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A useful idea in group theory is to study a group via its various abelian, or, more generally, nilpotent,
quotients. For a given group G, these can all be obtained as quotients of the groups appearing in the
central tower

G- ..>GG,—..>G|Gl > G|Gqy = *,

where Gy = G and Gyy1 = [G,G;] for i > 0. In particular, G/G; is the abelianization of G, and more
generally G — G/G,, is the universal map from G to a nilpotent group of degree n (that is, a group whose
lower central series has length n). One of the useful features of this tower is that each successive map
G/Gni1 = G/G,, is a central extension with kernel G, /G,.1. In particular, its first step is an abelian
group, and each further step is in some sense linear (or more precisely, affine) over the previous step. The
isomorphism type of G/G,, is hence completely determined by the isomorphism type of G/Gg, together
with, for each 7 =1,...,n — 1, the class

Q; € HQ(G/G“GZ/GPJ)

classifying the central extension G/G;11 - G/G;. When the central tower converges, that is, when the
map G — lim,, G/G,, is an isomorphism, this data also determines G itself.

In homotopy theory, it is natural to ask for the analogue of this construction in the setting of E;-
groups, that is, group-like E;-monoids in the co-category S of spaces. These are all obtained as the loop
Ei-groups of pointed connected spaces; in fact, the formation of loops induces an equivalences between
the oo-category 82! of pointed connected spaces and that of Ej-groups. The modern approach to this
problem is that for a pointed space X, the analogue of the universal degree n nilpotent quotient for the
loop Ei-group QX is given by QP,, (X), where P,,(X) is the n’th (pointed) space in the Goodwillie tower

Xo>..oP(X)> .. 5>P1(X) > =
1
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of X, as considered in the previous talks (here, it does not matter if we take the Goodwillie tower in
8. or 82! the two towers coincide). For example, one can show that 7P, (X) is the universal degree n
nilpotent quotient of 71 (X), so that on the level of fundamental groups the Goodwillie tower reproduces
the central tower of 71, see the works of Biederman and Dwyer [BD10, Biel7] on the topic. The first
step in the tower P;(X) = QX (X) is the infinite loop space of the suspension spectrum of X, which
can be considered as the universal map from X to a linear object (on the level of QX, this can be
considered as the analogous of abelianization). In addition, the gap between each two successive terms
in the Goodwillie tower is again linear in some sense: the map P,.1(X) — P, (X) is in fact a principal
fibration with structure group an infinite loop space of the form Q*°((E, @ 2°X ®...9 X*° X )5 ) for a
certain spectrum with ¥,,-action E,,. The collection of spectra FE,, are exactly the Goodwillie derivatives
of the identity ids,. The equivalence type of P,(X) is hence completely determines by the spectrum
¥*(X), together with, for each i = 1,...,n — 1, the class

e HY(Py(X), (B, ®X°X ®..0 2% X )ux, ) = 1o Map(X, Q' ((E, @ 2°X © ... 2 X )1x, )

classifying the principal fibration P;41(X) - P;(X).

The idea pursued in Gijs’s thesis [Heu21] is to obtain a similar Goodwillie tower on the level of oco-
categories. Before we can describe this idea, let us first recall the basic set up of Goodwillie calculus,
focusing on the case of pointed compactly oo-categories and reduced functors between them.

1. GOODWILLIE CALCULUS ON POINTED COMPACTLY GENERATED 0c0-CATEGORIES

Recall that an co-category C is said to be compactly generated if it has small colimits and is generated
under colimits by compact objects. Such a € is then of the form Ind(C®), where C° c € is the full
subcategory spanned by compact objects. A compactly generated functor f:C — D between compactly
generated oo-categories is a functor which preserves colimits and compact objects. We will say that a
compactly generated oo-category € is pointed if its initial object is also terminal, in which case we will call
this object a zero object, and write it as 0 € €. A functor which preserves zero objects is called reduced.
In particular, any compactily generated functor between pointed compactly generated oo-categories is
reduced. We will denote by Cat® the oo-category of pointed compactly generated oo-categories and
compactly generated functors between them.

A functor between compactly generated oco-categories is said to be finitary if it preserves filtered
colimits. We will write Funy (€, D) for the oo-category of reduced finitary functors from € to D. In
paticular, any compactly generated functor f:C — D is finitary and furthermore, any compactly generated
functor f has a right adjoint g: D — € which is itself finitary. In fact, the compactly generated functors are
exactly the finitary functors which admit a finitary right adjoint. We will consequently write LFuny (€, D)
for the oo-category of compactly generated functors € - D.

We will now discuss Goodwillie calculus in the setting of reduced functors. We denote by P(n) the
poset of subsets of {1,...,n}, ordered by inclusion. In particular, when we consider this poset as a
category, it has an initial object given by the empty set, and a final object given by {1,...,n}. We write
P.1(n) € P(n) for the full subposet spanned by the subsets of side is at least 1 (that is, the non-empty
subsets) of P(n), and write P.;(n) € P(n) for the full subposet spanned by the subsets whose size as at
most 1.

Let us now fix a pointed compactly generated oo-category €. We will refer to functors P(n) — C as
n-cubes, and to functors Py;(n) — € as punctured n-cubes. We will say that an n-cube p:P(n) - C is
cartesian if p is right Kan extended from plp_, (), and strongly cocartesian if p is left Kan extended from
plp.,(n)- Equivalently, p is cartesian if and only if the induced map

p(2) ~ lim p(1)
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is an equivalence, and p is strongly cocartesian if and only if the map
p({in}) T p(i2}) T - I p({ix}) > p(1)
P({}) P} p{})

determined by p is an equivalence. The latter condition is also equivalent to the condition that for every
I,J c{n} the square

(1) p(InJ) ——p(I)
p(J) p(IuJ)

is cocartesian. Let us say that a punctured cube p:P,i(n) — C is face-wise cocartesian if for every
I,J € Py1(n) such that I nJ € Py1(n) the square (1) is cocartesian. Note that unlike the case of whole
cubes, the face-wise condition for punctured cubes is not equivalent to p being left Kan extended from
some subposet of Py1(n). Finally, for any subposet P ¢ P(n), we will say that p: P — C is reduced if p(I)
is a zero object of € for any I € P such that |I| = 1. We will use this term for p a cube, a punctured cube,
or a functor defined on P;(n). Let us thus write N, (€C),Nz!(€) and N5}(€) for the full subcategories
of Fun(P(n),C),Fun(Ps;1(n), ) and Fun(P.(n), ), respectively, spanned by the reduced functors.

We note that a functor p: P<;(n) — € is reduced if and only if it is right Kan extended from p|(gy. In
particular, evaluation at @ and right Kan extension yield inverse equivalences

(2) e = NLe).
We we may also consider the adjunctions
NRH(@) ZNa(C) ZNH(©)

where the first left adjoint is given by left Kan extension along P.; € P(n) and the second left adjoint by
restriction along Ps1(n) € P(n) (their right adjoints are given respectively by restriction along P (n) €
P(n) and right Kan extension along Ps;(n) € P(n). Composing these adjunctions and identifying N=!(C)
with € via (2) we obtain an adjunction

L,:C ZN2YC) :R,.
Explicitly, the left adjoint L,, sends X € C to the restriction to P (n) of the strongly cocartesian n-cube
px(I)=0]J0..][JO~cof[[[X - X]~ [] =X,
X X iel [7]-1
where 0 € C is the zero object. The right adjoint R, is given by R, (p) = limep,, (n) (1) € C.

Definition 1. We will say that a reduced functor f:C — D is n-excisive if it sends strongly cocartesian
(n +1)-cubes in € to cartesian cubes in D.

Write
Fun"(C,D) c Fun?(C, D)
for the full subcategory spanned by the (finitary, reduced) n-excisive functors. For any finitary reduced
functor f:€ — D between pointed compactly generated oo-categories we write T,,(f):€C — D for the

composite
Ly >1 S R,
C=5N(C) > N,(D) =D,
where f, denotes the functor induced on punctured cubes by applying f levelwise; this preserves reduced
cubes since f is assumed to be reduced. The functor T, (f) is given more explicitly by the formula

Tn(f)(X)=}5ig;f(px(I))~
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The inclusion of finitary reduced n-excisive functors inside all finitary reduced functors then admits a left
adjoint

P, Fun? (€, D) - Funi" (€, D),
given by the explicit formula

Pu(f) = colim[f - T (f) = TnT0(f) = -],
where the sequence is obtained by iterating the natural transformation F' = T, (f) given by composite
f=R,oLyof=R,of.0L,,
where the first map is the unit of L,, 4 R, (pre-composed with f), and the second is induced by the
canonical interchange map for colimits/left Kan extensions. We note that for m > 0 the functor T,Em) =
(T o...0T,)(f) with T,, composed m times is given by the composite

(m) (m)
e, Nz (m)e LN (N2 (™) g

where we have denoted by (N21)(™) (=) := NZL(N21(...(N2!(-)) the m-fold iterated composite of the
operation N2!(-), and by L%m) and R;m) the corresponding m-fold iterated composites of L, and R,,
respectively. In these notations we may also write

P (f) = colim,, L™ o f, o RI™.
Ezample 2. When n =1 we have T1(f)(X) = Qf(XX), and P1(f) = colim,,, Q™ f(Z™(-)).

The resulting tower

f=..=2P.(f)=..=2P(f)

is the Goodwillie tower of f.

Definition 3. We will say that a natural transformation f = g of functors € - D is a P, -equivalence if
the induced natural transformation P, (f) = P,(g) is an equivalence.

Lemma 4. Let C,D,& be pointed compactly generated co-categories and let f:C - D and gD — & be
reduced functors which preserve filtered colimits. Then the functors

(=)o fiFuny(D,&) » Funy (€, &) and go(-):Fun?(C,D) - Funy(C,&)
preserve P, -equivalence.

