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1 Introduction

Let Bor
1 denote the 1-dimensional oriented cobordism ∞-category, i.e. the sym-

metric monoidal ∞-category whose objects are oriented 0-dimensional closed
manifolds and whose morphisms are oriented 1-dimensional cobordisms between
them.

The category Bor
1 carries a fundamental inner symmetry expressing the fact

that cobordisms can be read in both directions. This can be described
formally in the language of duality as follows. Let C be an (ordinary) monoidal
category and let X be an object. We say that and object Y ∈ C is right dual
to X if there exist morphisms ev : X ⊗ Y −→ 1 and coev : 1 −→ Y ⊗X such
that the compositions

X
Id⊗coev−→ X ⊗ Y ⊗X ev⊗Id−→ X

and
Y

coev⊗Id−→ Y ⊗X ⊗ Y Id⊗ev−→ Y

are the identity. In this case we also say that X is left dual to Y . If C is
symmetric then this definitions become symmetric and we just say that X and
Y are duals. If C is a symmetric monoidal ∞-category then we say that X and
Y are duals if they are duals in the homotopy category Ho(C).

Example:
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1. Let C be the symmetric monoidal category of finite dimensional vector
spaces over C with monoidal product given by tensor product. Then for
each V ∈ C the object V̌ = Hom(V,C) is dual to V . The evaluation map
V ⊗ V̌ −→ C is clear and the coevaluation C −→ V̌ ⊗ V ∼= End(V ) is
given by sending 1 ∈ C to the identity I ∈ End(V ).

2. Let X+, X− ∈ Bor
1 be the points with positive and negative orientations

respectively. Then X+ and X− are duals in Bor
1 . The evaluation map is

the ”right-half-circle” cobordism

ev : X+ ⊗X− −→ ∅

and the coevaluation is the ”left-half-curcle” cobordism

coev : ∅ −→ X+ ⊗X−

Definition 1.1. We say that a symmetric monoidal ∞-category has duals if
every object has a dual.

We now observe the following simple lemma

Lemma 1.2. Let D,C be two symmetric monoidal (ordinary) categories with
duals, F,G : D −→ C two symmetric monoidal functors and T : F −→ G a
natural transformation. Then T is a natural isomorphism.

Now let D be a symmetric monoidal∞-category with duals. The 1-dimensional
cobordism hypothesis concerns the ∞-category

Fun⊗(Bor
1 ,D)

of symmetric monoidal functors ϕ : Bor
1 −→ D. If X+ ∈ Bor

1 is the object
corresponding to a point with positive orientation then the evaluation map
Z 7→ Z(X+) induces a functor

Fun⊗(Bor
1 ,D) −→ D

From Lemma 1.2 we see that the ∞-category Fun⊗(Bor
1 ,D) is in fact an

∞-groupoid. This means that the evaluation map Z 7→ Z(X+) actually factors
through a map

Fun⊗(Bor
1 ,D) −→ D̃

where D̃ is the maximal ∞-groupoid of D. The cobordism hypothesis then
states

Theorem 1.3. The evaluation map

Fun⊗(Bor
1 ,D) −→ D̃

is an equivalence of ∞-groupoids.
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Remark 1.4. From the consideration above we see that we could have written
the cobordism hypothesis as an equivalence

F̃un
⊗

(Bor
1 ,D)

'−→ D̃

where F̃un
⊗

(Bor
1 ,D) is the maximal∞-groupoid of Fun⊗(Bor

1 ,D) (which in this
case happens to coincide with Fun⊗(Bor

1 ,D)). This ∞-groupoid is the funda-
mental groupoid of the space of maps from Bor

1 to D in the ∞-category Cat⊗

of symmetric monoidal ∞-categories.

In his paper [Lur1] Lurie gives an elaborate sketch of proof for a higher
dimensional generalization of the 1-dimensional cobordism hypothesis. For this
one needs to generalize the notion of ∞-categories to (∞, n)-categories. The
strategy of proof described in [Lur1] is inductive in nature. In particular in
order to understand the n = 1 case, one should start by considering the n = 0
case.

