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1 Introduction

A starting motivation for studying the upper half plain

H = {z ∈ Z|=(z) > 0}

comes from the famous classification of elliptic curves over C. We can associate
to a point τ ∈ H the elliptic curves corresponding to the lattice in C generated
by τ and 1. Two points τ1, τ2 give the same elliptic curve if and only if there
exist an element ρ ∈ Γ

def
= PSL2(Z) such that ρ(τ1) = τ2 where Γ acts on H via

Mobius transformations.
The topological space H/Γ is a (non-compact) topological manifold, and it

also inherits a complex structure from H. After compactification it even
admits an algebraic structure making it isomorphic to P1. This corresponds
to the fact that elliptic curves over a general field K are classified by their
j-invariant, which one can think of as a point in A1(K). Adding a point in
infinity (”compactification”) we can say that elliptic curves over K are classified
by P1(K).

The j-invariant then gives us a map from the compactification of H/Γ to
P1(C) which gives H/Γ an algebraic structure defined over any subfield of C, i.e.
defined over Q. This remarkable situation turns H/Γ (and some other quotient
spaces of H) from topological/analytical objects into arithemtic objects! This
connection leads to a beautiful and surprising theory which we wish to present
in these notes.

2 The Upper Half Plain and its Quotients

In the modern approach we defines a complex manifold as a pair (M,F) of
a topological manifold M and a sheaf F of complex functions on M (i.e. F(U)
is an algebra of functions U −→ C with the usual restriction maps) which is
locally isomorphic to the sheaf of holomorphic functions on the unit disk

D = {z||z| ≤ 1} ⊆ C

We then call F a complex structure on M .
If X is a smooth algebraic variety over C then the set X(C) can be endowed

with the topology inherited from C and admits a natural complex structure by
replacing local polynomial functions by holomorphic functions. We then say
that the complex manifold X(C) has an algebraic structure.

Note that in general, non-isomorphic algebraic varieties may give isomorphic
complex manifolds, and some complex manifold may fail to have an algebraic
structure. The situation is however much nicer for riemann surfaces, i.e. one
dimensional complex manifolds:

Theorem 2.1. Let M be a compact riemann surface. Then there exists a
unique projective algebraic curve X over C such that X(C) ∼= M as complex
manifolds.
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Proof. (Sketch) First show that the field C(M) of global meromorphic func-
tions on M is a finitely generated extension of C with transcendence degree
1. C(M) then corresponds to a unique smooth projective algebraic curve X
over C whose field of rational functions is isomorphic to C(M). By using the
isomorphism on the level of function fields one can obtain an isomorphism on
the level of points M ∼= X(C).

The above theorem is not true for non-compact riemann surfaces. For
example, the upper half plain H does not admit any algebraic structure. This
is one of the reasons we shall usually try to compactify the riemann surfaces we
stumble upon before trying to find algebraic structures for them.

The spaces we shall be interested in are obtained from H as quotients by
an action of some finite index subgroup Γ′ ⊆ Γ. By analyzing what happens
in points with non-trivial stabilizers one can show that the resulting space is a
topological manifold. Now let p : H −→ Y (Γ′) be the quotient map. In order
to define a complex structure we declare a function

f : U −→ C

(where U ⊆ Y (Γ′) open) as holomorphic if

f ◦ p : p−1(U) −→ C

is holomorphic on H. Note that this is definition gives us a bijection between
the set of holomorphic functions on U and the set of Γ′-invariant functions on
p−1(U).

Now, in order to find an algebraic structure on Y (Γ′) we shall first find a
compactification Y (Γ′) ⊆ X(Γ′) such that X(Γ′) is a compact riemann surface.
How do we find such an X(Γ′)?

First assume that Γ′ = Γ. Define X(Γ) = Y (Γ) ∪ {∞} and declare ∞ ∈ U
as a neighborhood of ∞ if the pullback p−1(U\{∞}) contains a set of the form

VC = {z ∈ H|=(z) > C}

for some 0 < C ∈ R. We then define q(z) = e2πiz as our local coordinate at
∞, i.e. we declare a function f on a neighborhood ∞ ∈ U as holomorphic if
the pullback f ◦ p is a holomorphic function of q, i.e. if it is of the form g(q(z))
for some holomorphic function g. Similarly we shall say that a meromorphic
function f on a puctured neighborhood U of ∞ has a pole at ∞ if f ◦ p can be
expressed as g(z) = f(q(z)) where f has a pole at 0.