Proof. We prove the claim for (=) o f, the case of go (=) is proven in an analogous manner (using the
fact that post-composition with g preserves filtered colimits). Since g is arbitrary, by 2-out-of-3 it will
suffice to show that the natural transformation go f = P,(g) o f is a P,-equivalence, that is, induces an
equivalence P, (go f) = P, (Pn(g) o f). Since each of the functors RS™ commutes with filtered colimits
this last map can be identified with the map

colimypso RU™ g, f. L™ — colim,,, R(™ colimyso[ R® g, LI £, L™
= colimy, k2o RS9 g, L) £, L™
=: colimyy, k A,k

induced on colimits by the poset inclusion N » N x N sending m to (m,0). This poset map is not cofinal,
so in principle it is not supposed to induce an equivalence on colimits. We argue this step by constructing
a poset @ equipped with a cofinal map N x N — @, such that the composite N - N x N - @ is cofinal
as well, and then show that the functor (m,k) = hy, ; extends to Q. We define @ to have the same
elements as N x N, namely, all pairs (m, k) with m, &k > 0, but with a weaker order relation, namely, we
set (m, k) <g (m/, k") if and only if m <m’ and m+k <m'+k’. We then have a map of poset NxN - Q
which is the identity on underlying sets. This map is cofinal since N x N is cofiltered and the relevant
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comma posets are non-empty, and hence also cofiltered. The same argument shows that the composite
map N - Nx N — @ is cofinal. To finish the proof it will suffice to show that the functor (m,k) = hy, &
extends to Q. Indeed, on objects it will be defined in the same manner and for m <m’ and k+m <k +m’
the natural transformation h,, r = hy, i is given by the composite

R g L LG <RI R L kem g 09 £ 10
=R g L f L
=R g LD fL T L
=R g L) L),

LSLk'+m'—k—m) . ng'er'fkfm)

where the first map is induced by the unit of , and all the other maps are
given by the canonical interchange map for colimits/left Kan extensions. O

2. CATEGORICAL GOODWILLIE CALCULUS
We now arrive to the work of [Heu21].

2.1. Excisive co-categories and excisive equivalences.

Definition 5. Let C be a pointed compactly generated oo-category. We will say that C is n-excisive if it
satisfies the following two properties:

(1) Every strongly cocartesian (n + 1)-cube in € is cartesian. In other words, ide is n-excisive.
(2) Every face-wise cocartesian punctured (n + 1)-cube p:Psi(n +1) — C° extends to an (n + 1)-cube
p:P(n+1) - C° which is both cartesian and strongly cocartesian.

We then write Cats™ ¢ Cat for the full subcategory spanned by the n-excisive co-categories.

Remark 6. Any Py (n+1)-indexed diagram in € is a filtered colimit of diagrams valued in €°, and hence
any strongly cocartesian (n+1)-cube in C¢ is a filtered colimit of strongly cocartesian cubes taking values
in ¢, In verifying Condition 1, one may hence restrict attention to strongly cocartesian (n + 1)-cubes
which are entry-wise compact.

Ezxample 7. For n =1 the condition that a punctured 2-cube be face-wise cocartesian is vacuous. Using
Remark 6 we then get that a pointed compactly generated C is 1-excisive if and only if C¢ has pullbacks
and a commutative square in C° is a pushout square if and only if it is a pullback square. In other words,
C is l-excisive if and only if C° is stable, which in turn is equivalent to € being stable.

For n =1 the inclusion Cats! ¢ Cat¥ admits a left adjoint

Sp(-): Cat¥ — Cats!

given by the stabilization Sp(€) = lim,[C 2eleld ...]. This always results in a compactly generated
oo-category with the oo-category of compact objects consisting of the Spanier-whitehead stabilization of
C¢, namely

Sp(€) = Ind(Sp(€)°) = Ind(SpSW (€°)) = Ind colim, [€° = €° 2 ...].
There is a canonical adjunction

Y€ X Sp(C) : Q5.

where X7 is a compactly generated functor induced by the canonical map €° — SpSW(GC), and Qg is a
finitary right adjoint induced by projecting to € from its 2-tower. For every stable compactly generated
oo-category D we then have that restriction along £%: € — Sp(€) induces an equivalence

LFun® (Sp(€), D) > LFun® (€, D).

The main goal of the work [Heu21] is to obtain a similar picture for higher n.
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Definition 8. Let f:C — D be a compactly generated functor between pointed compactly generated
oo-categories and let g: D — € be its finitary right adjoint. We will say that f is an n-excisive eqiuvalence
if the unit ide = ¢f and counit fg = idp are P,-equivalences.

Proposition 9. Let f:C - D be a compactly generated functor between pointed compactly generated
oo-categories. Then the following conditions are equivalent:

(1) f is an n-excisive equivalence.
(2) f induces an equivalence on stabilizations and the natural transformation

»f98dn = BpQp
of functors Sp(D) — Sp(D) induced by the counit of f 4 g is a P, -equivalence.
(3) [ induces an equivalence on stabilizations and the unit ide = gf is a P, -equivalence.

Proof. We begin with (1) = (2). Let f:C — D be a n-excisive equivalence and ¢:D — € its finitary
right adjoint. We first prove that f induces an equivalence on stabilizations. Consider the 1-excisive
approximations P1(f) and P;(g). They factor canonically as composites

e 2% sp(e) 24 sp(p) 25 p

and

D 22, 5p(D) 2% sp(e) — e,

where 01 f and 01g are the first derivatives of f and g. In the case of f, the functor 0;f identifies
with the functor f.:Sp(€) — Sp(D) induced by f on stabilizations; indeed, since f preserves colimits
the construction colim,, Q" f¥" which produces Pi(f) can also be viewed as f — QF f.X5. It will
hence suffice to show that 0y f is an equivalence. Now since f is an n-excisive equivalence the unit and
counit natural transformations are both P,-equivalence, and in particular Pi-equivalences. Using the
Klein-Rognes chain rule [Lurl4, Corollary 6.2.1.24] we obtain:

O1f 0019~ 01(fog)=~011dp =~ Idgy(p)
and

019001 f=01(go f)=01ide ~idgye) -
We then conclude that 9; f and 01 g are inverse equivalences of oo-categories, and so f induces an equiva-
lence on stabilization. In addition, since the counit fg = Idyp is a P,-equivalence it follows form Lemma 4
that the induced map X5 fgQ* = X3QF is a P,-equivalence. This shows (1) = (2).

Now assume that (2) holds, so that f induces an equivalence on stabilizations and the induced map
YNE fg02” = EFQF is a Py-equivalence. We note that saying that f induces an equivalence on stabiliza-
tions is the same as saying that ¥ f: € — Sp(D) exhibits Sp(D) as the stabilization of €, in which case we
may simply identify ¥ = X5 f and QF = gQ*°. The assumption of (2) then says that the associated map
of endo-functors L 0F — XFNF is an equivalence. By a theorem of Arone and Ching, generalized to
the setting of compactly generated oco-categories in [Heu21], the map P, (ide) - P, (gf) can be identified
with the map induces on totalizations by the map of cosimplicial objects. More precisely, we may form
a map of coaugemented cosimplicial objects

Pr(ide) ——=Pr(QTEF) == Pn(QTET AT LY ) ——= Pn(QTETQTETQTEE) -

| | | |

S ——
Pr(9f) ——= Pu(9QFET ) == Pn(9QFEFQTET ) = Pn(9QgXFQAEEFQATETf) -,

such that the two exhibit their coaugmentation as their totalization. Identifying gQ13 = Qg and X3 f =~
g3 = QF, the map of totalizations is an equivalence by the assumption that the map XZQg — X505
is a P,-equivalence. This shows that (2) = (3).
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Finally, let us show that (3) = (1). We hence assume that f:€ — D induces an equivalence on
stabilizations and that the unit map ide = ¢f is a P,-equivalence. We need to show that the counit map
fg = idp is a P,-equivalence. In other words, we need to show that the induced map P,,(fg) = P, (idp)
is an equivalence. To begin, note that by the triangle equalities this map is an equivalence on objects
of the form f(X) for X € C. More precisely, since ide = ¢f is a P,-equivalence we have by Lemma 4
that f = fgf is a P,-equivalence, and since the composite f = fgf = f is homotopic to the identity we
conclude that fgf = f is a P,-equivalence. Using that f preserves colimits this means that

is an equivalence. In other words, the natural transformation P,(gf) = P,(id) is an equivalence on
objects of the form f(X).

For every Y € D, the object £55(Y") € Sp(D) ~ Sp(€) is compact, and hence of the form LF™"(X) =
E37(f(X)) for some X € €. Since

Map(Z5 " f(X),X23Y) = colimy,s, Map, (X" f(X),E2™MY)

and
Map(EFY, 257" f(X)) = colimy,s, Map,, (™Y, ™" f(X))
we deduce that a pair of inverse equivalences 37" f(X) = X*(Y") lifts to a pair of inverse equivalences
Y (X)) = X™Y for large enough m. In particular, some large enough suspension of Y is in the
essential image of f:C — D. Since f preserves colimits, every finite coproduct of copies of ¥™Y is in
the image of f as well. By the above we consequently have that the map P,(f¢)Z - P,(idp)Z is an
equivalence whenever 7 is equivalent to a finite coproduct of copies of ¥"Y. To finish the proof we will
now show that for every 0 < k < m, the map P,(fg9)Z — P,(idp)Z is an equivalence for every Z which
is equivalent to a finite coproduct of copies of £¥. We argue by descending induction on k, the case of
k = m having been just established. Now assume the claim is true for a given 1 < kK < m, and let Z be
an object which is equivalent to a finite coproduct of copies of ¥~1Y. Consider the strongly cocartesian
(n+1)-cube pz:P(n+1) = D, given by pz(I) = cof[[I; Z - Z]. Since P,(idp) and P, (fg) are n-excisive
the induced map
Pu(9f)pz(=) = Pulidp)pz(-)

is a map of cartesian (n + 1)-cubes. On the other hand, for each I # @ we have that pz(I) is equivalent
to a coproduct of |I| -1 copies of £Z, and hence to a finite coproduct of copies of £*¥Y". By the induction
hypothesis the above map of cartesian cubes is an equivalence for every I # @&, and hence it is also an

equivalence for I = @, where we have pz (@) = Z. This concludes the proof of the proposition.
O

Corollary 10 (2-out-of-3). Let C ER D EiR € be a composable pair of compactly generated functors between
pointed compactly generated oo-categories. If either two of f, f', f' o f are n-excisive equivalences then so
is the third.

Proof. This is clear from the second characterization of Proposition 9. O

Lemma 11. Let f:C — D be an n-excisive equivalence. If C and D are both n-excisive then f is an
equivalence.

Proof. Let g:D — € be the finitary right adjoint of f. Since f is an m-excisive equivalence the unit
ide = gf is a Pp-equivalence. But both ide and gf are n-excisive since both € and D are n-excisive, and
so the unit is an equivalence. We conclude that f is fully-faithful.