Let Bun
0 be the 0-dimensional unoriented cobordism category, i.e. the objects

of Bun
0 are 0-dimensional closed manifolds (or equivalently, finite sets) and the

morphisms are diffeomorphisms (or equivalently, isomorphisms of finite sets).
Note that Bun

0 is a (discrete) ∞-groupoid.
Let X ∈ Bun

0 be the object corresponding to one point. Then the 0-
dimensional cobordism hypothesis states that Bun

0 is in fact the free∞-groupoid
(or (∞, 0)-category) on one object, i.e. if G is any other ∞-groupoid then the
evaluation map Z 7→ Z(X) induces an equivalence of ∞-groupoids

Fun⊗(Bun
0 ,G)

'−→ G

Remark 1.5. At this point one can wonder what is the justification for con-
sidering non-oriented manifolds in the n = 0 case oriented ones in the n = 1
case. As is explained in [Lur1] the desired notion when working in the n-
dimensional cobordism (∞, n)-category is that of n-framed manifolds. One
then observes that 0-framed 0-manifolds are unoriented manifolds, while tak-
ing 1-framed 1-manifolds (and 1-framed 0-manifolds) is equivalent to taking the
respective manifolds with orientation.

Now the 0-dimensional cobordism hypothesis is not hard to verify. In fact,
it holds in a slightly more general context - we do not have to assume that G is
an ∞-groupoid. In fact, if G is any symmetric monoidal ∞-category then
the evaluation map induces an equivalence of ∞-categories

Fun⊗(Bun
0 ,G)

'−→ G

and hence also an equivalence of ∞-groupoids

F̃un
⊗

(Bun
0 ,G)

'−→ G̃

Now consider the under-category Cat⊗
Bun

0 / of symmetric monoidal∞-categories

D equipped with a functor Bun
0 −→ D. Since Bun

0 is free on one generator this
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category can be identified with the∞-category of pointed symmetric monoidal
∞-categories, i.e. symmetric monoidal ∞-categories with a chosen object. We
will often not distinguish between these two notions.

Now the point of positive orientationX+ ∈ Bor
1 determines a functor Bun

0 −→
Bor

1 , i.e. an object in Cat⊗
Bun

0 /, which we shall denote by B+
1 . The 1-dimensional

coborodism hypothesis is then equivalent to the following statement:

Theorem 1.6. [Cobordism Hypothesis 0-to-1] Let D ∈ Cat⊗
Bun

0 / be a pointed

symmetric monoidal ∞-category with duals. Then the ∞-groupoid

F̃un
⊗
Bun

0 /(B
+
1 ,D)

is contractible.

Theorem 1.6 can be considered as the inductive step from the 0-dimensional
cobordism hypothesis to the 1-dimensional one. Now the strategy outlines
in [Lur1] proceeds to bridge the gap between Bun

0 to Bor
1 by considering an

intermediate ∞-category
Bun

0 ↪→ Bev
1 ↪→ Bor

1

This intermediate ∞-category is defined in [Lur1] in terms of framed functions
and index restriction. However in the 1-dimensional case one can describe it
without going into the theory of framed functors. In particular we will use the
following definition:

Definition 1.7. Let ι : Bev
1 ↪→ Bor

1 be the subcategory containing all objects
and only the cobordisms M in which every connected component M0 ⊆ M is
either an identity segment or an evaluation segment (i.e. a ”right-half-circle” as
above).