In particular the global meromorphic functions on X(Γ) are in one-to-one
correspondence with meromorphic functions on H which are invariant under Γ
and have an expansion of the form

f =
∞∑

n=−N
anq

n

This expansion is called the Fourier expansion of f . It can be shown that after
adding this single point, the space X(Γ) is already a compact riemann surface.
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By analyzing this space topologically we can see that it is homeomorphic to
the sphere, and thus it has to be P1(C), i.e. its field of meromorphic functions
should be generated over C by a single transcedental element. This element can
be taken to be the j-invariant function. We shall return to this soon.

For the case of a general finite index Γ′ ⊆ Γ we first find the least h such
that the map T (z) = z+ h is in Γ′, and add a point at infinity in the same way
only using

q
( z
h

)
= e

2πiz
h

as a local coordinate. The rest of the ”points at infinity”, called cusps, can be
obtained by applying elements of Γ to ∞ (i.e. applying them to the defining
neighborhood base and to the local coordiante)

The global meromorphic functions on X(Γ′) can now be identified with what
is called modular functions, which we define as:

Definition 2.2. A modular function for a finite index subgroup Γ′ ⊆ Γ is a
meromorphic function on H which is invariant under Γ′ and is meromorphic at
the cusps.

There are many ways to identifyX(Γ) with P1(C), as P1(C) has a large group
of automorphisms (think of this is different choices of transcedental generators
for the field of meromorphic fucntions). However, we like to think of X(Γ) as
a space which parametrizes elliptic curves over C. Thus we have a preferred
choice for such an identification - we can choose the function j which associates
to each τ ∈ H the j-invariant of the corresponding elliptic curve.

j is clearly invariant under Γ and hence defines a holomorphic function on
Y (Γ). This function can be shown to to have a simple pole at the cusp. Its
Fourier expansion begins as

j = q−1 + 744 + 196884q + ...

Thus j defines a meromorphic function on X(Γ) (note that the coefficients of j
are integer numbers and not general complex numbers. It is not at all obvious
at first glance why this should be. We shall return to this phenomenon later).

The choice of j as our identifier between X(Γ) and P1(C) allows us to copy
any additional structure P1 might have into X(Γ). In particular, we obtain an
algebraic structure on X(Γ) which is defined over Q, and not only over C.

We saw above that we can represent meromorphic functions on X(Γ′) by
Γ′-invariant meromorphic functions on H. This is a useful mechinary and we
wish to generalize it a bit:

Definition 2.3. A modular form of weight 2k for a finite index subgroup
Γ′ ⊆ Γ is a holomorphic function f on H which satisfies

f

(
az + b

cz + d

)
= (cz + d)2kf(z)

and is holomorphic and the cusps. If f is 0 at the cusps then it is called a
cusp form.
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We denote by M2k(Γ) the vector space of modular forms of weight 2k for Γ′

and by S2k(Γ′) the space of cusp forms of weight 2k for Γ′.
Exmaples:

1. A modular function for Γ′ is a modular form for Γ′ of weight 0.

2. For k ≥ 2 we have the Eisenstein series:

Gk(τ) =
∑

a,b∈Z,(a,b) 6=(0,0)

1
(aτ + b)2k

which are modular forms (but not cusp forms) for Γ of weight 2k. These
forms appear naturally in the theory of elliptic curves as they give coeffi-
cients for a weierstrass equation for E(j(τ)):

y2 = x3 − 15G2(τ)− 35G3(τ)

In this lecture we will be particularly interested in cusp forms of weight 1,
because of the following theorem:

Theorem 2.4. There is a natural isomorphism between the vector space of cusp
forms of weight 2 for Γ′ and the vector space of holomorphic 1-forms on X(Γ′).

