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Abstract. A conjecture of Mináč and Tân predicts that for any n ≥ 3, any prime p
and any field k, the Massey product of n Galois cohomology classes in H1(k,Z/pZ) must
vanish if it is defined. We establish this conjecture when k is a number field.

1. Introduction

A powerful invariant of a topological space X is its graded cohomology ring H∗(X,R)
with coefficients in a given ring R. It is a natural question to understand what geometric
information about X is captured by H∗(X,R), and what information is lost. With that
in mind, one may first observe that the cup product on H∗(X,R) exists already on the
level of the cochain complex C∗(X,R), where it satisfies the Leibniz rule with respect to
the differential. In other words, C∗(X,R) is a differential graded ring. As a preliminary
step one may thus ask exactly what is lost in the passage from C∗(X,R) to H∗(X,R).

To make this information measurable one is led to construct invariants of C∗(X,R)
which do not only depend on the associated cohomology ring. A prominent example
of such invariants are the higher Massey products [Mas58]. To define these, let us fix
a differential graded ring, i.e., a cochain complex (C•, ∂) equipped with an associative
graded product Cn ⊗ Cm −→ Cn+m which satisfies the signed Leibniz rule with respect
to ∂. Let α0, . . . , αn−1 ∈ H1(C) be cohomology elements of degree 1. A defining system
for the n-fold Massey product of α0, . . . , αn−1 is a collection of elements ai,j ∈ C1 for
0 ≤ i < j ≤ n, (i, j) 6= (0, n), satisfying the following two conditions1:
(1) ∂ai,j = −

∑j−1
m=i+1 ai,m ∪ am,j . In particular, ∂ai,i+1 = 0.

(2) [ai,i+1] = αi ∈ H1(C) for i = 0, . . . , n− 1.

Given a defining system Λ = {ai,j}, the element b0,n = −
∑n−1
m=1 a0,m ∪ am,n is then a

2-cocycle; the value 〈α0, . . . , αn−1〉Λ := [b0,n] ∈ H2(C) is called the n-fold Massey product
of α0, . . . , αn−1 with respect to the defining system Λ. We then let 〈α0, . . . , αn−1〉 ⊆ H2(C)
denote the set of all elements which can be obtained as the n-fold Massey product of
α0, . . . , αn−1 with respect to some defining system. We say that the n-fold Massey product
of α0, . . . , αn−1 is defined if there exists a defining system as above, and that it vanishes if
it is defined and furthermore 〈α0, . . . , αn−1〉Λ = 0 for at least one defining system Λ.

Date: April 13th, 2019.
1We follow Kraines’ [Kra66] definition, which differs from Dwyer’s [Dwy75] by a sign.

1



2 YONATAN HARPAZ AND OLIVIER WITTENBERG

Higher Massey products provide invariants of a differential graded ring which do not
factor through its cohomology. A geometric example, originally described by Massey
[Mas69] [Mas98], where higher Massey products give non-trivial information is the fol-
lowing: let I be a finite set and consider an embedding ϕ :

∐
i∈I S1 ↪→ R3 of |I| circles in

3-space. Let X := R3 \ Im(ϕ) be its complement. Alexander duality shows that H1(X,Z)
and H2(X,Z) are both naturally isomorphic to ZI . In addition, the cup product on
H∗(X,Z) encodes the linking number of each pair of circles. When these linking numbers
are non-zero the cohomology ring of the complement X detects the fact that the circle
configuration is not isotopic to a trivial configuration (whose complement is homotopy
equivalent to a wedge of circles and 2-spheres). A case where this information is not
enough to distinguish a given circle configuration from the trivial one is the Borromean
rings: a configuration of three circles in R3 such that every pair is unlinked and yet the
configuration as a whole is not isotopic to a trivial embedding. By contrast, the complement
X of the Borromean ring configuration can be distinguished from the complement of the
trivial embedding by considering the differential graded ring C∗(X,Z), instead of merely
the associated cohomology ring. Indeed, since each two of the rings are unlinked, the
cohomology group H1(X,Z) contains three elements α0, α1, α2, such that the cup product
of each pair vanishes, and so there exists a defining system Λ for the associated triple
Massey product. Furthermore, one can show that 〈α0, α1, α2〉Λ ∈ H2(X,Z) is non-zero
for any choice of defining system Λ. In particular, X is not homotopy equivalent to the
complement of the trivial configuration.

Shifting attention from topology to arithmetic, it has been observed that open subsche-
mes of spectra of number rings obtained by removing a finite set of primes S behave much
like complements of links in R3. In particular, higher Massey products in étale cohomology
of such schemes carries important information about their fundamental groups, which, in
turn, controls Galois extensions unramified outside S (see [Mor04], [Vog04], [Sha07]). By
contrast, it was shown by Hopkins and Wickelgren [HW15] that all triple Massey products
vanish if we replace étale cohomology of Dedekind rings by Galois cohomology of number
fields, and consider coefficients in F2. This result was extended to all fields by Mináč and
Tân [MT17b], still with coefficients in F2. The idea was then put forward that for every
n ≥ 3, every prime p and every field, n-fold Massey products with coefficients in Fp should
vanish as soon as they are defined (first in [MT17b] under an assumption on the roots
of unity and later in [MT16] in general). This conjecture became known as the Massey
vanishing conjecture:
Conjecture 1.1 (Mináč, Tân). For every field k, prime p and cohomology classes
α0, . . . , αn−1 ∈ H1(k,Fp) with n ≥ 3, if the n-fold Massey product 〈α0, . . . , αn−1〉 ⊆
H2(k,Fp) is non-empty then it contains 0 ∈ H2(k,Fp).

Matzri [Mat14], followed by Efrat and Matzri [EM17] and by Mináč and Tân [MT16],
established this conjecture for n = 3, yielding, in effect, a strong restriction on the type
of groups which can appear as absolute Galois groups. This restriction is related to many
subtle structural properties of the maximal pro-p-quotients of absolute Galois groups, see
e.g., the work of Efrat [Efr14] and Mináč–Tân [MT17a].
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Remark 1.2. The Massey vanishing property appearing in Conjecture 1.1 (Massey
products of n ≥ 3 classes are trivial as soon as they are defined) holds, for example,
for differential graded rings which are formal, that is, which are quasi-isomorphic to their
cohomology. Conjecture 1.1 may then lead one to ask whether the differential graded
ring C∗(k,Fp) controlling Galois cohomology is actually formal—this question was indeed
posed by Hopkins and Wickelgren, see [HW15, Question 1.3]. However, the answer is
in the negative: Positselski [Pos11] (see also [Pos17, §6]) showed that for local fields of
characteristic 6= p which contain a primitive p-th root of unity (or a square root of −1
when p = 2), the differential graded ring C∗(k,Fp) is not formal (even though these fields
do have the Massey vanishing property, see [MT17b]).

The Massey vanishing conjecture is known in the following cases:
(1) When n = 3 and k and p are arbitrary [Mat14, EM17, MT16].
(2) When k is a local field, n ≥ 3 and p is arbitrary. We note that in this case, if k has

characteristic p or does not possess a primitive p-th root of unity then H2(k,Fp) = 0 by
[Koc02, Theorem 9.1] and local duality respectively, and hence the vanishing Massey
property holds trivially. The claim in the general non-trivial case was proven in
[MT17b, Theorem 4.3], using local duality.

(3) When k is a number field, n = 4 and p = 2 [GMT18].
In this paper we prove the following theorem (see Theorem 5.1 below):

Theorem 1.3. The Massey vanishing conjecture holds for all number fields, all n ≥ 3 and
all primes p.

Our strategy can be summarized as follows. We begin in §2 by recalling an equivalent
formalism for n-fold Massey products in group cohomology due to Dwyer [Dwy75], which
is based on non-abelian cohomology. We then combine this with work of Pál and Schlank
[PS16] on the relation between homogeneous spaces and embedding problems in order
to conclude that a certain naturally occurring homogeneous space V with finite geometric
stabilizers can serve as a splitting variety for n-fold Massey products. These finite stabilizers
are supersolvable: they admit a finite filtration by normal subgroups, invariant under the
natural outer Galois action, whose consecutive quotients are cyclic. This means that V is
susceptible to the machinery developed by the authors [HW18] for proving the existence of
rational points defined over number fields. As a result, the problem of the n-fold Massey
vanishing property for number fields can be reduced to that of local fields plus an additional
constraint: one needs to show that the local Massey solutions can be chosen to satisfy global
reciprocity in terms of the unramified Brauer group of V . This unramified Brauer group
turns out to play a more prominent role specifically when n is small. This is the main topic
of §4, where some crucial properties of the unramified Brauer group are extracted in this
case. The proof of the Massey vanishing conjecture is then given in §5, see Theorem 5.1.

We finish this paper with two additional sections. In §6 we give more elaborate
computations of the Brauer group of V when n ≤ 5, and we describe examples showing
that this Brauer group can be non-trivial. Then, in §7 we discuss the Massey vanishing
conjecture with more general types of coefficients. We show that for coefficients in
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the Tate twisted module Z/pZ(i) the proof of the main theorem can be adapted with
very small modifications to show the analogous Massey vanishing property over number
fields (Theorem 7.4). We also show that for coefficients in Z/8, the statement of the
conjecture actually fails for number fields. More precisely, we show that there exist three
Z/8-characters of Q whose triple Massey product is defined but does not vanish. It seems
likely, though, that the Massey vanishing property with coefficients in Z/m for any integer
m can still be shown to hold for local fields, using [Koc02, Theorem 9.1] and local duality.

Acknowledgements. We are grateful to Pierre Guillot and Ján Mináč for many discussions
about Massey products, to Adam Topaz for pointing out the splitting varieties for Massey
products that were constructed by Ambrus Pál and Tomer Schlank in [PS16], and to Ido
Efrat and Nguyễn Duy Tân for their comments on a preliminary version of this article.

2. Higher Massey products, non-abelian cohomology and splitting varieties

In this section, we explain how Conjecture 1.1, over number fields, can be related with
the problem of constructing an adelic point in the unramified Brauer–Manin set of a certain
homogeneous space. To this end, we first describe a group-theoretic approach to Massey
products in group cohomology due to Dwyer [Dwy75] (a tool already employed in the
works of Hopkins–Wickelgren and Mináč–Tân on Massey products, see [HW15], [MT16],
[MT17b], [MT17a]) and recall, following Pál and Schlank [PS16, §9], the construction of a
homogeneous space of SLN which is a splitting variety for the resulting embedding problem.