Let us now describe how to bridge the gap between Bun
0 and Bev

1 . Let D be
an ∞-category with duals and let

ϕ : Bev
1 −→ D

be a symmetric monoidal functor. We will say that ϕ is non-degenerate if for
each X ∈ Bev

1 the map

ϕ (evX) : ϕ(X)⊗ ϕ
(
X̌
)
' ϕ

(
X ⊗ X̌

)
−→ ϕ(1) ' 1

is non-degenerate, i.e. identifies ϕ
(
X̌
)

with a dual of ϕ(X). We will denote
by

Catnd
Bev

1 /
⊆ Cat⊗

Bev
1 /

the full subcategory spanned by objects ϕ : Bev
1 −→ D such that D has duals

and ϕ is non-degenerate.
Let X+ ∈ Bev

1 be the point with positive orientation. Then X+ determines
a functor

Bun
0 −→ Bev

1
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The restriction map ϕ 7→ ϕ|Bun
0

then induces a functor

Catnd
Bev

1 /
−→ Cat⊗

Bun
0 /

Now the gap between Bev
1 and Bun

0 can be climbed using the following lemma
(see [Lur1]):

Lemma 1.8. The functor

Catnd
Bev

1 /
−→ Cat⊗

Bun
0 /

is fully faithful. Its essential image consists of points symmetric monoidal ∞-
categories in which the pointed object admits a dual.

Now consider the natural inclusion ι : Bev
1 −→ Bor

1 as an object in Catnd
Bev

1 /
.

Then by Lemma 1.8 we see that the 1-dimensional cobordism hypothesis will
be established once we make the following last step:

Theorem 1.9 (Cobordism Hypothesis - Last Step). Let D be a symmetric
monoidal ∞-category with duals and let ϕ : Bev

1 −→ D be a non-degenerate
functor. Then the ∞-groupoid

F̃un
⊗
Bev

1 /
(Bor

1 ,D)

is contractible.

Note that since Bev
1 −→ Bor

1 is essentially surjective all the functors in

F̃un
⊗
Bev

1 /
(Bor

1 ,D)

will have the same essential image of ϕ. Hence it will be enough to prove for
the claim for the case where ϕ : Bev

1 −→ D is essentially surjective. We will
denote by

Catsur
Bev

1 /
⊆ Catnd

Bev
1 /

the full subcategory spanned by essentially surjective functors ϕ : Bev
1 −→ D.

Hence we can phrase Theorem 1.9 as follows:

Theorem 1.10 (Cobordism Hypothesis - Last Step 2). Let D be a symmetric
monoidal ∞-category with duals and let ϕ : Bev

1 −→ D be an essentially
surjective non-degenerate functor. Then the space of maps

MapCatsur
Bev

1 /
(ι, ϕ)

is contractible.
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2 Non-degenerate Fiber Functors

Let D be a symmetric monoidal ∞-categories with duals. The fact of having
duals forces a strong symmetry on D. This means, in some sense, that the
information in D is packed with extreme redundancy. For example, given
two objects X,Y ∈ D (with corresponding dual objects X̌, Y̌ ) all the mapping
spaces

MapD

(
1, X̌ ⊗ Y

)
' MapD(X,Y ) ' MapD

(
X ⊗ Y̌ , 1

)
' MapD

(
Y̌ , X̌

)
are equivalent. For example, in the case of Bor

1 all these spaces can be identified
with the classifying space of oriented 1-manifolds M together with an identifica-
tion ∂M ' X̌ ⊗Y . This observation leads one to try to pack the information of
Bor

1 (or a general D with duals) in a more efficient way. For example, one might
like to remember only the mapping spaces of the form MapD(1, X), together
with some additional structural data.

More precisely, suppose that we are given a non-degenerate essentially sur-
jective functor ϕ : Bev

1 −→ D. We can define a lax symmetric functor Mϕ :
Bev

1 −→ Grp∞ (where Grp∞ denotes the ∞-category of ∞-groupoids) by set-
ting

Mϕ(X) = MapD(1, ϕ(X))

We will refer to Mϕ as the fiber functor of ϕ. This functor can be considered
as (at least a partial) codification of D which remembers the various mapping
spaces of D ”without repetitions”.

Now since ϕ is non-degenerate the functor Mϕ is not completely arbitrary.
More precisely, we have the following notion:

Definition 2.1. Let M : Bev
1 −→ Grp∞ be a lax symmetric monoidal functor.

