Polyhedral Groups

Yonatan Harpaz

March 2, 2009

1 The Lobachevski Model, Polyhedra and Reflections

In this lecture we will define the polyhedral groups which are particular examples of cocompact Kleinian groups and calculate some examples. Recall that on \mathbb{H}^3 every two points are connected by a unique geodesic. Hence it makes sense to talk about **convex sets** in \mathbb{H}^3 , which are sets containing the geodesic between each two points in them, or the convex hall of a set.

The case we are interested is that of a **polyhedron**, which are the convex hall of a finite set of points. It turns out that polyhedra are most convenient to handle in the Lobachevski model for \mathbb{H}^3 . In this model we consider the quadratic form

$$q(x) = -x_1^2 + x_2^2 + x_3^2 + x_4^4$$

where we use the notation $x = (x_1, x_2, x_3, x_4)$. We shall denote by b(x, y) the corresponding biliear form

$$b(x,y) = \frac{q(x+y) - q(x) - q(y)}{2}$$

Now consider

$$\widetilde{\mathbb{H}}^3 = \{ x \in \mathbb{R}^4 | q(x) = -1 \}$$

Note that $\widetilde{\mathbb{H}}^3$ can't contain vectors x with $x_1 = 0$. Sense $\widetilde{\mathbb{H}}^3$ is also closed under sign we see that it has two connected components: one component has $x_1 > 0$ and the other $x_1 < 0$.

The pseudo-riemannian metric on \mathbb{R}^4 induces a metric on $\widetilde{\mathbb{H}}^3$ which is actually riemannian. Now the map $x \mapsto -x$ induces an isometry between the two components of $\widetilde{\mathbb{H}}^3$ and the resulting riemannian manifold

$$\mathbb{H}^3 = \widetilde{\mathbb{H}}^3 / \pm 1$$

is called the Lobachevski model of the hyperbolic space.

The group $O_q(\mathbb{R})$ of linear transformations over \mathbb{R} that preserve q acts naturally by isometries on \mathbb{H}^3 . Note that $-1 \in O_q(\mathbb{R})$ acts trivially so this is actually an action of $PO_q(\mathbb{R})$. It turns out that $PO_q(\mathbb{R})$ is the full group of isometries of \mathbb{H}^3 . It has two connected components: one of orientation preserving isometries (denoted by $\text{PSO}_q(\mathbb{R})$) and the other with orientation reversing isometries.

It can be shown that in the Lobachevski model geodesics are given simply by intersecting linear 2-plains in \mathbb{R}^4 with $\widetilde{\mathbb{H}}^3$ (if the intersection is non-empty) and projecting to \mathbb{H}^3 . Similarly the analogue of a hyperplane is given by intersecting a linear 3-plain in \mathbb{R}^4 with $\widetilde{\mathbb{H}}^3$ and projecting to \mathbb{H}^3 .

It is convenient to describe a hyperplane H by

$$H = \{x \in \mathbb{R}^4 | b(x, v) = 0\}$$

where $v \in \mathbb{R}^4$ is some vector with q(v) > 0 (if q(v) < 0 then the intersection of this hyperplane with \mathbb{H}^3 will be empty). Note that such a hyperplane divides \mathbb{H}^3 into two half-spaces: one is given by b(x, v) < 0 and the other by b(x, v) > 0.

Just like in the Euclidean case, if the intersection of finitely many half spaces is bounded then its closure is a polyhedron. Further more any polyhedron can be constructed in that way. Hence in order to describe a polyhedron we shall give a list of vectors $v_1, ..., v_n$, normalized so that $q(v_i) = 1$, such that our the polyhedron is the intersection of the half spaces given by $b(x, v_i) < 0$.

The intersection of the polyhedron with each of the hyperplane (if nonempty) are called the **faces** of the polyhedron. The intersection of two faces (if non-empty) is an **edge** and the intersection of two edges (if non-empty) is a **vertex**. Each edge is the geodesic between two vertices and the polyhedron is the convex hall of its vertices.

