The Cobordism Hypothesis in Dimension 1

Yonatan Harpaz

November 17, 2012

Contents

1	Introduction	1
2	Non-degenerate Fiber Functors	6
3	Quasi-unital ∞ -Categories	9
4	Completion of the Proof	14

1 Introduction

Let $\mathcal{B}_1^{\mathrm{or}}$ denote the 1-dimensional oriented cobordism ∞ -category, i.e. the symmetric monoidal ∞ -category whose objects are oriented 0-dimensional closed manifolds and whose morphisms are oriented 1-dimensional cobordisms between them.

The category $\mathcal{B}_1^{\text{or}}$ carries a fundamental inner symmetry expressing the fact that **cobordisms can be read in both directions**. This can be described formally in the language of **duality** as follows. Let \mathcal{C} be an (ordinary) monoidal category and let X be an object. We say that and object $Y \in \mathcal{C}$ is **right dual** to X if there exist morphisms ev : $X \otimes Y \longrightarrow 1$ and coev : $1 \longrightarrow Y \otimes X$ such that the compositions

$$X \stackrel{Id \otimes \text{coev}}{\longrightarrow} X \otimes Y \otimes X \stackrel{\text{ev} \otimes Id}{\longrightarrow} X$$

and

 $Y \stackrel{\operatorname{coev} \otimes Id}{\longrightarrow} Y \otimes X \otimes Y \stackrel{Id \otimes \operatorname{ev}}{\longrightarrow} Y$

are the identity. In this case we also say that X is left dual to Y. If C is symmetric then this definitions become symmetric and we just say that X and Y are duals. If C is a symmetric monoidal ∞ -category then we say that X and Y are duals if they are duals in the homotopy category Ho(C).

Example:

- 1. Let C be the symmetric monoidal category of finite dimensional vector spaces over \mathbb{C} with monoidal product given by tensor product. Then for each $V \in C$ the object $\check{V} = \operatorname{Hom}(V, \mathbb{C})$ is dual to V. The evaluation map $V \otimes \check{V} \longrightarrow \mathbb{C}$ is clear and the coevaluation $\mathbb{C} \longrightarrow \check{V} \otimes V \cong \operatorname{End}(V)$ is given by sending $1 \in \mathbb{C}$ to the identity $I \in \operatorname{End}(V)$.
- 2. Let $X_+, X_- \in \mathcal{B}_1^{\text{or}}$ be the points with positive and negative orientations respectively. Then X_+ and X_- are duals in $\mathcal{B}_1^{\text{or}}$. The evaluation map is the "right-half-circle" cobordism

$$\operatorname{ev}: X_+ \otimes X_- \longrightarrow \emptyset$$

and the coevaluation is the "left-half-curcle" cobordism

$$\operatorname{coev}: \emptyset \longrightarrow X_+ \otimes X_-$$

Definition 1.1. We say that a symmetric monoidal ∞ -category has duals if every object has a dual.

We now observe the following simple lemma

Lemma 1.2. Let D, C be two symmetric monoidal (ordinary) categories with duals, $F, G : D \longrightarrow C$ two symmetric monoidal functors and $T : F \longrightarrow G$ a natural transformation. Then T is a natural isomorphism.

Now let \mathcal{D} be a symmetric monoidal ∞ -category with duals. The 1-dimensional cobordism hypothesis concerns the ∞ -category

$$\operatorname{Fun}^{\otimes}(\mathcal{B}_1^{\operatorname{or}},\mathcal{D})$$

of symmetric monoidal functors $\varphi : \mathcal{B}_1^{\text{or}} \longrightarrow \mathcal{D}$. If $X_+ \in \mathcal{B}_1^{\text{or}}$ is the object corresponding to a point with positive orientation then the evaluation map $Z \mapsto Z(X_+)$ induces a functor

$$\operatorname{Fun}^{\otimes}(\mathcal{B}_1^{\operatorname{or}}, \mathcal{D}) \longrightarrow \mathcal{D}$$

From Lemma 1.2 we see that the ∞ -category Fun^{\otimes}($\mathcal{B}_1^{\mathrm{or}}, \mathcal{D}$) is in fact an ∞ -groupoid. This means that the evaluation map $Z \mapsto Z(X_+)$ actually factors through a map

$$\operatorname{Fun}^{\otimes}(\mathcal{B}_1^{\operatorname{or}},\mathcal{D})\longrightarrow \widetilde{\mathcal{D}}$$

where $\widetilde{\mathcal{D}}$ is the maximal ∞ -groupoid of \mathcal{D} . The cobordism hypothesis then states

Theorem 1.3. The evaluation map

$$\operatorname{Fun}^{\otimes}(\mathcal{B}_1^{\operatorname{or}}, \mathcal{D}) \longrightarrow \mathcal{D}$$

is an equivalence of ∞ -groupoids.

Remark 1.4. From the consideration above we see that we could have written the cobordism hypothesis as an equivalence

$$\widetilde{\operatorname{Fun}}^{\otimes}(\mathcal{B}_1^{\operatorname{or}},\mathcal{D}) \xrightarrow{\simeq} \widetilde{\mathcal{D}}$$

where $\widetilde{\operatorname{Fun}}^{\otimes}(\mathcal{B}_1^{\operatorname{or}}, \mathcal{D})$ is the maximal ∞ -groupoid of $\operatorname{Fun}^{\otimes}(\mathcal{B}_1^{\operatorname{or}}, \mathcal{D})$ (which in this case happens to coincide with $\operatorname{Fun}^{\otimes}(\mathcal{B}_1^{\operatorname{or}}, \mathcal{D})$). This ∞ -groupoid is the fundamental groupoid of the space of maps from $\mathcal{B}_1^{\operatorname{or}}$ to \mathcal{D} in the ∞ -category Cat^{\otimes} of symmetric monoidal ∞ -categories.