Fix an integer n ≥ 2 and let U be the group of upper triangular unipotent (= unitrian-
gular) (n + 1) × (n + 1)-matrices with coefficients in Fp, with rows and columns indexed
from 0 to n. For 0 ≤ i < j ≤ n we denote by ei,j ∈ U the unitriangular matrix whose (i, j)
entry is 1 and all other non-diagonal entries are 0. Let

{1} = Un ⊆ · · · ⊆ Um ⊆ · · · ⊆ U0 = U

be the lower central series of U, so that Um+1 = [Um,U] and Z := Un−1 = 〈e0,n〉 is the
center of U. We can identify Um explicitly as the normal subgroup of U generated by
the elementary matrices ei,j for j − i > m. Equivalently, it is the subgroup consisting of
those unitriangular matrices whose first m non-principal diagonals vanish. In particular,
U1 = U′ is the derived subgroup and U3 = [U′,U′] is the second derived subgroup. We will
denote by A = U/U1 the abelianization of U. We have a natural basis {ei,i+1}n−1

i=0 for A,
where ei,i+1 is the image of ei,i+1.

Let k be a field with absolute Galois group Γk := Gal(k/k). Using the basis {ei,i+1}
above we may identify the data of a homomorphism α : Γk −→ A with that of a collection
αi = [ai,i+1] ∈ H1(k,Fp) of cohomology classes for i = 0, . . . , n − 1. Let u ∈ H2(U/Z,Z)
be the element classifying the central extension

1 −→ Z −→ U −→ U/Z −→ 1.

We note that since n ≥ 2 the abelianization map U −→ A sends the center to 0 and so
factors through a map U/Z −→ A. We now recall the following result of Dwyer. (Note that
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a sign appears in [Dwy75, Theorem 2.4], however we recall that we are using a different
convention in the definition of Massey products.)

Proposition 2.1 ([Dwy75], see also [Efr14, Proposition 8.3]). Defining systems Λ = {ai,j}
for the n-fold Massey product of α0, . . . , αn−1 are in bijection with group homomorphisms
αΛ : Γk −→ U/Z lifting α, where for σ ∈ Γk the element αΛ(σ) ∈ U/Z is given by
the coset of the unitriangular matrix M with Mi,j = ai,j(σ) for j > i. Furthermore,
the value of the n-fold Massey product of α0, . . . , αn−1 with respect to Λ is the class
−α∗Λu ∈ H2(k,Z) = H2(k,Fp), where we have identified the center Z with Fp via the
generator e0,n.

Corollary 2.2.
(1) The homomorphism α : Γk −→ A lifts to U/Z if and only if 〈α0, . . . , αn−1〉 6= ∅.
(2) The homomorphism α : Γk −→ A lifts to U if and only if 〈α0, . . . , αn−1〉 contains 0.
(3) The Massey vanishing conjecture is equivalent to the statement that any homomorphism

α : Γk −→ A which lifts to U/Z also lifts to U.

Remark 2.3. In the setting of Corollary 2.2(3), the Massey vanishing conjecture does not
require that every lift of α to U/Z also lifts to U.

Let us fix a homomorphism α : Γk −→ A. Using the basis {ei,i+1} above, we will think
of α as a tuple {αi = [ai,i+1]}n−1

i=0 of elements of H1(k,Fp) = Hom(Γk,Fp). Consider the
embedding problem depicted by the diagram of profinite groups

(2.1)
Γk
α
��{{

1 // U1 // U // A // 1.

Following Pál and Schlank [PS16, §9], we associate with this embedding problem a
homogeneous space V over k, as follows. Let N = |U|+1 and consider SLN as an algebraic
group over k. Embed U into SLN (k) via its augmented regular representation (where the
additional dimension is used to fix the determinant). Let Tα −→ Spec(k) be the k-torsor
under A determined by the homomorphism α : Γk −→ A, viewed as a 1-cocycle. We let V
be the quotient variety

V = (SLN ×Tα)/U,(2.2)

where U acts on SLN by right multiplication, on Tα via the homomorphism U −→ A, and
on SLN ×Tα, on the right, by the diagonal action. The left action of SLN on the first factor
of the product SLN ×Tα descends uniquely to V , exhibiting it as a homogeneous space of
SLN with geometric stablizer U1.

By Corollary 2.2, we have that 0 ∈ 〈α0, . . . , αn−1〉 if and only if the dotted lift in (2.1)
exists, i.e., if and only if the embedding problem (2.1) is solvable. On the other hand,
by [PS16, Theorem 9.6] the set of solutions to (2.1) up to conjugacy by U1 is in one-to-one
correspondence with the set of SLN (k)-orbits of V (k). We therefore conclude the following:
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Proposition 2.4 ([PS16, Theorem 9.21]). The Massey product of α0, . . . , αn−1 contains 0
if and only if V (k) 6= 0. In particular, V is a splitting variety for the n-fold Massey product
of α0, . . . , αn−1.

Using homogeneous spaces as splitting varieties opens the door to an application of
previous work of the authors [HW18] to establish a local-global principle for the vanishing
of Massey products, subject to a Brauer-Manin obstruction:

Proposition 2.5. Assume that k is a number field. The homogeneous space V introduced
in (2.2) has a rational point if and only if it carries a collection of local points (xv) ∈∏
v V (kv) which is orthogonal to the unramified Brauer group Brnr(V ).

Proof. By [HW18, Théorème B] it will suffice to show that U1 is supersolvable as a group
equipped with an outer Galois action [HW18, Définition 6.4]. Indeed, U is a nilpotent group
with lower central series {Um}nm=0. In particular, for every m = 1, . . . , n − 1 the group
Um/Um+1 is abelian and the conjugation action of U/U1 on each Um/Um+1 is trivial. Let
us then consider Un ⊆ · · · ⊆ U1 as a filtration of U1 by U-invariant normal subgroups such
that the U-action on each successive quotient is trivial. We may refine this filtration to a
filtration H l ⊆ · · · ⊆ H1 = U1 of U1 by U-invariant normal subgroups H i / U1 such that
each successive quotient H i/H i+1 is cyclic. Given α : Γk −→ U/U1 we now get that {H i}
is a filtration of U1 by Galois invariant normal subgroups with cyclic successive quotients.
It then follows that U1 is supersolvable as a group with outer Galois action, as desired. �

In order to exploit Proposition 2.5 it is necessary to have some control over the unramified
Brauer group Brnr(V ). A relatively more accessible part of Brnr(V ) is the subgroup

Br1,nr(V ) := Ker[Brnr(V ) −→ Br(V )] ⊆ Brnr(V )
of algebraic unramified elements. The key tool we will use for this part consists in a general
formula for the algebraic unramified Brauer group of an arbitrary homogeneous space of
a semi-simple simply connected algebraic group with finite geometric stabilizers, to which
we devote the next section.

3. Algebraic unramified Brauer groups of homogeneous spaces of
semi-simple simply connected groups with finite stabilisers

We fix, in this section, a field k of characteristic 0 with algebraic closure k and absolute
Galois group Γk = Gal(k/k), a homogeneous space V of a semi-simple simply connected
linear algebraic group over k (for instance of SLN ) and a point v̄ ∈ V (k). We assume that
the stabilizer Hv̄ of v̄ is finite. We recall that there is a natural outer action of Γk on Hv̄

and that the Cartier dual Ĥab
v̄ = Hom(Hab

v̄ , k
∗) of its abelianization Hab

v̄ is canonically
isomorphic to Pic(V ) as a Γk-module (see [HW18, §5]). As a consequence, the Hochschild–
Serre spectral sequence provides an exact sequence

Br(k) −→ Br1,nr(V ) −→ H1(k, Ĥab
v̄ ).(3.1)

We denote by Br0(V ) ⊆ Br1,nr(V ) the image of Br(k).
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The goal of this section is to describe, in Proposition 3.2 below, an explicit formula for
the quotient group Br1,nr(V )/Br0(V ), viewed as a subgroup of H1(k, Ĥab

v̄ ) via (3.1). This
formula builds upon a series of formulae established by previous authors: by Harari [Har07,
Proposition 4] when V (k) 6= ∅ and k is a number field, by Demarche [Dem10, Théorème 1]
when V (k) is allowed to be empty but k is a number field and by Lucchini Arteche [LA14,
Théorème 4.15] when V (k) 6= ∅ and k is arbitrary.

Definition 3.1. For a group H of exponent d, consider the action of (Z/d)∗ on the set
H/(conjugacy) of conjugacy classes of H via [x] 7→ [xi] for i ∈ (Z/d)∗. By the outer
exponent of H we will mean the smallest divisor e|d such that this action factors through
the quotient map (Z/d)∗ −→ (Z/e)∗.

Let e denote the outer exponent of Hv̄. We fix a finite Galois subextension L/k of k/k,
with Galois group G = Gal(L/k), satisfying the following three conditions:

(1) L contains all e-th roots of unity;
(2) V (L) 6= ∅;
(3) the natural outer action of Γk on Hv̄ factors through G = Gal(L/k).

In particular, the action of Γk on both Hab
v̄ and Ĥab

v̄ factors through G: we may, and will,
consider these two abelian groups as G-modules and view H1(G, Ĥab

v̄ ) as a subgroup of
H1(k, Ĥab

v̄ ) via the inflation map H1(G, Ĥab
v̄ ) ↪→ H1(k, Ĥab

v̄ ).
We let χ : G −→ (Z/e)∗ be the homomorphism induced by the cyclotomic character and

remark that the outer action of G on Hv̄ induces an action of G on the set Hv̄/(conjugacy)
of conjugacy classes of the group Hv̄.

Let σ ∈ G and u ∈ Hv̄ satisfy the equality σ[u] = [uχ(σ)] in Hv̄/(conjugacy). Let u
be the image of u in Hab

v̄ . Then σ(u) = χ(σ)u and so we may consider (evaluation at) u
as a σ-equivariant map u : Ĥab

v̄ −→ µ∞, where µ∞ denotes the group of roots of unity
in k∗ equipped with the trivial Galois action. On the other hand, we may consider σ as
determining a group homomorphism σ : Ẑ −→ G. We hence obtain a composed map

H1(G, Ĥab
v̄ ) σ∗−→ H1(Ẑ, Ĥab

v̄ ) u∗−→ H1(Ẑ,µ∞) ∼= µ∞.

Proposition 3.2 (Harari, Demarche, Lucchini Arteche). There is an equality

Br1,nr(V )/Br0(V ) =
{
β ∈ H1(G, Ĥab

v̄ ); ∀σ ∈ G, ∀u ∈ Hv̄,

if σ[u] = [uχ(σ)] in Hv̄/(conjugacy), then u∗σ∗β = 1 ∈ µ∞

}
of subgroups of H1(k, Ĥab

v̄ ).