As in Euclidean geometry, every two adjacent faces have a well defined **angle** between them, called the **dihedral angle** of the corresponding edge. This angle can be defined by choosing a point x on the edge and taking in T_x two vectors which are normal to the two hyperplane respectively. The dihedral angle is then defined as π minus the angle between these vectors (think of the analogous Euclidean situation). This does not depend on the choice of x on the edge.

If the two hyperplane are given by two normalized vectors v, u as described above, one can take the vectors $v_x, u_x \in T_x$ which correspond to v and u under the usual Euclidean translation as normal vectors. Hence we see that if the dihedral angle is α then $b(v, u) = -\cos(\alpha)$.

Just like in the Euclidean case we can define the **reflection through a hyperplane**. Given a hyperplane in \mathbb{H}^3 given (as above) by the normalized vector v, the following linear transformation on \mathbb{R}^4 is called a (hyperbolic) **reflection** through the hyperplane defined by v:

$$R_v(x) = x - 2b(x, v)v$$

This linear transformation preserves q because

$$q(x - 2b(x, v)v) = q(x) - 4b(x, v)b(x, v) + 4b(x, v)^{2} = q(x)$$

Hence $R_v \in O_q(\mathbb{R})$ and we write $\widetilde{R_v}$ for its image in $PO_q(\mathbb{R})$. It is also easy to verify that $\det(R_v) = -1$ so that $\widetilde{R_v}$ is in the non-trivial connected component of $PO_q(\mathbb{R})$.

Now consider a polyhedron P with defining normalized vectors $v_1, ..., v_n$. The **polyhedral group** associated to P is the subgroup $\Gamma(P) \subseteq \operatorname{PO}_q(\mathbb{R})$ generated by the \widetilde{R}_{v_i} 's.

Theorem 1.1. $\Gamma(P)$ is discrete in $\operatorname{PO}_q(\mathbb{R})$ if and only if the angle between each two adjacent faces is a submultiple of π , i.e. of the form $\frac{\pi}{n}$ for some natural $n \geq 2$. Further more in that case P is a fundamental domain for the action of $\Gamma(P)$ on \mathbb{H}^3 .

A polyhedron satisfying the conditions above will be called **good**. Now the group $\Gamma(P)$ has an index two subgroup $\Gamma^+(P) \subseteq \Gamma(P)$ of orientation preserving isometries. When P is good then $\Gamma^+(P)$ is a discrete subgroup of $\text{PSO}_q(\mathbb{R})$.

In the more familiar upper half plain model of the hyperbolic plain one can identify the group of orientation preserving isometries with $PSL_2(\mathbb{C})$. Hence by theorem 1.1 we get a cocompact Kleinian group. Our mission now is to calculate the invariant trace field and quaternion algebra of this group from the vectors $v_1, ..., v_n$.

2 Clifford Algebras

In order to preform the mission above we need to understand the isomorphism $\text{PSO}_q(\mathbb{R}) \cong \text{PSL}_2(\mathbb{C})$ a bit better. For this we will use the theory of Clifford algebras.

Let U be a vector space of dimension m over a field K and q a non-degenerate quadratic form on U. Let $O_q(K)$ be the group of linear transformations from U to U which preserve q. Each element in $O_q(K)$ has determinant ± 1 and we denote by $SO_q(K)$ the subgroup of elements of determinant 1.

Let $u_1, ..., u_m$ be a basis for U which is orthogonal with respect to q. We define the determinant of q to be

$$\det(q) = \prod_{i=1}^{m} q(u_i) \in K^* / (K^*)^2$$

If we change to another orthogonal basis the value of $\prod_{i=1}^{m} q(u_i)$ will change by a square in K so the determinant is a well defined element in $K^*/(K^*)^2$.