An object Z ∈M(X⊗ X̌) is called non-degenerate if for each object Y ∈ Bev
1

the natural map

M(Y⊗X̌)
Id×Z−→ M(Y⊗X̌)×M(X⊗X̌) −→M(Y⊗X̌⊗X⊗X̌)

M(Id⊗ev⊗Id)−→ M(Y⊗X̌)

is an equivalence of ∞-groupoids.

Remark 2.2. If a non-degenerate element Z ∈M(X⊗X̌) exists then it is unique
up to a (non-canonical) equivalence.

Example 1. Let M : Bev
1 −→ Grp∞ be a lax symmetric monoidal functor.

The lax symmetric structure of M includes a structure map 1Grp∞ −→ M(1)
which can be described by choosing an object Z1 ∈ M(1). The axioms of lax
monoidality then ensure that Z1 is non-degenerate.

Definition 2.3. A lax symmetric monoidal functor M : Bev
1 −→ Grp∞ will be

called non-degenerate if for each object X ∈ Bev
1 there exists a non-degenerate

object Z ∈M(X ⊗ X̌).
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Definition 2.4. Let M1,M2 : Bev
1 −→ Grp∞ be two non-degenerate lax sym-

metric monoidal functors. A lax symmetric natural transformation T : M1 −→
M2 will be called non-degenerate if for each object X ∈ Bordev and each
non-degenerate object Z ∈ M(X ⊗ X̌) the objects T (Z) ∈ M2(X ⊗ X̌) is non-
degerate.

Remark 2.5. From remark 2.2 we see that if T (Z) ∈ M2(X ⊗ X̌) is non-
degenerate for at least one non-degenerate Z ∈ M1(X ⊗ X̌) then it will be
true for all non-degenerate Z ∈M1(X ⊗ X̌).

Now we claim that if D has duals and ϕ : Bev
1 −→ D is non-degenerate then

the fiber functor Mϕ will be non-degenerate: for each object X ∈ Bev
1 there

exists a coevaluation morphism

coevϕ(X) : 1 −→ ϕ(X)⊗ ϕ(X̌) ' ϕ(X ⊗ X̌)

which determines an element in ZX ∈ Mϕ(X ⊗ X̌). It is not hard to see that
this element is non-degenerate.

Let Funlax(Bev
1 ,Grp∞) denote the ∞-category of lax symmetric monoidal

functors Bev
1 −→ Grp∞ and by

Funlax
nd (Bev

1 ,Grp∞) ⊆ Funlax(Bev
1 ,Grp∞)

the subcategory spanned by non-degenerate functors and non-degenerate natu-
ral transformations. Now the construction ϕ 7→Mϕ determines a functor

F : Catsur
Bev

1 /
−→ Funlax

nd (Bev
1 ,Grp∞)

In particular if ϕ : Bev
1 −→ C and ψ : Bev

1 −→ D are non-degenerate then any
functor T : C −→ D under Bev

1 will induce a non-degenerate natural transfor-
mation

F (T ) : Mϕ −→Mψ

We can then consider the following modification of the cobordism hypoth-
esis concerned with the behavior of our objects of interest after this process of
compression:

Theorem 2.6 (Cobordism Hypothesis - Quasi-Unital). Let D be a symmetric
monoidal ∞-category with duals, let ϕ : Bev

1 −→ D be a non-degenerate functor
and let ι : Bev

1 ↪→ Bor
1 be the natural inclusion. Let Mι,Mϕ ∈ Funlax

nd be the
corresponding fiber functors. Them the space of maps

MapFunlax
nd

(Mι,Mϕ)

is contractible.

Now given that we have proven Theorem 2.6 we will need a way to tie the
result back to the original cobordism hypothesis. For this we need to check
to what extent one can reconstruct the full ∞-category with duals D from the
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compressed codification of Mϕ (where ϕ : Bev
1 −→ D is any non-degenerate

functor).
For this we can attempt to invert the construction (D, ϕ) 7→ Mϕ. Let

M : Bev
1 −→ Grp∞ be a non-degenerate lax symmetric monoidal functor. We

can construct a pointed non-unital symmetric monoidal ∞-category DM as
follows:

1. The objects of DM are the objects of Bev
1 . The marked point is the object

X+.