Proof. We shall describe a map Ω1(X(Γ′)) −→ M2(Γ′) and show that it is
injective. It will be left as an exercise to show that its image is exactly S2(Γ′).
Let ω ∈ Ω1(X(Γ′)) be a 1-form. Consider the pull back π∗ω of ω to H. Since H
is a domain in C we can write π∗ω using a the global coordiante τ :

π∗ω = f(τ)dτ

where f is a holomorphic function. Our map will be then ω 7→ f . It is clear
that if ω 6= 0 then f 6= 0, so this is an injective map of vector spaces. We need
to show that f is a modular form.

π∗ω is invariant under Γ′ which are the deck transformations of π, so for
ρ(τ) = aτ+c

cτ+d ∈ Γ′ we get

f(τ)dτ = ρ∗(f(τ)dτ) = f

(
aτ + c

cτ + d

)
∂ aτ+ccτ+d

∂τ
dτ = f

(
aτ + c

cτ + d

)
dτ

(cτ + d)2

Thus f satisfies

f

(
aτ + c

cτ + d

)
= (cτ + d)2f(τ)

It can be shown that f extends holomorphically to the cusps and actually has
0 in the cusps. This gives us the desired isomorphism

Ω1(X(Γ′)) ∼= S2(Γ′)
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3 Modular Curves

3.1 Introduction

The main riemann surfaces we shall be interested in are obtained as quotients
of H by one of the subgroups Γ(N) ⊆ Γ defined by

Γ0(N) =
{
az + b

cz + d

∣∣∣∣ a, b, c, d ∈ Z, c = 0( mod N)
}

The resulting riemann surface is denoted by Y0(N) and its compactifiaction
by X0(N). The algebraic curve which corresponds to X0(N) is called the mod-
ular curve of conductor N . The reason for the name conductor comes from
elliptic curves, as we shall see later. In particular X0(1) = X(Γ) ∼= P1 is the
basic example we described before.

We shall now want to understand the field C(X0(N)) of meromorphic func-
tions on X0(N). First of all note that the quotient map H −→ X0(1) factors
through the quotient H −→ X0(N). This gives us a natural quotient map
π : X0(N) −→ X0(1). By pulling back meromorphic functions on X0(1) via π
we get a subfield π∗C(X0(1)) of C(X0(N)). By abuse of notation we shall also
refer to j as a function on X0(N) via this pullback.

This is not the whole field of meromorphic functions. The whole field is
in fact a finite extension of π∗C(X0(1)). In order to describe this we need
the following observation. For a natural number m consider the (obviously
holomorphic) function ϕm : H −→ H defined by

ϕm(τ) = mτ

Then we have the following

Lemma 3.1. For each k, ϕm decends to a well-defined (holomorphic) map

ϕ̃m : X0(mk) −→ X0(k)

Proof. Let ρ ∈ Γ(mk) act on H by

ρ(τ) =
aτ + b

cτ + d

such that c = 0( mod mk). Then there exists an integer c′ such that c = mkc′.
Now:

ϕm(ρ(τ)) =
maτ +mb

cτ + d
=
a(mτ) +mb

kc′(mτ) + d
= ρ′(ϕm(τ))

where
ρ′(z) =

az +mb

kc′z + d

which is given by an element in Γ(N) since ad−mbkc′ = ad− bc = 1.
Thus we have a well defined map Y0(mk) −→ Y0(k). Note that since the

holomorphic structure on Y0(N) is inherited from H it is clear that this map
will be holomorphic. It is left to show that it extends holomorphically to the
cusps but we shall omit this part.
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By choosing m = N,n = 1 we obtain a map ϕ̃N : X0(N) −→ X0(1).
This map is different from the map π we had before. Thus by pulling back j
through ϕ̃N we get a new function which turns out to generate C(X0(N)) over
π∗C(X0(1)). This function is naturally denoted by j(Nτ).

To conclude, the field of meromorphic functions on X0(N) is generated over
C by the functions j(τ) and j(Nτ), which satisfy a polynomial relation

FN (j(τ), j(Nτ)) = 0

It can be shown that this polynomial can be chosen to have coefficients in Q,
which gives us an algebraic structure defined over Q. At this points, though,
nothing surprises us anymore.

