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A useful idea in group theory is to study a group via its various abelian, or, more generally, nilpotent,
quotients. For a given group G, these can all be obtained as quotients of the groups appearing in the
central tower

G→ ...→ G/Gn → ...→ G/G1 → G/G0 = ∗,
where G0 = G and Gi+1 = [G,Gi] for i ≥ 0. In particular, G/G1 is the abelianization of G, and more
generally G→ G/Gn is the universal map from G to a nilpotent group of degree n (that is, a group whose
lower central series has length n). One of the useful features of this tower is that each successive map
G/Gn+1 → G/Gn is a central extension with kernel Gn/Gn+1. In particular, its first step is an abelian
group, and each further step is in some sense linear (or more precisely, affine) over the previous step. The
isomorphism type of G/Gn is hence completely determined by the isomorphism type of G/G0, together
with, for each i = 1, ..., n − 1, the class

αi ∈H2(G/Gi,Gi/Gi+1)
classifying the central extension G/Gi+1 → G/Gi. When the central tower converges, that is, when the
map G→ limnG/Gn is an isomorphism, this data also determines G itself.

In homotopy theory, it is natural to ask for the analogue of this construction in the setting of E1-
groups, that is, group-like E1-monoids in the ∞-category S of spaces. These are all obtained as the loop
E1-groups of pointed connected spaces; in fact, the formation of loops induces an equivalences between
the ∞-category S≥1∗ of pointed connected spaces and that of E1-groups. The modern approach to this
problem is that for a pointed space X, the analogue of the universal degree n nilpotent quotient for the
loop E1-group ΩX is given by ΩPn(X), where Pn(X) is the n’th (pointed) space in the Goodwillie tower

X → ...→ Pn(X)→ ...→ P1(X)→ ∗
1
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of X, as considered in the previous talks (here, it does not matter if we take the Goodwillie tower in
S∗ or S≥1∗ , the two towers coincide). For example, one can show that π1Pn(X) is the universal degree n
nilpotent quotient of π1(X), so that on the level of fundamental groups the Goodwillie tower reproduces
the central tower of π1, see the works of Biederman and Dwyer [BD10BD10, Bie17Bie17] on the topic. The first
step in the tower P1(X) = Ω∞Σ∞(X) is the infinite loop space of the suspension spectrum of X, which
can be considered as the universal map from X to a linear object (on the level of ΩX, this can be
considered as the analogous of abelianization). In addition, the gap between each two successive terms
in the Goodwillie tower is again linear in some sense: the map Pn+1(X) → Pn(X) is in fact a principal
fibration with structure group an infinite loop space of the form Ω∞((En ⊗Σ∞X ⊗ ...⊗Σ∞X)hΣn) for a
certain spectrum with Σn-action En. The collection of spectra En are exactly the Goodwillie derivatives
of the identity idS∗ . The equivalence type of Pn(X) is hence completely determines by the spectrum
Σ∞(X), together with, for each i = 1, ..., n − 1, the class

αi ∈H1(Pi(X), (En ⊗Σ∞X ⊗ ...⊗Σ∞X)hΣn) = π0Map(X,Ω∞−1((En ⊗Σ∞X ⊗ ...⊗Σ∞X)hΣn))

classifying the principal fibration Pi+1(X)→ Pi(X).
The idea pursued in Gijs’s thesis [Heu21Heu21] is to obtain a similar Goodwillie tower on the level of ∞-

categories. Before we can describe this idea, let us first recall the basic set up of Goodwillie calculus,
focusing on the case of pointed compactly ∞-categories and reduced functors between them.

1. Goodwillie calculus on pointed compactly generated ∞-categories

Recall that an ∞-category C is said to be compactly generated if it has small colimits and is generated
under colimits by compact objects. Such a C is then of the form Ind(Cc), where Cc ⊆ C is the full
subcategory spanned by compact objects. A compactly generated functor f ∶C → D between compactly
generated ∞-categories is a functor which preserves colimits and compact objects. We will say that a
compactly generated∞-category C is pointed if its initial object is also terminal, in which case we will call
this object a zero object, and write it as 0 ∈ C. A functor which preserves zero objects is called reduced.
In particular, any compactily generated functor between pointed compactly generated ∞-categories is
reduced. We will denote by Catω∗ the ∞-category of pointed compactly generated ∞-categories and
compactly generated functors between them.

A functor between compactly generated ∞-categories is said to be finitary if it preserves filtered
colimits. We will write Funω∗ (C,D) for the ∞-category of reduced finitary functors from C to D. In
paticular, any compactly generated functor f ∶C→D is finitary and furthermore, any compactly generated
functor f has a right adjoint g∶D→ C which is itself finitary. In fact, the compactly generated functors are
exactly the finitary functors which admit a finitary right adjoint. We will consequently write LFunω∗ (C,D)
for the ∞-category of compactly generated functors C→D.

We will now discuss Goodwillie calculus in the setting of reduced functors. We denote by P(n) the
poset of subsets of {1, ..., n}, ordered by inclusion. In particular, when we consider this poset as a
category, it has an initial object given by the empty set, and a final object given by {1, ..., n}. We write
P≥1(n) ⊆ P(n) for the full subposet spanned by the subsets of side is at least 1 (that is, the non-empty
subsets) of P(n), and write P≤1(n) ⊆ P(n) for the full subposet spanned by the subsets whose size as at
most 1.

Let us now fix a pointed compactly generated ∞-category C. We will refer to functors P(n) → C as
n-cubes, and to functors P≥1(n) → C as punctured n-cubes. We will say that an n-cube ρ∶P(n) → C is
cartesian if ρ is right Kan extended from ρ∣P≥1(n), and strongly cocartesian if ρ is left Kan extended from
ρ∣P≤1(n). Equivalently, ρ is cartesian if and only if the induced map

ρ(∅)→ lim
∅≠I

ρ(I)
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is an equivalence, and ρ is strongly cocartesian if and only if the map
ρ({i1}) ∐

ρ({})
ρ({i2}) ∐

ρ({})
... ∐

ρ({})
ρ({ik})→ ρ(I)

determined by ρ is an equivalence. The latter condition is also equivalent to the condition that for every
I, J ⊆ {n} the square

(1) ρ(I ∩ J) //

��

ρ(I)

��
ρ(J) // ρ(I ∪ J)

is cocartesian. Let us say that a punctured cube ρ∶P≥1(n) → C is face-wise cocartesian if for every
I, J ∈ P≥1(n) such that I ∩ J ∈ P≥1(n) the square (11) is cocartesian. Note that unlike the case of whole
cubes, the face-wise condition for punctured cubes is not equivalent to ρ being left Kan extended from
some subposet of P≥1(n). Finally, for any subposet P ⊆ P(n), we will say that ρ∶P → C is reduced if ρ(I)
is a zero object of C for any I ∈ P such that ∣I ∣ = 1. We will use this term for ρ a cube, a punctured cube,
or a functor defined on P≤1(n). Let us thus write Nn(C),N≥1n (C) and N≤1n (C) for the full subcategories
of Fun(P(n),C),Fun(P≥1(n),C) and Fun(P≤1(n),C), respectively, spanned by the reduced functors.

We note that a functor ρ∶P≤1(n)→ C is reduced if and only if it is right Kan extended from ρ∣{∅}. In
particular, evaluation at ∅ and right Kan extension yield inverse equivalences
(2) C Ð→≃←Ð N≤1n (C).
We we may also consider the adjunctions

N≤1n (C)
Ð→⊥←Ð Nn(C) Ð→⊥←Ð N≥1n (C)

where the first left adjoint is given by left Kan extension along P≤1 ⊆ P(n) and the second left adjoint by
restriction along P≥1(n) ⊆ P(n) (their right adjoints are given respectively by restriction along P≤1(n) ⊆
P(n) and right Kan extension along P≥1(n) ⊆ P(n). Composing these adjunctions and identifying N≤1n (C)
with C via (22) we obtain an adjunction

Ln∶C Ð→⊥←Ð N≥1n (C) ∶Rn.

Explicitly, the left adjoint Ln sends X ∈ C to the restriction to P≥1(n) of the strongly cocartesian n-cube
ρX(I) = 0∐

X

0...∐
X

0 ≃ cof[∐
i∈I
X →X] ≃ ∐

∣I ∣−1
ΣX,

where 0 ∈ C is the zero object. The right adjoint Rn is given by Rn(ρ) = limI∈P≥1(n) ρ(I) ∈ C.

Definition 1. We will say that a reduced functor f ∶C → D is n-excisive if it sends strongly cocartesian
(n + 1)-cubes in C to cartesian cubes in D.

Write
Fun≤n∗ (C,D) ⊆ Fun

ω
∗ (C,D)

for the full subcategory spanned by the (finitary, reduced) n-excisive functors. For any finitary reduced
functor f ∶C → D between pointed compactly generated ∞-categories we write Tn(f)∶C → D for the
composite

C
LnÐ→ N≥1n (C)

f∗Ð→ Nn(D)
RnÐÐ→D,

where f∗ denotes the functor induced on punctured cubes by applying f levelwise; this preserves reduced
cubes since f is assumed to be reduced. The functor Tn(f) is given more explicitly by the formula

Tn(f)(X) = lim
∅≠I

f(ρX(I)).
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The inclusion of finitary reduced n-excisive functors inside all finitary reduced functors then admits a left
adjoint

Pn∶Funω∗ (C,D)→ Fun≤n∗ (C,D),
given by the explicit formula

Pn(f) = colim[f → Tn(f)→ TnTn(f)→ ...],
where the sequence is obtained by iterating the natural transformation F ⇒ Tn(f) given by composite

f ⇒ Rn ○Ln ○ f ⇒ Rn ○ f∗ ○Ln,

where the first map is the unit of Ln ⊣ Rn (pre-composed with f), and the second is induced by the
canonical interchange map for colimits/left Kan extensions. We note that for m ≥ 0 the functor T (m)n ∶=
(Tn ○ ... ○ Tn)(f) with Tn composed m times is given by the composite

C
L(m)nÐÐÐ→ (N≥1n )(m)C

f∗Ð→ (N≥1n )(m)D
R(m)nÐÐÐ→D

where we have denoted by (N≥1n )(m)(−) ∶= N≥1n (N≥1n (...(N≥1n (−)) the m-fold iterated composite of the
operation N≥1n (−), and by L

(m)
n and R

(m)
n the corresponding m-fold iterated composites of Ln and Rn,

respectively. In these notations we may also write
Pn(f) = colimmL(m)n ○ f∗ ○R(m)n .

Example 2. When n = 1 we have T1(f)(X) = Ωf(ΣX), and P1(f) = colimmΩmf(Σm(−)).

The resulting tower
f ⇒ ...⇒ Pn(f)⇒ ...⇒ P1(f)

is the Goodwillie tower of f .

Definition 3. We will say that a natural transformation f ⇒ g of functors C→D is a Pn-equivalence if
the induced natural transformation Pn(f)⇒ Pn(g) is an equivalence.

Lemma 4. Let C,D,E be pointed compactly generated ∞-categories and let f ∶C → D and g∶D → E be
reduced functors which preserve filtered colimits. Then the functors

(−) ○ f ∶Funω∗ (D,E)→ Funω∗ (C,E) and g ○ (−)∶Funω∗ (C,D)→ Funω∗ (C,E)
preserve Pn-equivalence.