Proof. We are free to extend the scalars from k to any field extension k′ of k in which k is
algebraically closed. Indeed, on the one hand, the natural mapH1(k, Ĥab

v̄ ) −→ H1(k′, Ĥab
v̄ )

is injective for such a field extension k′/k, and on the other hand, if K denotes the
residue field of a codimension 1 point of a smooth compactification of V , the natural map
H1(K,Q/Z) −→ H1(K ⊗k k′,Q/Z) is injective as well. As a class of Br(V ) is unramified
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if and only if its residues along the codimension 1 points of a smooth compactification of V
all vanish, the claim follows.

In particular, we may extend the scalars from k to k(V ) and thus assume that V (k) 6= ∅.
As the statement of Proposition 3.2 does not depend on the choice of v̄, we may assume that
v̄ ∈ V (k), so that Γk acts on Hv̄. We are now in a position to apply [LA14, Théorème 4.15].
It only remains to check that the formulae given in Proposition 3.2 and in loc. cit. agree.

To this end, we first note that for σ ∈ ΓL, the map Nσ : Hv̄ −→ Hab
v̄ appearing in loc.

cit. is simply the quotient map, since the outer action of ΓL on Hv̄ is trivial and L contains
all e-th roots of unity. Thus Br1,nr(V )/Br0(V ) ⊆ Ker

(
H1(k, Ĥab

v̄ ) −→ H1(L, Ĥab
v̄ )
)

=

H1(G, Ĥab
v̄ ) as a consequence of [LA14, Théorème 4.15].

Let us now fix β ∈ H1(G, Ĥab
v̄ ) and assume that u∗σ∗β = 1 for all σ ∈ G and u ∈ Hv̄

such that σ[u] = [uχ(σ)] in Hv̄/(conjugacy). Letting b : G −→ Ĥab
v̄ , σ 7→ bσ denote a

cocycle representing β, we need to prove that bσ(Nσ(u)) = 1 for all σ ∈ G and all u ∈ Hv̄.
When σ[u] = [uχ(σ)] in Hv̄/(conjugacy), one has Nσ(u) = u and bσ(u) = u∗σ

∗β, so that the
desired condition holds by assumption. In general, if n is the smallest positive integer such
that σn[u] = [uχ(σn)] in Hv̄/(conjugacy), then bσn(u) = 1, as we have just seen; and on
the other hand, one has bσ(Nσ(u)) = ((1 + σ + · · ·+ σn−1)bσ)(u) = bσn(u), where the first
equality stems from the definition of Nσ and the second one from the cocyle condition. �

4. The Brauer group of the Massey splitting varieties

Let k be a field of characteristic 0. We take up the notation of §2; in particular, V is the
homogeneous space (2.2) associated with a fixed homomorphism α : Γk −→ A. Our goal in
this section is to study the unramified Brauer group Brnr(V ). For the most part we will be
using the formula of Proposition 3.2 in order to understand the algebraic part of Br1,nr(V ).
However, before we do so, let us first take a closer look at the transcendental part of
Brnr(V ), namely, the image of Brnr(V ) in the unramified Brauer group Brnr(V ) of the base
change V := V ⊗k k to the algebraic closure. It is known that the transcendental Brauer
group can play a non-trivial role in the local-global principle when k is a number field, see,
e.g., [DLAN17]. Fortunately, in our case we can deduce from the works of Bogomolov and
Michailov that it simply vanishes.

Proposition 4.1. The group Brnr(V ) is trivial.

Proof. By the classical work of Bogomolov [Bog87] we know that Brnr(V ) admits a purely
group theoretical description in terms of the stabilizer U1. More precisely, there is an
isomorphism

(4.1) Brnr(V ) ∼= Ker

H2(U1,Q/Z) −→
∏

H⊆U1

H2(H,Q/Z)


where the product ranges over all bicyclic subgroups H ⊆ U1 (equivalently, over all abelian
subgroups). The right hand side of (4.1) is also known as the Bogomolov multiplier of U1.
By [Mic16, Theorem 3.1], the Bogomolov multiplier of U1 vanishes, hence the result. �
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Next let us turn our attention to the algebraic unramified Brauer group Br1,nr(V ). Let
B = U1/[U1,U1] = U1/U3 denote the abelianization of U1. We have a natural basis {ei,j}
for B indexed by the set of ordered pairs (i, j) ∈ {0, . . . , n}2 such that 2 ≤ j− i ≤ 3, where
ei,j is the image of the element ei,j ∈ U1. We note that the action of A on B induced by
the outer action of A on U1 via conjugation can be described very explicitly in terms of
the basis above: for ei,j ∈ A and ek,l ∈ B we have

(4.2) ei,j(ek,l) =


ek,l + ei,l j = k
ek,l − ek,j i = l

ek,l j 6= k, i 6= l

We consider B as a Galois module via the map α : Γk −→ A, and let B̂ = Hom(B, k∗)
denote the Cartier dual module. The action of U on U1 via conjugation induces an action
of U on U1/(conjugacy). By construction this action becomes trivial when restricted to U1

and hence descends to a well-defined action of A = U/U1 on U1/(conjugacy). We note
that this action is compatible with the action of A on B = (U1)ab described in (4.2), in the
sense that the natural map of sets U1/(conjugacy) −→ B is A-equivariant.

Let e be the outer exponent of U1 and let k ⊆ L ⊆ k be the minimal Galois subextension
such that α|ΓL

= 0 and L contains all e-th roots of unity. We denote by G = Gal(L/k) the
(finite) Galois group of L over k. Let χ : G −→ (Z/e)∗ be the homomorphism induced by
the cyclotomic character. We note that α and χ together determine an embedding of G
into A × (Z/e)∗. We also note that the action of Γk on both B and B̂ factors through G,
and so we may consider B and B̂ as G-modules.

As α|ΓL
= 0, we have Tα(L) 6= ∅, where Tα is as in (2.2); hence V (L) 6= ∅. We may

therefore apply Proposition 3.2 with this choice of L and G, noting that Hab
v̄ = B.

Proposition 4.2. If k does not contain a primitive p-th root of unity then H1(G, B̂) = 0.

Proof. In this case pmust be odd. We note that e divides the exponent of U1 (by definition)
but is also divisible by the exponent of B = (U1)ab, which is p. The composed map
G

χ−→ (Z/e)∗ −→ (Z/p)∗ is then surjective with kernel a p-group. Since G embeds
in A × (Z/e)∗ it is necessarily abelian, and since the order of (Z/p)∗ is prime to p the
projection G −→ (Z/p)∗ must split. We then obtain that G contains F∗p as a (necessarily
normal) subgroup which acts on the Fp-vector space B̂ by a(v) = av. Since H i(F∗p, B̂) = 0
for all i ≥ 0 the desired result follows from the Hochschild–Serre spectral sequence. �

Corollary 4.3. Under the assumption of Proposition 4.2, one has Br1,nr(V )/Br0(V ) = 0.

Proof. Indeed, Proposition 3.2 implies that Br1,nr(V )/Br0(V ) ↪→ H1(G, B̂). �

Definition 4.4. Let G be a group and M and G-module. We set

X1
cyc(G,M) = Ker

[
H1(G,M) −→

∏
C⊆G

H1(C,M)
]
,

where the product is taken over all cyclic subgroups C ⊆ G.



10 YONATAN HARPAZ AND OLIVIER WITTENBERG

The following is now an immediate corollary of Proposition 3.2:

Proposition 4.5. There is a sequence of inclusions

X1
cyc(G, B̂) ⊆ Br1,nr(V )/Br0(V ) ⊆ H1(G, B̂)(4.3)

of subgroups of H1(k, B̂).

Our goal, until the end of this section, will be to understand the subgroup Br1,nr(V )/Br0(V )
ofH1(G, B̂) in the case where n ≤ 6. Given a matrixM , we denote its coefficient in position
(i, j) by Mi,j . We begin with the following lemma:

Lemma 4.6. If n ≤ 6, the outer exponent of U1 is equal to p.

Proof. This outer exponent is divisible by p since the abelianization of U1 has exponent p.
Thus, we need only check that M1+mp and M are conjugate in U1 for any M ∈ U1 and
any m ∈ Z. Let I denote the identity matrix. As (M − I)i = 0 for i > n/2, we have

M1+mp =
∞∑
i=0

(
1 +mp

i

)
(M − I)i = M +

bn/2c∑
i=2

(
1 +mp

i

)
(M − I)i.(4.4)

Since
(1+mp

i

)
= 0 ∈ Fp for i ∈ {2, . . . , p− 1}, it follows that M1+mp = M if p > n/2. As a

consequence, for n ≤ 6 we may assume that p ≤ 3. If p = 3 and n ≤ 6, the equality (4.4)
shows thatM1+mp = M +c(M −I)3 for some c ∈ Fp. If (M −I)3 = 0, we are done. If not,
then n = 6, so that (M − I)3 = M0,2M2,4M4,6e0,6, where M = (Mi,j)0≤i,j≤6, and therefore

e
cM2,4M4,6
2,6 M1+mpe

−cM2,4M4,6
2,6 = M ,

as desired. Finally, if p = 2 and n ≤ 6, we deduce from (4.4) with m = 2 that M4 = I; it
therefore suffices to see that M−1 and M are conjugate. To this end, let M ′,M ′′ ∈ U1 be
such that M ′i,j = Mi,j for j < 4, M ′′i,j = Mi,j for i > 3, and all other non-diagonal entries
of M ′ and M ′′ are 0. Then M ′2 = M ′′2 = (MM ′M ′′)2 = [M ′,M ′′] = I (recall that p = 2),
and these equalities formally imply that M−1 = (MM ′M ′′)M(MM ′M ′′)−1. �

We do not know whether the conclusion of Lemma 4.6 remains true for all n.

Remark 4.7. Lemma 4.6 implies that when n ≤ 6 the map G −→ A induced by α is
injective as soon as k contains a primitive p-th root of unity (e.g., when p = 2).

When n ≥ 3, we will denote by B0 ⊆ B the subgroup generated by e0,2, e0,3, en−3,n, en−2,n.
We note that B0 is closed under the action of A and that B0 is an elementary abelian p-group
of rank 4, except when n = 3 in which case e0,3 and en−3,n coincide and B0 = B has rank 3.
The following result on the image of Br1,nr(V ) in H1(G, B̂) will play a key role in the proof
of the Massey vanishing conjecture when n ≤ 6:

Proposition 4.8. If 3 ≤ n ≤ 6, the subgroup Br1,nr(V )/Br0(V ) ⊆ H1(G, B̂) is contained
in the kernel of the natural map H1(G, B̂) −→ H1(G, B̂0).
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The remainder of this section is devoted to the proof of Proposition 4.8. We henceforth
assume that n ≥ 3.