In his paper [Lur1] Lurie gives an elaborate sketch of proof for a higher dimensional generalization of the 1-dimensional cobordism hypothesis. For this one needs to generalize the notion of ∞ -categories to (∞, n) -categories. The strategy of proof described in [Lur1] is inductive in nature. In particular in order to understand the n = 1 case, one should start by considering the n = 0case.

Let $\mathcal{B}_0^{\text{un}}$ be the 0-dimensional unoriented cobordism category, i.e. the objects of $\mathcal{B}_0^{\text{un}}$ are 0-dimensional closed manifolds (or equivalently, finite sets) and the morphisms are diffeomorphisms (or equivalently, isomorphisms of finite sets). Note that $\mathcal{B}_0^{\text{un}}$ is a (discrete) ∞ -groupoid.

Let $X \in \mathcal{B}_0^{\mathrm{un}}$ be the object corresponding to one point. Then the 0dimensional cobordism hypothesis states that $\mathcal{B}_0^{\mathrm{un}}$ is in fact the free ∞ -groupoid (or $(\infty, 0)$ -category) on one object, i.e. if \mathcal{G} is any other ∞ -groupoid then the evaluation map $Z \mapsto Z(X)$ induces an equivalence of ∞ -groupoids

$$\operatorname{Fun}^{\otimes}(\mathfrak{B}_0^{\operatorname{un}},\mathfrak{G}) \xrightarrow{\simeq} \mathfrak{G}$$

Remark 1.5. At this point one can wonder what is the justification for considering non-oriented manifolds in the n = 0 case oriented ones in the n = 1case. As is explained in [Lur1] the desired notion when working in the *n*dimensional cobordism (∞, n) -category is that of *n*-framed manifolds. One then observes that 0-framed 0-manifolds are unoriented manifolds, while taking 1-framed 1-manifolds (and 1-framed 0-manifolds) is equivalent to taking the respective manifolds with orientation.

Now the 0-dimensional cobordism hypothesis is not hard to verify. In fact, it holds in a slightly more general context - we do not have to assume that \mathcal{G} is an ∞ -groupoid. In fact, if \mathcal{G} is **any symmetric monoidal** ∞ -category then the evaluation map induces an equivalence of ∞ -categories

$$\operatorname{Fun}^{\otimes}(\mathcal{B}_0^{\operatorname{un}}, \mathcal{G}) \xrightarrow{\simeq} \mathcal{G}$$

and hence also an equivalence of ∞ -groupoids

$$\widetilde{\operatorname{Fun}}^{\otimes}(\mathcal{B}_0^{\operatorname{un}}, \mathcal{G}) \xrightarrow{\simeq} \widetilde{\mathcal{G}}$$

Now consider the under-category $\operatorname{Cat}_{\mathcal{B}_0^{\operatorname{un}}/}^{\otimes}$ of symmetric monoidal ∞ -categories \mathcal{D} equipped with a functor $\mathcal{B}_0^{\operatorname{un}} \longrightarrow \mathcal{D}$. Since $\mathcal{B}_0^{\operatorname{un}}$ is free on one generator this

category can be identified with the ∞ -category of **pointed** symmetric monoidal ∞ -categories, i.e. symmetric monoidal ∞ -categories with a chosen object. We will often not distinguish between these two notions.

Now the point of positive orientation $X_+ \in \mathcal{B}_1^{\text{or}}$ determines a functor $\mathcal{B}_0^{\text{un}} \longrightarrow \mathcal{B}_1^{\text{or}}$, i.e. an object in $\operatorname{Cat}_{\mathcal{B}_0^{\text{un}}/}^{\otimes}$, which we shall denote by \mathcal{B}_1^+ . The 1-dimensional coborodism hypothesis is then equivalent to the following statement:

Theorem 1.6. [Cobordism Hypothesis 0-to-1] Let $\mathcal{D} \in \operatorname{Cat}_{\mathcal{B}_0^{\operatorname{un}}/}^{\otimes}$ be a pointed symmetric monoidal ∞ -category with duals. Then the ∞ -groupoid

$$\widetilde{\operatorname{Fun}}_{{\mathcal B}_0^{\operatorname{un}}/}^\otimes({\mathcal B}_1^+,{\mathcal D})$$

is contractible.

Theorem 1.6 can be considered as the inductive step from the 0-dimensional cobordism hypothesis to the 1-dimensional one. Now the strategy outlines in [Lur1] proceeds to bridge the gap between $\mathcal{B}_0^{\text{un}}$ to $\mathcal{B}_1^{\text{or}}$ by considering an intermediate ∞ -category

$$\mathcal{B}_0^{\mathrm{un}} \hookrightarrow \mathcal{B}_1^{\mathrm{ev}} \hookrightarrow \mathcal{B}_1^{\mathrm{or}}$$

This intermediate ∞ -category is defined in [Lur1] in terms of framed functions and index restriction. However in the 1-dimensional case one can describe it without going into the theory of framed functors. In particular we will use the following definition:

Definition 1.7. Let $\iota : \mathcal{B}_1^{\text{ev}} \hookrightarrow \mathcal{B}_1^{\text{or}}$ be the subcategory containing all objects and only the cobordisms M in which every connected component $M_0 \subseteq M$ is either an identity segment or an evaluation segment (i.e. a "right-half-circle" as above).

Let us now describe how to bridge the gap between \mathcal{B}_0^{un} and \mathcal{B}_1^{ev} . Let \mathcal{D} be an ∞ -category with duals and let

$$\varphi: \mathcal{B}_1^{\mathrm{ev}} \longrightarrow \mathcal{D}$$

be a symmetric monoidal functor. We will say that φ is **non-degenerate** if for each $X \in \mathcal{B}_1^{ev}$ the map

$$\varphi(\operatorname{ev}_X):\varphi(X)\otimes\varphi(\check{X})\simeq\varphi(X\otimes\check{X})\longrightarrow\varphi(1)\simeq 1$$

is **non-degenerate**, i.e. identifies $\varphi(X)$ with a dual of $\varphi(X)$. We will denote by

$$\operatorname{Cat}^{\operatorname{nd}}_{{\mathcal B}^{\operatorname{ev}}_1/}\subseteq\operatorname{Cat}^\otimes_{{\mathcal B}^{\operatorname{ev}}_1/}$$

the full subcategory spanned by objects $\varphi : \mathcal{B}_1^{ev} \longrightarrow \mathcal{D}$ such that \mathcal{D} has duals and φ is non-degenerate.