Proof. We prove the claim for (−) ○ f , the case of g ○ (−) is proven in an analogous manner (using the
fact that post-composition with g preserves filtered colimits). Since g is arbitrary, by 2-out-of-3 it will
suffice to show that the natural transformation g ○ f ⇒ Pn(g) ○ f is a Pn-equivalence, that is, induces an
equivalence Pn(g ○ f)

≃Ð→ Pn(Pn(g) ○ f). Since each of the functors R(m)n commutes with filtered colimits
this last map can be identified with the map

colimm≥0R
(m)
n g∗f∗L

(m)
n → colimmR(m)n colimk≥0[R(k)n g∗L

(k)
n ]f∗L(m)n

= colimm,k≥0R
(m+k)
n g∗L

(k)
n f∗L

(m)
n

=∶ colimm,k hm,k

induced on colimits by the poset inclusion N↦ N×N sending m to (m,0). This poset map is not cofinal,
so in principle it is not supposed to induce an equivalence on colimits. We argue this step by constructing
a poset Q equipped with a cofinal map N × N → Q, such that the composite N → N × N → Q is cofinal
as well, and then show that the functor (m,k) ↦ hm,k extends to Q. We define Q to have the same
elements as N ×N, namely, all pairs (m,k) with m,k ≥ 0, but with a weaker order relation, namely, we
set (m,k) ≤Q (m′, k′) if and only if m ≤m′ and m+ k ≤m′ + k′. We then have a map of poset N×N→ Q
which is the identity on underlying sets. This map is cofinal since N × N is cofiltered and the relevant
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comma posets are non-empty, and hence also cofiltered. The same argument shows that the composite
map N → N ×N → Q is cofinal. To finish the proof it will suffice to show that the functor (m,k) ↦ hm,k

extends to Q. Indeed, on objects it will be defined in the same manner and for m ≤m′ and k+m ≤ k′+m′
the natural transformation hm,k ⇒ hm′,k′ is given by the composite

R(k+m)n g∗L
(k)
n f∗L

(m)
n ⇒R(k+m)n R(k

′+m′−k−m)
n L(k

′+m′−k−m)
n g∗L

(k)
n f∗L

(m)
n

⇒R(k
′+m′)

n g∗L
(k′+m′−m)
n f∗L

(m)
n

⇒R(k
′+m′)

n g∗L
(k′)
n f∗L

(m′−m)
n L(m)n

=R(k
′+m′)

n g∗L
(k′)
n f∗L

(m′)
n .

where the first map is induced by the unit of L(k
′+m′−k−m)

n ⊣ R(k
′+m′−k−m)

n , and all the other maps are
given by the canonical interchange map for colimits/left Kan extensions. □

2. Categorical Goodwillie calculus

We now arrive to the work of [Heu21Heu21].

2.1. Excisive ∞-categories and excisive equivalences.
Definition 5. Let C be a pointed compactly generated ∞-category. We will say that C is n-excisive if it
satisfies the following two properties:
(1) Every strongly cocartesian (n + 1)-cube in C is cartesian. In other words, idC is n-excisive.
(2) Every face-wise cocartesian punctured (n + 1)-cube ρ∶P≥1(n + 1) → Cc extends to an (n + 1)-cube

ρ∶P(n + 1)→ Cc which is both cartesian and strongly cocartesian.
We then write Cat≤n∗ ⊆ Catω∗ for the full subcategory spanned by the n-excisive ∞-categories.
Remark 6. Any P≥1(n+1)-indexed diagram in C is a filtered colimit of diagrams valued in Cc, and hence
any strongly cocartesian (n+1)-cube in Cc is a filtered colimit of strongly cocartesian cubes taking values
in Cc. In verifying Condition 11, one may hence restrict attention to strongly cocartesian (n + 1)-cubes
which are entry-wise compact.
Example 7. For n = 1 the condition that a punctured 2-cube be face-wise cocartesian is vacuous. Using
Remark 66 we then get that a pointed compactly generated C is 1-excisive if and only if Cc has pullbacks
and a commutative square in Cc is a pushout square if and only if it is a pullback square. In other words,
C is 1-excisive if and only if Cc is stable, which in turn is equivalent to C being stable.

For n = 1 the inclusion Cat≤1∗ ⊆ Catω∗ admits a left adjoint
Sp(−)∶Catω∗ → Cat≤1∗

given by the stabilization Sp(C) = limn[C
Ω←Ð C

Ω←Ð C
Ω←Ð ...]. This always results in a compactly generated

∞-category with the ∞-category of compact objects consisting of the Spanier-whitehead stabilization of
Cc, namely

Sp(C) = Ind(Sp(C)c) = Ind(SpSW(Cc)) = Ind colimn[Cc ΣÐ→ Cc ΣÐ→ ...].
There is a canonical adjunction

Σ∞C ∶C
Ð→⊥←Ð Sp(C) ∶Ω∞C .

where Σ∞C is a compactly generated functor induced by the canonical map Cc → SpSW(Cc), and Ω∞C is a
finitary right adjoint induced by projecting to C from its Ω-tower. For every stable compactly generated
∞-category D we then have that restriction along Σ∞C ∶C→ Sp(C) induces an equivalence

LFunω∗ (Sp(C),D)
≃Ð→ LFunω∗ (C,D).

The main goal of the work [Heu21Heu21] is to obtain a similar picture for higher n.
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Definition 8. Let f ∶C → D be a compactly generated functor between pointed compactly generated
∞-categories and let g∶D→ C be its finitary right adjoint. We will say that f is an n-excisive eqiuvalence
if the unit idC ⇒ gf and counit fg⇒ idD are Pn-equivalences.

Proposition 9. Let f ∶C → D be a compactly generated functor between pointed compactly generated
∞-categories. Then the following conditions are equivalent:
(1) f is an n-excisive equivalence.
(2) f induces an equivalence on stabilizations and the natural transformation

Σ∞DfgΩ
∞
D ⇒ Σ∞DΩ∞D

of functors Sp(D)→ Sp(D) induced by the counit of f ⊣ g is a Pn-equivalence.
(3) f induces an equivalence on stabilizations and the unit idC ⇒ gf is a Pn-equivalence.

Proof. We begin with (1) ⇒ (2). Let f ∶C → D be a n-excisive equivalence and g∶D → C its finitary
right adjoint. We first prove that f induces an equivalence on stabilizations. Consider the 1-excisive
approximations P1(f) and P1(g). They factor canonically as composites

C
Σ∞CÐÐ→ Sp(C) ∂1fÐÐ→ Sp(D)

Ω∞DÐÐ→D

and
D

Σ∞DÐÐ→ Sp(D) ∂1gÐÐ→ Sp(C)
Ω∞CÐÐ→ C,

where ∂1f and ∂1g are the first derivatives of f and g. In the case of f , the functor ∂1f identifies
with the functor f∗∶Sp(C) → Sp(D) induced by f on stabilizations; indeed, since f preserves colimits
the construction colimnΩ

nfΣn which produces P1(f) can also be viewed as f ↦ Ω∞Df∗Σ
∞
C . It will

hence suffice to show that ∂1f is an equivalence. Now since f is an n-excisive equivalence the unit and
counit natural transformations are both Pn-equivalence, and in particular P1-equivalences. Using the
Klein-Rognes chain rule [Lur14Lur14, Corollary 6.2.1.24] we obtain:

∂1f ○ ∂1g ≃ ∂1(f ○ g) ≃ ∂1 IdD ≃ IdSp(D)
and

∂1g ○ ∂1f ≃ ∂1(g ○ f) ≃ ∂1 idC ≃ idSp(C) .
We then conclude that ∂1f and ∂1g are inverse equivalences of ∞-categories, and so f induces an equiva-
lence on stabilization. In addition, since the counit fg⇒ IdD is a Pn-equivalence it follows form Lemma 44
that the induced map Σ∞DfgΩ

∞ ⇒ Σ∞DΩ∞D is a Pn-equivalence. This shows (1)⇒ (2).
Now assume that (2) holds, so that f induces an equivalence on stabilizations and the induced map

Σ∞DfgΩ
∞ ⇒ Σ∞DΩ∞D is a Pn-equivalence. We note that saying that f induces an equivalence on stabiliza-

tions is the same as saying that Σ∞f ∶C→ Sp(D) exhibits Sp(D) as the stabilization of C, in which case we
may simply identify Σ∞C = Σ∞Df and Ω∞C = gΩ∞. The assumption of (2) then says that the associated map
of endo-functors Σ∞C Ω∞C → Σ∞DΩ∞D is an equivalence. By a theorem of Arone and Ching, generalized to
the setting of compactly generated ∞-categories in [Heu21Heu21], the map Pn(idC)→ Pn(gf) can be identified
with the map induces on totalizations by the map of cosimplicial objects. More precisely, we may form
a map of coaugemented cosimplicial objects

Pn(idC)

��

// Pn(Ω∞C Σ∞C )

��

//
// Pn(Ω∞C Σ∞C Ω∞C Σ∞C )oo

��

//
//
// Pn(Ω∞C Σ∞C Ω∞C Σ∞C Ω∞C Σ∞C ) ⋯oo

oo

� �
Pn(gf) // Pn(gΩ∞DΣ∞Df)

//
// Pn(gΩ∞DΣ∞DΩ∞DΣ∞Df)oo

//
//
// Pn(gΩ∞C Σ∞DΩ∞DΣ∞DΩ∞DΣ∞Df) ⋯ ,oo

oo

such that the two exhibit their coaugmentation as their totalization. Identifying gΩ∞D = Ω∞C and Σ∞Df ≃
gΩ∞D = Ω∞C , the map of totalizations is an equivalence by the assumption that the map Σ∞C Ω∞C → Σ∞DΩ∞D
is a Pn-equivalence. This shows that (2)⇒ (3).
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Finally, let us show that (3) ⇒ (1). We hence assume that f ∶C → D induces an equivalence on
stabilizations and that the unit map idC ⇒ gf is a Pn-equivalence. We need to show that the counit map
fg⇒ idD is a Pn-equivalence. In other words, we need to show that the induced map Pn(fg)⇒ Pn(idD)
is an equivalence. To begin, note that by the triangle equalities this map is an equivalence on objects
of the form f(X) for X ∈ C. More precisely, since idC ⇒ gf is a Pn-equivalence we have by Lemma 44
that f ⇒ fgf is a Pn-equivalence, and since the composite f ⇒ fgf ⇒ f is homotopic to the identity we
conclude that fgf ⇒ f is a Pn-equivalence. Using that f preserves colimits this means that

Pn(fg)f = Pn(fgf)⇒ Pn(f) = Pn(idD)f
is an equivalence. In other words, the natural transformation Pn(gf) ⇒ Pn(id) is an equivalence on
objects of the form f(X).

For every Y ∈ D, the object Σ∞D(Y ) ∈ Sp(D) ≃ Sp(C) is compact, and hence of the form Σ∞−nC (X) =
Σ∞−nD (f(X)) for some X ∈ C. Since

Map(Σ∞−nD f(X),Σ∞DY ) = colimm≥nMapD(Σm−nf(X),ΣmY )
and

Map(Σ∞DY,Σ∞−nD f(X)) = colimm≥nMapD(ΣmY,Σm−nf(X))
we deduce that a pair of inverse equivalences Σ∞−nf(X) Ð→≃←Ð Σ∞(Y ) lifts to a pair of inverse equivalences
Σm−nf(X) Ð→≃←Ð ΣmY for large enough m. In particular, some large enough suspension of Y is in the
essential image of f ∶C → D. Since f preserves colimits, every finite coproduct of copies of ΣmY is in
the image of f as well. By the above we consequently have that the map Pn(fg)Z → Pn(idD)Z is an
equivalence whenever Z is equivalent to a finite coproduct of copies of ΣmY . To finish the proof we will
now show that for every 0 ≤ k ≤ m, the map Pn(fg)Z → Pn(idD)Z is an equivalence for every Z which
is equivalent to a finite coproduct of copies of Σk. We argue by descending induction on k, the case of
k = m having been just established. Now assume the claim is true for a given 1 ≤ k ≤ m, and let Z be
an object which is equivalent to a finite coproduct of copies of Σk−1Y . Consider the strongly cocartesian
(n+1)-cube ρZ ∶P(n+1)→D, given by ρZ(I) = cof[∐I Z → Z]. Since Pn(idD) and Pn(fg) are n-excisive
the induced map

Pn(gf)ρZ(−)→ Pn(idD)ρZ(−)
is a map of cartesian (n + 1)-cubes. On the other hand, for each I ≠ ∅ we have that ρZ(I) is equivalent
to a coproduct of ∣I ∣−1 copies of ΣZ, and hence to a finite coproduct of copies of ΣkY . By the induction
hypothesis the above map of cartesian cubes is an equivalence for every I ≠ ∅, and hence it is also an
equivalence for I = ∅, where we have ρZ(∅) = Z. This concludes the proof of the proposition.

