . But
this extension also gives a trivialization of q∗ν ⊕ ω - the standard trivialization
1 ∈ πk(SO(n+m− k)).

thus we see that in order to be able to extend the bundle map f to ν over
N we need that the element x from before will be trivial. This is a sufficient
condition as well.

How can we use these normal surgery steps in order to make a normal map
f : M → X into a homotopy equivalence? Since both these spaces have the
homotopy types of CW-complexes, whitehead’s theorem tells us it is enough to
make into a weak equivalence.

Define πk(f) to be the group of homotopy classes of commutative diagrams
of pointed maps

Sk
i→ Dk+1

↓ ↓
M

f→ X
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Then we have a long exact sequence of homotopy groups:

...→ πk(f)→ πk(M)→ πk(X)→ πk−1(f)→ ...

Suppose that f is (k − 1)-connected, i.e. πm(f) = 0 for m = 0, ..., k − 1.
What we need to do in order to make f k-connected is to kill the elements in
πk(f) via normal surgery. This is done in the following way. Let x ∈ πk(f) be
represented by the diagram:

Sk → Dk+1

q ↓ ↓ Q
M

f→ X

The first step is homotope q into an embedding

q : Sk →M

For k = 0, 1 this can be done ”by hand”. For 2 ≤ k ≤
⌊
n
2

⌋
we have the Whitney

embedding theorem:

Theorem 6. Let f : Mm → Nn be a map of smooth manifolds satisfying
the following assumptions: 2m ≤ n, n −m > 2, M connected and N simply-
connected. Then f is homotopic to a smooth embedding.

The second step is to extend q to an embedding:

q̃ : Sk ×Dn−k →M

Here we come across an obstruction. In order for this to be done we need the nor-
mal bundle of q(Sk) in M to be trivial. This obstruction lies in πk−1(SO(n−k))
which classifies (n− k)-bundles on Sk. Note that we can choose a trivialization
and each trivialization will give a different extension q̃.

The third step is to check that all the trivializations are consistent, as men-
tioned before. It turns out that we can pack these second and third obstructions
into a single obstruction group πk(SO(m+n−k)/SO(m)) which lies in the long
exact sequence:

...→ πl(SO(m))→ πl(SO(m+ n− k))→ πl(SO(m+ n− k)/SO(m)) ∂→

πl−1(SO(n− k))→ ...

and the image of our obstruction under

∂ : πk(SO(m+ n− k)/SO(m))→ πk−1(SO(n− k))

is the classifying map of the normal bundle to q(Sk).
It turns out that

Theorem 7. 1. If k < n− k then πk(SO(m+ n− k)/SO(m)) = 0.
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2. If k = n− k and k is even then πk(SO(m+ n− k)/SO(m)) = Z

3. If k = n− k and k is odd then πk(SO(m+ n− k)/SO(m)) = Z2

Thus as long as k <
⌊
n
2

⌋
(and when n is odd, even when k =

⌊
n
2

⌋
) we can

perform the surgery step on elements in πk(f). Note that doing surgery to kill
elements in πk(f) may create non-trivial elements in πm(f) for m ≥ n− k − 1,
but can’t effect πm(f) for m < n− k − 1. Thus we have the following:

Theorem 8. Let (M,µ, f, f) be a normal map from M to X. Then it is nor-
mally bordand to a map (N, ν, g, g), such that πk(g) = 0 for k = 0, ...,

⌊
n
2

⌋
− 1.

We now arrive at the middle dimensions. If we succeed in doing surgery
here, then from poincare duality and Hurewicz’s theorem we would get that f
is a weak equivalence (and thus a homotopy equivalence since we are dealing
with homotopy types of CW complexes).

The behaviour at the middle dimensions depends on the value of n mod 4:

1. If n is odd, then we can extend the surgery to the middle dimension, i.e.
we don’t have any further obstructions.

2. If n = 2 mod 4 then we have an obstruction which lies in Z/2. It is called
the Arf invariant of the normal map.

3. If n = 0 mod 4 then we have an obstruction which lies in Z. It is called the
signature of the normal map (because it actually comes from a signature
of quadratic form).

In this note we shall explain and give a sketch of proof for the case of n = 0
mod 4. The other cases can be read in any standard textbook on the subject.

So suppose now that n = 4m. Let f : M → X be a 2m−1-connected normal
degree 1 map, with normal bundle ν of rank r. Then it can be shown that

π2m(f) ∼= K2m(f)
def
= ker(f∗ : H2m(M)→ H2m(X))

is a free Z-module. Since we have poincare dualities

αM : [M ]∩ : H2m(M) ∼= H2m(M)

αX : [X]∩ : H2m(X) ∼= H2m(X)

which are preserved by f (because f∗[M ] = [X]) we see that

f∗ ◦ αM ◦ f∗ = Id

which means that the maps f∗ and f∗ split, i.e. H2m(X) and H2m(X) are
direct summands in H2m(M) and H2m(M) respectively. In particular, we have
natural identifications

H2m(M) ∼= H2m(X)⊕ π2m(f)

16



H2m(M) ∼= H2m(X)⊕ π∗2m(f)

and the last decomposition respects the cup product, i.e. it gives a decomposi-
tion of Q into a direct sum of two forms: Q(M) = Q(X)⊕Q(f) where Q(f) is
the form induced by the cup product on π∗2m(f). Then Q(f) must be unimodu-
lar as well, hence inducing an isomorphic form on π2m(f). Let σ(f) denote the
signature of that form.