Let $X_+ \in \mathcal{B}_1^{\mathrm{ev}}$ be the point with positive orientation. Then X_+ determines a functor

$$\mathcal{B}_0^{\mathrm{un}} \longrightarrow \mathcal{B}_1^{\mathrm{ev}}$$

The restriction map $\varphi \mapsto \varphi|_{\mathcal{B}_0^{\mathrm{un}}}$ then induces a functor

$$\operatorname{Cat}^{\operatorname{nd}}_{{\mathcal B}^{\operatorname{ev}}_1/} \longrightarrow \operatorname{Cat}^{\otimes}_{{\mathcal B}^{\operatorname{un}}_0/}$$

Now the gap between \mathcal{B}_1^{ev} and \mathcal{B}_0^{un} can be climbed using the following lemma (see [Lur1]):

Lemma 1.8. The functor

$$\operatorname{Cat}_{\mathcal{B}_1^{\operatorname{ev}}/}^{\operatorname{nd}} \longrightarrow \operatorname{Cat}_{\mathcal{B}_0^{\operatorname{un}}/}^{\otimes}$$

is fully faithful. Its essential image consists of points symmetric monoidal ∞ -categories in which the pointed object admits a dual.

Now consider the natural inclusion $\iota : \mathcal{B}_1^{\text{ev}} \longrightarrow \mathcal{B}_1^{\text{or}}$ as an object in $\operatorname{Cat}_{\mathcal{B}_1^{\text{ev}}/}^{\text{nd}}$. Then by Lemma 1.8 we see that the 1-dimensional cobordism hypothesis will be established once we make the following last step:

Theorem 1.9 (Cobordism Hypothesis - Last Step). Let \mathcal{D} be a symmetric monoidal ∞ -category with duals and let $\varphi : \mathcal{B}_1^{ev} \longrightarrow \mathcal{D}$ be a **non-degenerate** functor. Then the ∞ -groupoid

$$\widetilde{\operatorname{Fun}}_{\mathcal{B}_1^{\operatorname{ev}}/}^{\otimes}(\mathcal{B}_1^{\operatorname{or}}, \mathcal{D})$$

is contractible.

Note that since $\mathcal{B}_1^{ev} \longrightarrow \mathcal{B}_1^{or}$ is essentially surjective all the functors in

$$\widetilde{\operatorname{Fun}}_{{\mathcal B}_1^{\operatorname{ev}}/}^{\otimes}({\mathcal B}_1^{\operatorname{or}},{\mathcal D})$$

will have the same essential image of φ . Hence it will be enough to prove for the claim for the case where $\varphi : \mathcal{B}_1^{ev} \longrightarrow \mathcal{D}$ is **essentially surjective**. We will denote by

$$\operatorname{Cat}_{\mathcal{B}_{1}^{\operatorname{ev}}/}^{\operatorname{sur}} \subseteq \operatorname{Cat}_{\mathcal{B}_{1}^{\operatorname{ev}}/}^{\operatorname{nd}}$$

the full subcategory spanned by essentially surjective functors $\varphi : \mathcal{B}_1^{ev} \longrightarrow \mathcal{D}$. Hence we can phrase Theorem 1.9 as follows:

Theorem 1.10 (Cobordism Hypothesis - Last Step 2). Let \mathcal{D} be a symmetric monoidal ∞ -category with duals and let $\varphi : \mathcal{B}_1^{ev} \longrightarrow \mathcal{D}$ be an essentially surjective non-degenerate functor. Then the space of maps

$$\operatorname{Map}_{\operatorname{Cat}_{\mathcal{B}^{\operatorname{sur}}_{\mathcal{B}^{\operatorname{ev}}}}}(\iota,\varphi)$$

 $is \ contractible.$

2 Non-degenerate Fiber Functors

Let \mathcal{D} be a symmetric monoidal ∞ -categories with duals. The fact of having duals forces a strong symmetry on \mathcal{D} . This means, in some sense, that the information in \mathcal{D} is packed with extreme **redundancy**. For example, given two objects $X, Y \in \mathcal{D}$ (with corresponding dual objects \check{X}, \check{Y}) all the mapping spaces

$$\operatorname{Map}_{\mathcal{D}}(1, \check{X} \otimes Y) \simeq \operatorname{Map}_{\mathcal{D}}(X, Y) \simeq \operatorname{Map}_{\mathcal{D}}(X \otimes \check{Y}, 1) \simeq \operatorname{Map}_{\mathcal{D}}(\check{Y}, \check{X})$$

are equivalent. For example, in the case of $\mathcal{B}_{1}^{\text{or}}$ all these spaces can be identified with the classifying space of oriented 1-manifolds M together with an identification $\partial M \simeq \check{X} \otimes Y$. This observation leads one to try to pack the information of $\mathcal{B}_{1}^{\text{or}}$ (or a general \mathcal{D} with duals) in a more efficient way. For example, one might like to remember only the mapping spaces of the form $\operatorname{Map}_{\mathcal{D}}(1, X)$, together with some additional structural data.

More precisely, suppose that we are given a non-degenerate essentially surjective functor $\varphi : \mathcal{B}_1^{\text{ev}} \longrightarrow \mathcal{D}$. We can define a lax symmetric functor $M_{\varphi} : \mathcal{B}_1^{\text{ev}} \longrightarrow \text{Grp}_{\infty}$ (where Grp_{∞} denotes the ∞ -category of ∞ -groupoids) by setting

$$M_{\varphi}(X) = \operatorname{Map}_{\mathcal{D}}(1, \varphi(X))$$

We will refer to M_{φ} as the **fiber functor** of φ . This functor can be considered as (at least a partial) codification of \mathcal{D} which remembers the various mapping spaces of \mathcal{D} "without repetitions".