We now show that f is essentially surjective. Since f is an n-equivalence it induces an equivalence
on stabilizations by Proposition 9. Since in the proof of that proposition this implies that for every
compact object Y in D, a large enough suspension ™Y is in the essential image of f, and similarly,
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any finite coproduct of copies of X™Y is in the image of C°. We now prove by descending induction on
1 < k < m that any object Z which is equivalent to finite coproduct of copies of £¥Y is in the essential
image of C°. Indeed, suppose that this is has been established for some 2 < k < m and let Z be an
object which is equivalent to a finite coproduct of copies of ¥*¥7'Y. Consider the strongly cocartesian
cube pz(I) = cof[ll;e; Z — Z]. Since D is n-excisive p is also cartesian. In addition, for every I + & we
have that pz(I) is equivalent to a finite coproduct of copies of XZ, and hence to a finite coproduct of
copies of XY. We conclude that p(I) is in the essential image of C° for every I # @, and hence p|p=1(y,)
is equivalent to the image under f of a punctured cube @:P>'(n +1) — €. Since f is fully-faithful and
colimit preserving it also detects colimits, and hence ¢ is face-wise cocartesian. Since C is n-excisive
¢ extends to a cartesian (n + 1)-cube p:P(n + 1) - C° which is also strongly cocartesian. Then f(p)
is a strongly cocartesian n-cube and is hence cartesian, since D is n-excisive. We conclude that f(p)
and p are two cartesian cubes whose associated punctured cubes are equivalent, and hence f(@) and p
themselves must be equivalent. We then have that p(@) = Z is in the essential image of C°. g

2.2. Weakly excisive co-categories.

Definition 12. Let C be a pointed compactly generated co-category. We will say that C is weakly n-
excisive if every strongly cocartesian (n+1)-cube in € is cartesian. In other words, € is weakly n-excisive
if the identity functor ide is n-excisive.

Lemma 13. Let C be a pointed compactly generated oo-category. The following conditions are equivalent:
(1) © is weakly 1-excisive.

(2) Every pushout square in C is a pullback square.

(3) The suspension functor ¥:C — € is fully-faithful.

(4) The functor £3:C — Sp(C) is fully-faithful.

(5) C is a compactly generated full subcategory of a stable compactly generated oco-category.

Proposition 14. A compactly generated functor f:C — D between weak n-excisive oo-categories is an
n-excisive equivalence if and only if it is fully-faithful and induces an equivalence on stabilizations.

Proof. Let g:D — C be the finitary right adjoint of f. Since f preserves colimits, g preserevs limits, and
D is weakly n-excisive we get that gf is n-excisive. In addition, ide is also n-excisive, and so ide — gf is
a P,-equivalence if and only if it is an equivalence, that is, if and only if f is fully-faithful. The desired
result now follows from the third characterization in Proposition 9. (]

For a pointed compactly generated co-category C, let us write
Q,(€) = Ind[colim[€® - NZ'(€)¢ - N2INZL (@) - ..].
The map from the first term C° of the above colimit then induces a compactly generated functor L$L°°): C-
0, (€) with finitary right adjoint R 0,(€) - € and we may identify the unit map ide = REI L)
with the map ide — colim,, RY™V L™ =P, (id). Consider the square

e—0,(€)

L

Sp(€) — Q. (5p(€))

Since Sp(€) is stable it is in particular weakly n-excisive, and hence the bottom horizontal functor is fully-
faithful. We then define Q,,(€) = Q,,(€) xg(sp(e)) Sp(€), the fibre product being computed in Caty, that
is, we first pass to compact objects, then take the fibre product, and then take Ind completions again).
Then Q,(€) embeds fully-faithfully in Q,(€) and the map F,:C — Q,(C) uniquely factors through a
compactly generated functor L) e - 0, (@), with right adjoint R such that RCITE) « R L),
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In particular, the functor 'E%“) is fully-faithful if and only if L£L°°) is, i.e., if and only if C is weakly
n-excisive. We also note that there is a natural equivalence Q,,(Sp(€)) ~ Sp(Q,(€C)), so that the right
vertical arrow in the above square exhibit its target as the stabilization of its source, and since Sp(-)
preserves finite limits we have that the map E£f°): @ - Q,, induces an equivalence on stabilizations. Finally,
let us note that the constructions Q,,(-) and Q,(-) are functorial in compactly generated functors.

Lemma 15. Q,,(€) is weakly n-excisive.

Proof. Since Q,,(€) is a full subcategory of Q,,(€) closed under colimits we may instead show that Q,,(C)
is weakly n-excisive. We need to show that any strongly cocartesian (n+1)-cube p in Q, (C) is cartesian

Let us write NS”)(G) := N2L..N21(€) as shorthand for the m-fold iterated application of N2!, an
denote by

L(°° m), N(M)(@) T 0,(0): R(°° m)

the associated adjunction. Now any P>!(n+1)-indexed diagram in Q,,(€) is a filtered colimit of diagrams
valued in Q,(€)¢, and any P>!(n + 1)-indexed diagram valued in Q, (€)¢ is equivalent to the image of a
P>!(n + 1)-indexed diagram in N{™ (€)¢ for some m. We conclude that any strongly cocartesian (n + 1)
in Q,(C) is a filtered colimit of strongly cocartesian (n + 1) of the form Lﬁfo_m)(p’ ) for some strongly
cocartesian (n + 1)-cocartesian cube in Nﬁ[”)(e)C. It will hence suffice to show that the latter type of
(n + 1)-cubes are cartesian. For a given strongly cocartesian (n + 1)-cube p' in NSZ”)(@), to show that
L( -m) p’ is cartesian, it will suffice to check that it induces a cartesian square of spaces when mapping
into it compact objects, and hence enough to show that Rﬁ[’ofk)Fr(Lm) p’ is cartesian in Nslk)(e) for every
k. In other words, we need to show that Rﬁfo_k)F,Em) is n-excisive. Since the property of being n-excisive
is preserved under pre-composing with a colimit preserving functor and post-composition by a limit
preserving functor we have that

R{=R [(=m) g excisive = RSLm’k’)LSwam’) is n excisive for all ¥’ <k and m' <m

It will hence suffice to show that RS ™ L{*™™) is n-excisive. Indeed, unwinding the definitions, this
functor is exactly the n-excisive approximation of ingyn,)( ey O
Lemma 16. Let C be a pointed compactly generated oo-category. Then the map C — Qn(e) is an
n-excisive equivalence.

Proof. Tt has already been established above that, essentlally by construction, the map € - Qn(G) induces
an equivalence on stabilizations and the unit ide = G, F,, exhibits G, F,, as the n-excisive approximation
of ide. We are hence done by the third characterization of Proposition 9. O

Corollary 17. Let f:C - D be a compactly generated functor between pointed compactly generated oo-
categories. Then f is an n-excisive equivalence if and only if it induces an equivalence on stabilizations
and the induced functor Q,(C) - Q, (D) is fully-faithful.

Proof. By Lemma 16 we have that f is an n-excisive equivalence if and only if D’n(e) - gn(ﬁ) is an
n-excisive equivalence. On the other hand, by Proposition 14 and Lemma 15 the latter is equivalent to
én(e) - an(D) being fully-faithful and inducing an equivalence on stabilizations. The last property is
equivalent to f itself inducing an equivalence on stabilizations.

O

Corollary 18. The collection of n-excisive equivalences is closed under base change in Caty.
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|l

D——¢&

Proof. Consider a pullback square

_—

in Cat¥. Recall that pullbacks in Cat“ are calculated by first passing to compact objects, then taking the
pullback, and finally taking ind completions. Since ind completions preserve fully-faithful functors we
observe that fully-faithful compactly generated functors are closed under base change. Since equivalences
are also closed under base change, the desired result follow from the characterization of Corollary 17 since
the functors Sp(-) and gn(—) preserve fibre products in Caty. O

Proposition 19. Forn >2 let
3) A—>3B
D——E&

be a commutative diagram of pointed compactly generated oco-categories and compactly generated func-
tors whose vertical arrows are (n — 1)-excisive equivalences and whose horizontal arrows are 1-excisive
equivalences. Then the square

(4) Pr(Ka) — Pn(K3)

L

is cartesian in Funy (Sp(&),Sp(€&)), where K4, K5, Ko and Ke denote the respective comonads on Sp(&)
associated to the composite left adjoint from that corner to Sp(€&).

Proof. By Proposition 9 the maps K4 — Kp and Kg — K¢ are P,_j-equivalences, and hence the
square (4) becomes cartesian after applying P,_1. To show that it is cartesian also on the level of P,_;
it will hence suffice to show that the square

é)nKA e aan
O Kp — 0, K¢
is cartesian. Now for every k we have a coaugmented cosimplicial object
Opide — Ok(QTEP) == 0 (P ETAPEY) == O (QTELQZETATEY) -

which exhibits its coaugmentation as its totalization by [Heu2l, Corollary B.5]. We may compute these
derivatives via the chain rule (see [Lurl4, §6.3.2]). We note that the functors £% and Q% are l-excisive
and their first derivative is the identity on Sp(€). The above diagram then becomes

Ok ide — O idgpe) O K¢ Oc(KeKe) -

The counit map K¢ — Idg,(¢y induces an equivalence Py (K) = Py (K¢ ) = Idgy(e). In particular, for £ =1
both this augmented cosimplicial objects are constant with the value Idg,e). For a given k > 1, let us
consider the induced map from this cosimplcial object to the right Kan extension of its restriction to Ay,
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which we can also coaugment with its totalization, which is the same as the limit of A.;. We obtain a
map of coaugmented cosimplicial objects

ak idg —>8k idsp(g) <:>8ng <—8k(KgKg)

R

O idsp(e) X0, k Ok 1dsp(e) — O ldsp(e) === O e === Ok Ke %o, idgp(e, OKe

where the coaugmentation witness the respective totalizations. Let us write Z; ¢ for the coaugmented
simplicial object corresponding to fibre of the above vertical map. Since all the functors in the original
square (3) induce an equivalence on stabilizations by Proposition 9 we may identify the stabilizations of
all the four corners compatibly with Sp(&). Performing the above construction in all four cases yields
the following commutative diagram of coaugmented cosimplicial objects (valued in the stable co-category
of entry-wise exact functors Sp(€)* — Sp(€))

(5)

Z.A

8H(KAO...OKA) an(KA)XXan(KA)
™ T |

On(Kgpo..oKg)

Zk,B l
Zk7@+an(KDO...OK(D) ‘ 8n(KD)><...><8n(KD)
Zy.e

8n(KgO...OKg) 8n(Ké)><><8n(Kg)

On(Kp) x...x0p(Kg)

By the chain rule we may compute 9y (K _yo...o K_y) =~ 0,(K))o...00,(K_y) using the composition of
symmetric sequences. For m-fold compositions this is a direct sum of objects parameterized by chains of
length m + 1 of equivalence relations on {1,...,k} starting from the finest one and ending in the coarsets
one. The vertical map at place m then projects to the summand involving chains with a single non-
identity step. In particular, the remaining summands in Z;’f(_) correspond to such chains where each step
has degree less then k. In particular, since the maps Kg - K¢ and K4 - Kp are P,_j-equivalences by
Proposition 9 they also induce equivalences on the respective Z:L7(_)’s, that is, the two vertical maps in
the left most face of (5) are equivalence. It then follows that the front and back faces of the right cube
in (5) are cartesian. As n > 2 we have 9, idg,(g) = 0 and so passing to the totalizations we obtain a cube

I ~~
0, idg Q0 Kz)
N .