□

Corollary 10 (2-out-of-3). Let C fÐ→D
f ′Ð→ E be a composable pair of compactly generated functors between

pointed compactly generated ∞-categories. If either two of f, f ′, f ′ ○ f are n-excisive equivalences then so
is the third.

Proof. This is clear from the second characterization of Proposition 99. □

Lemma 11. Let f ∶C → D be an n-excisive equivalence. If C and D are both n-excisive then f is an
equivalence.

Proof. Let g∶D → C be the finitary right adjoint of f . Since f is an n-excisive equivalence the unit
idC ⇒ gf is a Pn-equivalence. But both idC and gf are n-excisive since both C and D are n-excisive, and
so the unit is an equivalence. We conclude that f is fully-faithful.

We now show that f is essentially surjective. Since f is an n-equivalence it induces an equivalence
on stabilizations by Proposition 99. Since in the proof of that proposition this implies that for every
compact object Y in D, a large enough suspension ΣmY is in the essential image of f , and similarly,
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any finite coproduct of copies of ΣmY is in the image of Cc. We now prove by descending induction on
1 ≤ k ≤ m that any object Z which is equivalent to finite coproduct of copies of ΣkY is in the essential
image of Cc. Indeed, suppose that this is has been established for some 2 ≤ k ≤ m and let Z be an
object which is equivalent to a finite coproduct of copies of Σk−1Y . Consider the strongly cocartesian
cube ρZ(I) = cof[∐i∈I Z → Z]. Since D is n-excisive ρ is also cartesian. In addition, for every I ≠ ∅ we
have that ρZ(I) is equivalent to a finite coproduct of copies of ΣZ, and hence to a finite coproduct of
copies of ΣY . We conclude that ρ(I) is in the essential image of Cc for every I ≠ ∅, and hence ρ∣P≥1(n)
is equivalent to the image under f of a punctured cube φ∶P≥1(n + 1) → Cc. Since f is fully-faithful and
colimit preserving it also detects colimits, and hence φ is face-wise cocartesian. Since C is n-excisive
φ extends to a cartesian (n + 1)-cube φ∶P(n + 1) → Cc which is also strongly cocartesian. Then f(φ)
is a strongly cocartesian n-cube and is hence cartesian, since D is n-excisive. We conclude that f(φ)
and ρ are two cartesian cubes whose associated punctured cubes are equivalent, and hence f(φ) and ρ
themselves must be equivalent. We then have that ρ(∅) = Z is in the essential image of Cc. □
2.2. Weakly excisive ∞-categories.
Definition 12. Let C be a pointed compactly generated ∞-category. We will say that C is weakly n-
excisive if every strongly cocartesian (n+1)-cube in C is cartesian. In other words, C is weakly n-excisive
if the identity functor idC is n-excisive.
Lemma 13. Let C be a pointed compactly generated ∞-category. The following conditions are equivalent:
(1) C is weakly 1-excisive.
(2) Every pushout square in C is a pullback square.
(3) The suspension functor Σ∶C→ C is fully-faithful.
(4) The functor Σ∞C ∶C→ Sp(C) is fully-faithful.
(5) C is a compactly generated full subcategory of a stable compactly generated ∞-category.
Proposition 14. A compactly generated functor f ∶C → D between weak n-excisive ∞-categories is an
n-excisive equivalence if and only if it is fully-faithful and induces an equivalence on stabilizations.
Proof. Let g∶D → C be the finitary right adjoint of f . Since f preserves colimits, g preserevs limits, and
D is weakly n-excisive we get that gf is n-excisive. In addition, idC is also n-excisive, and so idC → gf is
a Pn-equivalence if and only if it is an equivalence, that is, if and only if f is fully-faithful. The desired
result now follows from the third characterization in Proposition 99. □

For a pointed compactly generated ∞-category C, let us write
Qn(C) = Ind[colim[Cc → N≥1n (C)c → N≥1n N≥1n (C)c → ...].

The map from the first term Cc of the above colimit then induces a compactly generated functor L(∞)n ∶C→
Qn(C) with finitary right adjoint R(∞)n ∶Qn(C) → C and we may identify the unit map idC ⇒ R

(∞)
n L

(∞)
n

with the map idC → colimnR
(m)
n L

(m)
n = Pn(id). Consider the square

C //

��

Qn(C)

��
Sp(C) // Qn(Sp(C))

Since Sp(C) is stable it is in particular weakly n-excisive, and hence the bottom horizontal functor is fully-
faithful. We then define Q̃n(C) = Qn(C) ×Q(Sp(C)) Sp(C), the fibre product being computed in Catω∗ , that
is, we first pass to compact objects, then take the fibre product, and then take Ind completions again).
Then Q̃n(C) embeds fully-faithfully in Qn(C) and the map Fn∶C → Qn(C) uniquely factors through a
compactly generated functor L̃(∞)n ∶C→ Q̃n(C), with right adjoint R̃(∞)n such that R̃(∞)n L̃

(∞)
n ≃ R(∞)n L

(∞)
n .
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In particular, the functor L̃(∞)n is fully-faithful if and only if L(∞)n is, i.e., if and only if C is weakly
n-excisive. We also note that there is a natural equivalence Qn(Sp(C)) ≃ Sp(Qn(C)), so that the right
vertical arrow in the above square exhibit its target as the stabilization of its source, and since Sp(−)
preserves finite limits we have that the map L̃(∞)n ∶C→ Q̃n induces an equivalence on stabilizations. Finally,
let us note that the constructions Qn(−) and Q̃n(−) are functorial in compactly generated functors.

Lemma 15. Q̃n(C) is weakly n-excisive.

Proof. Since Q̃n(C) is a full subcategory of Qn(C) closed under colimits we may instead show that Qn(C)
is weakly n-excisive. We need to show that any strongly cocartesian (n+1)-cube ρ in Qn(C) is cartesian.

Let us write N
(m)
n (C) ∶= N≥1n ....N

≥1
n (C) as shorthand for the m-fold iterated application of N≥1n , and

denote by
L(∞−m)n ∶N(m)n (C) Ð→⊥←Ð Qn(C) ∶R(∞−m)n

the associated adjunction. Now any P≥1(n+1)-indexed diagram in Qn(C) is a filtered colimit of diagrams
valued in Qn(C)c, and any P≥1(n + 1)-indexed diagram valued in Qn(C)c is equivalent to the image of a
P≥1(n+ 1)-indexed diagram in N

(m)
n (C)c for some m. We conclude that any strongly cocartesian (n+ 1)

in Qn(C) is a filtered colimit of strongly cocartesian (n + 1) of the form L
(∞−m)
n (ρ′) for some strongly

cocartesian (n + 1)-cocartesian cube in N
(m)
n (C)c. It will hence suffice to show that the latter type of

(n + 1)-cubes are cartesian. For a given strongly cocartesian (n + 1)-cube ρ′ in N
(m)
n (C), to show that

L
(∞−m)
n ρ′ is cartesian, it will suffice to check that it induces a cartesian square of spaces when mapping

into it compact objects, and hence enough to show that R(∞−k)n F
(m)
n ρ′ is cartesian in N

(k)
n (C) for every

k. In other words, we need to show that R(∞−k)n F
(m)
n is n-excisive. Since the property of being n-excisive

is preserved under pre-composing with a colimit preserving functor and post-composition by a limit
preserving functor we have that

R(∞−k)n L(∞−m)n is n excisive ⇒ R(∞−k
′)

n L(∞−m
′)

n is n excisive for all k′ ≤ k and m′ ≤m

It will hence suffice to show that R(∞−m)n L
(∞−m)
n is n-excisive. Indeed, unwinding the definitions, this

functor is exactly the n-excisive approximation of id
N
(m)
n (C). □

Lemma 16. Let C be a pointed compactly generated ∞-category. Then the map C → Q̃n(C) is an
n-excisive equivalence.

Proof. It has already been established above that, essentially by construction, the map C→ Q̃n(C) induces
an equivalence on stabilizations and the unit idC ⇒ G̃nF̃n exhibits G̃nF̃n as the n-excisive approximation
of idC. We are hence done by the third characterization of Proposition 99. □

Corollary 17. Let f ∶C → D be a compactly generated functor between pointed compactly generated ∞-
categories. Then f is an n-excisive equivalence if and only if it induces an equivalence on stabilizations
and the induced functor Q̃n(C)→ Q̃n(D) is fully-faithful.

Proof. By Lemma 1616 we have that f is an n-excisive equivalence if and only if Q̃n(C) → Q̃n(D) is an
n-excisive equivalence. On the other hand, by Proposition 1414 and Lemma 1515 the latter is equivalent to
Q̃n(C) → Q̃n(D) being fully-faithful and inducing an equivalence on stabilizations. The last property is
equivalent to f itself inducing an equivalence on stabilizations.

□

Corollary 18. The collection of n-excisive equivalences is closed under base change in Catω∗ .
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Proof. Consider a pullback square
A //

��

B

��
D // E

in Catω∗ . Recall that pullbacks in Catω are calculated by first passing to compact objects, then taking the
pullback, and finally taking ind completions. Since ind completions preserve fully-faithful functors we
observe that fully-faithful compactly generated functors are closed under base change. Since equivalences
are also closed under base change, the desired result follow from the characterization of Corollary 1717 since
the functors Sp(−) and Q̃n(−) preserve fibre products in Catω∗ . □

Proposition 19. For n ≥ 2 let

(3) A //

��

B

��
D // E

be a commutative diagram of pointed compactly generated ∞-categories and compactly generated func-
tors whose vertical arrows are (n − 1)-excisive equivalences and whose horizontal arrows are 1-excisive
equivalences. Then the square

(4) Pn(KA) //

��

Pn(KB)

��
Pn(KD) // Pn(KE)

is cartesian in Funω∗ (Sp(E),Sp(E)), where KA,KB,KD and KE denote the respective comonads on Sp(E)
associated to the composite left adjoint from that corner to Sp(E).

Proof. By Proposition 99 the maps KA → KD and KB → KE are Pn−1-equivalences, and hence the
square (44) becomes cartesian after applying Pn−1. To show that it is cartesian also on the level of Pn−1
it will hence suffice to show that the square

∂nKA
//

��

∂nKB

��
∂nKD

// ∂nKE

is cartesian. Now for every k we have a coaugmented cosimplicial object

∂k idE // ∂k(Ω∞E Σ∞E )
//
// ∂k(Ω∞E Σ∞E Ω∞E Σ∞E )oo

//
//
// ∂k(Ω

∞
E Σ∞E Ω∞E Σ∞E Ω∞E Σ∞E ) ⋯oo

oo

which exhibits its coaugmentation as its totalization by [Heu21Heu21, Corollary B.5]. We may compute these
derivatives via the chain rule (see [Lur14Lur14, §6.3.2]). We note that the functors Σ∞E and Ω∞E are 1-excisive
and their first derivative is the identity on Sp(E). The above diagram then becomes

∂k idE // ∂k idSp(E)
//
// ∂kKE

oo
//
//
// ∂k(KEKE) ⋯oo

o o

The counit map KE → IdSp(E) induces an equivalence P1(K) ≃ P1(KE) ≃ IdSp(E). In particular, for k = 1
both this augmented cosimplicial objects are constant with the value IdSp(E). For a given k ≥ 1, let us
consider the induced map from this cosimplcial object to the right Kan extension of its restriction to ∆≤1,
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which we can also coaugment with its totalization, which is the same as the limit of ∆≤1. We obtain a
map of coaugmented cosimplicial objects

∂k idE //

��

∂k idSp(E)

��

//
// ∂kKE

��

oo
//
//
// ∂k(KEKE) ⋯

��

oo
oo

∂k idSp(E) ×∂kK∂k idSp(E)
// ∂k idSp(E)