3.2 Interpetation as Moduli Spaces

We know that for N = 1, X0(N) = X(Γ) can be interpreted as the compact-
ification of the moduli space of elliptic curves over C. Can we geenralize this
interpetation to X0(N) for a general N? the answer is yes. The key fact here
is to note that if we know τ up to an element of Γ0(N) then we know Nτ up to
an element of Γ. Thus the elliptic curve E(j(Nτ)) is well defined an since the
lattice L(1, Nτ) spanned by 1 and Nτ is a sublattice of index N in the lattice
L(1, τ) we get an isogeny of degree N :

E(j(Nτ)) −→ E(j(τ))

The space X0(N) is in fact a compactification of the moduli space of degree N
isogenies of elliptic curves.

Let us now interpret the natural maps π : X(Nm) −→ X(N) and ϕ̃m :
X(Nm) −→ X(N) in the moduli setting. Recall that the point in X0(Nm)
which corresponds to τ ∈ H represents the natural degree Nm isogeny

E(j(Nmτ))
f−→ E(j(τ))

such an isogeny can be factored uniquely as f = fN ◦fm with deg(fN ) = N and
deg(fm) = m. In fact these are the natural isogenies

E(j(Nmτ))
fm−→ E(j(Nτ))

fN−→ E(j(τ))

The point in X0(N) corresponding to τ represents the isogeny fN , so that π is
the ”right extract” map sending f to fN .

But f can also be uniquely factorized as f = f ′m ◦ f ′N with deg(f ′N ) =
N, deg(f ′m) = m. These are the natural isogenies

E(j(Nmτ))
f ′N−→ E(j(mτ))

f ′m−→ E(j(τ))

The point in X0(N) corresponding to mτ represents the isogeny f ′N , so that ϕ̃m
is the ”left extract” map sending f to fN .
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4 The Hecke Operators

4.1 Pulling Back and Forth

Recall that a surjective map f : X −→ Y between two smooth projective curves
over a field K induces maps on their Jacobians in both directions. On the level
of divisors we define it on points and extend linearly

f∗(Pi) = f(Pi)

f∗(Qi) =
∑

f(P )=Q

P

To show that both these maps preserve principle divisors, recall that f induces
an injection i : K(Y )∗ ↪→ K(X)∗ and on the other direction we have a norm
map: N : K∗(X) −→ K(Y ). It is easy to show the commutivity relations
div ◦N = f∗ ◦ div and div ◦ i = f∗ ◦ div (where div is the function associating
to a function its divisor). Thus we have well defined maps on the Jacobians. It
is also clear that these maps are morphisms of algebraic varieties.

There is an alternative way to describe these maps, which goes through the
space of 1-forms. Recall that the Jacobian of a smooth projective curve X over
C has a dual representation as the complex torus

Ω1(X)/H1(X,Z)

where Ω1(X) is the g-dimensional C-vector space of global 1-forms andH1(X,Z)
is the singular integral cohomology group which is isomorphic to Z2g and is
naturally embedded as a lattice in Ω1(X).

Now consider a surjective map f : X −→ Y of smooth projective curves.
Then we have a natural pull-back map f∗ : Ω1(Y ) −→ Ω1(X) which always
exists. But in this case we can also push forward 1-forms f∗ : Ω(X)1 −→ Ω1(Y ).

This push-forward can be defined as follows. First suppose that f is a galois
covering (which might be ramified - we don’t care). Then the pull-back f∗

identifes the space Ω1(Y ) with the space of G-invariant 1-forms on X. Thus we
can define f∗ by defining f∗ ◦ f∗ as

f∗f∗(ω) =
∑
g∈G

g∗ω

If f is not a galois covering then we can always find a curve Z and maps

Z

h

��

p

  @
@@

@@
@@

X
f
// Y

Such that p is a galois covering with galois group G and h is a galois covering
with galois group H ⊆ G such that [G : H] = deg(f). To make this construc-
tion less surprising recall that on the category of smooth projective curves, the
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function field functor induces an equivalence of categories (with an appropriate
subcategory of fields over K). The curve Z corresponds to taking the galois
closure of K(Y ) over K(Y ). The group G is the galois group of K(Z) over
K(Y ) and H the galois group of K(Z) over K(X).