Now Define $C_q(K)$ to be the (non-commutative) K-algebra generated over K by $u_1, ..., u_m$ modulu the ideal generated by

$$\{u^2 - q(u) | u \in U\}$$

We think of U as the sub vector space of $C_q(K)$ spanned by $u_1, ..., u_m$. First note that for each $v, u \in U$ we get

$$b(u,v) = q(u+v) - q(u) - q(v) = (v+u)^2 - v^2 - u^2 = vu + uv$$

In particular if $i \neq j$ then $u_i u_j = -u_i u_j$ so that $C_q(K)$ is spanned over K by monomials of the form $u_1^{n_1} u_2^{n_2} \dots u_m^{n_m}$. Further more sense $u_i^2 \in K$ we can

restrict only to monomials of the above form where each $n_i \in \{0, 1\}$. It is an easy exercise to show that the set

$$\{u_1^{n_1}u_2^{n_2}...u_m^{n_m}|n_i\in\{0,1\}\}$$

is actually a basis for $C_q(K)$ over K, so the dimension of $C_q(K)$ over K is 2^n . We $C_q(K)$ has a sub algebra $B_q(K)$ which is spanned by

$$\{u_1^{n_1}u_2^{n_2}...u_m^{n_m}|n_i\in\{0,1\},\sum_i n_i=0\;(\mod\;2)\}$$

This is an 2^{n-1} -dimensional algebra over K. If n is even then the element $\alpha = u_1 u_2 \dots u_m$ is in the center of $A_q(K)$. If further more

$$q(\alpha) = \det(q) \in K^*/(K^*)^2$$

is non-trivial then $K(\alpha)$ is a central subfield of $B_q(K)$ so we can think of $B_q(K)$ as an algebra of dimension 2^{n-2} over $K(\alpha)$. We then denote it by $A_q(K(\alpha))$ (and preserve the convention that the field in brackets is the field over which the object is considered).

Now let us restrict to the case where U is 4-dimensional and assume that $\det(q) \in K^*/(K^*)^2$ is non-trivial. Now $C_q(K)$ has dimension 16, $B_q(K)$ has dimension 8, and $A_q(K(\alpha))$ has dimension 4. In fact $A_q(K(\alpha))$ is generated (over $K(\alpha)$) by the anticommuting elements u_1u_2, u_1u_3 which satisfy

$$(u_1u_2)^2 = -q(u_1)q(u_2)$$

 $(u_1u_3)^2 = -q(u_1)q(u_3)$

So we get that $A_q(K(\alpha))$ is a quaternion algebra over $K(\alpha)$ with an explicit description.

Recall the Skolem-Noehter theorem which says that all automorphisms of $A_q(K(\alpha))$ (over $K(\alpha)$ of course) are inner. It turns out that a similar statement holds for $C_q(K)$: every automorphism of $C_q(K)$ which preserves U is obtained by conjugating with an element $x \in A_q(K(\alpha))$ whose quaternionic norm lies in K (as apposed to $K(\alpha)$). Further more two such x, y induce the same automorphism if and only if their ratio is a scalar in K (because K is the center of $C_q(K)$). Hence the automorphism group of $C_q(K)$ can be identified with

$$D_q(K) = \{x \in A_q(K(\alpha)) | x\overline{x} \in K\} / K^*$$

Now every $T \in O_q(K)$ induces an automorphism of $C_q(K)$ which preserves U. Hence we get a map

$$SO_q(K) \longrightarrow D_q(K)$$

Which by the discussion above is an isomorphism of groups.