//
// ∂kKE

oo
//
//
// ∂kKE ×∂k idSp(E) ∂kKE ⋯oo

oo

where the coaugmentation witness the respective totalizations. Let us write Z●k,E for the coaugmented
simplicial object corresponding to fibre of the above vertical map. Since all the functors in the original
square (33) induce an equivalence on stabilizations by Proposition 99 we may identify the stabilizations of
all the four corners compatibly with Sp(E). Performing the above construction in all four cases yields
the following commutative diagram of coaugmented cosimplicial objects (valued in the stable ∞-category
of entry-wise exact functors Sp(E)k → Sp(E))
(5)
Zk,A

//

��

!!C
CC

C
∂n(KA ○ ... ○KA) / /

��

**UUU
UUUU

UU
∂n(KA) × ... × ∂n(KA)

��

++WWWW
WWWWW

W

Zk,B
//

��

∂n(KB ○ ... ○KB) //

��

∂n(KB) × ... × ∂n(KB)

��

Zk,D
//

!!C
CC

C
∂n(KD ○ ... ○KD) //

**UUU
UUUU

UU
∂n(KD) × ... × ∂n(KD)

++WWWW
WWWWW

W

Zk,E
// ∂n(KE ○ ... ○KE) // ∂n(KE) × ... × ∂n(KE)

By the chain rule we may compute ∂k(K(−) ○ ...○K(−)) ≃ ∂∗(K(−))○ ...○∂∗(K(−)) using the composition of
symmetric sequences. For m-fold compositions this is a direct sum of objects parameterized by chains of
length m + 1 of equivalence relations on {1, ..., k} starting from the finest one and ending in the coarsets
one. The vertical map at place m then projects to the summand involving chains with a single non-
identity step. In particular, the remaining summands in Zm

k,(−) correspond to such chains where each step
has degree less then k. In particular, since the maps KB →KE and KA →KD are Pn−1-equivalences by
Proposition 99 they also induce equivalences on the respective Z●n,(−)’s, that is, the two vertical maps in
the left most face of (55) are equivalence. It then follows that the front and back faces of the right cube
in (55) are cartesian. As n ≥ 2 we have ∂n idSp(E) = 0 and so passing to the totalizations we obtain a cube

(6) ∂n idA //

��

%%KK
KKK

Ω(∂nKA)

��

((PP
PPP

∂n idB //

��

Ω(∂nKB)

��

∂n idD //

%%KK
KKK

Ω(∂nKD)
((PP

PPP

∂n idE // Ω(∂nKE)

in which the front and back faces are cartesian. Since the left face is is also cartesian by virtue of (33)
being cartesian, and since the ∞-category of entry-wise exact functors Sp(E)k → Sp(E) is stable, we also
conclude from this that the right face is cartesian, from which the desired result follows.

□
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3. Linear extensions

Let C be a compactly generated stable∞-category. In this section we will discuss a way of constructing
n-excisive ∞-categories whose stabilization is C. We start with a finitary functor Q∶C→ C and construct
a compactly generated ∞-category LaxEqω(C,Q) which we call the lax equalizer ∞-category. We first
define the full subcategory of compact objects LaxEqc(C,Q) to be the fibre product, computed simply
in ∞-categories, in the square

LaxEqc(C,Q) //

πc

��

Ar(C)

(t,s)
��

Cc (C,Q) // C × C

Explicitly, objects in LaxEqc are given by a compact object X ∈ Cc together with a map f ∶X → Q(X) in
C. We note that Q(X) does not have to be compact.

Lemma 20.
(1) LaxEqc(C,Q) admits finite colimits and the functor πc∶LaxEqc(C,Q) → Cc preserves and detects

finite colimits. In addition, LaxEqc(C,Q) is idempotent complete.
(2) Let ρ∶ I◁ → LaxEqc(C,Q) be a cone diagram for some ∞-category I. If πρ and Qπρ are both limit

cones the ρ itself is a limit cone.
(3) Let ρ∶ I→ LaxEqc(C,Q) be a diagram indexed by some ∞-category I. If πcρ admits a limit in Cc and

this limit is preserved by Q then ρ admits a limit in LaxEqc(C,Q), and this limit is preserved by π.

To prove Lemma 2020, let us a consider a slightly more general, but also more symmetric setup. Suppose
given two ∞-categories A,B and two functors F,G∶A → B. Then we may consider the lax equalizer ∞-
category

LaxEq(F,G) ∶= A ×B×B Ar(B)

where the fibre product is along the functor (F,G)∶A → B. We then write π∶LaxEq(F,G) → A for the
projection on the first coordinate.

Lemma 21.
(1) Let ρ∶ I→ LaxEq(F,G) be a diagram indexed by some ∞-category I. If πρ admits a colimit in A and

this colimit is preserved by F then ρ admits a colimit in LaxEq(F,G). Furthermore, in this case
an arbitrary extension ρ∶ I▷ → LaxEq(F,G) is a colimit cone if and only if πρ and Fπρ are colimit
cones.

(2) Let ρ∶ I → LaxEq(F,G) be a diagram indexed by some ∞-category I. If πρ admits a limit in A and
this limit is preserved by G then ρ admits a limit in LaxEq(F,G). Furthermore, in this case an
arbitrary extension ρ∶ I◁ → LaxEq(F,G) is a limit cone if and only if πρ and Fπρ are limit cones.

Proof of Lemma 2020 assuming Lemma 2121. Apply Lemma 2121 in the case where A = Cc, B = C, F is the
embedding Cc ⊆ C and G is the restriction of Q to Cc, and use the fact that Cc admits finite colimits and
the embedding Cc ⊆ C preserves finite colimits. □

Proof of Lemma 2121. Statement (22) is dual to Statement (11), and can be deduced from it by replacing A

and B by the opposites and using the identification

LaxEq(Gop, F op) ≃ LaxEq(F,G)op.
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We hence just prove (11). Let ρ∶ I→ LaxEq(F,G) be a diagram and suppose that πρ extends to a colimit
cone ϕ∶ I▷ → A such that Fϕ is a colimit cone in B. Consider the lifting problem

(7) I
ρ//

��

LaxEq(F,G) //

��

Ar(B)

��
I▷

ϕ //

99s
s

s
s

s

44

A
(F,G) // B ×B .

Since the right square is pullback, dashed lifts in the right square are in bijection with dotted lifts in the
external rectangle. Now the external rectangle is encoded by a natural transformation η∶Fπρ⇒ Gπρ, and
dotted lifts in the external rectangle correspond to extensions of η to a natural transformation Fϕ⇒ Gϕ.
The condition that Fπϕ is a colimit diagram implies that Fϕ is a left Kan extension of its restriction to
I, and hence a dotted lift in the external rectangle exists and is essentially unique. We conclude that a
dotted lift in the left square exists an is essentially unique as well. Call this lift ρ∶ I▷ → LaxEq(F,G). We
claim that ρ is a colimit cone. Indeed, for every object (X,τ ∶F (X)→ G(X)) we have

MapLaxEq(F,G)(ρ(∗), (X,τ)) = Eq[MapA(ϕ(∗),X)⇉MapB(F (ϕ(∗)),G(X)]
= Eq[ lim

i∈Iop
MapA(ϕ(i),X)⇉ lim

i∈Iop
MapB(F (ϕ(∗)),G(X)]

= lim
i∈Iop

Eq[MapA(ϕ(∗),X)⇉MapB(F (ϕ(∗)),G(X)]

= lim
i∈Iop

MapLaxEq(F,G)(ρ(i), (X, τ)),

and so ρ is a colimit cone. To prove the last claim, we need to show that an arbitrary extension ρ′ of ρ is
a colimit cone if and only if πρ′ and Fπρ′ are colimit cones. Indeed, by the uniqueness of colimit cones,
this is equivalent to saying that ρ′ is equivalent to ρ if and only if πρ′ is equivalent to ϕ (in which case
automatically Fπρ′ is equivalent to Fϕ). Indeed, this is exactly the uniqueness property of dashed lifts
in the left square of (77). □

We now define LaxEqω(C,Q) = Ind(LaxEqc(C,Q)) to be the Ind-completion of LaxEqc(C,Q) and write
π∶LaxEq(C,Q)→ C for the colimit preserving extension of πc. By Lemma 2020 we have that LaxEqω(C,Q)
is compactly generated and π is a compactly generated functor.

Proposition 22.
(1) If Q is reduced then LaxEq(C,Q) is pointed.
(2) For n ≥ 1, if Q is n-excisive then LaxEq(C,Q) is n-excisive.
(3) For n ≥ 1, if Pn(Q) = 0 then the functor LaxEq(C,Q)→ C is an n-excisive equivalence.

Proof. For (1), apply Lemma 2020(2) with I = ∅.
We now prove (2). We first verify that every strongly cocartesian (n + 1)-cube ρ in LaxEq(C,Q) is

cartesian. By Remark 66 we may assume that ρ takes values in LaxEqc(C,Q). Then πρ is a strongly
cocartesian (n+1)-cube in Cc and since C is 1-excisive and Q is n-excisive we have that both πρ and Qπρ
are cartesian cubes. By Lemma 2020(2) we conclude that ρ itself is cartesian in LaxEqc(C,Q) and hence
in LaxEq(C,Q). Let now ρ0∶P≥1(n) → LaxEqc(C,Q) be a face-wise cocartesian punctured (n + 1)-cube.
Then πρ0 is face-wise cocartesian, and since C is 1-excisive we have that πρ0 extends to an (n + 1)-cube
ϕ∶P(n + 1)→ C which is both cartesian and strongly cocartesian. Since Q is n-excisive we have that Qϕ
is also cartesian, and hence by Lemma 2020(2) ρ0 extends to a cartesian (n + 1)-cube ρ in LaxEq(C,Q)
such that πρ is cartesian in C. Thus πρ must coincide with ϕ, so that πρ is strongly cocartesian. By
Lemma 2020 the functor πc detects finite colimits and hence ρ is strongly cocartesian. We thus conclude
that LaxEq(C,Q) is n-excisive.

Finally, let us assume that Pn(Q) = 0 and show that π∶LaxEq(C,Q)→ C is an n-excisive equivalence.
By Lemma 1616 we may equivalently show that Q̃n(LaxEq(C,Q))→ Q̃n(C) ≃ C is an n-excisive equivalence.
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To begin, since the the formation of reduced punctured cubes commutes the pullback squares and arrow
categories we obtain pullback square

Nn(LaxEqc(C,Q)) //

πc

��

Ar(Nn(C))

(t,s)
��

Nn(Cc)
(Nn(C),Q∗) // Nn(C) ×Nn(C)

where Q∗∶Nn(Cc) → Nn(C) is the functor obtained by applying Q entry-wise. We consequently deduce
that

Nn(LaxEq(C,Q)) ≃ LaxEq(Nn(C),Q∗),
where by abuse of notation we write Q∗ also for its filtered colimit preserving extension from Nn(Cc) =
Nn(C)c to Nn(C). Similarly, for each m ≥ 1 we may consider the functor Q(m)∗ ∶N(m)n (Cc) → N

(m)
n (C),

where Q(1)∗ = Q∗ and Q
(m)
∗ is given by applying Q(m−1)∗ entry-wise. We then similarly obtain that

N(m)n (LaxEq(C,Q)) ≃ LaxEq(N(m)n (C),Q(m)∗ ).
Since sequential colimits commute with fibre products and arrow categories we may pass to m = ∞ to
obtain that

Qn(LaxEq(C,Q)) ≃ LaxEq(Qn(C),Q(∞)∗ ),
where Q(∞)∗ is the filtered colimit preserving functor whose value on each N

(m)
n (Cc) is given by composing

Q
(m)
∗ with the map N

(m)
n (C)→ Pn(C). Finally, using the equivalence

MapQn(C)(L
(∞)
n X,Q

(∞)
∗ L(∞)n (X)) ≃MapC(X,R(∞)n Q

(∞)
∗ L(∞)n (X))

associated to the adjunction L
(∞)
n ⊣ R(∞)n we see that there is a natural equivalence

Q̃n(LaxEq(C,Q)) = Qn(LaxEq(C,Q)) ×Qn(C) C ≃ LaxEq(C,R
(∞)
n Q

(∞)
∗ L(∞)n ) ≃ LaxEq(C,Pn(Q)).