Now since φ is non-degenerate the functor M_{φ} is not completely arbitrary. More precisely, we have the following notion:

Definition 2.1. Let $M : \mathcal{B}_1^{\text{ev}} \longrightarrow \text{Grp}_{\infty}$ be a lax symmetric monoidal functor. An object $Z \in M(X \otimes \check{X})$ is called **non-degenerate** if for each object $Y \in \mathcal{B}_1^{\text{ev}}$ the natural map

$$M(Y \otimes \check{X}) \xrightarrow{Id \times Z} M(Y \otimes \check{X}) \times M(X \otimes \check{X}) \longrightarrow M(Y \otimes \check{X} \otimes X \otimes \check{X}) \xrightarrow{M(Id \otimes \mathrm{ev} \otimes Id)} M(Y \otimes \check{X})$$

is an equivalence of ∞ -groupoids.

Remark 2.2. If a non-degenerate element $Z \in M(X \otimes X)$ exists then it is unique up to a (non-canonical) equivalence.

Example 1. Let $M : \mathcal{B}_1^{\text{ev}} \longrightarrow \operatorname{Grp}_{\infty}$ be a lax symmetric monoidal functor. The lax symmetric structure of M includes a structure map $1_{\operatorname{Grp}_{\infty}} \longrightarrow M(1)$ which can be described by choosing an object $Z_1 \in M(1)$. The axioms of lax monoidality then ensure that Z_1 is non-degenerate.

Definition 2.3. A lax symmetric monoidal functor $M : \mathcal{B}_1^{ev} \longrightarrow \operatorname{Grp}_{\infty}$ will be called **non-degenerate** if for each object $X \in \mathcal{B}_1^{ev}$ there exists a non-degenerate object $Z \in M(X \otimes \check{X})$.

Definition 2.4. Let $M_1, M_2 : \mathcal{B}_1^{\text{ev}} \longrightarrow \text{Grp}_{\infty}$ be two non-degenerate lax symmetric monoidal functors. A lax symmetric natural transformation $T : M_1 \longrightarrow M_2$ will be called **non-degenerate** if for each object $X \in \text{Bord}^{\text{ev}}$ and each non-degenerate object $Z \in M(X \otimes \check{X})$ the objects $T(Z) \in M_2(X \otimes \check{X})$ is non-degerate.

Remark 2.5. From remark 2.2 we see that if $T(Z) \in M_2(X \otimes \check{X})$ is nondegenerate for **at least one** non-degenerate $Z \in M_1(X \otimes \check{X})$ then it will be true for all non-degenerate $Z \in M_1(X \otimes \check{X})$.

Now we claim that if \mathcal{D} has duals and $\varphi : \mathcal{B}_1^{\text{ev}} \longrightarrow \mathcal{D}$ is non-degenerate then the fiber functor M_{φ} will be non-degenerate: for each object $X \in \mathcal{B}_1^{\text{ev}}$ there exists a coevaluation morphism

$$\operatorname{coev}_{\varphi(X)} : 1 \longrightarrow \varphi(X) \otimes \varphi(\check{X}) \simeq \varphi(X \otimes \check{X})$$

which determines an element in $Z_X \in M_{\varphi}(X \otimes \check{X})$. It is not hard to see that this element is non-degenerate.

Let $\operatorname{Fun}^{\operatorname{lax}}(\mathcal{B}_1^{\operatorname{ev}},\operatorname{Grp}_{\infty})$ denote the ∞ -category of lax symmetric monoidal functors $\mathcal{B}_1^{\operatorname{ev}} \longrightarrow \operatorname{Grp}_{\infty}$ and by

$$\operatorname{Fun}_{\operatorname{nd}}^{\operatorname{lax}}(\mathcal{B}_{1}^{\operatorname{ev}},\operatorname{Grp}_{\infty}) \subseteq \operatorname{Fun}^{\operatorname{lax}}(\mathcal{B}_{1}^{\operatorname{ev}},\operatorname{Grp}_{\infty})$$

the subcategory spanned by non-degenerate functors and non-degenerate natural transformations. Now the construction $\varphi \mapsto M_{\varphi}$ determines a functor

$$F: \operatorname{Cat}_{\mathcal{B}_1^{\operatorname{ev}}/}^{\operatorname{sur}} \longrightarrow \operatorname{Fun}_{\operatorname{nd}}^{\operatorname{lax}}(\mathcal{B}_1^{\operatorname{ev}}, \operatorname{Grp}_{\infty})$$

In particular if $\varphi : \mathcal{B}_1^{\text{ev}} \longrightarrow \mathcal{C}$ and $\psi : \mathcal{B}_1^{\text{ev}} \longrightarrow \mathcal{D}$ are non-degenerate then any functor $T : \mathcal{C} \longrightarrow \mathcal{D}$ under $\mathcal{B}_1^{\text{ev}}$ will induce a non-degenerate natural transformation

$$F(T): M_{\varphi} \longrightarrow M_{\psi}$$

We can then consider the following modification of the cobordism hypothesis concerned with the behavior of our objects of interest after this process of compression:

Theorem 2.6 (Cobordism Hypothesis - Quasi-Unital). Let \mathcal{D} be a symmetric monoidal ∞ -category with duals, let $\varphi : \mathcal{B}_1^{\text{ev}} \longrightarrow \mathcal{D}$ be a non-degenerate functor and let $\iota : \mathcal{B}_1^{\text{ev}} \hookrightarrow \mathcal{B}_1^{\text{or}}$ be the natural inclusion. Let $M_{\iota}, M_{\varphi} \in \text{Fun}_{\text{nd}}^{\text{lax}}$ be the corresponding fiber functors. Them the space of maps

$$\operatorname{Map}_{\operatorname{Fun}_{\operatorname{nd}}^{\operatorname{lax}}}(M_{\iota}, M_{\varphi})$$

is contractible.