Remark 4.9. Let σ =
∑n−1
i=0 aiei,i+1 ∈ A. The action of σ on U1/(conjugacy) can be

computed by lifting σ to the unitriangular matrix S such that Si,i+1 = ai and all other
non-diagonal values vanish: on the level of conjugacy representatives Q ∈ U1, the action
of σ is determined by σ([Q]) = [M ] withM = SQS−1. We have (S−1)i,j = (−1)j−i

∏j−1
l=i al

when i ≤ j. Performing the calculation and using the fact that Qi,i = 1 and Qi,i+1 = 0,
we find that M is given by

Mi,j =

 j∑
m=i

(−1)j−mQi,m
j−1∏
l=m

al

+ ai

 j∑
m=i+1

(−1)j−mQi+1,m

j−1∏
l=m

al


= Qi,j +

j−1∑
m=i

(−1)j−m
(Qi,mam − aiQi+1,m+1

) j−1∏
l=m+1

al


= Qi,j +

j−1∑
m=i+2

(−1)j−m
(Qi,mam − aiQi+1,m+1

) j−1∏
l=m+1

al

 ∈ Fp.

(4.5)

Here, by convention, we interpret an empty sum as 0 and an empty product as 1. In
particular, we haveMi,j = Qi,j when j−i ≤ 2 andMi,i+3 = Qi,i+3−Qi,i+2ai+2+aiQi+1,i+3.

Remark 4.10. Let τ denote the involution of GLn+1(Fp) defined by τ(M) = (PM−1P−1)t,
where P = P−1 is the matrix of the permutation i 7→ n− i. We note that τ(ei,j) = e−1

n−j,n−i
for all i and j, so that τ(Ui) = Ui for all i. We therefore obtain induced involutions, again
denoted τ , on A and B. The action of A on U1/(conjugacy) respects τ in the sense that
τ(σ)(τ([Q])) = τ(σ([Q])) for any σ ∈ A and any Q ∈ U1, and similarly for the action of A
on B. The observant reader might be troubled by the fact that the formula in (4.5) is not
visibly symmetric with respect to τ : if we replace σ by τ(σ) and Q by τ(Q) we will not
get the matrix τ(M) on the nose. The new M will however be conjugate to τ(M). This is
simply a side effect of our (essentially arbitrary) choice of S as a lift of σ, which was not
done in a τ -symmetric manner.

For σ ∈ A we will denote by (U1/(conjugacy))σ and Bσ the subset/subgroup of elements
fixed by σ.

Lemma 4.11. Let σ ∈ A be an element and let b ∈ Bσ be a σ-invariant element which
is contained in the subgroup of B spanned by {ei,i+2}n−2

i=0 . Then b lifts to a σ-invariant
element of U1/(conjugacy).

Proof. Let us write b =
∑n−2
i=0 biei,i+2 and σ =

∑n−1
i=0 aiei,i+1. Since b is σ-invariant we have

by (4.2) that −biai+2 +aibi+1 = 0 for every i = 0, . . . , n−3. It then follows from (4.5) that
if we lift b to the unitriangular matrix Q such that Qi,i+2 = bi and all other non-diagonal
values vanish then the conjugacy class [Q] ∈ U1/(conjugacy) is σ-invariant. �
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Lemma 4.12. For any σ ∈ A, the subgroup of Bσ generated by the image of the natural
map
(4.6) (U1/(conjugacy))σ −→ Bσ

contains B0 ∩ Bσ.

Proof. If n = 3, then U1 = B and the statement is trivial. Let us assume that n ≥ 4, in
which case B0 is generated by four distinct elements e0,2, e0,3, en−3,n, en−2,n. We first note
that since every ei,i+3 ∈ B is A-invariant, Lemma 4.11 implies that any σ-invariant element
in B0 can be written as a sum of an element spanned by e0,3, en−3,n and an element in the
image of (4.6). It will hence suffice to show that e0,3 and en−3,n can be written as sums of
elements in the image of (4.6). We will give the argument for e0,3. The case of en−3,n then
follows from the symmetry of Remark 4.10.

Let us write σ =
∑
i aiei,i+1. If a3 = 0 then [e0,3] ∈ U1/(conjugacy) is a σ-invariant lift

of e0,3 by the formula in (4.5). If a3 6= 0 but a2 = 0 then we write e0,3 as the difference
between e0,3+e0,2 and e0,2, both of which are σ-invariant in B since a2 = 0. Let Q = e0,3e0,2
serve as a lift of e0,3 + e0,2. By Remark 4.9, the conjugacy class σ([Q]) can be represented
by a matrix M such that Mi,j = Qi,j when j − i ≤ 3 and Mi,j = 0 when j > i > 0. Then
Q is conjugate to M via the element x :=

∏n
j=4 e

−M0,j

2,j (that is, xQx−1 = M), so that
[Q] ∈ (U1/(conjugacy))σ. We conclude that e0,3 + e0,2 belongs to the image of (4.6). By
Lemma 4.11, so does e0,2. Hence e0,3 lies in the subgroup generated by the image of (4.6).

Finally, suppose that a2 6= 0. The element b =
∑n−2
i=0 biei,i+2 ∈ B defined by bi := aiai+1

is σ-invariant and we may write e0,3 as a linear combination of a2e0,3 + b and b. As above,
b lifts to a σ-invariant conjugacy class by Lemma 4.11. Let Q ∈ U1 be the matrix such
that Qi,i+2 = bi, Q0,3 = a2 and all other non-diagonal values vanish, so that Q is a lift of
a2e0,3 + b. Let M be the matrix representing σ([Q]) as in Remark 4.9. Then Mi,j = Qi,j
if j − i ≤ 3, Mi,j = 0 if j − 3 > i > 0 and

M0,j = (−1)j−3
j−1∏
l=2

al = (−1)j−3

j−3∏
l=2

al

 · bj−2

for j = 4, . . . , n. (Note that the terms associated with m = i+2 in Formula (4.5) vanish by
the construction of b.) We then see that Q is conjugate to M via the element

∏n
j=4 e

εj

0,j−2,
where εj = (−1)j−3∏j−3

l=2 al. Indeed, we may write Q as the product Q = e
bn−2
n−2,n . . . e

b0
0,2e0,3

and M as Q
∏n
j=4 e

M0,j

0,j , while for j ∈ {4, . . . , n} we have e0,j−2Qe
−1
0,j−2 = Qe

bj−2
0,j . In

particular, the conjugacy class [Q] is σ-invariant. Thus e0,3 again belongs to the subgroup
generated by the image of (4.6), as desired. �

Lemma 4.13. If n ≤ 6, the image of Br1,nr(V )/Br0(V ) ⊆ H1(G, B̂) by the natural map
H1(G, B̂) −→ H1(G, B̂0) is contained in X1

cyc(G, B̂0).

Proof. By Corollary 4.3, we may assume that k contains a primitive p-th root of unity. By
Lemma 4.6, the cyclotomic character χ : G −→ (Z/e)∗ = (Z/p)∗ is then trivial. Let us fix
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β ∈ Im
(
Br1,nr(V )/Br0(V ) −→ H1(G, B̂0)

)
. Combining Proposition 3.2 and Lemma 4.12

we find that for every σ ∈ G, if we identify σ with a homomorphism σ : Ẑ −→ G, the
element σ∗β ∈ H1(Ẑ, B̂0) lies in the right kernel of the cup product pairing

H0(Ẑ,B0)×H1(Ẑ, B̂0) −→ H1(Ẑ,µp) = µp,

where we have identified B̂0 with Hom(B0,µp) given that B0 is a p-torsion group. This
pairing being perfect (Poincaré duality for the group Ẑ), we conclude that σ∗β = 0 for all
σ ∈ G, hence β ∈X1

cyc(G, B̂0), as desired. �

Lemma 4.14. One has X1
cyc(G, B̂0) = 0.

Proof. Let H ⊆ G be the kernel of the composed map G
χ−→ (Z/e)∗ −→ (Z/p)∗. The

restriction map H1(G, B̂0) −→ H1(H, B̂0) is injective since the index of H in G is prime
to p while B̂0 has exponent p. It will hence suffice to show that X1

cyc(H, B̂0) = 0.
Assume first that n > 3. In this case B0 splits as a direct sum of two H-modules

B0 = B′0 ⊕ B′′0 where B′0 is spanned by e0,2, e0,3 and B′′0 is spanned by en−3,n, en−2,n.
Furthermore, if we let fi : A −→ Fp denote the homomorphism such that fi(ej,j+1) = δi,j
(Kronecker’s delta) then the action of H on B′0 factors through the composed map
H −→ A f2−→ Fp and the action of H on B′′0 factors through the composed map

H −→ A fn−3−→ Fp. In particular, B0 is a direct sum of two H-modules on each of which the
action of H factors through a cyclic quotient. The same must then be true for the dual
module B̂0, and so X1

cyc(H, B̂0) = 0.
Let us now consider the case where n = 3. By dualising the short exact sequence

0 −→ Fp −→ B0 −→ F2
p −→ 0,(4.7)

where the first map sends 1 to e0,3 and the quotient F2
p = B/〈e0,3〉 is generated by the

images of e0,2, e1,3, we obtain an exact sequence of H-modules

0 −→ F2
p −→ B̂0 −→ Fp −→ 0.(4.8)

As X1
cyc(H,Fp) = 0, any element in X1

cyc(H, B̂0) comes from H1(H,F2
p) = Hom(H,F2

p).
Let T0 ∈ Hom(H,F2

p) be the image of 1 ∈ H0(H,Fp) by the boundary of (4.8). We are
now reduced to verifying the following easy fact from linear algebra: if T ∈ Hom(H,F2

p) is
such that T (h) is a multiple of T0(h) for any h ∈ H, then T is itself a multiple of T0. �

Proof of Proposition 4.8. Combine Lemma 4.13 and Lemma 4.14. �

Corollary 4.15. If n = 3, then Brnr(V ) = Br0(V ).

Proof. When n = 3, the inclusion B0 ⊆ B is an equality and hence Proposition 4.8 and
Proposition 4.1 imply the vanishing of Brnr(V )/Br0(V ). �

Remark 4.16. With more care and more computations, the same ideas lead to a complete
determination of the unramified Brauer group of V also in the cases n = 4, 5, 6 (see §6).
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In particular, when n = 4, 5 we have that Brnr(V ) = X1
cyc(G, B̂) = Bω(V ), the group of

Brauer elements which are locally constant almost everywhere. We note that this group
can be non-trivial (see Example 6.3). When n = 6, the equality Brnr(V ) = Bω(V ) can fail.