Since Pn(Q) = 0 we conclude that the functor Q̃n(LaxEq(C,Q))→ C is an equivalence. □

The ∞-category LaxEq(C,Q) enjoys the following universal property:

Proposition 23. For a given compactly generated ∞-category E, compactly generated functors E →
LaxEq(C,Q) are in natural bijection with pairs (f, η), where f ∶E → C is a compactly generated functor
and η∶ f ⇒ Qf is a natural transformation.

Proof. Since LaxEq(C,Q) is idempotent complete such functors correspond to finite colimit preserv-
ing functors Ec → LaxEqc(C,Q). By Lemma 2020 we have that these are exactly the functors Ec →
LaxEqc(C,Q) such that the composite E→ LaxEqc(C,Q)→ C preserves finite colimits. In addition, for a
given finite colimit preserving functor f ∶Ec → Cc, the data of a lift of f to LaxEqc(C,Q) is equivalent to
the data of a lift of (C,Q)f ∶Ec → Cc×C to Ar(C), which is the same as the data of a natural transformation
f ⇒ Qf . □

The universal property of Proposition 2323 can also be described as follows. Any compactly generated
functor f ∶E → C admits a finitary right adjoint g∶C → E. Then pre-composing with g is left adjoint
to pre-composing with f , which means that the natural transformations f ⇒ Qf are in bijection with
natural transformations fg⇒ Q of endo-functors on C. This holds in particular for the universal case of
E = LaxEq(C,Q) and f = π, that is, the universal natural transformation η∶π⇒ Qπ corresponds to some
natural transformation ηad∶πϕ⇒ Q, where ϕ∶C→ LaxEq(C,Q) is the finitary right adjoint of π. We note
that the construction Q↦ LaxEq(C,Q) is visibly functorial in Q, so that we can assemble it to a functor

LaxEq(C,−)∶Funω∗ (C,C)→ (Catω∗ )/C.
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On the other hand, the association that takes a compactly generated functor f ∶E→ C to the corresponding
endo-functor fg∶C→ C, where g is the right adjoint of f , forms a functor in the other direction

K(−)∶ (Catω∗ )/C → Funω∗ (C,C) K(E fÐ→ C) = fg.

Corollary 24. The natural transformation ηad∶K(LaxEq(C,Q)) ⇒ Q is a unit exhibiting the functor
LaxEq(C,−) as right adjoint to the functor K(−).

Proposition 25. Let n ≥ 2 and suppose that Q is n-homogeneous. Write K ′ ∶= K(LaxEq(C,Q)). Then
the map K ′ → Q ⊕ idC determines by the counit K ′ → Q of the above adjunction and the canonical
augmentation K ′ → idC induces an equivalence

Pn(K ′) ≃ Q⊕ idC .

Proof. By Proposition 2222 the functor E → C is an (n − 1)-excisive approximation, and hence the map
K ′ → idC = K(C) is a Pn−1-equivalence. On the other hand, since Q is n-homogeneous we have that
Pn−1(Q) = 0. The map K ′ → idC⊕Q is hence a Pn−1-equivalence. To show that it is a Pn-equivalence it
will suffice to show that the induced map

∂nK
′ → ∂nQ

is an equivalence.
To simplify notation let us write E ∶= LaxEq(C,Q), and let ϕ∶C → E be the finitary right adjoint of

π∶E→ C. The canonical cosimplicial resolution

idE // ϕπ
//
// ϕπϕπoo

//
//
// ϕπϕπϕπ ⋯oo

oo

which we can also write as

idE // ϕπ
//
// ϕK ′πoo

//
//
// ϕK

′K ′π ⋯oo
oo

The induced composite map

idE → Tot[ϕK●π]→ Eq[ ϕπ //
// ϕKπ ]→ Eq[ ϕπ //

// ϕQπ ].

is an equivalence; indeed, for X,Y ∈ E the map

MapE(X,Y )→ Eq[MapE(π(X), π(Y ))→MapE(π(X),Q(π(Y )))

is an equivalence of spaces by the construction of E. Passing to n-derivatives and using the fact that ϕ
and ψ are 1-excisive we obtain an equivalence

∂n idE
≃Ð→ Eq[ ∂n(ϕπ)

//
// ∂n(ϕQπ) ] ≃ Eq[ ∂n(idC)

//
// ∂n(Q) ] ≃ Ω(∂nQ).

At the same time, by [Heu21Heu21, Corollary B.5] the cosimplicial object

∂n idE // ∂n idC
//
// ∂nK ′oo

//
//
// ∂n(K

′K ′) ⋯oo
oo

induced by passing to derivatives exhibits its coaugmentation as its totalization. The triviality of the
derivatives of K ′ in the range 1 < k < n implies that ∂n(K ′)○m is a direct sum of m copies of ∂nK ′, or,
more precisely, that the map ∂n(K ′ ○ ... ○K ′)→ ∂nK

′ × ...× ∂nK ′ induced by plugging the map K ′ → idC
each time in all entries but one is an equivalence. This, in turn, implies that the above cosimplicial object
is right Kan extended from ∆≤1, and so degenerates to an equivalence

∂n idE → Ω(∂nK ′).

We conclude that the map Ω(∂nK ′)→ Ω(∂nQ) is an equivalence, and hence the map ∂nK
′ → ∂nQ is an

equivalence is as well. □
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By Proposition 2222 the functor LaxEq(C,−) sends n-excisive functors in Funω∗ (C,C) to n-excisive com-
pactly generated ∞-categories over C. It then follows that the adjunction K(−) ⊣ LaxEq(C,−) induces
an adjunction

PnK(−)∶ (Cat≤n∗ )/C
Ð→⊥←Ð Fun≤n∗ (C,C)∶LaxEq(C,−),

where the right adjoint is still LaxEq(C,−) and the left adjoint is sends E → C to Pn(K(E)), that is, to
the n-excisive approximation of the associated finitary endo-functor K(E)∶C→ C.

The above gives us an explicit way to construct n-excisive ∞-categories of a certain specific type, but
it does not cover all n-excisive ∞-categories. To obtain a more comprehensive account we will need to
slightly elaborate the construction as follows.

Suppose given a pointed compactly generated ∞-category D equipped with a compactly generated
functor f ∶D → C with finitary right adjoint g∶C → D, and associated finitary endo-functor K(D) =
fg∶C→ C. The association [D̃→D]↦ [K(D̃)→K(D)] then determines a functor

(Catω∗ )/D → Funω∗ (C,C)/K(D).

We construct a right adjoint to this functor as follows. Given a natural transformation K̃ →K(D) let us
set

Q ∶= cof[K̃ →K(D)].
The map K(D)→ Q then corresponds to a natural transformation α∶ f ⇒ Qf , which classifies a compactly
generated functor α∗∶D → LaxEq(C,Q). Let us then define Ext(D, K̃) to be the compactly generated
∞-category sitting in the pullback square (computed in Catω∗ ):

(8) Ext(D, K̃) //

��

C

σ0

��
D

α∗ // LaxEq(C,Q)

where the functor C → LaxEq(C,Q) is the “zero section” of LaxEq(C,Q), classified by the zero natural
transformation idC ⇒ Q.
Remark 26. Explicitly, the compact objects of Ext(D, K̃) are given by pairs (X,η), where X is an object
of D and η is a null-homotopy of the map αX ∶ f(X) → Q(f(X)). Equivalently, we may describe this
data as an object X equipped with together with a lift

K̃(f(X))

��

// 0

��
f(X) //

77ooooo
K(D)(f(X)) // Qf(X) .

fgf(X)

By construction, for a compactly generated∞-category D̃, compactly generated functors D̃→ Ext(D, K̃)
correspond to pairs (h, τ) where h∶ D̃→D is a compactly generated functor and τ is a null-homotopy of
the natural transformation αh∶ fh⇒ Qfh. Equivalently, if we write K(D̃)∶C→ C for the associated endo-
functor on C (given by composing fh with its right adjoint) then the null-homotopy τ can equivalently
be thought of as a null-homotopy of the composite K(D̃)→K(D)→ Q, or equivalently, a lift

K̃

��

// 0

��
K(D̃) //

;;v
v

v
v

v
K(D) // Q.
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We may organize these observations into the following statement:

Corollary 27. The association [K̃ →K(D)]↦ Ext(D, K̃), considered as a functor

Funω∗ (C,C)/K(D) → (Catω∗ )/D,

is right adjoint to the functor [D̃→D]↦ [K(D̃)→K(D)].

Remark 28. In the construction of Ext(D, K̃), assume that the map K → Q is null-homotopic, so that
K̃ = K ⊕ΩQ. Then the associated functor D → LaxEq(C,Q) is homotopic to the composite D

fÐ→ C
σ0Ð→

LaxEq(C,Q) and we get that a natural equivalence

Ext(D, K̃) =D ×LaxEq(C,Q) C

=D ×C C ×LaxEq(C,Q) C

=D ×C LaxEq(C,ΩQ),

where we have used the fact that the functor LaxEq(C,−)∶Funω∗ (C,C)→ (Catω∗ )/C preserves loops (being
a right adjoint).

Let us now consider the adjunction

(9) (Catω∗ )/D
Ð→⊥←Ð Funω∗ (C,C)/K(D)

of Corollary 2727 in the case where f ∶D→ C is a 1-excisive equivalence, that is, exhibits C as the stabilization
of D. By the second criterion of Proposition 99 we have that the the left adjoint of this adjunction sends
i-excisive equivalences D̃ → D to Pi-equivalence K(D̃) → K(D) for every i ≥ 1. On the other hand, if
K̃ → K(D) is a Pi-equivalence then Q ∶= cof[K̃ → K(D)] satisfies Pi(Q) = 0, and so by Proposition 2222
and Corollary 1818 we have that Ext(D, K̃) → D is an i-excisive equivalence. In other words, the right
adjoint sends Pi-excisive equivalences to i-excisive equivalences. For every i ≥ 1 the above adjunction
hence restricts to an adjunction

(10) (Catω∗ )∼i/D
Ð→⊥←Ð Funω∗ (C,C)∼i/K(D)

between the full subcategory of (Catω∗ )/D spanned by the i-excisive equivalences D̃ → D and the full
subcategory of Funω∗ (C,C)/K(D) spanned by the Pi-equivalences. Let us now consider the composite
adjunction

(Catω∗ )∼i/D
Ð→⊥←Ð Funω∗ (C,C)∼i/K(D)

Ð→⊥←Ð Fun≤i+1∗ (C,C)∼i/K(D)

where in the second adjunction the left adjoint sends K̃ → K(D) to Pi+1(K̃) → Pi+1(K(D)) and the
right adjoint sends K̃ ′ → Pi+1(K) to K̃ ′ ×Pi+1(K)K →K. The composite right adjoint

(11) Fun≤i+1∗ (C,C)∼i/K(D) → (Catω∗ )∼i/D

then takes K̃ ′ → Pi+1K(D) to Ext(D, K̃), with K̃ = K̃ ′ ×Pi+1K(D)K(D).

Proposition 29. If D is i-excisive then the composite right adjoint (1111) is fully-faithful, and its essential
image consists of those i-excisive equivalences D̃→D such that D̃ is (i + 1)-excisive.