Now if we have a 1-form ω ∈ Ω1(X) and we want to push it over to Y then
we start by pulling it back to Z and symmetrizing by taking∑

g∈S
g∗h∗ω

where S ⊆ G is a complete set of H-coset representatives in G. Then we obtain
a G-invariant form, so it comes from a unique form ω′ ∈ Ω1(Y ). This is the
push-forward of ω. Note the similarity with defining the norm map from K(X)
to K(Y ).

It is an exercise for the reader to show that these two definitions induce the
same maps on the Jacobians.

4.2 Correspondences

Now let X,Y be two complete smooth algebraic curves. A correspondence
from X to Y is a third curve Z and two surjective maps

Z
f

~~~~
~~

~~
~

g

��@
@@

@@
@@

X Y

As we saw above this diagram induces a map of Jacobians

g∗ ◦ f∗ : J(X) −→ J(Y )

Note that the Jacobians of curves are self-dual abelian varieties in a natural
way. This gives a duality map from Hom(A,B) to Hom(B,A) (where A,B are
Jacobians of curves). This duality already exists on the level of correspondences,
as we can define a dual correspondense by swiching the role of f and g. A
morphsim which is the dual of itself is called self-adjoint.

Now let us return to our modular curves X0(N). For a natural number m,
We know two natural (surjective) maps X0(Nm) −→ X0(N). One is the natural
projection π and the second is the map ϕ̃m defined above which is induced by
multiplication by m in H. This gives a correspondence:

X0(Nm)
gϕm

yyssssssssss
π

%%KKKKKKKKKK

X0(N) X0(N)

from X0(N) to itself. This correspondence is called the Hecke Correspon-
dence of m. Let us denote by J0(N) the Picard variety (jacobian) of X0(N).
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Then this correspondence induces an endomorphism Tm : J0(N) −→ J0(N)
called the Hecke Operator of m.

In order to understand the Hecke operators in the moduli setting recall that
the maps π and ϕm can be interpreted as ”right extract” and ”left extract”
respectively. Use this description in order to solve the next exercise:

Exercise 1. Prove that the Hecke operators commute with each other and satisfy
the following relations

1. If gcd(m, k) = 1 then Tm ◦ Tk = Tmk.

2. if p 6 |N then Tpk ◦ Tp = Tpk+1 + pTpk−1

3. if p|N then Tpk = (Tp)k.

4.3 The Eichler Shimura Theorem

We are now ready to prove the important Eichler-Shimura theorem:

Theorem 4.1. For p not dividing N , let J̃0(N) be the mod-p reduction of J0(N)
and T̃p the reduction of the Hecke operator. Let Φp : J̃0(N) −→ J̃0(N) be the
Frobenious endomorphism and Φ∗p its dual. Then

T̃p = Φp + Φ∗p

Proof. Let E,F be two elliptic curves defined over Q with smooth mod-p re-
ductions Ẽ, F̃ which are not supersingular. Let f : E −→ F be an isogeny of
degree N . Then the isomorphism class [f : E −→ F ] defines a point in X0(N)

and the isomorphism class [Ẽ
ef−→ F̃ ] defines its reduction in X̃0(N).

Let S0, S1, ..., Sp ⊆ E be the subgroups of size p in E and Ti = f(Si) their
images in F . Then we have commutative diagrams of isogenies

E

gi

��

f // F

hi

��
Ei

fi

// Fi

where Ei = E/Si and Fi = F/Ti. Then by definition

Tp([E
f−→ F ]) =

p∑
i=0

[Ei
fi−→ Fi]

Now consider the multiplication by p map which has degree p2. It induces a
commutative diagram

Ẽ

[p]

��

f // F̃

[p]

��
Ẽ f

// F̃
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For each i = 0, ..., p, we can factor this diagram as

Ẽ

egi

��

f // F̃

ehi

��
Ẽi

Gi

��

fi

// F̃i

Hi

��
Ẽ

f // F̃

where the Gi’s and Hi’s have degree p.