5. Proof of the Massey vanishing conjecture

Our goal in this section is to prove the main theorem of this paper:

Theorem 5.1. The Massey vanishing conjecture holds for every number field k, every
n ≥ 3 and every prime p.

Let us henceforth fix a number field k, a prime p and an integer n ≥ 3. For 1 ≤ r, s ≤ n−2
let us denote by Pr,s ⊆ U1 ⊆ U the subgroup generated by the elementary matrices {ei,n}ri=0
and {e0,j}nj=n−s. We then observe that:

(1) The group Pr,s is normal in U and contains the center Z.
(2) The quotient Pr,s/Z is an elementary abelian p-group of rank r + s.
(3) If r+s ≤ n−1 then Pr,s itself is abelian and the short exact sequence of abelian groups

1 −→ Z −→ Pr,s −→ Pr,s/Z −→ 1

splits.

Using Proposition 2.4 and Proposition 2.5, the proof of Theorem 5.1 will eventually rely
on constructing local Massey solutions satisfying certain constraints. Our main tool for
constructing such local solutions is the following proposition. Here and below, by a local
field, we mean a complete discretely valued field with finite residue field.

Proposition 5.2. Let K be a local field. Let n ≥ 3 and 1 ≤ r, s ≤ n− 2. If r+ s = n− 1,
then any homomorphism ΓK −→ U/Pr,s that lifts to a homomorphism ΓK −→ U/Z also
lifts to a homomorphism ΓK −→ U.

Remark 5.3. In the situation of Proposition 5.2, if we were to replace the subgroup
Pr,s ⊆ U by the subgroup U1 ⊆ U, then we would obtain the statement that n-fold Massey
products in K vanish as soon as they are defined (a statement which is well known to hold,
see [MT17b, Theorem 4.3]). Since Z ⊆ Pr,s ⊆ U1 we may consider Proposition 5.2 as a
refinement of the Massey vanishing property for K.

Proof of Proposition 5.2. If K is of characteristic p or K does not contain a primitive p-th
root of unity thenH2(K,Fp) = 0 (see [Koc02, Theorem 9.1] in the former case and use local
Tate duality for the latter), in which case the lemma trivially holds: any homomorphism
ΓK −→ U/Z lifts to Z since the obstruction lives in H2(K,Z) = H2(K,Fp). We may hence
assume that K is of characteristic 6= p and contains a primitive p-th root of unity.
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Let us fix a homomorphism α : ΓK −→ U/Pr,s and a homomorphism α̃ : ΓK −→ U/Z
which lifts it. Consider the commutative diagram

1 // Z // Pr,s //� _

��

Pr,s/Z //
� _

��

1

1 // Z // U //

����

U/Z //

����

1

U/Pr,s U/Pr,s

(5.1)

with exact rows and columns. Since Pr,s and Z are normal in U and Z is central, the
conjugation action of U on itself induces an action of U/Z on all the groups appearing
in (5.1). We endow the first row of (5.1) with the Galois action obtained by pulling back
this action of U/Z along α̃ : ΓK −→ U/Z, and the second row with the trivial Galois action.
As all horizontal arrows are equivariant, we may consider the resulting boundary maps

∂ : H1(K,Pr,s/Z) −→ H2(K,Z)(5.2)
and

∂′ : H1(K,U/Z) −→ H2(K,Z).(5.3)
They share the same target since the two actions of ΓK on Z coincide. The first row of (5.1)
is a short exact sequence of Galois modules whose underlying sequence of abelian groups
splits (see (3) above). We separately discuss the case where the first row of (5.1) splits
ΓK-equivariantly and the case where it does not.

Consider first the case where the first row of (5.1) does not split ΓK-equivariantly. Then
the collection of (non-equivariant) retractions Pr,s −→ Z forms a non-trivial torsor under
the Galois module Hom(Pr,s/Z,Z), classified by some non-zero γ ∈ H1(K,Hom(Pr,s/Z,Z)).
As γ 6= 0 and Pr,s is a p-torsion module, local duality for finite abelian Galois modules
imply that the map (5.2), which is given by taking the cup product with γ, is surjective. It
follows that there exists a 1-cocycle β : ΓK −→ Pr,s/Z such that −∂[β] = ∂′[α̃] ∈ H2(K,Z).
One checks that the map

βα̃ : ΓK −→ U/Z
defined by (βα̃)(σ) = β(σ)α̃(σ) is a homomorphism (thanks to the cocycle condition on β)
and that ∂′[βα̃] = ∂[β] + ∂′[α̃] = 0. Hence βα̃ lifts to a homomorphism ΓK −→ U.
Furthermore, by construction, the homomorphism βα̃ still lifts α : ΓK −→ U/Pr,s.

Let us now consider the case where the first row of (5.1) splits ΓK-equivariantly. To
analyze this case it will be useful to be able to describe a given retraction Pr,s −→ Z by
an explicit linear algebra formula. To this end, let us identify Z with Fp via the generator
e0,n ∈ Z. Let W = Fn+1

p be the vector space of (n + 1)-dimensional “column vectors”, so
that we have a natural left action of the ring of square matrices Matn+1(Fp) on W via
matrix multiplication on the left. Let Ŵ = Hom(W,Fp) be the dual space of W , which we
can identify with the vector space of “row vectors” via the natural scalar product of row
vectors and column vectors. In particular, we have a right action of Matn+1(Fp) on Ŵ via
matrix multiplication on the right. Given v ∈ W,u ∈ Ŵ and M ∈ Matn+1(Fp) we may
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then consider the associated scalar uMv ∈ Fp, obtained by applying the functional u to
the vector Mv, or, equivalently, the functional uM to the vector v. Given v ∈ W,u ∈ Ŵ
we may then consider the homomorphism
(5.4) ρu,v : Pr,s −→ Fp = Z, ρu,v(Q) = u(Q− I)v,
where I ∈ Matn+1(Fp) denotes the identity matrix. The map ρu,v is indeed a group
homomorphism since

u(Q1Q2 − I)v = u(Q1 − I)v + u(Q2 − I)v + u(Q1 − I)(Q2 − I)v
and (Q1−I)(Q2−I) = 0 for everyQ1, Q2 ∈ Pr,s when r+s = n−1. Now, form ∈ {0, . . . , n},
letWm ⊆W be the (m+1)-dimensional subspace consisting of those column vectors whose
last (bottom) n−m coordinates vanish, and let Ŵm ⊆ Ŵ denote the (m+ 1)-dimensional
subspace consisting of those row vectors whose first (left) n −m coordinates vanish. We
note that the left action of U on W preserves the filtration W0 ⊆ · · · ⊆ Wn = W and
the right action of U on Ŵ preserves the filtration Ŵ 0 ⊆ · · · ⊆ Ŵn. We also note that
the subgroup Pr,s ⊆ U acts trivially on Ŵn−r−1 and Wn−s−1. Since ρu,v(ei,n) = uivn for
i = 0, . . . , r and ρu,v(e0,j) = u0vj for j = n− s, . . . , n, we conclude:
(i) The homomorphism ρu,v is a retraction of Z ⊆ Pr,s if and only if u0vn = 1.
(ii) Every retraction Pr,s −→ Z can be written as ρu,v for some u ∈ Ŵ , v ∈W .
(iii) For u, u′ ∈ Ŵ and v, v′ ∈ W such that u0 = u′0 6= 0 and vn = v′n 6= 0, we have

ρu,v = ρu′,v′ if and only if u = u′ mod Ŵn−r−1 and v = v′ mod Wn−s−1.
Now by our assumption and (i)–(ii) above, there exist u ∈ Ŵ and v ∈ W , with u0vn = 1,
such that the retraction ρu,v : Pr,s −→ Z is ΓK-equivariant. Let S ⊆ U be the subgroup
consisting of those matrices M ∈ U such that ρu,v(MQM−1) = ρu,v(Q) for every Q ∈ Pr,s,
i.e., such that ρuM,M−1v = ρu,v. As Z is abelian we see that S contains Pr,s and as ρv,u
is ΓK-equivariant, the subgroup S/Z ⊆ U/Z contains the image of α̃ : ΓK −→ U/Z. To
finish the proof it will hence suffice to show that the map S −→ S/Z admits a section,
which, since Z is central, is equivalent to the assertion that the inclusion Z ⊆ S admits a
retraction. In fact, we will show that the retraction ρu,v : Pr,s −→ Z itself extends to S.

Applying (iii) to (u′, v′) = (uM,M−1v) and noting that MWn−s−1 = Wn−s−1, we see
that

M ∈ S ⇐⇒ u(M − I) ∈ Ŵn−r−1 and (M − I)v ∈Wn−s−1.
As (r + 1) + (s+ 1) = n+ 1, it follows that u(M1 − I)(M2 − I)v = 0 for any M1,M2 ∈ S.
As u(M1M2 − I)v = u(M1 − I)v + u(M2 − I)v + u(M1 − I)(M2 − I)v, we conclude that
the formula M 7→ u(M − I)v provides an extension of ρv,u to a homomorphism S −→ Z
yielding a retraction of the inclusion Z ⊆ S, as desired. �

Proof of Theorem 5.1. Let α : Γk −→ A be a homomorphism which lifts to a homorphism
α̃ : Γk −→ U/Z. Using Dwyer’s formulation as summarized in Corollary 2.2(3), what we
need to show is that α lifts to a homomorphism Γk −→ U.

Let V = (SLN ×Tα)/U be the homogeneous space of SLN (with N = |U| + 1), over k,
associated with α by the construction of Pál–Schlank (see §2 and in particular (2.2)).
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By Proposition 2.4, our problem is equivalent to showing that V has a rational point. By
Proposition 2.5, which rests on [HW18, Théorème B], it will suffice to show that V contains
a collection of local points orthogonal to Brnr(V ) with respect to the Brauer–Manin pairing.

Let 1 ≤ r, s ≤ n − 2 be such that r + s = n − 1 and let α : Γk −→ U/Pr,s be the
composition of α̃ with the projection U/Z −→ U/Pr,s. When n ≥ 7 we also impose the
condition that r, s ≥ 3. We may now repeat the construction of Pál–Schlank, this time for
the embedding problem

Γk
α
��

yy1 // Pr,s // U // U/Pr,s // 1.
(5.5)

More precisely, let Tα −→ Spec(k) be the k-torsor under U/Pr,s determined by the
homomorphism α : Γk −→ U/Pr,s viewed as a 1-cocycle, and let W := (SLN ×Tα)/U
be the quotient variety of SLN ×Tα under the diagonal action of U on the right. The
left action of SLN on the first factor of the product SLN ×Tα descends uniquely to W ,
exhibiting it as a homogeneous space of SLN with geometric stabilizer Pr,s. In addition,
the natural map SLN ×Tα −→ SLN ×Tα descends to an SLN -equivariant map π : W −→ V
which realizes over k the covering map SLN,k /P

r,s −→ SLN,k /U
1 ∼= Vk.