Now given that we have proven Theorem 2.6 we will need a way to tie the result back to the original cobordism hypothesis. For this we need to check to what extent one can reconstruct the full ∞ -category with duals \mathcal{D} from the

compressed codification of M_{φ} (where $\varphi : \mathcal{B}_1^{ev} \longrightarrow \mathcal{D}$ is any non-degenerate functor).

For this we can attempt to **invert** the construction $(\mathcal{D}, \varphi) \mapsto M_{\varphi}$. Let $M : \mathcal{B}_1^{\text{ev}} \longrightarrow \text{Grp}_{\infty}$ be a non-degenerate lax symmetric monoidal functor. We can construct a pointed **non-unital** symmetric monoidal ∞ -category \mathcal{D}_M as follows:

- 1. The objects of \mathcal{D}_M are the objects of $\mathcal{B}_1^{\text{ev}}$. The marked point is the object X_+ .
- 2. Given a pair of objects $X, Y \in \mathcal{D}_M$ we define

$$\operatorname{Map}_{\mathcal{D}_M}(X,Y) = M(\check{X} \otimes Y)$$

Given a triple of objects $X, Y, Z \in \mathcal{D}_M$ the composition law

$$\operatorname{Map}_{\mathcal{D}_M}(X,Y) \times \operatorname{Map}_{\mathcal{D}_M}(Y,Z) \longrightarrow \operatorname{Map}_{\mathcal{D}_M}(X,Z)$$

is given by the composition

$$M(\check{X} \otimes Y) \times M(\check{Y} \otimes Z) \longrightarrow M(\check{X} \otimes Y \otimes \check{Y} \otimes Z) \longrightarrow M(\check{X} \otimes Z)$$

where the first map is given by the lax symmetric monoidal structure on the functor M and the second is induced by the evaluation map

$$\operatorname{ev}_Y : \check{Y} \otimes Y \longrightarrow 1$$

in \mathcal{B}_1^{ev} .

3. The symmetric monoidal structure is defined in a straight forward way using the lax monoidal structure of M.

Now for each non-degenerate functor $\varphi: \mathcal{B}_1^{ev} \longrightarrow \mathcal{D}$ we have a natural pointed functor

$$N_{\varphi}: \mathcal{D}_{M_{\varphi}} \longrightarrow \mathcal{D}$$

defined as follows: N_{φ} maps the objects of $\mathcal{D}_{M_{\varphi}}$ (which are the objects of $\mathcal{B}_{1}^{\text{ev}}$) to \mathcal{D} via φ . Then for each $X, Y \in \mathcal{B}_{1}^{\text{ev}}$ we can map the morphisms

$$\operatorname{Map}_{\mathcal{D}_{M_{\omega}}}(X,Y) = \operatorname{Map}_{\mathcal{D}}(1,\check{X}\otimes Y) \longrightarrow \operatorname{Map}_{\mathcal{D}}(X,Y)$$

via the duality structure - to a morphism $f: 1 \longrightarrow \check{X} \otimes Y$ one associates the morphism $\widehat{f}: X \longrightarrow Y$ given as the composition

$$X \stackrel{Id \otimes f}{\longrightarrow} X \otimes \check{X} \otimes Y \stackrel{\varphi(\mathrm{ev}_X) \otimes Y}{\longrightarrow} Y$$

It is quite direct to verify that N_{φ} is a functor of (symmetric monoidal) nonunital ∞ -categories, i.e. it respects composition and monoidal products in a natural way. Since \mathcal{D} has duals we get that N_{φ} is fully faithful and since φ is essentially surjective φ we get that N_{φ} is essentially surjective. Hence N_{φ} is an equivalence and so $\mathcal{D}_{M_{\varphi}}$ is equivalent to the underlying non-unital ∞ -category of \mathcal{D} .

Informally speaking one can say that we are **almost able** to reconstruct \mathcal{D} out of M_{φ} - we are just missing the identity morphisms. However, note that if M is non-degenerate then \mathcal{D}_M is not a completely arbitrary non-unital ∞ -category. In fact it is very close to being unital - a **non-degenerate** object in $M(X \otimes X)$ gives a morphism which **behaves** like an identity map. Hence in some sense, we can reconstruct the units of \mathcal{D} as well. To make this idea precise we will need a good theory of **quasi-unital** ∞ -categories.

3 Quasi-unital ∞ -Categories

Throughout this section we will assume that the reader is familiar with the formalism of **Segal spaces** and their connection with ∞ -categories. Our purpose is to study the non-unital analogue of this construction, obtained by replacing simplicial spaces with **semi-simplicial spaces**.

Let X be a semi-simplicial space. Let $[n], [m] \in \Delta_s$ be two objects and consider the commutative (pushout) diagram

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} \xrightarrow{0} \begin{bmatrix} m \\ 0 \\ 0 \end{bmatrix} \xrightarrow{q_{n,n}} \begin{bmatrix} n \\ 0 \\ 0 \end{bmatrix}$$

where $f_{n,m}(i) = i$ and $g_{n,m}(i) = i + n$. We will say that X satisfies the **Segal** condition if for each [n], [m] as above the induced commutative diagram

$$\begin{array}{c|c} X_{m+n} \xrightarrow{g_{n,m}^*} X_m \\ f_{n,m}^* & \downarrow 0^* \\ X_n \xrightarrow{n^*} X_0 \end{array}$$

is a **homotopy pullback** diagram. We will say that X is a **semiSegal space** if it is **Reedy fibrant** and satisfies the Segal condition. Note that in that case the above square will induce a homotopy equivalence

$$X_{m+n} \simeq X_m \times_{X_0} X_n$$

Example 2. Let \mathcal{C} be a non-unital small topological category. We can represent \mathcal{C} as a semiSegal space as follows. For each n, let $\mathfrak{C}^{nu}([n])$ denote the non-unital Top-enriched category whose objects are the numbers 0, ..., n and whose mapping spaces are

$$\operatorname{Map}_{\mathfrak{C}^{\operatorname{nu}}([n])}(i,j) = \begin{cases} \emptyset & i \ge j\\ I^{(i,j)} & i < j \end{cases}$$

where $(i,j) = \{x \in \{0,...,n\} | i < x < j\}$. The composition is given by the inclusion

$$I^{(i,j)} \times I^{(j,k)} \cong I^{(i,j)} \times \{0\} \times I^{(j,k)} \subset I^{(i,k)}$$