2. Given a pair of objects X,Y ∈ DM we define

MapDM
(X,Y ) = M(X̌ ⊗ Y )

Given a triple of objects X,Y, Z ∈ DM the composition law

MapDM
(X̌, Y )×MapDM

(Y̌ , Z) −→ MapDM
(X̌, Z)

is given by the composition

M(X̌ ⊗ Y )×M(Y̌ ⊗ Z) −→M(X̌ ⊗ Y ⊗ Y̌ ⊗ Z) −→M(X̌ ⊗ Z)

where the first map is given by the lax symmetric monoidal structure on
the functor M and the second is induced by the evaluation map

evY : Y̌ ⊗ Y −→ 1

in Bev
1 .

3. The symmetric monoidal structure is defined in a straight forward way
using the lax monoidal structure of M .

Now for each non-degenerate functor ϕ : Bev
1 −→ D we have a natural

pointed functor
Nϕ : DMϕ −→ D

defined as follows: Nϕ maps the objects of DMϕ
(which are the objects of Bev

1 )
to D via ϕ. Then for each X,Y ∈ Bev

1 we can map the morphisms

MapDMϕ
(X,Y ) = MapD(1, X̌ ⊗ Y ) −→ MapD(X,Y )

via the duality structure - to a morphism f : 1 −→ X̌ ⊗ Y one associates the
morphism f̂ : X −→ Y given as the composition

X
Id⊗f−→ X ⊗ X̌ ⊗ Y ϕ(evX)⊗Y−→ Y

It is quite direct to verify that Nϕ is a functor of (symmetric monoidal) non-
unital ∞-categories, i.e. it respects composition and monoidal products in a
natural way. Since D has duals we get that Nϕ is fully faithful and since ϕ is
essentially surjective ϕ we get that Nϕ is essentially surjective. Hence Nϕ is an
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equivalence and so DMϕ is equivalent to the underlying non-unital ∞-category
of D.

Informally speaking one can say that we are almost able to reconstruct D

out of Mϕ - we are just missing the identity morphisms. However, note that
if M is non-degenerate then DM is not a completely arbitrary non-unital ∞-
category. In fact it is very close to being unital - a non-degenerate object in
M(X̌ ⊗ X) gives a morphism which behaves like an identity map. Hence in
some sense, we can reconstruct the units of D as well. To make this idea precise
we will need a good theory of quasi-unital ∞-categories.

3 Quasi-unital ∞-Categories

Throughout this section we will assume that the reader is familiar with the for-
malism of Segal spaces and their connection with ∞-categories. Our purpose
is to study the non-unital analogue of this construction, obtained by replacing
simplicial spaces with semi-simplicial spaces.

Let X be a semi-simplicial space. Let [n], [m] ∈ ∆s be two objects and
consider the commutative (pushout) diagram

[0]
0 //

n

��

[m]

gn,m

��
[n]

fn,m

// [n+m]

where fn,m(i) = i and gn,m(i) = i + n. We will say that X satisfies the Segal
condition if for each [n], [m] as above the induced commutative diagram

Xm+n

g∗n,m //

f∗n,m

��

Xm

0∗

��
Xn

n∗ // X0

is a homotopy pullback diagram. We will say that X is a semiSegal space
if it is Reedy fibrant and satisfies the Segal condition. Note that in that case
the above square will induce a homotopy equivalence

Xm+n ' Xm ×X0
Xn

Example 2. Let C be a non-unital small topological category. We can represent
C as a semiSegal space as follows. For each n, let Cnu([n]) denote the non-unital
Top-enriched category whose objects are the numbers 0, ..., n and whose mapping
spaces are

MapCnu([n])(i, j) =

{
∅ i ≥ j

I(i,j) i < j
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where (i, j) = {x ∈ {0, ..., n}|i < x < j}. The composition is given by the
inclusion

I(i,j) × I(j,k) ∼= I(i,j) × {0} × I(j,k) ⊆ I(i,k)

Note that Cnu([n]) depends functorially on [n] ∈ ∆s. Hence for every non-unital
topological category C we can form a semi-simplicial space N(C) by setting

N(C)n = Fun(Cnu([n]),C)

We endow N(C)n with a natural topology that comes from the topology of the
mapping space of C (while treating the set of objects of C as discrete). One can
then check that N(C) is a semiSegal space.