Corollary 30. If D if i-excisive then the functor (1111) determined an equivalence between the ∞-category
of reduced, finitary, (i+1)-excisive functors K̃ ′ equipped with a Pi-equivalence K̃ ′ → Pn(K), and pointed,
compactly generated, (i + 1)-excisive ∞-categories D̃, equipped with an i-excisive equivalence D̃ →D.
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Proof of Proposition 2929. Let K̃ ′ → Pi+1(K(D)) be a Pi-equivalence from an (i + 1)-excisive functor K̃ ′,
and let Q = cof[K̃ ′ → Pi+1(K(D))]. Set K̃ ∶= K̃ ′ ×Pi+1K(D) K(D). Applying Proposition 1919 to the
square (88) we obtain that the square

Pi+1K(Ext(D, K̃)) //

��

idC

��
Pi+1K(D) // Pi+1K(LaxEq(C,Q))

is cartesian. Using Proposition 2525 we may rewrite the bottom corner as

Pi+1K(Ext(D, K̃)) //

��

idC

��
Pi+1K(D) // idC⊕Q

where the right vertical map is the summand inclusion and the bottom horizontal map is induced by the
defining map Pi+1K(D) → Q and the canonical coaugmentation K(D) → idC of K(D). The fact that
this square is cartesian exactly means that the induced map

Pi+1K(Ext(D, K̃))→ K̃ ′ = fib[Pi+1(K(D))→ Q]

is an equivalence, which means that the counit of the adjunction is an equivalence on K̃ ′. We conclude
that Ext(D,−) is fully-faithful. We now with to identify its essential image. By Proposition 2222 and
the closure of (i + 1)-excisive ∞-categories under pullback we have that this essential image consists of
(i + 1)-excisive ∞-categories, so we just need to show that all of them are covered. This is equivalent to
saying that if D̃→D is a i-excisive equivalence and D̃ is (i + 1)-excisive then the unit

D̃→ D̃′ ∶= Ext(D,Pi+1K(D̃) ×Pi+1K(D)K(D))

is an equivalence. Indeed, this is a-priori only an i-excisive equivalence with (i + 1)-excisive target, but
since we already know that the counit is an equivalence, the triangle identities imply that this map induces
an equivalence Pi+1K(D̃)→ Pi+1K(D′), and hence the unit is actually an (i+ 1)-excisive equivalence. It
is hence an equivalence whenever its domain is also (i + 1)-excisive by Lemma 1111. □

4. Goodwillie towers of ∞-categories

Definition 31. Let f ∶D → E be a compactly generated functor between pointed, compactly generated
∞-categories. We will say that f exhibits E as the n-excisive approximation of D if E is n-excisive and f
is an n-excisive equivalence.

Proposition 32. For every pointed, compactly generated ∞-category D there is a tower

D→ ...→Dn−1 → ...→D1

such that for i ≥ 1 the map D → Di exhibits Di as the n-excisive approximation of D. In addition, for
every i ≥ 2 we have that Di = Ext(Di−1,Ki) for some reduced, finitary functor Ki∶D1 →D1 equipped with
a natural transformation Ki ⇒K(Di−1) whose cofibre is i-homogeneous.

Remark 33. In the situation of Proposition 3232, if D is n-excisive then the tower is constant from Dn

onwards; indeed, for i ≥ n the maps D → Di are i-excisive equivalences between i-excisive ∞-categories,
and are hence equivalence by Lemma 1111. In particular, every n-excisive∞-category D can be constructed
from its stabilization by performing the above Ext(−,−) construction finitely many times.
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Proof. Construct the ∞-categories Di inductively for i = 1, ..., n. For i = 1 one just sets D1 = Sp(D).
Assume that D→Di → ..→D1 has been defined for some i and such that the required properties hold. In
particular, the induced map D→Di is an i-excisive equivalence, and so the induced map K(D)→K(Di)
is a Pi-equivalence. We now define

Ki+1 ∶= Pi+1(K(D)) ×Pi+1K(Di)K(Di),

equipped with the projection Ki+1 → K(Di), and set Di+1 = Ext(Di,Ki+1). By the adjunction (1010)
the canonical factorization of K(D) → K(Di) through Ki determines a lift of the compactly generated
functor D→Di to a compactly generated functor D→Di+1. This last functor is then an (i + 1)-excisive
equivalence since it induces an equivalence on stabilizations and the induced map on the left

Pi+1K(D) //

≃

))
Pi+1K(Di+1)

≃ // Pi+1Ki+1

is an equivalence by 2-out-of-3 (where the equivalence on the right is by Proposition 2929, and the composite
by construction). □

Proposition 34. Suppose that p∶D →Dn is a functor exhibiting Dn as the n-excisive approximation of
D. Then for every n-excisive ∞-category E, restriction along pn induces an equivalence

rn∶LFunω∗ (Dn,E)
≃Ð→ LFunω∗ (D,E).

Proof. If E is n-excisive then the compactly generated ∞-category Fun(∆i,E) is n-excisive for every i. It
will hence suffice to show that rn induces an equivalence on core ∞-groupoids for every E. Consider the
finite tower

E = En → En−1 → ...→ E1

obtained by applying the construction of Proposition 3232 to E (see Remark 3333). We prove by induction
on i that the induced functor

ri∶LFunω∗ (Dn,Ei)→ LFunω∗ (D,Ei)
induces an equivalence on core ∞-groupoids. For i = 1 we have that E1 is stable and the map D→Dn is
an equivalence on stabilization, and hence r1 is an equivalence. Now suppose that ri is an equivalence for
some 1 ≤ i ≤ n − 1 and prove that it is an equivalence for i + 1. Consider the square of core ∞-groupoids

LFunω∗ (Dn,Ei+1)≃ //

��

LFunω∗ (D,Ei+1)≃

��
LFunω∗ (Dn,Ei)≃

≃ // LFunω∗ (D,Ei)≃

where the bottom horizontal arrow is an equivalence by the induction hypothesis. To show that the top
horizontal arrow is an equivalence we check that the square induces an equivalence on vertical fibres.
This is the same as saying that for every fixed compactly generated functor f ∶Dn → Ei, restriction along
D→Dn induces an equivalence

LFunω/Ei
(Dn,Ei+1)

≃Ð→ LFunω/Ei
(D,Ei+1).

Now by construction we have that
Ei+1 = Ext(Ei,Ki+1)

where Ki+1 ⇒K(Ei) is a natural transformation of functors E1 → E1 whose cofibre is (i+1)-homogeneous.
The compactly generated functors Dn

fÐ→ Ei → E1 and D → Dn
fÐ→ Ei → E1 composed with their finitary

right adjoints yield a map of endo-functors α∶K(D)⇒K(Dn) on E1. By the adjunction 99, it will suffice
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to show that α a Pi+1-equivalence. For this, let us write f∗∶Sp(D)→ E1 for the induced functor, and let
g∗∶E1 → Sp(D) be its right adjoint. Then we may identify α with the induced map

f∗Σ
∞
DΩ∞Dg∗ ⇒ f∗Σ

∞
Dn

Ω∞Dn
g∗.

Since the natural transformation Σ∞DΩ∞D ⇒ Σ∞Dn
Ω∞Dn

is a Pi+1-equivalence by virtue of the assumption
that D→Dn is an n-excisive equivalence and i+1 ≤ n, we have that α is a Pi+1-equivalence by Lemma 44.

□
Corollary 35 ([Heu21Heu21]). For a pointed, compactly generated C, the ∞-category of n-excisive approxima-
tions of C is contractible, and the formation of n-excisive approximations assembles to form a functor

Catω∗ → Cat≤n∗ C↦ Pn(C),
which is left adjoint to the inclusion Cat≤n∗ ⊆ Catω∗ .

Given a pointed compactly generated ∞-category D, its Goodwillie tower above {Dn}n above deter-
mines a compactly generated functor

f∞∶D→D∞ ∶= lim
n

Dn,

with finitary right adjoint g∞∶D∞ →D (the limit is computed in Catω∗ ). If we write
fn∶D Ð→⊥←ÐDn ∶gn

for each of the finite stage adjunctions in the Goodwillie tower then each unit un∶ id⇒ gnfn exhibits gnfn
as the n-excisive approximation of the identity since the map fn is an n-excisive equivalence and Dn is
n-excisive. In particular, we may identify each un with the map id⇒ Pn(id). The total unit of f∞ Ð→⊥←Ð g∞
can then be identified with the limit

id⇒ lim
n
gnfn = lim

n
Pn(id).

In particular, the unit is an equivalence when evaluated on objects on which the Goodwillie tower of
the identity converges. In particular, if we consider the full subcategory Dconv ⊆ D spanned by those
objects X ∈ C on which the Goodwillie tower of the identity converges then f∞ determines a fully-faithful
embedding of Dconv in D∞. In particular, a certain full subcategory of D is equivalent to a certain full
subcategory of D∞. When these full subcategories are relatively large (as happens in many cases of
interest), the Goodwillie tower of D can be efficiently used to obtain information on D via the simpler
pieces Dn.

5. Examples

5.1. Divided powers coalgebras and Koszul duality. Let C be a stable compactly generated ∞-
category equipped with a symmetric monoidal structure which preserves colimits in each variable sep-
arately. Let I be the singled color C-enriched ∞-operad whose unary operation object is the monoidal
unit 1 ∈ C and all other operation objects are the zero object 0 ∈ C. Let O be a single color C-enriched
∞-operad which is equipped with a map O → I inducing an equivalence on enriched ∞-categories of
colors and on nullary operations. Then the compactly generated ∞-category AlgO(C) is pointed and the
compactly generated functor

AlgO(C)→ AlgI(C) ≃ C
induces by O → I exhibits C as the stabilization of AlgO(C). The associated comonad K ∶= Σ∞Ω∞ on C

is then given by
K(V ) = I ○O V = I ○O I ○I V =∑

i≥1
(BO(i)⊗ V ⊗i)hΣi = V ⊕∑

i≥2
(BO(i)⊗ V ⊗i)hΣi ,

where BO ∶= I ○O I is the Bar construction of O, which has the structure of a C-enriched co-operad with
O(0) = 0 and O(1) = 1. This cooperad is also known as the Koszul dual of O. In particular, for every n ≥ 1
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we have Pn(K) = ∑n
i=1(O(i)⊗V ⊗i)hΣi , so that Pn(K) is an n-excisive functor whose n-homogeneous parts

are trivially glued to each other. Let us now unwind the definition for the n-excisive approximations,
constructed in the proof of Proposition 3232. The 1-excisive approximation is D1 = C itself. To construct the
2-excisive approximation, one considers the 2-excisive approximation P2K(V ) = V ⊕ (BO(2)⊗V ⊗V )hΣ2

and sets Q = cof[P2K(V ) → V ] = Σ(BO(2) ⊗ V ⊗ V )hΣ2 . Since the augmentation is a projection from
a direct sum the map P2K(V ) → Q is null-homotopic and we are in the situation of Remark 2828. In
particular, the 2-excisive approximation of AlgO(C) is given by

D2 ∶= Ext(C,K) = LaxEq(C,ΩQ) = LaxEq(C, [BO(2)⊗ (−)⊗ (−)]hΣ2).

The compact objects of D2 are then given by pairs (X,α) where X is an object of C and α∶X →
[BO(2)⊗X⊗X]hΣ2 is a structure map, which is a form of a quadratic co-operation. Such a co-operation
is also known as a divided powers BO(2)-comultiplication (this is not the same as a cocommutative BO(2)-
comultiplication, which rather corresponds to a map X → [BO(2) ⊗X ⊗X]hΣ2). Equivalently, we may
identify D2 with the Ind-completion of the ∞-category of divided powers coalgebras in Cc over the cofree
cooperad F2 ∶= cofree(BO≤2) generated from the binary co-operation BO(2) ⊗ (−) ⊗ (−); indeed, being
cofreely generated means in particular that specifying a divided power coalgebras over it is the same as
specifying only the generating co-operation. We write this as

D2 = Ind(coAlgdpF2
(Cc)).

Let us now consider the next step, namely, the 3-excisive approximation D3 of AlgO(V ). For this, we
need to find the cofibre of the map

(12) P3K ⇒ P3K(D2).

Now the endo-functor K(D2)∶C
cofreeÐÐÐ→D2

forgetÐÐÐ→ C sends V to the underlying object of the cofree divided
powers F2-coalgebra generated from V , that is,

K(D2)(V ) = V ⊕∑
i≥2
[F2(i)⊗ V ⊗i]hΣi

.

The 3-excisive approximation of K(D2) is then given by

P3K(D2)(V ) = V ⊕ [F2(i)⊗ V ⊗2]hΣ2 ⊕ [F2(i)⊗ V ⊗3]hΣ3 .