Note that $\mathfrak{C}^{nu}([n])$ depends functorially on $[n] \in \Delta_s$. Hence for every non-unital topological category \mathfrak{C} we can form a semi-simplicial space $N(\mathfrak{C})$ by setting

$$N(\mathcal{C})_n = \operatorname{Fun}(\mathfrak{C}^{\operatorname{nu}}([n]), \mathcal{C})$$

We endow $N(\mathcal{C})_n$ with a natural topology that comes from the topology of the mapping space of \mathcal{C} (while treating the set of objects of \mathcal{C} as discrete). One can then check that $N(\mathcal{C})$ is a **semiSegal space**.

We think of general semiSegal spaces X as relaxed versions of Example 2, i.e. as a **non-unital** ∞ -category. The objects of the corresponding non-unital ∞ -category are the points of X_0 . Given two points $x, y \in X_0$ we define the **mapping space** between them by

$$Map_X(x, y) = \{x\} \times_{X_0} X_1 \times_{X_0} \{y\}$$

i.e., as the fiber of the (Kan) fibration

$$X_1 \stackrel{(d_0,d_1)}{\longrightarrow} X_0 \times X_0$$

over the point (x, y).

To see how composition works consider first the case of a topological category \mathcal{C} and assume that we are given three objects $x, y, z \in \mathcal{C}$ and a morphism $f: x \longrightarrow y$. One would then obtain a composition-by-f maps

$$f_* : \operatorname{Hom}_{\mathfrak{C}}(z, x) \longrightarrow \operatorname{Hom}_{\mathfrak{C}}(z, y)$$

and

$$f^* : \operatorname{Hom}_{\mathfrak{C}}(y, z) \longrightarrow \operatorname{Hom}_{\mathfrak{C}}(x, z)$$

In the semiSegal model we do not have such strict composition. Instead one can describe the composition-by-f maps as **correspondences**. If $x, y, z \in X_0$ are objects and $f : x \longrightarrow y$ is a morphism (i.e. an element in X_1 such that $d_0(f) = x$ and $d_1(f) = y$) one can consider the space $C_{f,z}^R \subseteq X_2$ given by

$$C_{f,z}^{R} = \{ \sigma \in X_{2} \mid \sigma|_{\Delta^{\{1,2\}}} = f, \sigma|_{\Delta^{\{0\}}} = z \}$$

Then the two restriction maps $\sigma \mapsto \sigma|_{\Delta^{\{0,1\}}}$ and $\sigma \mapsto \sigma|_{\Delta^{\{0,2\}}}$ give us a correspondence (recall that X is Reedy fibrant and so the restriction maps are fibrations):

This correspondence describes the operation of composing with f on the right. Similarly we have a correspondence

describing composition with f on the left. The Segal condition ensures that both $C_{f,z}^R$ and $C_{f,z}^L$ are **map-like** correspondences, i.e. the left hand side maps are **weak equivalences**. In that sense composition is "almost" well-defined.

We want to define properties of f via analogous properties of the correspondences $C_{f,z}^R, C_{f,z}^L$. In particular we will want to define when a morphism is a **quasi-unit** and when it is **invertible**. For this we will need to first understand how to say this in terms of correspondences.

Recall that from each space X to itself we have the **identity correspondence** $X \xleftarrow{\text{Id}} X \xrightarrow{\text{Id}} X$. We will say that a correspondence $X \xleftarrow{\varphi} C \xrightarrow{\psi} X$ is **unital** if it is **equivalent** to the identity correspondence. It is not hard to check that a correspondence as above is unital if and only if both φ, ψ are weak equivalences and are **homotopic** to each other in the Kan model structure.

We will say that a correspondence $X \xleftarrow{\varphi} C \xrightarrow{\psi} Y$ is **invertible** if it admits an **inverse**, i.e. if there exists a correspondence $Y \xleftarrow{\varphi} D \xrightarrow{\psi} X$ such that the compositions

$$X \longleftarrow C \times_Y D \longrightarrow X$$

and

$$Y \longleftarrow D \times_X C \longrightarrow Y$$

are unital.

Remark 3.1. Note that if a correspondence

$$X \xleftarrow{\varphi} C \xrightarrow{\psi} Y$$

is map-like (i.e. if φ is invertible) then it is equivalent to a correspondence of the form

$$X \xleftarrow{\mathrm{Id}} D \xrightarrow{f} Y$$

such that f represents the class $[\psi] \circ [\varphi]^{-1}$ in the Kan homotopy category. In this case the invertibility of $X \stackrel{\varphi}{\leftarrow} C \stackrel{\psi}{\longrightarrow} Y$ is equivalent f being a weak equivalence, i.e. to ψ being a weak equivalence.

Now let X be a semiSegal space. Through the point of view of correspondences we have a natural way to define invertibility and unitality of morphisms:

Definition 3.2. 1. Let $x, y \in X_0$ be two objects and $f : x \longrightarrow y$ a morphism in X. We will say that f is **right-invertible** if for every $z \in X_0$ the right composition correspondence

$$\operatorname{Map}_X(z, x) \longleftarrow C^R_{f, z} \longrightarrow \operatorname{Map}_X(z, y)$$

is invertible. Similarly one says that f is **left-invertible** if for every $z \in X_0$ the left composition correspondence

$$\operatorname{Map}_X(y,z) \longleftarrow C_{f,z}^L \longrightarrow \operatorname{Map}_X(x,z)$$

is invertible. We say that f is **invertible** if it is both left invertible and right invertible.