O ide

Q(anKS)

in which the front and back faces are cartesian. Since the left face is is also cartesian by virtue of (3)
being cartesian, and since the co-category of entry-wise exact functors Sp(&€)* — Sp(€) is stable, we also
conclude from this that the right face is cartesian, from which the desired result follows.

O
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3. LINEAR EXTENSIONS

Let € be a compactly generated stable co-category. In this section we will discuss a way of constructing
n-excisive oo-categories whose stabilization is €. We start with a finitary functor Q: € - € and construct
a compactly generated oo-category LaxEq” (€, Q) which we call the lax equalizer co-category. We first
define the full subcategory of compact objects LaxEq®(€,Q) to be the fibre product, computed simply
in co-categories, in the square

LaxEq°(C, Q) —— Ar(C)

lﬂc J{(t,s)
(€,Q)

CC ———CxC

Explicitly, objects in LaxEq® are given by a compact object X € C¢ together with a map f: X - Q(X) in
C. We note that Q(X) does not have to be compact.

Lemma 20.

(1) LaxEq“(C, Q) admits finite colimits and the functor w¢:LaxEq°(C,Q) — C° preserves and detects
finite colimits. In addition, LaxEq°(C, Q) is idempotent complete.

(2) Let p:39 - LaxEq®(C, Q) be a cone diagram for some oo-category J. If mp and Qnp are both limit
cones the p itself is a limit cone.

(3) Let p:J - LaxEq°(C, Q) be a diagram indexed by some oo-category J. If wp admits a limit in C° and
this limit is preserved by @Q then p admits a limit in LaxEq°(C, Q), and this limit is preserved by .

To prove Lemma 20, let us a consider a slightly more general, but also more symmetric setup. Suppose
given two oco-categories A, B and two functors F,G: A — B. Then we may consider the lax equalizer oco-
category

LaxEq(F,G) := A xpxp Ar(B)

where the fibre product is along the functor (F,G): A — B. We then write m: LaxEq(F,G) - A for the
projection on the first coordinate.

Lemma 21.

(1) Let p:J - LaxEq(F,G) be a diagram indexed by some oo-category J. If wp admits a colimit in A and
this colimit is preserved by F then p admits a colimit in LaxEq(F,G). Furthermore, in this case
an arbitrary extension p:J” — LaxBEq(F, G) is a colimit cone if and only if mp and Frp are colimit
cones.

(2) Let p:J - LaxEq(F,G) be a diagram indexed by some oo-category J. If wp admits a limit in A and
this limit is preserved by G then p admits a limit in LaxEq(F,G). Furthermore, in this case an
arbitrary extension p:IJ9 — LaxEq(F, G) is a limit cone if and only if mp and Frp are limit cones.

Proof of Lemma 20 assuming Lemma 21. Apply Lemma 21 in the case where A = €, B = €, F' is the
embedding C¢ c € and G is the restriction of @ to C¢, and use the fact that C¢ admits finite colimits and
the embedding €° ¢ € preserves finite colimits. O

Proof of Lemma 21. Statement (2) is dual to Statement (1), and can be deduced from it by replacing A
and B by the opposites and using the identification

LaxEq(G°?, F°?) ~ LaxEq(F, G)P.
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We hence just prove (1). Let p:J — LaxEq(F, G) be a diagram and suppose that mp extends to a colimit
cone ¢:J> — A such that F¢ is a colimit cone in B. Consider the lifting problem

Since the right square is pullback, dashed lifts in the right square are in bijection with dotted lifts in the
external rectangle. Now the external rectangle is encoded by a natural transformation n: Frp = Gmp, and
dotted lifts in the external rectangle correspond to extensions of 7 to a natural transformation F'¢ = G¢.
The condition that F'r¢ is a colimit diagram implies that F'¢ is a left Kan extension of its restriction to
J, and hence a dotted lift in the external rectangle exists and is essentially unique. We conclude that a
dotted lift in the left square exists an is essentially unique as well. Call this lift p:J> — LaxEq(F, G). We
claim that p is a colimit cone. Indeed, for every object (X, 7: F(X) - G(X)) we have

MapLaxEq(F,G)(ﬁ(*): (X,7)) = Eq[Map 4 (¢(*), X) = Mapg (F(4(%)),G(X)]
= Baf lim Map ; (6(7), X) = lim Maps, (F(6()), G(X)]
= lim Eq[Map ; (6(+), X) = Maps (F(4(+)), G(X)]

= lim MapLaxEq(F,G)(p(i)a (Xa T))7

ieJop

and so p is a colimit cone. To prove the last claim, we need to show that an arbitrary extension p’ of p is
a colimit cone if and only if 7p’ and Frp’ are colimit cones. Indeed, by the uniqueness of colimit cones,
this is equivalent to saying that p’ is equivalent to p if and only if 7p is equivalent to ¢ (in which case
automatically Frp’ is equivalent to Fi¢). Indeed, this is exactly the uniqueness property of dashed lifts
in the left square of (7). O

We now define LaxEq“ (€, @) = Ind(LaxEq°(C, Q)) to be the Ind-completion of LaxEq°(€, Q) and write
m:LaxEq(C, Q) — € for the colimit preserving extension of 7¢. By Lemma 20 we have that LaxEq” (€, Q)
is compactly generated and 7 is a compactly generated functor.

Proposition 22.

(1) If Q is reduced then LaxEq(C, Q) is pointed.
(2) Forn>1,if Q is n-excisive then LaxEq(C, Q) is n-excisive.
(3) Forn>1, if P,(Q) =0 then the functor LaxEq(C,Q) — C is an n-excisive equivalence.

Proof. For (1), apply Lemma 20(2) with I = @.

We now prove (2). We first verify that every strongly cocartesian (n + 1)-cube p in LaxEq(C, Q) is
cartesian. By Remark 6 we may assume that p takes values in LaxEq°(C,Q). Then 7p is a strongly
cocartesian (n+1)-cube in C¢ and since C is 1-excisive and @ is n-excisive we have that both wp and Qmp
are cartesian cubes. By Lemma 20(2) we conclude that p itself is cartesian in LaxEq°(C,Q) and hence
in LaxEq(€, Q). Let now po: P*!(n) - LaxEq®(C, Q) be a face-wise cocartesian punctured (n + 1)-cube.
Then mpy is face-wise cocartesian, and since € is 1-excisive we have that mpg extends to an (n + 1)-cube
¢:P(n+1) - € which is both cartesian and strongly cocartesian. Since @ is n-excisive we have that Q¢
is also cartesian, and hence by Lemma 20(2) po extends to a cartesian (n + 1)-cube p in LaxEq(C, Q)
such that mp is cartesian in €. Thus mp must coincide with ¢, so that 7p is strongly cocartesian. By
Lemma 20 the functor ¢ detects finite colimits and hence p is strongly cocartesian. We thus conclude
that LaxEq(C, Q) is n-excisive.

Finally, let us assume that P,(Q) = 0 and show that m: LaxEq(C, Q) — € is an n-excisive equivalence.
By Lemma 16 we may equivalently show that gn(LaxEq(G, Q)) —~ gn( C) ~ C is an n-excisive equivalence.
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To begin, since the the formation of reduced punctured cubes commutes the pullback squares and arrow
categories we obtain pullback square
Nn(LaxEq®(€,Q))

|-

N, (€°)

Ar(Na(C))

J/(tw‘)’)

A O9) (@) x No(C)

where Q.:N,(C) — N, (C) is the functor obtained by applying @ entry-wise. We consequently deduce
that

Ny (LaxEq(€, Q)) = LaxEq(N, (€), Qx),
where by abuse of notation we write Q). also for its filtered colimit preserving extension from N,,(C¢) =
N, (€)¢ to N,,(€). Similarly, for each m > 1 we may consider the functor Q™ :N{™ () —» N{™ (@),
where le) =@, and ng) is given by applying ng—l) entry-wise. We then similarly obtain that
N™ (LaxEq(€, Q)) = LaxEq(N{™ (€),Q4™).
Since sequential colimits commute with fibre products and arrow categories we may pass to m = oo to

obtain that
9,,(LaxEq(€,Q)) = LaxEq(2,(€), Q{™),

where ng) is the filtered colimit preserving functor whose value on each NSLm) (€¢) is given by composing
Q'™ with the map Nﬁ{”)(e) — P, (€). Finally, using the equivalence

Mapa, (e) (L)X, Q1 L) (X)) = Mape (X, REQL™ LI (X))
associated to the adjunction L£f°) — RSJX’) we see that there is a natural equivalence
9, (LaxEq(€, Q) = Qu(LaxEq(€, Q)) xq, (¢) € = LaxEq(€, R$VQI™ LE) » LaxEq(€, P, (Q)).
Since P,,(Q) = 0 we conclude that the functor 9, (LaxEq(€,Q)) — € is an equivalence. O
The oo-category LaxEq(C, Q) enjoys the following universal property:

Proposition 23. For a given compactly generated oo-category &€, compactly generated functors & —
LaxEq(C, Q) are in natural bijection with pairs (f,n), where f:€ - C is a compactly generated functor
and n: f = Qf is a natural transformation.