Now let $V \subseteq A_q(K(\alpha))$ be the subspace spanned over K by $1, u_1u_4, u_2u_4, u_3u_4$. Then the map

 $v \mapsto v u_4$

sends V into U and is invertible with inverse

$$u \mapsto u u_4^{-1} = u \frac{u_4}{q(u_4)}$$

Hence the map induced on U by x-conjugation can be induced on V by

$$v \mapsto xvu_4 x^{-1} u_4^{-1}$$

But recall that $A_q(K(\alpha))$ is spanned over $K(\alpha)$ by $1, u_1u_2, u_1u_3, u_2u_3$ which all commute with u_4 . α , on the other hand, anticommutes with u_4 . This means that conjugation by u_4 induces the action of $\operatorname{Gal}(K(\alpha)/K)$ on $A_q(K(\alpha))$, which we denote by $x \mapsto \sigma(x)$. Hence we can see which element in $\operatorname{SO}_q(K)$ corresponds to x by calculating the action

$$v \mapsto xv\sigma(x^{-1})$$

on V which preserves a form isomorphic to q. Note that this form is also equivalent to the form given by the norm on $A_q(K(\alpha))$.

Now recall that on $A_q(K(\alpha))$ we also have the usual conjugation $x \mapsto \overline{x}$ of quaternion algebras which is the identity on $K(\alpha)$. Note that the basis we took for for V is in fact $\{1, \alpha u_1 u_2, \alpha u_1 u_3, \alpha u_2 u_3\}$ and so the vectors in V are exactly the vectors satisfying $\sigma(v) = \overline{v}$.

A final consequence of this calculation is that if $p(t) = (t - \beta)(t - \gamma)$ is the minimal polynomial of x over $A_q(K(\alpha))$ (so that $\beta \gamma = Norm(x) \in K$) then the minimal polynomial of $\sigma(x^{-1})$ is $t^2 \sigma(p(t^{-1}))$. Hence the minimal polynomial of the corresponding element in $SO_q(K)$ is

$$q(t) = p(t) \otimes t^2 \sigma(p(t^{-1}))$$

where \otimes denotes tensor product of polynomials, i.e. the roots of q are all the products of a roots of p(t) and a root of $t^2\sigma(p(t^{-1}))$. In particular if the norm of x is 1 then the roots of the minimal polynomial of the associated element of $SO_q(K)$ are

$$\beta\sigma(\beta), \frac{\beta}{\sigma(\beta)}, \frac{\sigma(\beta)}{\beta}, \frac{1}{\beta\sigma(\beta)}$$

In particular if x has norm 1 then the corresponding element $T \in SO(q, k)$ satisfies

$$\operatorname{Tr}(T) = \operatorname{Tr}(x)\sigma(\operatorname{Tr}(x))$$

Note that in that case if T has at least one eigenvalue which is 1 then the trace of x is in K so

(*)
$$\operatorname{Tr}(T) = \operatorname{Tr}(x)^2$$

When $K = \mathbb{R}$ and q has signature (3, 1) we get that $\det(q) = -1$ so $K(\alpha) = \mathbb{C}$ and $A_q(K(\alpha)) \cong M_2(\mathbb{C})$. $D_q(\mathbb{R})$ is the group of matrices in $M_2(\mathbb{C})$ of real determinant modulu real scalars. We have a natural map $D_q(\mathbb{R}) \longrightarrow \mathrm{PGL}_2(\mathbb{C})$ which is surjective with kernel isomorphic to $\mathbb{Z}/2$. The non-trivial element in the kernel is

$$\mathbb{R}^* \begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix}$$

Hence this map induces an isomorphism of groups

$$\operatorname{PSO}_q(\mathbb{R}) \longrightarrow \operatorname{PGL}_2(\mathbb{C})$$

3 The Invariant Trace Field and Quaternion Algebra of $\Gamma^+(P)$

Let us now go back to our reflection group $\Gamma^+(P)$ generated by $\widetilde{R}_{v_1}, ..., \widetilde{R}_{v_m}$. Define $a_{i,j} = b(v_i, v_j)$ and for any sequence $\overline{i} = (i_1, ..., i_m)$ define the cyclic product

$$b_{\overline{i}} = a_{i_1, i_2} a_{i_2, i_3} \dots a_{i_m, i_1}$$

Let

$$K = \mathbb{Q}(\{b_{\overline{i}}\}) \subseteq \mathbb{R}$$

to be the subfield of \mathbb{R} generated by all the cyclic products. Define the K-vector space $V \subseteq \mathbb{R}^4$ to be the vector space spanned over K by the vectors of the form