2. Let $x \in X_0$ be an object and $f : x \longrightarrow x$ a morphism in X. We will say that f is a **quasi-unit** if for each $z \in X_0$ the correspondences

$$\operatorname{Map}_X(x,z) \longleftarrow C^R_{f,z} \longrightarrow \operatorname{Map}_X(x,z)$$

and

$$\operatorname{Map}_X(z, x) \longleftarrow C^L_{f, z} \longrightarrow \operatorname{Map}_X(z, x)$$

are unital.

Remark 3.3. From Remark 3.1 we see that a morphism $f : x \longrightarrow y$ in X is invertible if and only if for each $z \in X_0$ the restriction maps

$$C_{f,z}^R \longrightarrow \operatorname{Map}_X(z,y)$$

 $C_{f,z}^L \longrightarrow \operatorname{Map}_X(x,z)$

are weak equivalences.

Invertible morphisms can be described informally as morphisms such that composition with them induces a weak equivalence on mapping spaces. Note that the notion of invertibility does not presupposed the existence of identity morphisms, i.e. it makes sense in the non-unital setting as well.

We will denote by

$$X_1^{\mathrm{inv}} \subseteq X_1$$

the maximal subspace spanned by the invertible vertices $f \in (X_1)_0$. Using Reedy fibrancy it is not hard to show that if $f, g \in X_1$ are connected by a path in X_1 then f is invertible if and only if g is invertible. Hence X_1^{inv} is just the **union of connected components of** X_1 which meet invertible edges.

We will denote by

$$\operatorname{Map}_{X}^{\operatorname{inv}}(x,y) = \{x\} \times_{X_0} X_1^{\operatorname{inv}} \times_{X_0} \{y\} \subseteq \operatorname{Map}_X(x,y)$$

the subspace of invertible morphisms from x to y.

Definition 3.4. Let X be a semiSegal space. We will say that X is **quasi-unital** if every $x_0 \in X_0$ admits a quasi-unit from x_0 to x_0 . We say that a map $f: X \longrightarrow Y$ of quasi-unital semiSegal spaces is **unital** if it maps quasi-units to quasi-units. We will denote by

the topological category of quasi-unital semi-simplicial spaces and unital maps between them.

We will be interested in studying the category QsS up to a natural notion of equivalences, given by **Dwyer-Kan equivalences**. This is a direct adaptation of the notion of DK-equivalence of ∞ -categories to the quasi-unital setting.

We start with a slightly more general notion of fully-faithful maps:

Definition 3.5. Let $f: X \longrightarrow Y$ be map of semiSegal spaces. We will say that f is a **fully-faithful** for all $x, y \in X_0$ the induced map

$$\operatorname{Map}_X(x,y) \longrightarrow \operatorname{Map}_Y(f_0(x), f_0(y))$$

is a weak equivalence.

The notion of Dwyer-Kan equivalences will be obtained from the notion of fully-faithful maps by requiring the appropriate analogue of "essential surjectivity". For this let us introduce some terminology.

Definition 3.6. Let $x, y \in X_0$ be two points. We say that x and y are equivalent (denoted $x \simeq y$) if there exists an invertible morphism $f :\in X_1^{\text{inv}}$ from x to y.

Lemma 3.7. Let X be a quasi-unital semiSegal space. Then \simeq is an equivalence relation. We will refer to the corresponding set of equivalence classes as the set of equivalence-types of X.

Definition 3.8. Let $f : X \longrightarrow Y$ be a map between **quasi-unital** semiSegal spaces. We will say that f is a **Dwyer-Kan equivalence** (DK for short) if it is fully faithful and induces a surjective map on the set of equivalence-types.

Remark 3.9. A DK-equivalence $f: X \longrightarrow Y$ is automatically a unital map.

We propose to model the ∞ -category of small quasi-unital ∞ -categories as the localization of QsS with respect to DK-equivalence. This is analogous to modeling the ∞ -category of small ∞ -categories as the localization of the category of **Segal spaces** with respect to DK-equivalence. We have a natural forgetful functor between these two localizations. Our main result us that this functor is an **equivalence of categories**.

In his fundamental paper [Rez] Rezk constructs (using the framework of model categories) an explicit model for this localization in terms of **complete Segal spaces**. We propose an analogous model for the quasi-unital case as follows:

Definition 3.10. Let X be a semiSegal space. We will say that X is **complete** if the restricted maps $d_0: X_1^{\text{inv}} \longrightarrow X_0$ and $d_1: X_1^{\text{inv}} \longrightarrow X_0$ are both homotopy equivalences.

An important observation is that any complete semiSegal space is quasiunital: since the map $X_1^{\text{inv}} \longrightarrow X_0$ is a trivial fibration every object $x \in X_0$ admits an invertible morphism of the form $f: x \longrightarrow y$ for some y. This implies that x admits a quasi-unit. Let $CsS \subseteq QsS$ denote the full topological subcategory spanned by complete semiSegal spaces. We claim that the topological category CsS can serve as a model for the localization of QsS by DK-equivalences. Formally speaking (see Definition 5.2.7.2 and Proposition 5.2.7.12 of [Lur3]) this means that there exists a functor

$$\widehat{\bullet}: \mathrm{QsS} \longrightarrow \mathrm{CsS}$$

such that:

- 1. $\hat{\bullet}$ is homotopy left adjoint to the inclusion CsS \subseteq QsS.
- 2. A map in QsS is a DK-equivalence if and only if its image under $\hat{\bullet}$ is a homotopy equivalence.

Let CS be the topological category of complete Segal spaces. Our main result of this section can now be stated as follows:

Theorem 3.11. The forgetful functor

$$CS \longrightarrow CsS$$

is an equivalence.