Since Ẽ is not supersingular, the reduction map E −→ Ẽ has a kernel of

size p. Assume without loss of generality that it is S0. Then the maps g0, h0

and Gi,Hi for i 6= 0 have no kernel and hence are purely inseperable. But there
is only one purly inseperable isogeny of degree p (up to maybe isomorphism,
which we don’t care about) - its the frobenious map!

To avoid confusion, let us denote this Frobenious by Ψp, to distinguish it
from Φp which is the Frobenious map on J̃0(N).

Now, up to maybe changing the isogenies Ẽi
efi−→ F̃i by an isomorphism, we

get a commutative diagram

Ẽ

Ψp

��

ef // F̃

Ψp

��
Ẽ0 ef0 // F̃0

and also commutative diagrams

Ẽi

Ψp

��

efi // F̃i

Ψp

��
Ẽ ef // F̃

for each i 6= 0.
This means that on X̃0(N) we have the relation

Φp([Ẽ
ef−→ F̃ ]) = [Ẽ0

ef0−→ F̃0]

and for each i 6= 0 the relation

Φp([Ẽi
efi−→ F̃i]) = [Ẽ

ef−→ F̃ ]

11



Since the Frobenious map has no kernel, we see that the points [Ẽi
efi−→ F̃i] are

all equal on X̃0(N). Further more since the dual of Frobenious Φ∗p satisfies
Φ∗p ◦ Φp = [p] (where [p] is multiplication by [p] on J̃0(N)) we get that

p∑
i=1

[Ẽi
efi−→ F̃i] = [p][Ẽ1

ef1−→ F̃1] = Φ∗p(Φp([Ẽ1

ef1−→ F̃1])) = Φ∗p([Ẽ
ef−→ F̃ ])

To conclude, we have found that

T̃p([Ẽ
ef−→ F̃ ]) =

p∑
i=0

[Ẽi
efi−→ F̃i] = Φp([Ẽ

ef−→ F̃ ]) + Φ∗p([Ẽ
ef−→ F̃ ])

In order to complete the proof we need to argue that in some sense, almost all
rational points on X0(N) can be represented by an isogeny of curves having non-
supersingular smooth reduction at p, and thus T̃p has to be equal to Φp+Φ∗p.

4.4 The Action on Cusp Forms

As we saw in the previous section, a correspondence can also act on the space
of 1-forms, and this action is compatible with the action on the Jacobians. We
also know that the space of holomorphic 1-forms on X0(N) can be identified
with the space of cusp forms of weight 2 for Γ0(N). We shall now calculate the
action of the correspondence Tm on a cusp form f under the assumption that
m is coprime to N .

Recall the definition in the previous section of pushing forward a 1-form
using a ”galois-closure” curve Z:

Z

yysssssssssss

ψ

��

X0(Np)fϕp

yyttttttttt
π

%%JJJJJJJJJ

X0(N) X0(N)

What is Z in our case? Define

Γ′ ⊆ Γ0(Nm) ⊆ Γ0(N)

to be the largest subgroup which is normal in Γ0(N) and Z = X(Γ′). Then ψ
is a galois covering with galois group Γ0(N)/Γ′. Let S ⊆ Γ0(N) be a complete
set of representatives of left Γ0(Nm)-cosets.

Now take a 1-form on X0(N) and represent it by a 1-form ω(z) = f(z)dz on
H which is invariant under Γ0(N) (i.e., such that f is a cusp form of weight 2).
Pulling it back via ϕm we get the form

ϕ∗mω(z) = f(ϕm(z))
∂ϕm
∂z

dz = mf(mz)dz
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We now symmetrize it by the left-coset representatives σ ∈ S:∑
σ∈S

σ∗ϕ∗mω =
∑
σ∈S

(ϕmσ)∗ω

Lemma 4.2. ∑
σ∈S

(ϕmσ)∗ω =
∑

{a,b,d|ad=m,0≤b≤d}

m

d2
f

(
az + b

d

)
dz

Proof. Cosider the set O = ϕmΓ0(N). The element α = ϕmσ ∈ O is in the left
coset Γ0(N)ϕm if and only if σ ∈ ϕ−1

m Γ0(N)ϕm. But

ϕ−1
m Γ0(N)ϕm =

{
az +m−1b

mcz + d

∣∣∣∣ a, b, c, d ∈ Z, c = 0( mod N)
}

Since m is coprime to N we see that

Γ0(N)
⋂
ϕ−1
m Γ0(N)ϕm = Γ(Nm)

Thus the left Γ0(N)-cosets of O are in one-to-one correspondence with the left
Γ0(Nm)-cosets of Γ0(N). This means that the set

{ϕmσ|σ ∈ S}

is a complete set of representatives of left Γ0(N)-coset in O. But it is an easy
exercise to show that the following set of mobious transformations:{