We wish to show that for m > 1, a 2m−1-connected normal map (M,ν, f, f)
of degree 1 is normally bordant to a 2m-connected normal map (and hence to
a homotopy equivalence) if and only if σ(f) = 0.

This is not very surprising to people who are familiar with cobordism the-
ory, because it is known that for a standard manifold of dimension 4m, the
obstruction to being null-cobordant is the signature of its intersection form Q.
The proof of these two statements is analogous and relies on the following three
facts:

1. If Q is an indefinite form (over Z), then there exists an element x with
(x, x) = 0.

2. If x ∈ π2m(f) satisfies (x, x) = 0 then one can do surgery in dimension
2m that kills (at least) the element x and preserves the lower homotopy
groups of f .

3. Two normally cobordant normal maps of degree 1 have the same signature.

From these fact the theorem follows easily: a non-trivial form of signature
0 has to be indefinite, so it has an element x ∈ π2m(f) such that (x, x) = 0.
From fact 2 we can do surgery to kill this element without ruining anything else.
From fact 3 the resulting manifold still has signature 0 so we can proceed by
induction. Further more from fact 3 we see that if the signature is not 0, then
our map can’t be normally cobordant to a homotopy equivalence.

We shall only sketch the proof of fact 2:
Let x ∈ π2m(f) be an element represented by a diagram:

S2m → D2m+1

q ↓ ↓ Q
M

f→ X

where q is an embedding (this is possible from Whitney’s theorem, and the
assumption that m > 1). Let o ∈ π2m(SO(2m + r)/SO(2m)) ∼= Z be the
obstruction to surgery on q, as discussed above. We wish to show that o is
trivial iff (x, x) = 0. Consider the boundary map

∂ : π2m(SO(2m+ r)/SO(2m))→ π2m−1(SO(2m))

It can be shown by analizing the long exact sequence that in these circumstances
∂ is an isomorphism, and thus o = 0 iff ∂o = 0. Recall from before that ∂o
can be thought of as the classifying map of the normal bundle to q(S2m) in

17



M . Thus in dimensions n = 4m all the obstruction is the non-triviality of the
normal bundle.

Oriented 2m-bundles E → S2m are classified by their Euler class

χ(E) ∈ H2m(S2m) ∼= Z

The Euler class of an oriented rank k bundle E → Y is defined as follows:
consider the Thom space Th(E). The orientation of E gives us a Thom class
u ∈ Hk(Th(E)). The Euler class is defined as

i∗u ∈ Hk(Y )

where i : Y → Th(E) is the natural inclusion.
Now suppose that q : Y ↪→ M is an embedding of an oriented manifold Y

of dimension k in a manifold M of dimension 2k. Let ν be the normal bundle
and N a tubular neighborhood. Then ν and N inherit natural orientations and
we have as before N/∂N ∼= Th(ν) orientedly with natural fundamental class
[Th(E)] ∈ H2k(Th(E)).

We have the Thom class u ∈ Hk(Th(E)) which satisfies

[Th(E)] ∩ u = i∗[Y ]

In other words, u is the Poincare dual of i∗[Y ]. Thus we have

[Y ] · χ(ν) = [Y ] · i∗u = i∗[Y ] · u = [Th(E)] · (u ∪ u)

We have a collapse map c : M → Th(ν) defined by extending the quotient
map N → Th(E) by a constant map which sends all the points in M\N to
∞ = [∂N ]. This collapse map satisfies c∗[M ] = [Th(E)] and thus preserves
poincare duality. Further more we can see from the definitions that

i∗[Y ] = c∗(q∗[Y ])

Thus since u is the Poincare dual of c∗(q∗[Y ]), we see that c∗u is the Poincare
dual of q∗[Y ]. To finish the argument we note that

(q∗[Y ], q∗[Y ]) = [M ] · (c∗u ∪ c∗u) = [Th(E)] · (u ∪ u) = [Y ] · χ(ν)

which shows that the triviality of the self intersection of q∗[Y ] is equivalent to
the vanishing of the Euler class of the normal bundle. This finishes the sketch
of the proof.

5.3 The Surgery Exact Sequence

We now wish to address the second classification issue. Given a standard man-
ifold X of dimension n, how can we classify up to oriented diffeomorphism the
standard n-manifolds which are homotopy equivalent to X?