Proof. Since LaxEq(C,Q) is idempotent complete such functors correspond to finite colimit preserv-
ing functors €¢ — LaxEq°(C,Q). By Lemma 20 we have that these are exactly the functors ¢ —
LaxEq°(C, @) such that the composite & - LaxEq°(C, Q) — € preserves finite colimits. In addition, for a
given finite colimit preserving functor f:&¢ — C¢, the data of a lift of f to LaxEq°(C, Q) is equivalent to
the data of a lift of (C, Q) f:£¢ — C°xC to Ar(€), which is the same as the data of a natural transformation

f=Qf. O

The universal property of Proposition 23 can also be described as follows. Any compactly generated
functor f:& — € admits a finitary right adjoint ¢:C — €. Then pre-composing with g is left adjoint
to pre-composing with f, which means that the natural transformations f = @ f are in bijection with
natural transformations fg = @ of endo-functors on €. This holds in particular for the universal case of
& = LaxEq(C, Q) and f = 7, that is, the universal natural transformation n: 7w = Q corresponds to some
natural transformation n*: ¢ = Q, where ¢: € - LaxEq(€, Q) is the finitary right adjoint of 7. We note
that the construction @ — LaxEq(€, @) is visibly functorial in @, so that we can assemble it to a functor

LaxEq(C, -):Funy (€, C) — (Caty)/e.
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On the other hand, the association that takes a compactly generated functor f: £ — € to the corresponding
endo-functor fg:C — C, where g is the right adjoint of f, forms a functor in the other direction

K(-):(Cat¥) e » Fun®(C,€)  K(e 5 e)= fg.

Corollary 24. The natural transformation n*%: K (LaxEq(C,Q)) = Q is a unit exhibiting the functor
LaxEq(C,-) as right adjoint to the functor K(-).

Proposition 25. Let n>2 and suppose that Q is n-homogeneous. Write K' := K(LaxEq(€,Q)). Then
the map K' - Q @ ide determines by the counit K' — Q of the above adjunction and the canonical
augmentation K' —ide induces an equivalence

Po(K') ~Qoide.

Proof. By Proposition 22 the functor & — € is an (n — 1)-excisive approximation, and hence the map
K' —» ide = K(C) is a P,_1-equivalence. On the other hand, since @ is n-homogeneous we have that
Pr-1(Q) =0. The map K’ — ide ®Q is hence a P,_1-equivalence. To show that it is a P,-equivalence it
will suffice to show that the induced map

anK, - anQ

is an equivalence.
To simplify notation let us write & := LaxEq(C, @), and let ¢:C — & be the finitary right adjoint of
m: & — €. The canonical cosimplicial resolution

ide om pmom orpTPT -

which we can also write as

ide o oK' : OK'K'm -
The induced composite map
idg > Tot[¢K*n] > Eq[ o7 ——Z ¢K7 | > Eq[ o7 ——Z ¢Q ].
is an equivalence; indeed, for X,Y € & the map
Mape (X, Y) - Eq[Map, (7(X),7(Y)) » Mapg (7(X), Q((Y)))

is an equivalence of spaces by the construction of €. Passing to n-derivatives and using the fact that ¢
and v are l-excisive we obtain an equivalence

Oy ide > Eq[ 8, (¢1) ——Z 8,(¢Qn) ] =~ Eq[ 8, (ide) ——= 8,.(Q) ] = 2(8,Q).
At the same time, by [Heu21, Corollary B.5] the cosimplicial object
Opide —— 0y ide == 0, K' == 0,,(K'K") -

induced by passing to derivatives exhibits its coaugmentation as its totalization. The triviality of the
derivatives of K’ in the range 1 < k < n implies that 9,,(K’)°™ is a direct sum of m copies of 9, K’, or,
more precisely, that the map 0,(K'o...0 K’} - 0, K’ x ... x 9, K’ induced by plugging the map K’ — ide
each time in all entries but one is an equivalence. This, in turn, implies that the above cosimplicial object
is right Kan extended from A.y, and so degenerates to an equivalence

Opide - Q0,K").

We conclude that the map Q(9,K') - Q(9,Q) is an equivalence, and hence the map 9, K’ — 9,Q is an
equivalence is as well. O
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By Proposition 22 the functor LaxEq(€, -) sends n-excisive functors in Fun? (€, C) to n-excisive com-
pactly generated oo-categories over C. It then follows that the adjunction K(-) -+ LaxEq(€,-) induces
an adjunction

PnK(-): (Cati") e Z Funi" (€, €): LaxEq(€, -),
where the right adjoint is still LaxEq(@, —) and the left adjoint is sends & — € to P, (K (&)), that is, to
the n-excisive approximation of the associated finitary endo-functor K(&):€ — C.

The above gives us an explicit way to construct n-excisive co-categories of a certain specific type, but
it does not cover all n-excisive oco-categories. To obtain a more comprehensive account we will need to
slightly elaborate the construction as follows.

Suppose given a pointed compactly generated co-category D equipped with a compactly generated
functor f:D — € with finitary right adjoint ¢g:€ — D, and associated finitary endo-functor K (D) =
fg:@ > €. The association [D - D]+~ [K (D) - K(D)] then determines a functor

(Caty)/p — Funy (€, C)/k(n)-

We construct a right adjoint to this functor as follows. Given a natural transformation K - K (D) let us
set

Q = cof[K - K(D)].
The map K (D) — Q then corresponds to a natural transformation c: f = @ f, which classifies a compactly
generated functor a,:D — LaxBEq(€,Q). Let us then define Ext(D,K) to be the compactly generated
oo-category sitting in the pullback square (computed in Caty):

(8) Ext(D, K) —>I
D —2 > LaxEq(C,Q)

where the functor € - LaxEq(C, Q) is the “zero section” of LaxEq(C,Q), classified by the zero natural
transformation ide = Q.

Remark 26. Explicitly, the compact objects of Ext(D, K) are given by pairs (X,n), where X is an object
of D and 7 is a null-homotopy of the map ax: f(X) - Q(f(X)). Equivalently, we may describe this
data as an object X equipped with together with a lift

f(f(X))

F(X) s K(D)(F(X)) —= QF(X) .
I

faf(X)

By construction, for a compactly generated co-category 5, compactly generated functors D - Ext(D, K )
correspond to pairs (h,7) where h: D->Disa compactly generated functor and 7 is a null-homotopy of
the natural transformation ah: fh = Q fh. Equivalently, if we write K (@) € — C for the associated endo-
functor on € (given by composing fh with its right adjoint) then the null-homotopy 7 can equivalently
be thought of as a null-homotopy of the composite K (D) » K (D) - Q, or equivalently, a lift

K 0

]

K(D) — K(D) —= Q.
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We may organize these observations into the following statement:

Corollary 27. The association [K — K(D)] ~ Ext(D, K), considered as a functor
Fung (€, €)/k(py — (Caty)/p,

is right adjoint to the functor [D - D] —» [K(D) - K(D)].

Remark 28. In the construction of EXt(‘D7IA€ ), assume that the map K — @ is null-homotopic, so that

K = K ® QQ. Then the associated functor D — LaxEq(C, Q) is homotopic to the composite D ER e
LaxEq(C, Q) and we get that a natural equivalence

EXt(@,[’?) = @ XLaxEq(C,Q) G

=D Xe C XLaxEq(C,Q) ¢
=D Xe LaXEq(e, QQ)?

where we have used the fact that the functor LaxEq(C, -): Funy' (€, C) - (Cat¥) e preserves loops (being
a right adjoint).

Let us now consider the adjunction

9) (Caty),p £ Funy (€, C),x(p)

of Corollary 27 in the case where f:D — C is a 1-excisive equivalence, that is, exhibits € as the stabilization
of D. By the second criterion of Proposition 9 we have that the the left adjoint of this adjunction sends
i-excisive equivalences D — D to Ps-equivalence K (D) - K(D) for every i > 1. On the other hand, if
K - K(D) is a Pi-equivalence then @ := cof[K - K(D)] satisfies P;(Q) = 0, and so by Proposition 22
and Corollary 18 we have that Ext(D,K) — D is an i-excisive equivalence. In other words, the right
adjoint sends P;-excisive equivalences to i-excisive equivalences. For every i > 1 the above adjunction
hence restricts to an adjunction

(10) (Caty).iyp = Funy (€, C).i/k ()

between the full subcategory of (Caty),p spanned by the i-excisive equivalences D - D and the full
subcategory of Fun}/(C,C)/k(p) spanned by the P;-equivalences. Let us now consider the composite
adjunction

(Caty )~z/D = Funf (C, e)w/K(D) Fun; sirl (€, e)w/K(D)

where in the second adjunction the left adjoint sends K — K (D) to P 1(K) - Piy1 (K (D)) and the
right adjoint sends K’ — P;,1(K) to K' xp,,, (k) K - K. The composite right adjoint

(11) Fungﬁl(eae)w/ff(@) - (Caty).i/p
then takes K’ — P;.1 K(D) to Ext(D, K), with K = K’ X9, k(D) K(D).

Proposition 29. If D is i-excisive then the composite right adjomt (11) s fully-faithful, and its essential
image consists of those i-excisive equivalences D — D such that D is (i + 1)-excisive.