We think of general semiSegal spaces X as relaxed versions of Example 2,
i.e. as a non-unital ∞-category. The objects of the corresponding non-unital
∞-category are the points of X0. Given two points x, y ∈ X0 we define the
mapping space between them by

MapX(x, y) = {x} ×X0
X1 ×X0

{y}

i.e., as the fiber of the (Kan) fibration

X1
(d0,d1)−→ X0 ×X0

over the point (x, y).
To see how composition works consider first the case of a topological category

C and assume that we are given three objects x, y, z ∈ C and a morphism
f : x −→ y. One would then obtain a composition-by-f maps

f∗ : HomC(z, x) −→ HomC(z, y)

and
f∗ : HomC(y, z) −→ HomC(x, z)

In the semiSegal model we do not have such strict composition. Instead one
can describe the composition-by-f maps as correspondences. If x, y, z ∈ X0

are objects and f : x −→ y is a morphism (i.e. an element in X1 such that
d0(f) = x and d1(f) = y) one can consider the space CRf,z ⊆ X2 given by

CRf,z = {σ ∈ X2 | σ|∆{1,2} = f, σ|∆{0} = z}

Then the two restriction maps σ 7→ σ|∆{0,1} and σ 7→ σ|∆{0,2} give us a cor-
respondence (recall that X is Reedy fibrant and so the restriction maps are
fibrations):

CRf,z

%%JJ
JJJ

JJJ
JJ

yyttt
ttt

ttt
t

MapX(z, x) MapX(z, y)
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This correspondence describes the operation of composing with f on the right.
Similarly we have a correspondence

CLf,z

%%JJ
JJJ

JJJ
JJ

yyttt
ttt

ttt
t

MapX(y, z) MapX(x, z)

describing composition with f on the left. The Segal condition ensures that
both CRf,z and CLf,z are map-like correspondences, i.e. the left hand side maps
are weak equivalences. In that sense composition is ”almost” well-defined.

We want to define properties of f via analogous properties of the correspon-
dences CRf,z, C

L
f,z. In particular we will want to define when a morphism is a

quasi-unit and when it is invertible. For this we will need to first understand
how to say this in terms of correspondences.

Recall that from each space X to itself we have the identity correspon-

dence X
Id←− X

Id−→ X. We will say that a correspondence X
ϕ←− C

ψ−→ X
is unital if it is equivalent to the identity correspondence. It is not hard to
check that a correspondence as above is unital if and only if both ϕ,ψ are weak
equivalences and are homotopic to each other in the Kan model structure.

We will say that a correspondence X
ϕ←− C ψ−→ Y is invertible if it admits

an inverse, i.e. if there exists a correspondence Y
ϕ←− D

ψ−→ X such that the
compositions

X ←− C ×Y D −→ X

and
Y ←− D ×X C −→ Y

are unital.

Remark 3.1. Note that if a correspondence

X
ϕ←− C ψ−→ Y

is map-like (i.e. if ϕ is invertible) then it is equivalent to a correspondence of
the form

X
Id←− D f−→ Y

such that f represents the class [ψ] ◦ [ϕ]−1 in the Kan homotopy category. In

this case the invertibility of X
ϕ←− C

ψ−→ Y is equivalent f being a weak
equivalence, i.e. to ψ being a weak equivalence.