When n ≥ 7, the conditions r, s ≥ 3 and r + s = n− 1 imply that n− r, n− s ≥ 4 and
hence that Pr,s is contained in U3 = Ker[U1 −→ B]. It follows that the natural map

Br1(V )/Br0(V ) = H1(k, B̂) −→ H1(k, P̂r,s) = Br1(W )/Br0(W )(5.6)

vanishes. When n ≤ 6, the image of Pr,s in B is at least contained in the subgroup B0 ⊆ B
introduced after Remark 4.7, and hence, by Proposition 4.8, the map (5.6) again vanishes.
Thus, in any case, the pullback of any algebraic Brauer class on V—and in particular of any
unramified Brauer class, by Proposition 4.1—becomes constant in Br(W ). In view of the
projection formula, it follows that for any (yv) ∈

∏
vW (kv), the family (π(yv)) ∈

∏
v V (kv)

is orthogonal to Brnr(V ). We are thus reduced to checking that W (kv) 6= ∅ for any place v
of k. By [PS16, Theorem 9.6], this is equivalent to the embedding problem (5.5) being
locally solvable; but this is now a direct consequence of Proposition 5.2 applied to the
restriction Γkv

−→ U/Pr,s of α to Γkv
⊂ Γk for each v. �

6. More Brauer group computations

In this section we give more elaborate computations of the unramified Brauer group of
our splitting variety V when n = 4, 5, which may be interesting in their own right, but are
not strictly needed for the proof of the main theorem.

Proposition 6.1. Suppose that n = 4, 5 and let σ ∈ A be an element. Then the subgroup
of Bσ generated by the image of the map

(6.1) (U1/(conjugacy))σ −→ Bσ.

is all of Bσ.
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Proof. When n = 4 the subgroup B0 ∩ Bσ contains all ei,j with j − i = 3 and hence
the combination of Lemma 4.12 and Lemma 4.11 implies that for every σ ∈ A the image
of (6.1) generates Bσ.

Let us now consider the case n = 5. In this case the subgroup B0 ⊆ B contains e0,3 and
e2,5, which are invariant under σ, and so by Lemma 4.12 and Lemma 4.11 it will suffice to
show that e1,4 is in the image of (6.1). Let us write σ =

∑
i aiei,i+1. If a4 = 0 then the

subgroup P4 ⊆ U1 spanned by those ei,j with j ≤ 4 is invariant under the outer action
of σ. Of course, P4 is just a copy of the group of unitriangular 4× 4-matrices whose first
non-principal diagonal vanishes and so the n = 4 case of the desired claim implies that e1,4
is contained in the subgroup generated by the image of (6.1). Similarly, if a0 = 0 then we
may run the same argument using the subgroup generated by those ei,j such that i ≥ 1.
We may hence assume without loss of generality that a0, a4 6= 0. We now claim that in
this case there must exist b0, . . . , b3 ∈ Fp such that b =

∑
i biei,i+2 is σ-invariant and such

that either b0b1 6= 0, or b2b3 6= 0, or b0b3 6= 0. Indeed, one of the following cases must hold:
(1) If a2 = 0 then e0,2 and e3,5 are σ-invariant and so we can take b = e0,2 + e3,5.
(2) If a2 6= 0 and a3 = 0 then we can take b = a0e0,2 + a2e1,3.
(3) If a2 6= 0 and a1 = 0 then we can take b = a4e3,5 + a2e2,4.
(4) If a1, a2, a3 6= 0 then bi := aiai+1 is non-zero for every i = 0, . . . , 3. In this case

b =
∑
i biei,i+2 is σ-invariant and satisfies the required property.

Now given a σ-invariant b =
∑
i biei,i+2 as above we write e1,4 as the difference between

e1,4 + b and b. By Lemma 4.11 the element b lifts to a σ-invariant conjugacy class and
hence it will suffice to show that e1,4 + b lifts to a σ-invariant conjugacy class. In fact, we
will show that e1,4 + b lifts to a unique, and therefore σ-invariant, conjugacy class.

Let Q ∈ U1 be the matrix with Qi,i+2 = bi for all i, Q1,4 = 1 and all other non-diagonal
entries 0, so that Q maps to e1,4 + b in B. We recall that B is the abelianization of U1 and
when n = 5 the derived subgroup U3 = Ker[U1 −→ B] is contained in the center of U1. It
follows that the conjugation action of U1 on itself is by automorphisms which induce the
identity on both B and U3. The group of such automorphisms is naturally isomorphic to
Hom(B,U3). In particular, we may associate with Q the element ΘQ ∈ Hom(B,U3) which
corresponds to the automorphism of conjugation by Q. More explicitly, ΘQ : B −→ U3 is
given by ΘQ(M) = M−1QMQ−1 ∈ U3 for any lift M ∈ U1 of M . As U3 is generated by
e0,4, e1,5 and e0,5, as

ΘQ(e2,4) = eb0
0,4, ΘQ(e2,5) = eb0

0,5, ΘQ(e3,5) = eb1
1,5,

ΘQ(e0,2) = e−b2
0,4 , ΘQ(e0,3) = e−b3

0,5 , ΘQ(e1,3) = e−b3
1,5 ,

and as at least one of b0b1, b2b3, b0b3 is non-zero, the map ΘQ is surjective. In particular,
any lift of e1,4 +b to U1 can be written as ΘQ(M)Q for someM ∈ U1 and therefore belongs
to the conjugacy class of Q, as desired. �

Corollary 6.2. If n = 4, 5 then Brnr(V ) coincides with Bω(V ) ⊆ Br(V ), the subgroup of
Brauer elements which are locally constant almost everywhere.
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Proof. If k does not contain a primitive p-th root of unity then Brnr(V ) = Br0(V ), by
Corollary 4.3 and Proposition 4.1. Assume now that k contains a primitive p-th root of
unity. By Lemma 4.6, the cyclotomic character χ : G −→ (Z/e)∗ = (Z/p)∗ is then trivial.
We may hence conclude from Proposition 3.2 and Proposition 6.1 (using Poincaré duality
for Ẑ as in the proof of Lemma 4.13) that Br1,nr(V )/Br0(V ) ∼= X1

cyc(G, B̂), and the latter
group can be identified with X1

ω(k, B̂) by Chebotarev’s theorem. Combining this with
Proposition 4.1 implies that Brnr(V ) = Bω(V ), as desired. �

Example 6.3. When n = 4, p = 2 and (α0, . . . , α3) = ([ab], [a], [b], [ab]) for a, b ∈ k∗ such
that none of a, b, ab is a square, one can calculate thatBω(V )/Br0(V ) = X1

cyc(G, B̂) = Z/2.
Specifically, in the case of k = Q and (α0, α1, α2, α3) = ([34], [2], [17], [34]) it can be shown
that the non-trivial element of Bω(V )/Br0(V ) is in fact locally constant and yields a non-
trivial obstruction to the Hasse principle (see [GMT18, Example A.15]). We note that
this is by no means a contradiction to Theorem 5.1: indeed, an obstruction coming from
a locally constant Brauer class means that the homomorphism α : Γk −→ A = U/U1 does
not lift to U/U3 = U/Z, and hence the relevant Massey product is not defined.

Although we do not include the details here, it is possible to give a precise description of
the unramified Brauer group of V when n = 6 as well. As it turns out, unramified classes
that fail to be locally constant at infinitely many places do exist in this case. In other
words, the statements of Proposition 6.1 and of Corollary 6.2 both fail when n = 6.

7. Beyond the Massey vanishing conjecture

Higher Massey products can be defined for Galois cohomology classes in more general
modules. Indeed, let n ≥ 2 and suppose that we are presented with Galois modules Mi,j

for 0 ≤ i < j ≤ n and with multiplication mapsMi,j⊗Mj,k −→Mi,k for 0 ≤ i < j < k ≤ n
satisfying the obvious associativity condition. Given classes αi ∈ H1(Γk,Mi,i+1) for
0 ≤ i < n, a defining system for the n-fold Massey product of α0, . . . , αn−1 is a collection of
1-cochains ai,j ∈ C1(Γk,Mi,j) for (i, j) 6= (0, n) such that ∂ai,j = −

∑j−1
m=i+1 ai,m ∪ am,j (in

particular αi,i+1 is a cocycle) and [ai,i+1] = αi ∈ H1(Γk,Mi,i+1). Given a defining system
Λ = {ai,j} as above, the element b0,n = −

∑n−1
m=1 a0,m ∪ am,n is a 2-cocycle, and the value

〈α0, . . . , αn−1〉Λ := [b0,n] ∈ H2(Γk,M0,n) is the n-fold Massey product of α0, . . . , αn−1 with
respect to the defining system Λ.

Remark 7.1. This set-up was considered by Dwyer [Dwy75, p. 183] when Γk is replaced
with an abstract discrete group and the action on the Mi,j is trivial. We recall that when
working with non-trivial Galois modules the cup product is defined with a twist by the
Galois action. More precisely, ifM,M ′,M ′′ are three Galois modules equipped with a map
(−) ·(−) : M⊗M ′ −→M ′′ then the associated cup product of two 1-cochains a : Γk −→M
and a′ : Γk −→M ′ is given by the 2-cochain (a ∪ a′)(σ, τ) = a(σ) · σ(a′(τ)).

Example 7.2. If R is a commutative ring and N0, . . . , Nn are Galois R-modules, we can
take Mi,j = HomR(Nj , Ni) with the induced Galois action.
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Classical Massey products with coefficients in R correspond to the particular case of
Example 7.2 in which N0 = · · · = Nn = R with trivial Galois action. As another particular
case of special interest, let R = Z/p and let Ni = Hom(µ⊗ip ,Z/p), so that Mi,j = µ⊗(j−i)

p .
Thus, for α0, . . . , αn−1 ∈ H1(k,µp), we obtain n-fold Massey products in H2(k,µ⊗np ).

It is legitimate to wonder about the validity of Conjecture 1.1 in this more general
setting. In this section we will look into this question and try to indicate what can be said
from the point of view of the approach applied above to classical Massey products with
coefficients in Fp. For this, we focus our attention on the case of Example (7.2) where we
assume in addition that R and N0, . . . , Nn are finite—an assumption that will remain in
force until the end of this section.