Corollary 30. If D if i-excisive then the functor (11) determined an equivalence between the oo-category
of reduced, finitary, (i+1)-excisive functors K' equipped with a P;-equivalence K' — P, (K), and pointed,
compactly generated, (i + 1)-excisive co-categories D, equipped with an i-excisive equivalence D — D.
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Proof of Proposition 29. Let K' - Pir1(K(D)) be a Pi-equivalence from an (i + 1)-excisive functor K,
and let Q = cof[K’ - Pi,1(K(D))]. Set K = K’ xqp. ak(p) K(D). Applying Proposition 19 to the
square (8) we obtain that the square

Pin K (Ext(D,K)) ———— = ide
T2+1K(fD) (PHlK(LaXEq(e?Q))

is cartesian. Using Proposition 25 we may rewrite the bottom corner as

Pi K (Ext(D,K)) — ide

| |

Pin1K(D) ide ®Q

where the right vertical map is the summand inclusion and the bottom horizontal map is induced by the
defining map P;11 K(D) — @ and the canonical coaugmentation K (D) — ide of K (D). The fact that
this square is cartesian exactly means that the induced map

Pin1 K(Ext(D,K)) - K' = fib[Ps,1 (K (D)) - Q]

is an equivalence, which means that the counit of the adjunction is an equivalence on K’. We conclude
that Ext(D,-) is fully-faithful. We now with to identify its essential image. By Proposition 22 and
the closure of (i + 1)-excisive oo-categories under pullback we have that this essential image consists of
(i + 1)-excisive oo-categories, so we just need to show that all of them are covered. This is equivalent to
saying that if D - D is a i-excisive equivalence and D is (i + 1)-excisive then the unit

D - D' := Ext(D, Pis1 K (D) xp,., x(py K (D))

is an equivalence. Indeed, this is a-priori only an i-excisive equivalence with (i + 1)-excisive target, but
since we already know that the counit is an equivalence, the triangle identities imply that this map induces
an equivalence P; 1 K (5) - P;11 K(D'), and hence the unit is actually an (i + 1)-excisive equivalence. It
is hence an equivalence whenever its domain is also (i + 1)-excisive by Lemma 11. O

4. GOODWILLIE TOWERS OF 00-CATEGORIES

Definition 31. Let f:D — & be a compactly generated functor between pointed, compactly generated
oo-categories. We will say that f exhibits € as the n-excisive approximation of D if € is n-excisive and f
is an n-excisive equivalence.

Proposition 32. For every pointed, compactly generated oo-category D there is a tower
D—...>Dypq4—>..->D;

such that for i > 1 the map D — D; exhibits D; as the n-excisive approximation of D. In addition, for
every i > 2 we have that D; = Ext(D,_1, K;) for some reduced, finitary functor K;: D1 — Dy equipped with
a natural transformation K; = K(D;_1) whose cofibre is i-homogeneous.

Remark 33. In the situation of Proposition 32, if D is n-excisive then the tower is constant from D,
onwards; indeed, for ¢ > n the maps D — D, are i-excisive equivalences between i-excisive co-categories,
and are hence equivalence by Lemma 11. In particular, every n-excisive oo-category D can be constructed
from its stabilization by performing the above Ext(—,-) construction finitely many times.
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Proof. Construct the co-categories D; inductively for i = 1,...,n. For ¢ = 1 one just sets Dy = Sp(D).
Assume that D - D; — .. > D4 has been defined for some ¢ and such that the required properties hold. In
particular, the induced map D — D, is an i-excisive equivalence, and so the induced map K (D) - K(D;)
is a P;-equivalence. We now define

K1 =P (K(D)) xp,,,k(n,) K(Ds),

equipped with the projection K;,; - K(D;), and set D;11 = Ext(D;, K;41). By the adjunction (10)
the canonical factorization of K(D) - K(D;) through K; determines a lift of the compactly generated
functor D — D; to a compactly generated functor D — D;,1. This last functor is then an (i + 1)-excisive
equivalence since it induces an equivalence on stabilizations and the induced map on the left

/\

Pi1 K(D) —= P 1 K(Diy1) —— Piy1 Kin

is an equivalence by 2-out-of-3 (where the equivalence on the right is by Proposition 29, and the composite
by construction). O

Proposition 34. Suppose that p:D — D,, is a functor exhibiting D,, as the n-excisive approximation of
D. Then for every n-excisive co-category &, restriction along p, induces an equivalence

p: LFun® (D,,, &) = LFun®(D, &).

Proof. If € is n-excisive then the compactly generated co-category Fun(A?, €) is n-excisive for every i. It
will hence suffice to show that 7, induces an equivalence on core co-groupoids for every €. Consider the
finite tower

E=¢, &1~ ... > &
obtained by applying the construction of Proposition 32 to & (see Remark 33). We prove by induction
on ¢ that the induced functor
r;:LFuny (D, &;) - LFun? (D, &;)

induces an equivalence on core oo-groupoids. For i =1 we have that £ is stable and the map D - D,, is
an equivalence on stabilization, and hence ry is an equivalence. Now suppose that r; is an equivalence for
some 1 <i<n -1 and prove that it is an equivalence for i + 1. Consider the square of core co-groupoids

LFUII‘:(D»,L7 82‘+1): e I.:FUII(:(';D7 8“1):

| |

LFun? (D, &;)* —— LFun¥(D, &;)~

where the bottom horizontal arrow is an equivalence by the induction hypothesis. To show that the top
horizontal arrow is an equivalence we check that the square induces an equivalence on vertical fibres.
This is the same as saying that for every fixed compactly generated functor f:D, — &;, restriction along
D — D, induces an equivalence

LFun‘/"Ei (D, Eiv1) 5 LFunfgi (D, Ei41)-
Now by construction we have that
Eiv1 = BExt(&;, Kis1)
where K;,1 = K(&;) is a natural transformation of functors &, — &; whose cofibre is (i+1)-homogeneous.

The compactly generated functors D, g, & —E& and DD, g, &; - &€, composed with their finitary
right adjoints yield a map of endo-functors a: K (D) = K(D,,) on ;. By the adjunction 9, it will suffice
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to show that a a P;,1-equivalence. For this, let us write f.:Sp(D) — &; for the induced functor, and let
g+:&€1 = Sp(D) be its right adjoint. Then we may identify « with the induced map

[ EDQ5 9. = [ X5 Q5 g
Since the natural transformation XFQF = X5 QF is a P;i1-equivalence by virtue of the assumption

that D - D,, is an n-excisive equlvalence and ¢ +1 < n we have that « is a P;,1-equivalence by Lemma 4.
O

Corollary 35 ([Heu2l]). For a pointed, compactly generated C, the oo-category of n-excisive approzima-
tions of € is contractible, and the formation of n-excisive approximations assembles to form a functor

Cat¥ — Cats" Cr— P,(C),
which is left adjoint to the inclusion Cats™ c Caty.

Given a pointed compactly generated co-category D, its Goodwillie tower above {D, }, above deter-
mines a compactly generated functor

fooirD = Do :=lim D,,,
with finitary right adjoint geo:Doo = D (the limit is computed in Caty). If we write

fn: D Z Dy ign
for each of the finite stage adjunctions in the Goodwillie tower then each unit u,:id = g, f,, exhibits g, f,
as the m-excisive approximation of the identity since the map f, is an n-excisive equivalence and D,, is

n-excisive. In particular, we may identify each u,, with the map id = P,,(id). The total unit of foo X goo
can then be identified with the limit

id = lim g, f, = lim P, (id).

In particular, the unit is an equivalence when evaluated on objects on which the Goodwillie tower of
the identity converges. In particular, if we consider the full subcategory Deony € D spanned by those
objects X € € on which the Goodwillie tower of the identity converges then fo, determines a fully-faithful
embedding of Doy, in Do,. In particular, a certain full subcategory of D is equivalent to a certain full
subcategory of Do,. When these full subcategories are relatively large (as happens in many cases of
interest), the Goodwillie tower of D can be efficiently used to obtain information on D via the simpler
pieces D,,.

5. EXAMPLES

5.1. Divided powers coalgebras and Koszul duality. Let C be a stable compactly generated oo-
category equipped with a symmetric monoidal structure which preserves colimits in each variable sep-
arately. Let J be the singled color C-enriched oo-operad whose unary operation object is the monoidal
unit 1 € € and all other operation objects are the zero object 0 € €. Let O be a single color C-enriched
oo-operad which is equipped with a map O — J inducing an equivalence on enriched co-categories of
colors and on nullary operations. Then the compactly generated oco-category Algy (C) is pointed and the
compactly generated functor
Algy(C) - Algy(€) = C
induces by O — J exhibits C as the stabilization of Alg(C). The associated comonad K := Q> on C
is then given by
K(V)=JogV=TJogJogV=>(BO>)®@V®)s, =Ve& > (BO»i) ® V¥)us,,
izl 22

where BO :=J o9 J is the Bar construction of O, which has the structure of a C-enriched co-operad with
0(0) =0 and O(1) = 1. This cooperad is also known as the Koszul dual of O. In particular, for every n > 1
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we have P, (K) = ¥, (0(i)®V®")yx,, so that P, (K) is an n-excisive functor whose n-homogeneous parts
are trivially glued to each other. Let us now unwind the definition for the n-excisive approximations,
constructed in the proof of Proposition 32. The 1-excisive approximation is Dy = € itself. To construct the
2-excisive approximation, one considers the 2-excisive approximation Po K (V) =V & (BO(2)®@V @ V)5,
and sets @ = cof[P2K(V) - V] = X(BO(2) ® V ® V)s,. Since the augmentation is a projection from
a direct sum the map P2 K (V) - @ is null-homotopic and we are in the situation of Remark 28. In
particular, the 2-excisive approximation of Alge(C) is given by

Dy = Ext(C, K) = LaxEq(C, QQ) = LaxEq(C,[BO(2) ® (-) ® (=) ]us, )-

The compact objects of Do are then given by pairs (X,«) where X is an object of € and v X —
[BO(2) ® X ® X |ux, is a structure map, which is a form of a quadratic co-operation. Such a co-operation
is also known as a divided powers BO(2)-comultiplication (this is not the same as a cocommutative BO(2)-
comultiplication, which rather corresponds to a map X — [BO(2) ® X ® X]"*2). Equivalently, we may
identify Dy with the Ind-completion of the co-category of divided powers coalgebras in C¢ over the cofree
cooperad Fy := cofree(BO<s) generated from the binary co-operation BO(2) ® (-) ® (-); indeed, being
cofreely generated means in particular that specifying a divided power coalgebras over it is the same as
specifying only the generating co-operation. We write this as

Dy = Ind(coAlgif; (C)).

Let us now consider the next step, namely, the 3-excisive approximation D3 of Algq (V). For this, we
need to find the cofibre of the map

cofree forget

Now the endo-functor K (D3): € —— Dy —— € sends V to the underlying object of the cofree divided
powers Fs-coalgebra generated from V', that is,

K(D2)(V) =V & Y [Fa(i) @ V],

i>2
The 3-excisive approximation of K (Dj) is then given by
PsK(D2)(V) =V @ [Fa(i) ® V)]s, @ [Fa(i) ® VE]us,.
If we now unwind the construction of cofree co-operads we see that F5(2) = BO(2) and
F5(3) = (BO« 0 BO)(2) = [@x,BO(2) ® BO(2)]s, = [@x,BO(2) ® BO(2)]*=.