Now let X be a semiSegal space. Through the point of view of correspon-
dences we have a natural way to define invertibility and unitality of morphisms:

Definition 3.2. 1. Let x, y ∈ X0 be two objects and f : x −→ y a morphism
in X. We will say that f is right-invertible if for every z ∈ X0 the right
composition correspondence

MapX(z, x)←− CRf,z −→ MapX(z, y)
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is invertible. Similarly one says that f is left-invertible if for every
z ∈ X0 the left composition correspondence

MapX(y, z)←− CLf,z −→ MapX(x, z)

is invertible. We say that f is invertible if it is both left invertible and
right invertible.

2. Let x ∈ X0 be an object and f : x −→ x a morphism in X. We will say
that f is a quasi-unit if for each z ∈ X0 the correspondences

MapX(x, z)←− CRf,z −→ MapX(x, z)

and
MapX(z, x)←− CLf,z −→ MapX(z, x)

are unital.

Remark 3.3. From Remark 3.1 we see that a morphism f : x −→ y in X is
invertible if and only if for each z ∈ X0 the restriction maps

CRf,z −→ MapX(z, y)

CLf,z −→ MapX(x, z)

are weak equivalences.

Invertible morphisms can be described informally as morphisms such that
composition with them induces a weak equivalence on mapping spaces. Note
that the notion of invertibility does not presupposed the existence of identity
morphisms, i.e. it makes sense in the non-unital setting as well.

We will denote by
X inv

1 ⊆ X1

the maximal subspace spanned by the invertible vertices f ∈ (X1)0. Using
Reedy fibrancy it is not hard to show that if f, g ∈ X1 are connected by a path
in X1 then f is invertible if and only if g is invertible. Hence X inv

1 is just the
union of connected components of X1 which meet invertible edges.

We will denote by

Mapinv
X (x, y) = {x} ×X0

X inv
1 ×X0

{y} ⊆ MapX(x, y)

the subspace of invertible morphisms from x to y.

Definition 3.4. Let X be a semiSegal space. We will say that X is quasi-
unital if every x0 ∈ X0 admits a quasi-unit from x0 to x0. We say that a map
f : X −→ Y of quasi-unital semiSegal spaces is unital if it maps quasi-units to
quasi-units. We will denote by

QsS

the topological category of quasi-unital semi-simplicial spaces and unital maps
between them.
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We will be interested in studying the category QsS up to a natural notion of
equivalences, given by Dwyer-Kan equivalences. This is a direct adaptation
of the notion of DK-equivalence of ∞-categories to the quasi-unital setting.

We start with a slightly more general notion of fully-faithful maps:

Definition 3.5. Let f : X −→ Y be map of semiSegal spaces. We will say that
f is a fully-faithful for all x, y ∈ X0 the induced map

MapX(x, y) −→ MapY (f0(x), f0(y))

is a weak equivalence.

The notion of Dwyer-Kan equivalences will be obtained from the notion of
fully-faithful maps by requiring the appropriate analogue of ”essential surjec-
tivity”. For this let us introduce some terminology.

Definition 3.6. Let x, y ∈ X0 be two points. We say that x and y are equiv-
alent (denoted x ' y) if there exists an invertible morphism f :∈ X inv

1 from x
to y.

Lemma 3.7. Let X be a quasi-unital semiSegal space. Then ' is an equivalence
relation. We will refer to the corresponding set of equivalence classes as the set
of equivalence-types of X.

Definition 3.8. Let f : X −→ Y be a map between quasi-unital semiSegal
spaces. We will say that f is a Dwyer-Kan equivalence (DK for short) if it
is fully faithful and induces a surjective map on the set of equivalence-types.

Remark 3.9. A DK-equivalence f : X −→ Y is automatically a unital map.

We propose to model the ∞-category of small quasi-unital ∞-categories
as the localization of QsS with respect to DK-equivalence. This is analogous
to modeling the ∞-category of small ∞-categories as the localization of the
category of Segal spaces with respect to DK-equivalence. We have a natural
forgetful functor between these two localizations. Our main result us that this
functor is an equivalence of categories.