az + b

d

∣∣∣∣ ad = m, 0 ≤ b ≤ d

}
is a complete set of representatives of left Γ0(N)-cosets in O. Since ω is Γ0(N)
invariant we get that∑

σ∈S
(ϕmσ)∗ω =

∑
a,b,d|ad=m,0≤b<d

m

d2
f

(
az + b

d

)
dz

Now if f is a cusp form of weight 2 given by Fourier expansion

f(z) =
∞∑
n=1

cnq
n =

∞∑
n=1

cne
2πinz

Then we get the explicite expression for the action of Tm on f :

Tm(f)(z) =
∑

ad=m,0≤b<d

m

d2
f

(
az + b

d

)
=
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∑
ad=m,0≤b≤d

m

d2

∞∑
n=1

cne
2πin(az+b)

d =

∑
ad=m,a≥1

a
∞∑
n=1

cne
2πinaz

d
1
d

d−1∑
b=0

e
2πinb

d =

But the last expression is 0 if n is not divisible by d and 1 if it is. Thus by
defining n′ = n

d we get the final answer

Tm(f) =
∑

1≤a|m

∞∑
n′=1

acdn′q
an′

In particular for p prime not dividing N we get the formula

Tp(f) =
∞∑
n′=1

pcn′q
pn′ +

∞∑
n′=1

cpn′q
n′

Exercise 2. Show that for p|N we have

Tp(f) =
∞∑
n′=1

cpn′q
n′

5 Eigenforms and newforms

Our basic aim is to study the modular curves. A basic strategy for investigating
a curve X is by studying the maps from X to simpler curves. The simplest curve
is P1, and studying maps X −→ P1 is just like studying the field of rational
functions on X, which we touched upon above. The next class of curves is the
genus 1 curves, or elliptic curves.

The way to study maps X −→ E with E an elliptic curve is to study the
Jacobian J(X). The reason is that we have a unique factorization theorem for
abelian varieties: each abelian varity A is isogenous to a unique product

A '
∏

Aei
i

where each Ai is a simple abelian variety, i.e. contains no subabelian varities.
Now a noncontant map f : X −→ E induces a nonzero map f∗ : E −→ J(X)

and a nonzero projection f∗ : J(X) −→ E with kernel Ê. This gives us an
isogeny

J(X) ' E × Ê

which means that E is one of the simple factors of J(X). In particular there is
only a finite set of elliptic curves which admit a nonconstant map X −→ E and
in order to understand them we need to anaylize the Jacobian J(X).

14



How do we find simple factors of J(X) which are 1-dimensional? Suppose
we were working with curves over Fp. Then we would have the Frobenious
endomorphism Φp : J(X) −→ J(X). Since Φ preserves the simple factors we
can look for one dimensional simple factors like looking for eigenvectors. More
precisely, if one considers the Tate module

Ml(J(X)) = lim
−→

J(X)/lJ(X)

then each simple 1-dimensional factor E of J(X) would corespond to an eigen-
vector in Ml(J(X)) of the operator Φp + Φ∗p with eigenvalue ap.

Lucky for us, we don’t have to reduce mod p in order to do this, because we
have an endomorphism whose mod p reduction is exactly Φp + Φ∗p - the Hecke
operators Tp!

Since we are working over Q it wil be more convenient and just as effective
to replace the Tate module of J0(N) with the vector space of holomorphic 1-
forms which we identified with the space S2(N) of cusp forms of weight 2. Each
simple factor of J0(N) will correspond to a cusp form which is an eigenvector
for all the Tm’s with m coprime to N .

With a little but of effort one can also show that if E is a simple factor of
J0(N) and not a simple factor of any J0(m) for m|N then the corresponding
cusp form will be a eigenvector for all the Tm’s.

Let us make the last statement more precise. If m|N then we have a natural
projection map π : X0(N) −→ X0(m) which induces a map S2(m) −→ S2(N).
We define the subspace S2