In words, F5(3) is the X3-object of € left/right induced from the 33-object BO(2) ® BO(2), where the
Ys-action on the latter is by the action on the second factor. The map (12) is then an equivalence on
2-excisive approximations and its cofibre ) is the 3-homogeneous functor given by

Q(V) = (cof[BO(3) » F2(3)] ® V)5,
Let K' = P3K xp, g (p,) K(D2), so that K’ lies in an exact sequence
K, i K(@Q) - Q

The 3-excisive approximation of Algq(C) is then given by the oco-category D3 = Ext(Dz, K') whose
compact objects are triples (X, «,n), where c: X - (BO(2) ® X ® X )y, is a quadratic structure map
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and 7 is a null-homotopy of the dotted composed map, or, equivalently, a choice of a dashed lift:
(13)

(BO(3)® X ® X ® X )3, 0

_ >
3 _ - — l

X g/(BO(2) ®X ®X)h22 — (F2(3) XX ®X)h23 — (COf[BO(S) g FQ(?))] XX ®X)h23

..C2

Of course, one needs to understand what is the second horizontal map, which in principle, is determined
by the unit of the adjunction Dy T €. For this, note that by definition F5(3) is X3-induced from the
Ys-object BO(2) ® BO(2). Since the monoidal product preserves colimits in each variable, this means
that the ¥3-object F»(3) ® X ® X ® X is induced from the Yz-object BO(2) ® BO(2) @ X @ X ® X =
BO(2) ® (BO(2) ® X ® X)) ® X, where Ys-acts by its action on the internal BO(2) ® X ® X component.
Using again that the tensor product commutes with colimits in each variable we then obtain a natural
equivalence

(F2(3) XX ® )(v)hg3 ~ BO(2) ® (BO(Q) X ® X)hg2 ® X.
The map appearing in (13) in then given by the composite

id ®a®id
—_—

BO(2)® X ® X))y, - (BO(2)®@ X © X)"2 - BO(2) e X ® X BO(2)®(BO(2)® X ® X )5, ® X,

where the first map is the trace map and the second forgets the fixed point structure. In particular, we
may describe a compact object of D3 as consists of objects X € €C equipped with a quadratic structure
map c: X - (BO(2) ® X ® X)5,, a trinary structure map ¢3: X — (BO(3)® X ® X ® X )5, and a
homotopy relating the two resulting maps X — (F2(3) ® X ® X ® X ),,5,. This is exactly the structure of
a divided powers coalgebra over the co-operad F3 = cofree(BO<3) cofreely generated from the degree < 3
part of BO, so that we can write

Ds = Ind(coAlng];(Gc)).
More generally, one checks that the n-excisive approximation of Algy(C) is given by
D,, = Ind(coAlgy? (%)),
where F,, = cofree(BOg,,) is the cooperad cofreely generated from the degree < n part of BO.

Proposition 36 (Koszul duality for truncated operads). Suppose (in addition to the standing assumptions
0(0) =0,0(1) = 1) that O is n-truncated, that is, has no non-zero operations in degrees > n. Then the
coooperad BO is cofreely generated from its <n part, and the n-excisive tower described above stabilizes
at the n’th stage on D,, = Ind(coAlngZ(GC)) = Ind(coAlgdB%(Gc)). In addition, the co-category Algq(C)
is weakly n-excisive, the n-excisive approzimation functor

Algy (€) - Ind(coAlgll (€°))

is fully-faithful and its essential image is the minimal colimit-closed full subcategory containing the trivial
divided powers coalgebras (that is, those whose structure maps are all zero).

Proof. We first show that Alg, (C) is weakly n-excisive. Since the underlying object functor U: Alg, (C) —
C preserves and detects limits, it will suffice to show that U is n-excisive. For this, we show inductively
that the functor U;(A) = 7;0 o9 A from Algy(C) to € is i-excisive by induction on i (where for i = n
we have 7,0 = O and so U; = U). For ¢ = 1 the functor U; coincides with the functor ¥*: Alg,(C) —
Sp(Algy(€)) = €, and is hence 1l-excisive. Now let 2 < ¢ < n and suppose the claim is known for ¢ — 1.
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Then the exact sequence 7;0 - 7,410 - O(i + 1) (where O(i + 1) is considered as a symmetric sequence
concentrated in degree 7 + 1) induces an exact sequence

Ui(A) > Ujz1(A) > O(i+ 1) o9 A.

Since O(i+1) is concentrated in degree i+1 the O-action on it factors through the augmentation O - O(1).
We then get that

O(i+1) 09 A=0(i+1) 01y O(1) o9 A=0(i+1) ooy U(A) = (0(i+1) @U1(A) ® ... U1 (A))ns,,

which is an (i + 1)-excisive functor in A. We conclude that Uj,; sits in an exact sequence between an
i-excisive functor and an (i + 1)-excisive functor, and is hence (¢ + 1)-excisive. This finishes the proof that
Alg,(C) is weakly n-excisive.

Now the fact that Alg(C) is weakly n-excsive means that the n-excisive equivalence

B,,: Algy (€) - Ind(coAlg;? (€°))

is fully-faithful by Proposition 14. It then follows from the third characterization of Proposition 9 that
B,, is an m-excisive equivalence for every m > n. Since Ind(coAlg(}i (C9)) is m-excisive it is also m-excisive
for every m > n, and hence B,, is also an m-excisive approximation for every m > n. We conclude the
forgetful functors

Ind(coAlg%‘; (€9)) — Ind(coAlg%i (€%))
are equivalences for every m > n, so that the tower of excisive approximations stabilizes at the n’th stage.
This also means that the map of endo-functors

K (Ind(coAlgi (€°))) » K (Ind(coAlgy (€°)))

on C is an equivalence for every m > n, and so the map of cooperads F},, - F;, are equivalences for every
m >n. The map BO — cofree(BOg,,) is an equivalence on operations of degree < m for every m > n, and
is hence an equivalence. In particular, BO is cofreely generated from its < n part, and so F,, = BO.

To finish the proof we need to identify the essential image of

B,,: Algy (€) — Ind(coAlgl? (€°)).
For this, we note that the composite of

ee 2% Algh (€) 22 coAlgh (€°)
coincides with the trivial coalgebra functor Triv: C¢ — coAlg%%(C’C) which associates to an object €¢ the
divided powers coalgebra all of whose structure maps are zero. It follows that the essential image of
B,, contains all trivial divided powers coalgebras. On the other hand, since Algy,(C) is generated under

colimits by free algebras and B,, preserves colimits we conclude that the image of B,, is generated under
colimits by the trivial divided powers coalgebras, as desired. O

5.2. Cartesian categories and Tate algebras. In this section we will discuss the Goodwillie tower
of pointed compactly generated oco-categories which arise as the pointification of cartesian compactly
generated oo-categories. The principal example to keep in mind is that of pointed spaces 8., which arise
as the pointification of the (cartesian) co-category of spaces, but one equally consider diagrams of spaces,
any oo-topoi, or more general cartesian co-categories.

recall that the oo-category Cat“ of (unpointed) compactly generated co-categories and compactly
generated functors admits a symmetric monoidal structure, where the tensor product is determined by
the universal property that compactly generated functors € ® D — & correspond to functors € x D — &
(the product being computed in Cat“) which preserves compact objects and entry-wise colimits. A
commutative monoid object in Cat¥ then corresponds to a compactly generated co-category € equipped
with a symmetric monoidal structure which preserves compact objects and entry-wise colimits. For
example, the co-category of spaces is such a monoid with the tensor product being the cartesian product.
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More generally, any compactly generated oo-category whose cartesian product preserves compact objects
and entry-wise colimits is a commutative monoid in Cat”. We will refer to these as cartesian compactly
generated oo-categories.

This tensor product preserves pointed compactly generated co-categories, and so the symmetric monoidal
structure restricts to one on Cat¥. In addition, the pointifcation functor

Cat® — Cat? DD, =D,y

is symmetric monoidal (in fact, we can identify it with the functor € » D ® 8., and 8, is an idempotent
object of Cat“), and hence if D is a commutative monoid in Cat¥ then D, inherits such a structure as
well. In particular, if D is a cartesian compactly generated co-category then D, inherits a symmetric
monoidal structure which preserves compact objects and entry-wise colimits. In the case of spaces, the
resulting symmetric monoidal structure on 8, is the smash product. We will consequently call the tensor
product on D, induced by the cartesian product on D the associated smash product, for any cartesian
compactly generated D. This terminology is also justified by the fact that it is always given by the same
formula

XAY =cof[ X][]Y - X xY] X,Y €D,.

In addition, the canonical compactly generated functor D — D, sending X to X, := X [[ * is canonically
symmetric monoidal. Moving from pointed to stable, we note that the tensor product on compactly
generated oco-categories preserves stable co-categories and the stabilization functor Sp(-) is symmetric
monoidal. In particular, if D, is the pointification of a cartesian compactly generated oo-category D then
the smash product on €, induces a tensor product on Sp(D.), which we will refer to as smash product
of spectrum objects, and denote it also with the symbol A. In this case, the compactly generated functor

$°:D, > Sp(D.)

is canonically symmetric monoidal, and its right adjoint is lax symmetric monoidal.

We will now try to describe the excisive approximations of D, in this case in terms of a notion called
Tate coalgebras. To simplify notation, let us write € := Sp(D,) from now on. Let nC be the non-unital
commutative cooperad and nC,, := cofree(nCy,,) the cooperad freely generated from the < n part of nC.
For brevity will refer to nC,,-coalgebras as n-coalgebras. We define &, := Ind(coAlg,c (€°)) to be the
oo-category of compactly generated n-coalgebras in €. For We will need to know the following:

Proposition 37. There is a natural cartesian square of pointed compactly generated co-categories

&p —————LaxBEq(C, ((=) A ... A (=))1¥n)

|

En-1 — LaxEq (G, nCp(n+1)A(=)A.cn (—))hE")

The above pullback square expresses the fact that refining an (n — 1)-coalgebra to an n-coalgebra
involves specifying a degree n symmetric cooperation X — (X A ... A X)¥n which is compactible with
all degree n cooperations that can be obtained by composing cooperations of degree < n (and which is
encoded in the n + 1 entry of nC,, = cofree(nCy,,).

Our goal in the present section is to obtain an explicit description of D,, in terms of n-coalgebras
equipped with additional Tate compatibility data.

Let K :=X*°0%:C — C be the finitary endo-functor induced by the adjunction 3 4 Q.