4 Completion of the Proof

Let us now go back to the construction $M \mapsto \mathcal{D}_M$ described above. When M is non-degenerate we get that \mathcal{D}_M is quasi-unital. Furthermore, any nondegenerate natural transformation $M \longrightarrow N$ will induce a unital functor $\mathcal{D}_M \longrightarrow \mathcal{D}_N$. Hence the construction $M \mapsto \mathcal{D}_M$ determines a functor

$$G: \operatorname{Fun}_{\operatorname{nd}}^{\operatorname{lax}}(\mathcal{B}_1^{\operatorname{ev}}, \operatorname{Grp}_{\infty}) \longrightarrow \operatorname{Cat}_{\mathcal{B}_0^{\operatorname{un}}/\mathcal{O}}^{\operatorname{qu}, \otimes}$$

where $\operatorname{Cat}^{\operatorname{qu},\otimes}$ is the ∞ -category of symmetric monoidal quasi-unital categories (i.e. commutative algebra objects in the ∞ -category $\operatorname{Cat}^{\operatorname{qu}}$ of quasi-unital ∞ -categories). Since the forgetful functor

$$S: \operatorname{Cat} \longrightarrow \operatorname{Cat}^{\operatorname{qu}}$$

From ∞ -categories to quasi-unital ∞ -categories is an **equivalence** we get that the induced forgetful functor

$$S_* : \operatorname{Cat}_{\mathcal{B}_0^{\operatorname{un}}/}^{\otimes} \longrightarrow \operatorname{Cat}_{\mathcal{B}_0^{\operatorname{un}}/}^{\operatorname{qu},\otimes}$$

is an equivalence as well.

Composing G with the $\varphi \mapsto M_{\varphi}$ functor

$$F: \operatorname{Cat}_{\mathcal{B}_1^{\operatorname{ev}}/}^{\operatorname{sur}} \longrightarrow \operatorname{Fun}_{\operatorname{nd}}^{\operatorname{lax}}(\mathcal{B}_1^{\operatorname{ev}}, \operatorname{Grp}_{\infty})$$

described above we get a functor

$$G\circ F: \operatorname{Cat}_{{\mathcal B}_1^{\operatorname{ev}}/}^{\operatorname{sur}} \longrightarrow \operatorname{Cat}_{{\mathcal B}_0^{\operatorname{un}}/}^{\operatorname{qu},\otimes}$$

and we have a homotopy commutative diagram:

where T is given by restriction along $X_+ : \mathcal{B}^{un} \longrightarrow \mathcal{B}_1^{ev}$. Now from Lemma 1.8 we see that T is fully faithful. Since S_* is an equivalence of ∞ -categories we get

Corollary 4.1. The functor $G \circ F$ is fully faithful.

We are now ready to complete the proof of 1.10. Let \mathcal{D} be a symmetric monoidal ∞ -category with duals and let $\varphi : \mathcal{B} \longrightarrow \mathcal{D}$ be a non-degenerate functor. We wish to show that the space of maps

$$\operatorname{Map}_{\operatorname{Cat}_{\mathcal{B}_{1}^{\operatorname{sur}}/}^{\operatorname{sur}}}(\iota,\varphi)$$

is contractible. Consider the sequence

$$\operatorname{Map}_{\operatorname{Cat}_{\mathcal{B}_{1}^{\operatorname{sur}}}^{\operatorname{sur}}}(\iota,\varphi) \longrightarrow \operatorname{Map}_{\operatorname{Fun}_{\operatorname{nd}}^{\operatorname{lax}}(\mathcal{B}_{1}^{\operatorname{ev}},\operatorname{Grp}_{\infty})}(M_{\iota},M_{\varphi}) \longrightarrow \operatorname{Map}_{\operatorname{Cat}_{\mathcal{B}_{0}^{\operatorname{uv}}}^{\operatorname{qu}}(\mathscr{B}_{1}^{\operatorname{or}},\mathfrak{D})}(\mathcal{B}_{1}^{\operatorname{or}},\mathfrak{D})$$

By Theorem 2.6 the middle space is contractible and by lemma 4.1 the composition

$$\operatorname{Map}_{\operatorname{Cat}_{\mathfrak{B}_{1}^{\operatorname{sur}}}^{\operatorname{sur}}}(\iota,\varphi) \longrightarrow \operatorname{Map}_{\operatorname{Cat}_{\mathfrak{B}_{0}^{\operatorname{sur}}}^{\operatorname{qu},\otimes}}(\mathfrak{B}_{1}^{\operatorname{or}},\mathfrak{D})$$

is a weak equivalence. Hence we get that

$$\operatorname{Map}_{\operatorname{Cat}_{\mathcal{B}_{1}^{\operatorname{sur}}}^{\operatorname{sur}}}(\iota,\varphi)$$

is contractible. This completes the proof of Theorem 1.10.

References

[BaDo] Baez, J., Dolan, J., Higher-dimensional algebra and topological qauntum field theory, Journal of Mathematical Physics, 36 (11), 1995, 6073–6105.

- [Har] Harpaz, Y. Quasi-unital ∞-categories, PhD Thesis.
- [Lur1] Lurie, J., On the classification of topological field theories, Current Developments in Mathematics, 2009, p. 129-280, http://www. math.harvard.edu/~lurie/papers/cobordism.pdf.
- [Lur2] Lurie, J. *Higher Algebra*, http://www.math.harvard.edu/ ~lurie/papers/higheralgebra.pdf.
- [Lur3] Lurie, J., Higher Topos Theory, Annals of Mathematics Studies, 170, Princeton University Press, 2009, http://www.math. harvard.edu/~lurie/papers/highertopoi.pdf.
- [Kal] Kaledin, D., Homological methods in non-commutative geometry, preprint, http://imperium.lenin.ru/~kaledin/math/ tokyo/final.pdf
- [Rez] Rezk, C., A model for the homotopy theory of homotopy theory, Transactions of the American Mathematical Society, 353 (3), 2001, p. 973-1007.