LetW = ⊕iNi be considered as an R-module (without Galois action). For m = 0, . . . , n,
let Wm = ⊕mi=0Ni. Thus 0 = W−1 ⊆ W0 ⊆ W1 ⊆ · · · ⊆ Wn = W is a filtration of W . Let
T(W ) ⊆ AutR(W ) be the subgroup of the group of R-linear automorphisms of W which
preserves this filtration. Every Q ∈ T(W ) has an induced R-linear action on Ni = Wi/Wi−1
and so we have a homomorphism ρ : T(W ) −→

∏
i AutR(Ni). Let U(W ) ⊆ T(W ) denote

the kernel of ρ. We note that U(W ) is a finite nilpotent group, and that when R = Ni = Fp

the group U(W ) coincides with the unipotent group U considered in this paper. Let
U1(W ) ⊆ U(W ) ⊆ T(W ) be the subgroup consisting of those R-linear automorphisms
Q : W −→W which act as the identity on Wi/Wi−2 for every i = 1, . . . , n. Then U1(W ) is
normal in T(W ) and the quotient group A(W ) := T(W )/U1(W ) sits in a canonically split
short exact sequence

1 −→
n−1⊕
i=0

Mi,i+1 −→ A(W ) −→
n∏
i=0

AutR(Ni) −→ 1,

where Mi,i+1 := HomR(Ni+1, Ni). Now each Ni is equipped with an R-linear Galois action
which can be encoded as a homomorphism χ : Γk −→

∏
i AutR(Ni). Furthermore, given

cohomology classes αi ∈ H1(k,Mi,i+1), a choice of cocycles representing the αi determines
a lift of χ to α : Γk −→ A(W ). (Choosing other cocycles corresponds to conjugating α by
an element of ⊕n−1

i=0 Mi,i+1.) We may then consider the embedding problem

Γk
α
��xx

1 // U1(W ) // T(W ) // A(W ) // 1
(7.1)

For i < j we may identify homomorphisms f ∈ HomR(Nj , Ni) with elements Qf ∈ U(W )
of the form Qf (v0, . . . , vn) = (v0, v1, . . . , vi + f(vj), . . . , vn). Consider the subgroup
Z(W ) = M0,n = HomR(Nn, N0) ⊆ U1(W ) ⊆ T(W ). We note that Z(W ) is abelian
and normal in T(W ) and we may consider the element u ∈ H2(T(W )/Z(W ),Z(W )) which
classifies the (non-central) group extension

1 −→ Z(W ) −→ T(W ) −→ T(W )/Z(W ) −→ 1.
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Proposition 7.3. Defining systems Λ = {ai,j} for the n-fold Massey product of {αi ∈
H1(k,Mi,i+1)}n−1

i=0 are in bijection with group homomorphisms αΛ : Γk −→ T(W )/Z(W )
lifting α : Γk −→ A(W ). Furthermore, the value of the n-fold Massey product of
α0, . . . , αn−1 with respect to Λ is the class −α∗Λu ∈ H2(k,Z(W )) = H2(k,M0,n).

Proof. One argues as in [Dwy75, Theorem 2.6]. For 0 ≤ i ≤ n, let αi,i : Γk −→ Aut(Ni)
denote the action of Γk. Suppose that αΛ : Γk −→ T(W )/Z(W ) is a group homomorphism
lifting the αi,i and denote by αi,j : Γk −→ Mi,j , 0 ≤ i < j ≤ n, (i, j) 6= (0, n), the maps it
induces, so that

αi,j(στ) =
j∑

m=i
αi,m(σ)αm,j(τ).

Defining ai,j : Γk −→Mi,j by ai,j(σ) = αi,j(σ)αj,j(σ−1), we have

(∂ai,j)(σ, τ) = σ(ai,j(τ))− ai,j(στ) + ai,j(σ)
= αi,i(σ)αi,j(τ)αj,j(τ−1)αj,j(σ−1)− αi,j(στ)αj,j((στ)−1) + αi,j(σ)αj,j(σ−1)

= −
j−1∑

m=i+1
αi,m(σ)αm,j(τ)αj,j(τ−1)αj,j(σ−1),

for all 0 ≤ i < j ≤ n such that (i, j) 6= (0, n), and on the other hand

(ai,m ∪ am,j)(σ, τ) = ai,m(σ)σ(am,j(τ)) = ai,m(σ)αm,m(σ)am,j(τ)αj,j(σ−1)
= αi,m(σ)αm,j(τ)αj,j(τ−1)αj,j(σ−1),

(7.2)

so that ∂ai,j = −
∑j−1
m=i+1 ai,m ∪ am,j , i.e., {ai,j} forms a defining system. Reversing this

computation shows that for any defining system Λ = {ai,j}, if αi,j : Γk −→ Mi,j denotes,
for 0 ≤ i < j ≤ n, (i, j) 6= (0, n), the map defined by αi,j(σ) = ai,j(σ)αj,j(σ), then the
map αΛ : Γk −→ T(W )/Z(W ) assembled from the αi,j is a group homomorphism. This
shows the first part of the claim. To prove the second part, let p : T (W ) −→M0,n denote
the set-theoretic projection and α̃Λ : Γk −→ T (W ) the set-theoretic lifting of αΛ such that
p(α̃Λ(σ)) = 0 for all σ. The class α∗Λu is represented by the 2-cocycle b : Γk×Γk −→ Z(W )
defined by b(σ, τ) = α̃Λ(σ)α̃Λ(τ)α̃Λ(στ)−1. Applying p to the equality b(σ, τ)α̃Λ(στ) =
α̃Λ(σ)α̃Λ(τ) yields b(σ, τ)αn,n(στ) =

∑n−1
m=1 α0,m(σ)αm,n(τ), which, by (7.2), amounts to

b(σ, τ) =
∑n−1
m=1(a0,m∪am,n)(σ, τ), i.e. 〈α0, . . . , αn−1〉Λ = [−b] = −α∗Λu ∈ H2(Γk,M0,n). �

The homogeneous space associated with the (finite) embedding problem (7.1) by the
construction already used in §2 can again serve as a splitting variety for the n-fold Massey
product of {αi}. We may hence, in principle, attempt to apply the strategy of this paper to
these generalized Massey products. We begin with the following case, in which the method
works with very mild modifications:

Theorem 7.4. Fix n ≥ 3 and let R = Fp for a prime number p. For i = 0, . . . , n,
let Ni be a Galois R-module whose underlying abelian group is isomorphic to R and set



22 YONATAN HARPAZ AND OLIVIER WITTENBERG

Mi,j = HomR(Nj , Ni) for 0 ≤ i < j ≤ n. Then the n-fold Massey product of any n-tuple
of classes {αi ∈ H1(k,Mi,i+1)}n−1

i=0 vanishes as soon as it is defined.

Proof. The proof is essentially the same as that of Theorem 5.1, and so we will simply
indicate the necessary modifications. We first note that since R = Fp and the underlying
abelian group of each Ni is the additive group of Fp we may identify T(W ) with the
group of upper triangular matrices and U(W ) ⊆ T(W ) with the group of unipotent upper
triangular matrices. Furthermore, under this identification the subgroup U1(W ) ⊆ U(W )
is simply the subgroup of those matrices whose first non-principal diagonal vanishes. In
particular, U(W ) and U1(W ) are the same as the groups U,U1 we had before, and so we
will simplify notation and write T,U and U1 for T(W ),U(W ) and U1(W ), respectively.
We will also use the notation Um for m = 1, . . . , n and B := U1/U3 with the same meaning
as in the previous sections.

By the above we see that the homogeneous space V which serves as a splitting variety
for (7.1) has the same geometric stabilizers as the homogeneous space we had for ordinary
Massey products, only with a possibly different outer Galois action. We claim that with
this outer action the group U1 is still supersolvable: indeed, the action of A on each of
the quotients Um/Um+1 is diagonalizable, with eigenspaces given by the cyclic subgroups
HomR(Ni+m, Ni). In particular, we may still use [HW18, Théorème B] to deduce the
existence of rational points on V when given a collection of local points which is orthogonal
to the unramified Brauer group. In addition, Proposition 4.1 equally applies in this case,
showing that V has trivial transcendental unramified Brauer group. We now claim that
Proposition 4.8 holds as well. Let B0 ⊆ B be as in Proposition 4.8. By the inflation-
restriction exact sequence we see that the statement Proposition 4.8 is equivalent to the
statement that the composed map Br1,nr(V ) −→ H1(k, B̂) −→ H1(k, B̂0) is the zero map.
Let L ⊂ k be the subfield fixed by the kernel of χ : Γk −→

∏
i Aut(Ni). By our assumption

Aut(Ni) ∼= F∗p has order prime to p and so [L : k] is prime to p. Since B̂0 is a p-torsion
module it follows that the map H1(k, B̂0) −→ H1(L, B̂0) is injective, and hence to prove
the statement we may as well extend our scalars to L. But now we are reduced to the case
of ordinary Massey products to which Proposition 4.8 itself applies.

Arguing as in the proof of Theorem 5.1, it will now suffice to prove an analogue of
Proposition 5.2. Let r, s ∈ {1, . . . , n− 2} satisfy r + s = n− 1 and set

Pr,s =
r⊕
i=0

HomR(Nn, Ni)⊕
n⊕

j=n−s
HomR(Nj , N0) ⊆ U1.

If v is a place of k, we need to prove that a homomorphism Γkv
−→ T/Pr,s that lifts to

Γkv
−→ T/Z also lifts to Γkv

−→ T. As Pr,s is abelian, the obstruction to the existence of
such a lifting lives in H2(kv,Pr,s). As Pr,s has exponent p and as [L : k] is prime to p, the
restriction map H2(kv,Pr,s)→ H2(L⊗k kv,Pr,s) is injective; we may therefore once again
extend the scalars from k to L and apply Proposition 5.2 directly. �

In contrast with Theorem 7.4, we will now show that when R = Z/8, triple Massey
products may be defined and non-trivial, even when Ni = R for all i.



THE MASSEY VANISHING CONJECTURE FOR NUMBER FIELDS 23

Theorem 7.5. There exist χ0,1, χ1,2, χ2,3 ∈ H1(Q,Z/8) such that the triple Massey product
〈χ0,1, χ1,2, χ2,3〉 is defined but does not contain 0.

The remainder of this section is devoted to the proof of Theorem 7.5. Let us choose
distinct positive primes p, q which are both 1 mod 8.

Lemma 7.6. The fields Q(√p) and Q(
√

2q) can be embedded in cyclic extensions of Q of
degree 8. In other words, the classes of these quadratic extensions belong to the image of
the natural map H1(Q,Z/8)→ H1(Q,Z/2).