Lemma 38. For every n > 1 the n-linear part 0, K of K is given by the formula

8nK(X17 ,Xn) = X1 A ... /\Xn.
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Given that the n-linear parts of K are known, the equivalence type of P,,(K) (as an endo-functor) is
encoded by exact squares

P (X) Pi K (X)

T

(XA AX)E o (X AL A X))

for ¢ = 2,...,n, which encode the way the i-excisive approximation is glued from the (i — 1)-excisive
approximation and the ¢-linear part, where the ladder starts at Py K = id. In particular, the natural
transformations §° can be considered as the structure constants, which together with the smash product,
completely determine the equivalence type of each finite excisive approximation of K. The left vertical
map corresponds to a ¥, -invariant natural transformation K = (=) A...A(-) and hence to a ¥,,-invariant
natural
S2(-) =2 ()AL AT (5) =22 ((-) Ao A (=)

of functors D, — €. Unwinding the definitions, these are induced by the smash-diagonals X - X A...A X.
Similarly, the right vertical map &° corresponds to the composite natural transformation

05 0%(X) > [Z°(X) A AD®(X)]
We refer to these as the Tate diagonals.

Lemma 39. For every m,n >1 the n-linear part 0, K,, of K is given by the formula
On K (X1, X0n) =0Cry(n) A X1 A A X,
In particular, this agrees with 0, K for m > n.

Now consider the n-excisive approximation D,, of D. For every i > 1 write K; := K(D;) = ¥F QF |
so that the map K — K; is a P;-equivalence. Then Sp(D,,) ~ € and the induced map K = K, is a P,,-
equivalence. In particular, the Tate diagonals 5& for i =1,...,n above can be similarly defined for X € D,,,
and the approximation functor f,:D, — D,, will be compactible with Tate diagonals. For example, the
first Tate diagonal

6% 07 (X) = [Z®(X) AX™(X)]™>>
extends to a natural transformation 5§(:X - (XnX )tE? of endo-functors of Dy = €. The higher Tate
diagonals on D, will generally not extend to D.,.

We wish to compare this to the situation of n-coalgebras. For this, let us write f,:€, — € for the
forgeful functor, which preserves compact objects by construction, and let g,:C — &, be its right adjoint.
Let Ly, := f,gn be the resulting endo-functor of f,, 4 g,. Then L, (X) is the cofree n-coalgebra generated
from X, and one can show that

PruLn(X) =" (X A...nX)MEn,
In particular, 8, L, (X1,..., Xpn) = X1 A .. A X,

Let us now consider the 2-excisive case. The 2-excisive functor Po K is then given by the fibre product

PK(X) ——s X

| 4

(X AX)P —— (X A X)P>2

By Remark 7?7 we may identify Ds as the co-category whose compact objects are objects X € C° equipped
with a factorization X = PoK(X) & X of the identity maps id: X - X through P2K(X). Since PoK
sits in the above pullback square, we see that this is equivalent to equipping X with the structure of
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a cocommutative comultiplication X — (X A X)'¥2 together with a homotopy between the composite
X - (X A X)"E2 & (X A X)'2 with the Tate diagonal 6%. In other words, these are 2-coalgebras
equipped with a compatibility homotopy between the two resulting Tate diagonals. We may call such
objects Tate 2-coalgebras. In particular, we have a forgetful functor Dy - €5, which sits in a fibre square
(in Cat¥)

Dy C

.,

£, — = LaxEq(€, ((-) ® (-))™)

where the bottom horizontal map is induced by the Tate diagonal 62. The vertical arrows in this square
are l-excisive equivalences, and on the level of endo-functors on €, this squares becomes the pullback
square

PoKo(X) ————— =X

l (id,62) l

Xo(XAX)™r ——= X (XAX)>n

whose horizontal arrows induce equivalences on bilinear parts (which for the bottom row are both trivial).

Our goal is to similarly construct functors D,, - &,, over € which induce equivalences 9, K, 5 0, L, and
fit together into pullback squares

(14) D, Dpy

| |

En — En1 XLaxBa(C,(nCn_1 (MA(=)A..n(=))e=n) LAXEQ(C, ((=) A oo A (<)) P)

whose horizontal arrows are (n — 1)-equivalences.
Suppose this data has been constructed for n — 1 and consider the square

D1 LaxEq(C, ((=) A ... A (=))¥5n)

| |

€1 —— LaxEq(C, (Cp1(n) A (=) A o A (=))E50)

Indeed, from the cube

(15)
Pr K (X) Pra Kn(X)
\
PrnKp_1(X) l Pr-1Kn-1(X)
(X A..AX)BEn ‘ (XA AX)En

(nCp_1(n) A X A.on X)BEn (nCp1 () AX A.on X)EEn
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whose front and back faces are cartesian we deduce a cartesian square

PoKp(X) ——= Pp K1 (X)

| |

(XA AX)E >

with
Q=(nCpr1 () AX A AX) " X0 yaxn axyms (X A A X))

Now compact objects of D,, can be described as compact objects X € D,,_;, with image X € C, equipped
with a dotted lift of the form

P K, (X)

7z
e
e
e
e

X P Ky (X) .

By the above fibre square we see that this is the same as objects X € D,,_1 equipped with a dotted lift of
the form

(X A...AX)BER

7
-
-
-
-

X—Q.

We can informally describe this as specifying a cocommutative n-fold cooperation a,,: X - X A...AX which
is equipped with two type of compatibility constraints. The compatibility with 0, K 7}51 can be described
in terms of the compatibility this n-fold product with the lower order cocommutative cooperations of
lower degree already defined on X by virtue of its lift to €,_; (recall that we assume already having a
factorization of the functor D,_; - € as D,,_1 — &,,_1 = € with the first functor inducing an equivalence

On1Kpq — On-1Ly_1). The compatibility with (X A ... A X)*®» then says that the composed map
X (XA AX)E 5 (XA AX)En

need to agree with the Tate diagonal 0% already defined on X by virtue of its lifting to D,,_;. All this
can be organized into a fibre square

@n Dn—l

| |

LaxEq(C, ((=) A ... A (=))P*) —— LaxEq(C, Q)

Combining the above square with Proposition 37 then yields a cartesian square

Dn Dn—l

| |

En —= €11 XLaxBq(C,(nCr_y (n)A(=)A...A(-))hn ) LaxEq(C, Q)

which is equivalent to the desired square (14) since the functor LaxEq(C, —) preserves fibre products.
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5.3. Rational spaces and Lie algebras. If C is a stable symmetric monoidal co-category in which the
Tate construction vanishes for all finite permutation groups vanish and O is some spectral cooperad then
the notions of O-coalgebras and divided powers O-coalgebras in € canonically coincides: indeed, in this
case the norm map determines an equivalence
(O(n)® (=) ®...® ()x, = (O(n)® (=) ®...® (=)

The same holds if one considers coalgebras or divided powers coalgebras over the cofree cooperad
cofree(O.,) generated by the < n part of O (in fact, for that we only need the Tate construction to
coincide for ¥; with ¢ < n). If, furthermore, € is the stabilization of (the pointification of) a cartesian
compactly generated co-category then the resulting notion of Tate coalgebras in € discussed in §5.2 co-
incide for the same reason with both the structure of a cocommutative algebra and a divided powers
cocommutative algebra.

An example where this happens is if € is a Q-rational co-category, for example, if € is the co-category
of chain complexes over Q. In this case C is also the stabilization of a the cartesian category 852 of simply
connected rational spaces, which is a left exact localization of the co-category 822 of pointed simply
connected spaces by the maps which induce an equivalence on rationalized homotopy groups. Then 861
is a cartesian compactly generated oo-category and so

Ch(Q) = Sp(83') = Sp(8g.,)
inherits a smash product as in §5.2, which simply corresponds to the usual tensor product of chain

complexes over Q. Since the Bar construction of the Lie operad is the commutative cooperad (up to a
shift, which we ignore at this point), we conclude the following:

Corollary 40. The notions of n-Tate coalgebras, n-cocommutative coalgebras and divided powers n-
cocommutative coalgebras all coincide. In particular, the n-excisive approximations of both 862* and
Alg;;.(Ch(Q)) coincide with the oo-category of (compactly generated) n-cocommutative coalgebras in

Ch(Q).

Passing to the limit one obtains compactly generated functors

857, — > coAlgo(Ch(Q)) <——— Algy, (Ch(Q))
[
lim,, coAlgy (Ch(Q))

which are fully-faithful when restricted to the full subcategories of 862* and Lie(Ch(Q)) on which the
Goodwillie tower converges. On the side of 861’* this includes all objects, and on the side of Alg; ;. (Ch(Q))

>

it includes at least the full subcategory Alg;i. (Ch(Q)) of connected Lie algebras. We hence obtain a pair
of fully-faithful inclusions

*

82, coAlgt(Ch(Q)) =<——Alg?l, (Ch(Q))

Proposition 41 (Main theorem of rational homotopy theory). The essential image of both fully-faithful
inclusions above coincide, and consists of the closure under filtered colimits of the full subcategory spanned
by the commutative coalgebras whose underlying object is 2-connective. This is also the full subcategory
of coAlgl«(Ch(Q)) generated by the trivial coalgebra structure on Q[2].

5.4. Simply connected spaces as Tate coalgebras. One of the new results of [Heu21] is an extension
of the classical theory of Quillen from rational simply connected spaces to all simply connected spaces.
In particular, the description of the n-excisive approximations of 8, in terms of n-Tate coalgebras in §5.2
yields a compactly generated functor

8. — coAlgi . = limcoAlgy e,
n
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which is fully-faithful when restricted to spaces on which the Goodwillie tower converges. This includes,
for example, all simply connected spaces, and so we obtain a fully-faithful inclusion

8§22C—— coAlgy,. -

Theorem 42 ([Heu2l]). The essential image of the above inclusion is the full subcategory

w,>2 w
tate <€ COAlgtate

coAlg

generated under filtered colimits by compact Tate coalgebras whose underlying finite spectrum is 2-
connective.

The proof involves showing that coAlgf,,. is ind-comonadic over spectra, and that the associated
finitray comonad coincides with X*°Q° when evaluated on 2-connective spectra. On the other hand,
it is also known from the work of Blomquist and Harper [BH16] that 822 is comonadic (and hence
ind-comonadic, as it is a compactly generated functor) over 2-connective spectra.
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