old(N) ⊆ S2(N) to be the space which is generated by
the images of all these maps. We define S2

new(N) to be its orthogonal comple-
ment. The cusp forms in S2

new(N) are called newforms.
The set of operators {Tm} for m coprimes to N is a commuting family of

self adjoint operators which preserve S2
new(N). Thus we can find a basis for

S2
new(N) consisting of simultanous eigenvectors of all the Tm’s for m coprime

to N . This is called a spectral decomposition. Now we have a theorem

Theorem 5.1. Each sequence of eigenvalues which appears in the spectral de-
composition appears with multiplicity 1, i.e. appears in a 1-dimensional sub-
space.

Since all the Tm’s commute (even those which are not coprime to N) we
see that these eigenvectors must actualy be simultanous eigenvectors for all
the {Tm}’s. These correspond exactly to simple factors of J0(N) which don’t
appear in any J0(m) for m|N .

Now suppose that f =
∑∞
n=1 cnq

n ∈ S2
new(N) is cusp form of weight 2 which

is an eigenvector for all the Tn’s. Then by the formula above we see that

λmcn =
∑

0≤a|n,m

a · cnm
a2

and in particular λmc1 = cm. This means that c1 must be non-zero, otherwize
all the cm’s would be zero, i.e. f would be zero. Since c1 is non-zero we can
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normalize f so that c1 = 1. Such an eigenform is called normalized. Now for
a normalized eigenform we get

λm = cm

i.e. the eigenvalues of f are the coefficients themselves!
Now recall that f(z)dz is a Γ0(N)-invariant 1-form on H. Consider the

mobius map

ρ(τ) =
−1
Nτ

We can calculate and check that ρ−1Γ0(N)ρ = Γ0(N). This implies that ρ acts
on S2(N) and it preserves S2

new(N). It can be shown that its action commutes
with action of all the Hecke operators Tm and so from the theorem above we see
that each eigenform is a also an eigenvector of ρ. Since ρ2 = 1 this eigenvalue
is ±1. This is called the parity of the eigenform.

6 Modular L-functions

Let f =
∑∞
n=1 cnq

n ∈ Snew(N) be an eigenform. Then we know that the
eigenvalue of Tn is cn. Since the Tn’s satisfy the relations given in exercise 1
we get the same relations on the cn’s, namely:

1. If gcd(m, k) = 1 then cmck = cmk.

2. If p 6 |N then cpkcp = cpk+1 + pcpk−1

3. If p|N then cpk = ckp.

Define the L-function associated with f to be the complex function

L(f, s) =
∞∑
n=1

cnn
−s

Then from the properties above we can transform this infinite sum into an Euler
product:

L(f, s) =
∏
p6|N

1
1− app−s + p1−2s

∏
p|N

1
1− app−s

From the Eichler Shimura theorem we know that ap should also be an eigenvalue
of Φp+Φ∗p. Since Φp commutes with Φ∗p (i.e. Φp is a normal operator) and since
Φp ◦ Φ∗p = p on any abelian variety we get the Hasse-Weil bound |ap| ≤ 2

√
p.

This means that the Euler product converges for Re(s) > 3
2 .

Theorem 6.1. Let f be an eigenform which is an ε-eigenvector of ρ for ε = ±1.
Then the L-function L(E, s) admits a holomorphic continuation to the whole
plain and the function

Λ(f, s) = N1−sΓ(s)L(f, s)
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satisfies the functional equation

Λ(f, s) = εΛ(f, 2− s)

Proof. The key point to showing this is that there is an analytic connection
between L(f, s) and f via the mellin transform, which is a particular case of a
Fourier transform for the multiplicative group R>0 with the Haar measure dt

t .
Specifically one has ∫ ∞

0

f(it)ts
dt

t
= Γ(t)L(f, s)
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