If we now unwind the construction of cofree co-operads we see that F2(2) = BO(2) and

F2(3) = (BO≤2 ○BO≤2)(2) = [⊕Σ3BO(2)⊗BO(2)]Σ2 = [⊕Σ3BO(2)⊗BO(2)]Σ2 .

In words, F2(3) is the Σ3-object of C left/right induced from the Σ2-object BO(2) ⊗ BO(2), where the
Σ2-action on the latter is by the action on the second factor. The map (1212) is then an equivalence on
2-excisive approximations and its cofibre Q is the 3-homogeneous functor given by

Q(V ) = (cof[BO(3)→ F2(3)]⊗ V ⊗3)hΣ3 .

Let K ′ = P3K ×P3K(D2)K(D2), so that K ′ lies in an exact sequence

K ′ →K(D2)→ Q.

The 3-excisive approximation of AlgO(C) is then given by the ∞-category D3 = Ext(D2,K
′) whose

compact objects are triples (X,α, η), where c2∶X → (BO(2) ⊗X ⊗X)hΣ2 is a quadratic structure map
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and η is a null-homotopy of the dotted composed map, or, equivalently, a choice of a dashed lift:
(13)

(BO(3)⊗X ⊗X ⊗X)hΣ3

��

// 0

��
X

44

c3

22eeeeeeeeeeeeeeee
c2

// (BO(2)⊗X ⊗X)hΣ2
// (F2(3)⊗X ⊗X ⊗X)hΣ3

// (cof[BO(3)→ F2(3)]⊗X ⊗X ⊗X)hΣ3

Of course, one needs to understand what is the second horizontal map, which in principle, is determined
by the unit of the adjunction D2

Ð→⊥←Ð C. For this, note that by definition F2(3) is Σ3-induced from the
Σ2-object BO(2) ⊗ BO(2). Since the monoidal product preserves colimits in each variable, this means
that the Σ3-object F2(3) ⊗X ⊗X ⊗X is induced from the Σ2-object BO(2) ⊗ BO(2) ⊗X ⊗X ⊗X =
BO(2)⊗ (BO(2)⊗X ⊗X)⊗X, where Σ2-acts by its action on the internal BO(2)⊗X ⊗X component.
Using again that the tensor product commutes with colimits in each variable we then obtain a natural
equivalence

(F2(3)⊗X ⊗X ⊗X)hΣ3 ≃ BO(2)⊗ (BO(2)⊗X ⊗X)hΣ2 ⊗X.
The map appearing in (1313) in then given by the composite

BO(2)⊗X ⊗X)hΣ2 → (BO(2)⊗X ⊗X)hΣ2 → BO(2)⊗X ⊗X id⊗α⊗idÐÐÐÐÐ→ BO(2)⊗ (BO(2)⊗X ⊗X)hΣ2 ⊗X,

where the first map is the trace map and the second forgets the fixed point structure. In particular, we
may describe a compact object of D3 as consists of objects X ∈ C equipped with a quadratic structure
map c2∶X → (BO(2) ⊗X ⊗X)hΣ2 , a trinary structure map c3∶X → (BO(3) ⊗X ⊗X ⊗X)hΣ3 , and a
homotopy relating the two resulting maps X → (F2(3)⊗X ⊗X ⊗X)hΣ3 . This is exactly the structure of
a divided powers coalgebra over the co-operad F3 = cofree(BO≤3) cofreely generated from the degree ≤ 3
part of BO, so that we can write

D3 = Ind(coAlgdpF3
(Cc)).

More generally, one checks that the n-excisive approximation of AlgO(C) is given by

Dn = Ind(coAlgdpFn
(Cc)),

where Fn = cofree(BO≤n) is the cooperad cofreely generated from the degree ≤ n part of BO.

Proposition 36 (Koszul duality for truncated operads). Suppose (in addition to the standing assumptions
O(0) = 0,O(1) = 1) that O is n-truncated, that is, has no non-zero operations in degrees > n. Then the
coooperad BO is cofreely generated from its ≤ n part, and the n-excisive tower described above stabilizes
at the n’th stage on Dn = Ind(coAlgdpFn

(Cc)) = Ind(coAlgdpBO
(Cc)). In addition, the ∞-category AlgO(C)

is weakly n-excisive, the n-excisive approximation functor

AlgO(C)→ Ind(coAlgdpBO
(Cc))

is fully-faithful and its essential image is the minimal colimit-closed full subcategory containing the trivial
divided powers coalgebras (that is, those whose structure maps are all zero).

Proof. We first show that AlgO(C) is weakly n-excisive. Since the underlying object functor U ∶AlgO(C)→
C preserves and detects limits, it will suffice to show that U is n-excisive. For this, we show inductively
that the functor Ui(A) = τiO ○O A from AlgO(C) to C is i-excisive by induction on i (where for i = n
we have τnO = O and so Ui = U). For i = 1 the functor U1 coincides with the functor Σ∞∶AlgO(C) →
Sp(AlgO(C)) = C, and is hence 1-excisive. Now let 2 ≤ i ≤ n and suppose the claim is known for i − 1.
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Then the exact sequence τiO → τi+1O → O(i + 1) (where O(i + 1) is considered as a symmetric sequence
concentrated in degree i + 1) induces an exact sequence

Ui(A)→ Ui+1(A)→ O(i + 1) ○O A.
Since O(i+1) is concentrated in degree i+1 the O-action on it factors through the augmentation O→ O(1).
We then get that
O(i + 1) ○O A = O(i + 1) ○O(1) O(1) ○O A = O(i + 1) ○O(1) U1(A) = (O(i + 1)⊗U1(A)⊗ ...⊗U1(A))hΣn ,

which is an (i + 1)-excisive functor in A. We conclude that Ui+1 sits in an exact sequence between an
i-excisive functor and an (i+1)-excisive functor, and is hence (i+1)-excisive. This finishes the proof that
AlgO(C) is weakly n-excisive.

Now the fact that AlgO(C) is weakly n-excsive means that the n-excisive equivalence
Bn∶AlgO(C)→ Ind(coAlgdpFn

(Cc))
is fully-faithful by Proposition 1414. It then follows from the third characterization of Proposition 99 that
Bn is an m-excisive equivalence for every m ≥ n. Since Ind(coAlgdpFn

(Cc)) is n-excisive it is also m-excisive
for every m ≥ n, and hence Bn is also an m-excisive approximation for every m ≥ n. We conclude the
forgetful functors

Ind(coAlgdpFm
(Cc))→ Ind(coAlgdpFn

(Cc))
are equivalences for every m ≥ n, so that the tower of excisive approximations stabilizes at the n’th stage.
This also means that the map of endo-functors

K(Ind(coAlgdpFm
(Cc)))→K(Ind(coAlgdpFn

(Cc)))
on C is an equivalence for every m ≥ n, and so the map of cooperads Fm → Fn are equivalences for every
m ≥ n. The map BO→ cofree(BO≤n) is an equivalence on operations of degree ≤m for every m ≥ n, and
is hence an equivalence. In particular, BO is cofreely generated from its ≤ n part, and so Fn = BO.

To finish the proof we need to identify the essential image of
Bn∶AlgO(C)→ Ind(coAlgdpBO

(Cc)).
For this, we note that the composite of

Cc freeÐÐ→ AlgcO(C)
BnÐ→ coAlgdpBO

(Cc)

coincides with the trivial coalgebra functor Triv∶Cc → coAlgdpBO
(Cc) which associates to an object Cc the

divided powers coalgebra all of whose structure maps are zero. It follows that the essential image of
Bn contains all trivial divided powers coalgebras. On the other hand, since AlgO(C) is generated under
colimits by free algebras and Bn preserves colimits we conclude that the image of Bn is generated under
colimits by the trivial divided powers coalgebras, as desired. □
5.2. Cartesian categories and Tate algebras. In this section we will discuss the Goodwillie tower
of pointed compactly generated ∞-categories which arise as the pointification of cartesian compactly
generated ∞-categories. The principal example to keep in mind is that of pointed spaces S∗, which arise
as the pointification of the (cartesian) ∞-category of spaces, but one equally consider diagrams of spaces,
any ∞-topoi, or more general cartesian ∞-categories.

recall that the ∞-category Catω of (unpointed) compactly generated ∞-categories and compactly
generated functors admits a symmetric monoidal structure, where the tensor product is determined by
the universal property that compactly generated functors C ⊗D → E correspond to functors C ×D → E

(the product being computed in Catω) which preserves compact objects and entry-wise colimits. A
commutative monoid object in Catω then corresponds to a compactly generated ∞-category C equipped
with a symmetric monoidal structure which preserves compact objects and entry-wise colimits. For
example, the ∞-category of spaces is such a monoid with the tensor product being the cartesian product.
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More generally, any compactly generated ∞-category whose cartesian product preserves compact objects
and entry-wise colimits is a commutative monoid in Catω. We will refer to these as cartesian compactly
generated ∞-categories.

This tensor product preserves pointed compactly generated∞-categories, and so the symmetric monoidal
structure restricts to one on Catω∗ . In addition, the pointifcation functor

Catω → Catω∗ D↦D∗ ∶=D∗/
is symmetric monoidal (in fact, we can identify it with the functor C↦D⊗ S∗, and S∗ is an idempotent
object of Catω), and hence if D is a commutative monoid in Catω then D∗ inherits such a structure as
well. In particular, if D is a cartesian compactly generated ∞-category then D∗ inherits a symmetric
monoidal structure which preserves compact objects and entry-wise colimits. In the case of spaces, the
resulting symmetric monoidal structure on S∗ is the smash product. We will consequently call the tensor
product on D∗ induced by the cartesian product on D the associated smash product, for any cartesian
compactly generated D. This terminology is also justified by the fact that it is always given by the same
formula

X ∧ Y ∶= cof[X∐
∗
Y →X × Y ] X,Y ∈D∗.

In addition, the canonical compactly generated functor D↦D∗ sending X to X+ ∶=X∐∗ is canonically
symmetric monoidal. Moving from pointed to stable, we note that the tensor product on compactly
generated ∞-categories preserves stable ∞-categories and the stabilization functor Sp(−) is symmetric
monoidal. In particular, if D∗ is the pointification of a cartesian compactly generated∞-category D then
the smash product on C∗ induces a tensor product on Sp(D∗), which we will refer to as smash product
of spectrum objects, and denote it also with the symbol ∧. In this case, the compactly generated functor

Σ∞∶D∗ → Sp(D∗)

is canonically symmetric monoidal, and its right adjoint is lax symmetric monoidal.
We will now try to describe the excisive approximations of D∗ in this case in terms of a notion called

Tate coalgebras. To simplify notation, let us write C ∶= Sp(D∗) from now on. Let nC be the non-unital
commutative cooperad and nCn ∶= cofree(nC≤n) the cooperad freely generated from the ≤ n part of nC.
For brevity will refer to nCn-coalgebras as n-coalgebras. We define En ∶= Ind(coAlgnCn

(Cc)) to be the
∞-category of compactly generated n-coalgebras in C. For We will need to know the following:

Proposition 37. There is a natural cartesian square of pointed compactly generated ∞-categories

En

��

// LaxEq(C, ((−) ∧ ... ∧ (−))hΣn)

��
En−1 // LaxEq (C,nCn(n + 1) ∧ (−) ∧ ... ∧ (−))hΣn)

The above pullback square expresses the fact that refining an (n − 1)-coalgebra to an n-coalgebra
involves specifying a degree n symmetric cooperation X → (X ∧ ... ∧X)hΣn which is compactible with
all degree n cooperations that can be obtained by composing cooperations of degree < n (and which is
encoded in the n + 1 entry of nCn = cofree(nC≤n).

Our goal in the present section is to obtain an explicit description of Dn in terms of n-coalgebras
equipped with additional Tate compatibility data.

Let K ∶= Σ∞Ω∞∶C→ C be the finitary endo-functor induced by the adjunction Σ∞ ⊣ Ω∞.