In his fundamental paper [Rez] Rezk constructs (using the framework of
model categories) an explicit model for this localization in terms of complete
Segal spaces. We propose an analogous model for the quasi-unital case as
follows:

Definition 3.10. Let X be a semiSegal space. We will say that X is complete
if the restricted maps d0 : X inv

1 −→ X0 and d1 : X inv
1 −→ X0 are both homotopy

equivalences.

An important observation is that any complete semiSegal space is quasi-
unital: since the map X inv

1 −→ X0 is a trivial fibration every object x ∈ X0

admits an invertible morphism of the form f : x −→ y for some y. This implies
that x admits a quasi-unit.
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Let CsS ⊆ QsS denote the full topological subcategory spanned by complete
semiSegal spaces. We claim that the topological category CsS can serve as a
model for the localization of QsS by DK-equivalences. Formally speaking (see
Definition 5.2.7.2 and Proposition 5.2.7.12 of [Lur3]) this means that there exists
a functor

•̂ : QsS −→ CsS

such that:

1. •̂ is homotopy left adjoint to the inclusion CsS ⊆ QsS.

2. A map in QsS is a DK-equivalence if and only if its image under •̂ is a
homotopy equivalence.

Let CS be the topological category of complete Segal spaces. Our main
result of this section can now be stated as follows:

Theorem 3.11. The forgetful functor

CS −→ CsS

is an equivalence.

4 Completion of the Proof

Let us now go back to the construction M 7→ DM described above. When
M is non-degenerate we get that DM is quasi-unital. Furthermore, any non-
degenerate natural transformationM −→ N will induce a unital functor DM −→
DN . Hence the construction M 7→ DM determines a functor

G : Funlax
nd (Bev

1 ,Grp∞) −→ Catqu,⊗
Bun

0 /

where Catqu,⊗ is the∞-category of symmetric monoidal quasi-unital categories
(i.e. commutative algebra objects in the ∞-category Catqu of quasi-unital ∞-
categories). Since the forgetful functor

S : Cat −→ Catqu

From ∞-categories to quasi-unital ∞-categories is an equivalence we get that
the induced forgetful functor

S∗ : Cat⊗
Bun

0 / −→ Catqu,⊗
Bun

0 /

is an equivalence as well.
Composing G with the ϕ 7→Mϕ functor

F : Catsur
Bev

1 /
−→ Funlax

nd (Bev
1 ,Grp∞)
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described above we get a functor

G ◦ F : Catsur
Bev

1 /
−→ Catqu,⊗

Bun
0 /

and we have a homotopy commutative diagram:

Catsur
Bev

1 /

F

wwooo
ooo

ooo
oo

T

$$J
JJ

JJ
JJ

JJ

Funlax
nd (Bev

1 ,Grp∞)

G ''OO
OOO

OOO
OOO

O
Cat⊗

Bun
0 /

S∗zzuuu
uu
uu
uu

Catqu,⊗
Bun

0 /

where T is given by restriction along X+ : Bun −→ Bev
1 . Now from Lemma 1.8

we see that T is fully faithful. Since S∗ is an equivalence of∞-categories we get

Corollary 4.1. The functor G ◦ F is fully faithful.

We are now ready to complete the proof of 1.10. Let D be a symmetric
monoidal ∞-category with duals and let ϕ : B −→ D be a non-degenerate
functor. We wish to show that the space of maps

MapCatsur
Bev

1 /
(ι, ϕ)

is contractible. Consider the sequence

MapCatsur
Bev

1 /
(ι, ϕ) −→ MapFunlax

nd (Bev
1 ,Grp∞)(Mι,Mϕ) −→ MapCatqu,⊗

Bun
0 /

(Bor
1 ,D)

By Theorem 2.6 the middle space is contractible and by lemma 4.1 the compo-
sition

MapCatsur
Bev

1 /
(ι, ϕ) −→ MapCatqu,⊗

Bun
0 /

(Bor
1 ,D)

is a weak equivalence. Hence we get that

MapCatsur
Bev

1 /
(ι, ϕ)

is contractible. This completes the proof of Theorem 1.10.
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