As we saw above, the set of normal maps of rank r is a principle homogenous
space of the group

[X,SG(r)/SO(r)]

18



If we mod out normal maps with trivial bundles we get a principle homogenous
space of

[X,SG/SO]

Let Ln denote the L-obstruction groups described in the last section, i.e.:

1. Ln = 0, For n odd.

2. Ln = Z2, For n = 2 mod 4.

3. Ln = Z, For n = 0 mod 4.

Now let Sn(X) denote the set of oriented homotopy equivalence f : M → X
(where M is a standard n-manifold) up to conjugation by orientated diffeo-
morphisms. Note that Sn(X) has a prefered element, which is the identity
Id : X → X.

For each normal bundle ν on X, i.e.

[ν] = [TX]−1 ∈ K̃0(X)

we can pull it back to M and obtain a normal map (M,f, f, f∗ν). This normal
map is well defined up to cobordism and stabilization. This gives us a preferred
element equivalence class of normal maps which is generated by the identity
X → X. Thus we can identify the set of equivalence classes of normal maps
with [X,SG/SO], this construction gives us a map

Tn : Sn(X)→ [X,SG/SO]

which sends Id ∈ Sn(X) to the neutral element in [X,SG/SO]. We saw before
that we can associate with each normal map an element in the obstruction group
Ln. This gives us an obstruction map

σn : [X,SG/SO]→ Ln

This is a map of pointed sets, but not necessarily a homomorphism of groups.
The obstruction theory of the previous section asserts that the sequence

Sn(X) Tn→ [X,SG/SO] σn→ Ln

of pointed sets is exact.
The main theorem of this section is the surgery exact sequence:

Theorem 9. The exact sequence above can be extended to

[ΣX,SG/SO]
σn+1→ Ln+1

∂→ Sn(X) Tn→ [X,SG/SO] σn→ Ln

The space [ΣX,SG/SO] can be identified with stable cobordism classes of
normal maps

F : (M,∂M)→ (X × I,X × {0, 1})
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Defined in a boundary relative way, and σn−1 is the L-obstruction of this normal
map. The reason that we have a well defined map

Ln
∂→ Sn(X)

Is the celebrated h-cobordism theorem:

Theorem 10. Let M,N be two simply connected standard manifolds of di-
mension n ≥ 5. Let W be a cobordism between them such that the boundary
inclusions M ↪→ W,N ↪→ W are deformation retracts. Then M is orientedly
diffeomorphic to N and W oriently diffeomorphic to M × I.

5.4 Smooth Structures on Spheres

Spheres have the property that we have a canonical abelian group structure on
θn = Sn(Sn) given by connected sum. Further more we have Sn+1 = ΣSn. This
enables us to turn the surgery exact sequence into a long exact sequence of
abelian groups:

...→ Θn
Tn→ πn(SG/SO) σn→ Ln

∂→

Θn−1
Tn−1→ πn−1(SG/SO)

σn−1→ Ln−1 → ...→ L5

Thus in order to calculate θn we need to understand the homotopy groups of
SG/SO and the maps Tn and σn.

This strategy was used by milnor in order to calculate θn in the sixties. In
order to understand the homoropy groups of SG/SO we need to look at the
long exact sequence

...→ πn(SO)→ πn(SG)→ πn(SG/SO)→ πn−1(SO)→ ...

Theorem 11. The homotopy group πn(SG) is isomorphic to the stable homo-
topy group

πsn = lim
k→∞

πn+k(Sk)

Proof. This isomorphism is given by the following sequence of maps:

[Sn, SG(k)]→ [Sn,Map(Sk, Sk)] = [Sn × Sk, Sk] h→

[Sn ∗ Sk,ΣSk] = [Sn+k+1, Sk+1]

The map h is given by first extending a map from Sn×Sk to Sk to a map from
Sn × Sk × I to Sk × I and then collapsing it.

The first stable homotopy groups are:

0 1 2 3 4 5 6 7 8
Z Z/2 Z/2 Z/24 0 0 Z/2 Z/240 Z/2⊕ Z/2

The homotopy groups of SO are 8-periodic and completely known. They
are:
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0 1 2 3 4 5 6 7
Z/2 Z/2 0 Z 0 0 0 Z

The isomorphism of theorem 10 gives us a map

Jn : πn(SO)→ πsn

called the J-homomorphism. In order to understand πn(SG/SO) we need to
understand its kernel and cokernel. We have a deep theorem by Adams which
states:

Theorem 12. 1. If n 6= 3 mod 4 then Jn is injective.

2. If n = 3 mod 4 then the order of the image of Jn is Denominator(Bk/4k)
where n = 4k − 1 and Bk is the k’th Bernoulli number.

Now suppose we wish to calculate Θ7. The Bernoulli number B2 = 1
30 . From

Adams’s theorem and the tables above we see that J7 is surjective and J6 is
injective, thus π7(SG/SO) = 0. Since L8 = Z we see that Θ7 is cyclic, and all
is left is to calculate its order.

The general formula for the order of ∂4k(L4k) is:

22k(22k−1 − 1)Bk · (3− (−1)k)
32k

·Denominator(Bk/4k) =

22k−3(22k−1 − 1) · (3− (−1)k) ·Nominator(Bk/4k)
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