Proof. Let us check that for any place v of Q, the images of these classes in H1(Qv,Z/2)
come from H1(Qv,Z/8). For v /∈ {2, p, q} this is clear, as these quadratic extensions are
unramified at v if v is finite and split at v if v is real. For v ∈ {2, p, q}, we need to see, by
local duality, that the images of these two classes are orthogonal to the kernel of the natural
map H1(Qv,µ2) → H1(Qv,µ8); that is, that the Hilbert symbols (p, x)v and (2q, x)v are
trivial for all x ∈ µ4(Qv). If v ∈ {p, q}, this is true as x is automatically a square in Qv.
If v = 2, then x ∈ µ2(Qv), so that (2, x)v is trivial, and p and q are squares in Qv.

Any rational number which is everywhere locally a 4-th power is a 4-th power. Hence
X1(Q,µ4) = 0, from which it follows, by Poitou–Tate duality, that X2(Q,Z/4) = 0. In
view of the exact sequence 0→ Z/4→ Z/8→ Z/2→ 0, the lemma follows. �

Let us fix a homomorphism χ0,1 : ΓQ −→ Z/8 lifting the quadratic character of Q(√p)/Q
and a homomorphism χ2,3 : ΓQ −→ Z/8 lifting the quadratic character of Q(

√
2q)/Q.

Consider the group UZ/8 of upper triangular unipotent 4× 4-matrices with coefficients
in Z/8. Let P ⊆ UZ/8 be the subgroup generated by e0,2, e0,3, e1,2, e1,3, so that P is
abelian and contains the subgroup U1

Z/8 ⊆ UZ/8 of upper triangular unipotent matrices
whose first non-principal diagonal vanishes. Let C := UZ/8/P so that C is abelian
generated by the images e0,1, e2,3 of e0,1 and e2,3 respectively. Using this basis, the
cyclic characters χ0,1, χ2,3 : ΓQ −→ Z/8 can be interpreted as a single homomorphism
(χ0,1, χ2,3) : ΓQ −→ C. Since P is abelian we have an honest action of C on P which we
can pullback to an action of ΓQ on P. We note that this action preserves U1

Z/8 and we
have a short exact sequence of Galois modules

1 −→ U1
Z/8 −→ P −→ Z/8〈e1,2〉 −→ 1.

We then claim the following:

Lemma 7.7. The natural map X2(Q,U1
Z/8)→X2(Q,P) is not injective.

Proof. By global arithmetic duality it will suffice to show that the map

X1(Q, P̂) −→X1(Q, Û1
Z/8)

is not surjective. Consider the short exact sequence of Galois modules

0 −→ µ8 × µ8 −→ Û1
Z/8 −→ µ8 −→ 0
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where the inclusion µ8 × µ8 ⊆ Û1
Z/8 is dual to the projection U1

Z/8 −→ 〈e0,2, e1,3〉 and
the projection Û1

Z/8 −→ µ8 is dual to the inclusion 〈e0,3〉 ⊆ U1
Z/8. For a, b ∈ Q∗ we

may consider the corresponding class ([a], [b]) ∈ H1(Q,µ8 ×µ8) = Q∗/(Q∗)8 ×Q∗/(Q∗)8.
Unwinding the definitions we see that for any field K containing Q, the boundary map

H0(K,µ8) −→ H1(K,µ8 × µ8)

sends −1 ∈ µ8(K) to ([16q4], [p4]). This implies that ([16], [1]) ∈ H1(Q,µ8 × µ8) maps
to an element of X1(Q, Û1

Z/8) ⊆ H1(Q, Û1
Z/8). Indeed, for every place v 6= 2 the element

16 is an 8-th power in Qv and hence the element ([16]v, [1]v) is trivial, and at v = 2
we have that ([16]v, [1]v) = ([16q4], [p4]). We note, however, that the image of ([16], [1])
in X1(Q, Û1

Z/8) is non-zero since µ8(Q) = {1,−1} and ([16], [1]) is not a multiple of
([16q4], [p4]) in H1(Q,µ8 × µ8). We now claim the following:

(∗) The image of ([16], [1]) in X1(Q, Û1
Z/8) does not come from X1(Q, P̂).

The homomorphism (χ0,1, χ2,3) : ΓQ −→ C is surjective. Indeed, the fact that [p], [2q]
are linearly independent in H1(Q,Z/2) implies that χ0,1, χ2,3 are linearly independent in
H1(Q,Z/8), so that the image of this homomorphism is not contained in any index 2
subgroup of C. Let L ⊂ k be the subfield fixed by the kernel of this homomorphism. We
henceforth identity Gal(L/Q) with C. Consider the commutative diagram

X1(Q, P̂) //

��

X1(Q, Û1
Z/8)

��

X1(L, P̂)C //X1(L, Û1
Z/8)C

To prove (∗) it will suffice to show that the image of ([16], [1]) in X1(L, Û1
Z/8)C does not

come from X1(L, P̂)C. Unwinding the definitions we may identify X1(L, Û1
Z/8)C with the

group of triples

([a0,2], [a0,3], [a1,3]) ∈ (X1(L,µ8))3 ⊆ L∗/(L∗)8 × L∗/(L∗)8 × L∗/(L∗)8

such that e0,1[a1,3] = [a0,3][a1,3], e0,1[a0,j ] = [a0,j ] for j ∈ {2, 3}, e2,3[a0,2] = [a0,2][a−1
0,3],

and e2,3[ai,3] = [ai,3] for i ∈ {0, 1}, where ei,j ∈ C acts on L∗/(L∗)8 via the identification
C = Gal(L/Q). Similarly, we may identify X1(L, P̂)C with the group of quadruples

([a0,2], [a0,3], [a1,2], [a1,3]) ∈ (X1(L,µ8))4 ⊆ L∗/(L∗)8 × L∗/(L∗)8 × L∗/(L∗)8 × L∗/(L∗)8

such that e0,1[a1,j ] = [a0,j ][a1,j ] for j ∈ {2, 3}, e0,1[a0,j ] = [a0,j ] for j ∈ {2, 3}, e2,3[ai,2] =
[ai,2][a−1

i,3 ] for i ∈ {0, 1}, and e2,3[ai,3] = [ai,3] for i ∈ {0, 1}. We wish to show that the triple
([16], [1], [1]) is not in the image of the map

(7.3) X1(L, P̂)C −→X1(L, Û1
Z/8)C, ([a0,2], [a0,3], [a1,2], [a1,3]) 7→ ([a0,2], [a0,3], [a1,3])
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We note that [16] is indeed a non-zero element of X1(L,µ8): 16 is not an 8-th power in L
since L does not contain either of

√
2,
√
−2,
√
−1; indeed, the quadratic subextensions of

L are by construction Q(√p),Q(
√

2q) and Q(
√

2qp), and p 6= q. To finish the proof it will
suffice to show that there is no element [a1,2] ∈X1(L,µ8) such that e0,1[a1,2] = [16][a1,2].
But this is now a consequence of the Grunwald-Wang theorem, which says, in particular,
that for every number field K the group X1(K,µm) is either trivial or Z/2 (see, e.g,
[AT09, Chapter Ten, Theorem 1]). In our case we have a non-zero element [16] and so
X1(L,µ8) ∼= Z/2, generated by [16]. In particular, the action of C on X1(L,µ8) is trivial
and there can be no element [a1,2] ∈X1(L,µ8) such that e0,1[a1,2] = [16][a1,2]. �

Proof of Theorem 7.5. By Lemma 7.7 we may fix an element γ ∈ X2(Q,U1
Z/8) whose

image in H2(Q,P) is trivial. It follows that there exists a cyclic character χ1,2 : ΓQ −→
Z/8〈e1,2〉 such that ∂χ1,2 = γ ∈ H2(Q,U1

Z/8). Let us now prove that the triple Massey
product 〈χ0,1, χ1,2, χ2,3〉 is defined but does not contain 0.

The classes χ0,1, χ1,2, χ2,3 determine a homomorphism χ : ΓQ −→ Z/8〈e0,1, e1,2, e2,3〉.
Consider the associated Massey embedding problem

ΓQ
χ
��uu

1 // U1
Z/8

// UZ/8 // Z/8〈e0,1, e1,2, e2,3〉 // 1
(7.4)

We claim that (7.4) has a local solution when restricted to every Γv ⊆ ΓQ but does not
have a solution globally. To see this, consider the commutative diagram of finite groups

U1
Z/8
� � // P� _

��

// // Z/8〈e1,2〉� _

��

U1
Z/8
� � // UZ/8 // //

����

Z/8〈e0,1, e1,2, e2,3〉

����

Z/8〈e0,1, e2,3〉

VV

Z/8〈e0,1, e2,3〉

VV
(7.5)

in which the rows are exact and the columns are split exact. Here the chosen sections
of the bottom vertical projections send the generators e0,1, e2,3 ∈ Z/8〈e0,1, e2,3〉 to
e0,1, e2,3 ∈ UZ/8 and to e0,1, e2,3 ∈ Z/8〈e0,1, e1,2, e2,3〉. Using these sections as base points
we see that homomorphisms ΓQ −→ UZ/8 which lift (χ0,1, χ2,3) : ΓQ −→ Z/8〈e0,1, e2,3〉
are classified (up to conjugation by P) by elements in H1(Q,P), while homomorphisms
ΓQ −→ Z/8〈e0,1, e1,2, e2,3〉 which lift (χ0,1, χ2,3) : ΓQ −→ Z/8〈e0,1, e2,3〉 are in bijection
with the elements of H1(Q,Z/8〈e1,2〉). The map between these two sets of lifts induced
by the projection UZ/8 −→ Z/8〈e0,1, e1,2, e2,3〉 is compatible with the map on Galois
cohomology induced by P −→ Z/8〈e1,2〉. We conclude that χ : ΓQ −→ Z/8〈e0,1, e1,2, e2,3〉
lifts to ΓQ −→ UZ/8 if and only if χ1,2 ∈ H1(Q,Z/8〈e1,2〉) comes from H1(Q,P). By our
choice of χ1,2 the last statement holds when base changing to each completion of Q, but
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not for Q itself. It then follows that the embedding problem (7.4) is solvable everywhere
locally, but not globally.

To finish the proof, we note that the local solvability of (7.4) implies in particular
that the elements χ0,1 ∪ χ1,2, χ1,2 ∪ χ2,3 ∈ H2(Q,Z/8) both belong to X2(Q,Z/8). As
X1(Q,µ8) = 0, we have X2(Q,Z/8) = 0 by global duality. We conclude that the triple
Massey product 〈χ0,1, χ1,2, χ2,3〉 is indeed defined. Nonetheless, it cannot contain 0 since
the embedding problem (7.4) is not solvable. �
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