Lemma 38. For every n ≥ 1 the n-linear part ∂nK of K is given by the formula

∂nK(X1, ...,Xn) =X1 ∧ ... ∧Xn.
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Given that the n-linear parts of K are known, the equivalence type of Pn(K) (as an endo-functor) is
encoded by exact squares

PiK(X) //

��

Pi−1K(X)

δiX
��

(X ∧ ... ∧X)hΣi // (X ∧ ... ∧X)tΣi

for i = 2, ..., n, which encode the way the i-excisive approximation is glued from the (i − 1)-excisive
approximation and the i-linear part, where the ladder starts at P1K = id. In particular, the natural
transformations δi can be considered as the structure constants, which together with the smash product,
completely determine the equivalence type of each finite excisive approximation of K. The left vertical
map corresponds to a Σn-invariant natural transformation K ⇒ (−)∧ ...∧(−) and hence to a Σn-invariant
natural

Σ∞(−)⇒ Σ∞(−) ∧ ... ∧Σ∞(−) = Σ∞((−) ∧ ... ∧ (−))
of functors D∗ → C. Unwinding the definitions, these are induced by the smash-diagonals X →X ∧ ...∧X.
Similarly, the right vertical map δi corresponds to the composite natural transformation

δiX ∶Σ∞(X)→ [Σ∞(X) ∧ ... ∧Σ∞(X)]tΣi .

We refer to these as the Tate diagonals.

Lemma 39. For every m,n ≥ 1 the n-linear part ∂nKm of K is given by the formula
∂nKm(X1, ...,Xn) = nCm(n) ∧X1 ∧ ... ∧Xn.

In particular, this agrees with ∂nK for m ≥ n.

Now consider the n-excisive approximation Dn of D∗. For every i ≥ 1 write Ki ∶= K(Di) = Σ∞Di
Ω∞Dn

,
so that the map K → Ki is a Pi-equivalence. Then Sp(Dn) ≃ C and the induced map K ⇒ Kn is a Pn-
equivalence. In particular, the Tate diagonals δiX for i = 1, ..., n above can be similarly defined for X ∈Dn,
and the approximation functor fn∶D∗ → Dn will be compactible with Tate diagonals. For example, the
first Tate diagonal

δ2X ∶Σ∞(X)⇒ [Σ∞(X) ∧Σ∞(X)]tΣ2

extends to a natural transformation δ2X ∶X → (X ∧X)tΣ2 of endo-functors of D1 = C. The higher Tate
diagonals on D∗ will generally not extend to Dn.

We wish to compare this to the situation of n-coalgebras. For this, let us write fn∶En → C for the
forgeful functor, which preserves compact objects by construction, and let gn∶C→ En be its right adjoint.
Let Ln ∶= fngn be the resulting endo-functor of fn ⊣ gn. Then Ln(X) is the cofree n-coalgebra generated
from X, and one can show that

PnLn(X) = ⊕n
i=1(X ∧ ... ∧X)hΣn .

In particular, ∂nLn(X1, ...,Xn) =X1 ∧ ... ∧Xn.
Let us now consider the 2-excisive case. The 2-excisive functor P2K is then given by the fibre product

P2K(X)
p / /

��

X

δ2X
��

(X ∧X)hΣ2 // (X ∧X)tΣ2

By Remark ?? we may identify D2 as the∞-category whose compact objects are objects X ∈ Cc equipped
with a factorization X

αÐ→ P2K(X)
pÐ→ X of the identity maps id∶X → X through P2K(X). Since P2K

sits in the above pullback square, we see that this is equivalent to equipping X with the structure of
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a cocommutative comultiplication X → (X ∧X)hΣ2 together with a homotopy between the composite
X → (X ∧ X)hΣ2 → (X ∧ X)tΣ2 with the Tate diagonal δ2X . In other words, these are 2-coalgebras
equipped with a compatibility homotopy between the two resulting Tate diagonals. We may call such
objects Tate 2-coalgebras. In particular, we have a forgetful functor D2 → E2, which sits in a fibre square
(in Catω∗ )

D2
//

��

C

��
E2

δ2∗ // LaxEq(C, ((−)⊗ (−))tΣn)

where the bottom horizontal map is induced by the Tate diagonal δ2∗. The vertical arrows in this square
are 1-excisive equivalences, and on the level of endo-functors on C, this squares becomes the pullback
square

P2K2(X) //

��

X

��
X ⊕ (X ∧X)hΣn

(id,δ2) // X ⊕ (X ∧X)tΣn

whose horizontal arrows induce equivalences on bilinear parts (which for the bottom row are both trivial).
Our goal is to similarly construct functors Dn → En over C which induce equivalences ∂nKn

≃Ð→ ∂nLn and
fit together into pullback squares

(14) Dn

��

// Dn−1

��
En

// En−1 ×LaxEq(C,(nCn−1(n)∧(−)∧....∧(−))tΣn) LaxEq(C, ((−) ∧ .... ∧ (−))tΣn)

whose horizontal arrows are (n − 1)-equivalences.
Suppose this data has been constructed for n − 1 and consider the square

Dn−1 //

��

LaxEq(C, ((−) ∧ .... ∧ (−))tΣn)

��
En−1 // LaxEq(C, (nCn−1(n) ∧ (−) ∧ .... ∧ (−))tΣn)

Indeed, from the cube
(15)

PnKn(X) //

��

++WWWW
WWWWW

WWW
Pn−1Kn(X)

��

≃
++WWWW

WWWWW
W

PnKn−1(X) //

��

Pn−1Kn−1(X)

��

(X ∧ ... ∧X)hΣn //

++WWWW
WWWWW

(X ∧ ... ∧X)tΣn

++WWWW
WWWWW

(nCn−1(n) ∧X ∧ ... ∧X)hΣn // (nCn−1(n) ∧X ∧ ... ∧X)tΣn
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whose front and back faces are cartesian we deduce a cartesian square

PnKn(X) //

��

PnKn−1(X)

��
(X ∧ ... ∧X)hΣn // Q

with
Q = (nCn−1(n) ∧X ∧ ... ∧X)hΣn ×(nCn−1(n)∧X∧...∧X)tΣn (X ∧ ... ∧X)tΣn .

Now compact objects of Dn can be described as compact objects X ∈Dn−1, with image X ∈ C, equipped
with a dotted lift of the form

PnKn(X)

��
X

99tttttt // PnKn−1(X) .

By the above fibre square we see that this is the same as objects X ∈Dn−1 equipped with a dotted lift of
the form

(X ∧ ... ∧X)hΣn

��
X

88r
r

r
r

r
r // Q .

We can informally describe this as specifying a cocommutative n-fold cooperation αn∶X →X∧...∧X which
is equipped with two type of compatibility constraints. The compatibility with ∂nKhΣn

n−1 can be described
in terms of the compatibility this n-fold product with the lower order cocommutative cooperations of
lower degree already defined on X by virtue of its lift to En−1 (recall that we assume already having a
factorization of the functor Dn−1 → C as Dn−1 → En−1 → C with the first functor inducing an equivalence
∂n−1Kn−1

≃Ð→ ∂n−1Ln−1). The compatibility with (X ∧ ... ∧X)tΣn then says that the composed map

X → (X ∧ ... ∧X)hΣn → (X ∧ ... ∧X)tΣn

need to agree with the Tate diagonal δnX already defined on X by virtue of its lifting to Dn−1. All this
can be organized into a fibre square

Dn
//

��

Dn−1

��
LaxEq(C, ((−) ∧ ... ∧ (−))hΣn) // LaxEq(C,Q)

Combining the above square with Proposition 3737 then yields a cartesian square

Dn

��

// Dn−1

��
En

// En−1 ×LaxEq(C,(nCn−1(n)∧(−)∧...∧(−))hΣn) LaxEq(C,Q)

which is equivalent to the desired square (1414) since the functor LaxEq(C,−) preserves fibre products.
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5.3. Rational spaces and Lie algebras. If C is a stable symmetric monoidal ∞-category in which the
Tate construction vanishes for all finite permutation groups vanish and O is some spectral cooperad then
the notions of O-coalgebras and divided powers O-coalgebras in C canonically coincides: indeed, in this
case the norm map determines an equivalence

(O(n)⊗ (−)⊗ ...⊗ (−))hΣn → (O(n)⊗ (−)⊗ ...⊗ (−))hΣn .

The same holds if one considers coalgebras or divided powers coalgebras over the cofree cooperad
cofree(O≤n) generated by the ≤ n part of O (in fact, for that we only need the Tate construction to
coincide for Σi with i ≤ n). If, furthermore, C is the stabilization of (the pointification of) a cartesian
compactly generated ∞-category then the resulting notion of Tate coalgebras in C discussed in §5.25.2 co-
incide for the same reason with both the structure of a cocommutative algebra and a divided powers
cocommutative algebra.

An example where this happens is if C is a Q-rational ∞-category, for example, if C is the ∞-category
of chain complexes over Q. In this case C is also the stabilization of a the cartesian category S≥2Q of simply
connected rational spaces, which is a left exact localization of the ∞-category S≥2 of pointed simply
connected spaces by the maps which induce an equivalence on rationalized homotopy groups. Then S≥1Q
is a cartesian compactly generated ∞-category and so

Ch(Q) = Sp(S≥1Q ) = Sp(S
≥1
Q,∗)

inherits a smash product as in §5.25.2, which simply corresponds to the usual tensor product of chain
complexes over Q. Since the Bar construction of the Lie operad is the commutative cooperad (up to a
shift, which we ignore at this point), we conclude the following:

Corollary 40. The notions of n-Tate coalgebras, n-cocommutative coalgebras and divided powers n-
cocommutative coalgebras all coincide. In particular, the n-excisive approximations of both S≥2Q,∗ and
AlgLie(Ch(Q)) coincide with the ∞-category of (compactly generated) n-cocommutative coalgebras in
Ch(Q).

Passing to the limit one obtains compactly generated functors

S≥2Q,∗
// coAlgωnC(Ch(Q)) AlgLie(Ch(Q))oo

limn coAlgωnCn
(Ch(Q))

which are fully-faithful when restricted to the full subcategories of S≥2Q,∗ and Lie(Ch(Q)) on which the
Goodwillie tower converges. On the side of S≥1Q,∗ this includes all objects, and on the side of AlgLie(Ch(Q))
it includes at least the full subcategory Alg≥1Lie(Ch(Q)) of connected Lie algebras. We hence obtain a pair
of fully-faithful inclusions

S≥2Q,∗
� � // coAlgωnC(Ch(Q)) Alg≥1Lie(Ch(Q))? _oo

Proposition 41 (Main theorem of rational homotopy theory). The essential image of both fully-faithful
inclusions above coincide, and consists of the closure under filtered colimits of the full subcategory spanned
by the commutative coalgebras whose underlying object is 2-connective. This is also the full subcategory
of coAlgωnC(Ch(Q)) generated by the trivial coalgebra structure on Q[2].

5.4. Simply connected spaces as Tate coalgebras. One of the new results of [Heu21Heu21] is an extension
of the classical theory of Quillen from rational simply connected spaces to all simply connected spaces.
In particular, the description of the n-excisive approximations of S∗ in terms of n-Tate coalgebras in §5.25.2
yields a compactly generated functor

S∗ → coAlgωtate = lim
n

coAlgωn−tate,
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which is fully-faithful when restricted to spaces on which the Goodwillie tower converges. This includes,
for example, all simply connected spaces, and so we obtain a fully-faithful inclusion

S≥2∗
� � // coAlgωtate .

Theorem 42 ([Heu21Heu21]). The essential image of the above inclusion is the full subcategory
coAlgω,≥2

tate ⊆ coAlgωtate

generated under filtered colimits by compact Tate coalgebras whose underlying finite spectrum is 2-
connective.

The proof involves showing that coAlgωtate is ind-comonadic over spectra, and that the associated
finitray comonad coincides with Σ∞Ω∞ when evaluated on 2-connective spectra. On the other hand,
it is also known from the work of Blomquist and Harper [BH16BH16] that S≥2∗ is comonadic (and hence
ind-comonadic, as it is a compactly generated functor) over 2-connective spectra.
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