$$v_{\overline{i}} = a_{i_1, i_2} a_{i_2, i_3} \dots a_{i_{m-1}, i_m} v_{i_m}$$

Then clearly V has dimension 4 over K. Further more

(

$$q(v_{\overline{i}}) = q(a_{i_1,i_2}a_{i_2,i_3}\dots a_{i_{m-1},i_m}v_{i_m}) =$$
$$a_{i_1,i_2}a_{i_2,i_3}\dots a_{i_{m-1},i_m})^2 = b_{(i_1,\dots,i_{m-1},i_m,i_{m-1},\dots,i_2)} \in K$$

And so we can restrict q to V. Let \tilde{q} denote the form q restricted to V and d the determinant of \tilde{q} . We claim that the invariant trace field of $\Gamma^+(P)$ is $K(\alpha)$ (where α as before is a root of f) and the invariant quaternion algebra is $A_q(K(\alpha))$.

We claim that $\Gamma_+(P)$ preserves V. This is because

$$R_{v_j}(v_{(i_1,\dots,i_m)}) = v_{(i_1,\dots,i_m)} - 2a_{i_1,i_2}a_{i_2,i_3}\dots a_{i_{m-1},i_m}b(v_{i_m},v_j)v_j = v_{(i_1,\dots,i_m)} - 2v_{(i_1,\dots,i_m,j)} \in V$$

This means that the isomorphism $\rho : \operatorname{PSO}_q(\mathbb{R}) \xrightarrow{\cong} \operatorname{PGL}_2(\mathbb{C})$ will send $\Gamma^+(P)$ into the sub quaternion algebra $A_{\widetilde{q}}(K)$ of $\operatorname{PGL}_2(\mathbb{C})$ defined over $K(\alpha)$ where $\alpha \in K^*/(K^*)^2$ is the determinant of \widetilde{q} .

Now the embedding $A_q^1(K(\alpha)) \hookrightarrow A_q^*(K(\alpha))$ induces an embedding $PA_q^1(K(\alpha)) \hookrightarrow PA_q^*(K(\alpha))$. Now the norm map $N : A_q^*(K(\alpha)) \longrightarrow K^*(\alpha)$ induces a map

$$\tilde{N}: PA_q^*(K(\alpha)) \longrightarrow K^*(\alpha)/(K^*(\alpha))^2$$

and we get a short exact sequence

$$1 \longrightarrow PA_q^1(K(\alpha)) \hookrightarrow PA_q^*(K(\alpha)) \longrightarrow K^*(\alpha)/(K^*(\alpha))^2 \longrightarrow 0$$

Since the last group is a 2-torsion group it follows that the square of any element in $PA_q^*(K(\alpha))$ lies in the image of $PA_q^1(K(\alpha))$.

Let $\Gamma_{+}^{(2)}(P)$ be the subgroup of $\Gamma_{+}(P)$ generated by squares of elements. Then the above discussion implies that ρ induces an embedding of $\Gamma_{+}^{(2)}(P)$ in $PA_q^1(K(\alpha))$. This means that the traces of elements in $\Gamma_{+}^{(2)}(P)$ lie in $K(\alpha)$, so the invariant trace field is contained in $K(\alpha)$. We will now show that the invariant trace field contains K and since it cannot be real we see it has to be $K(\alpha)$. This implies that the invariant quaternion algebra of $\Gamma^+(P)$ is in fact $A_q(K(\alpha))$.

We will now show that the invariant trace field of $\Gamma_+(P)$ contains K. Let $r_i \in \Gamma(P)$ denote the reflection by v_i and $\gamma_{i,j} = r_i r_j \in \Gamma^+(P)$. Let $m_{i,j}$ be elements in $\mathrm{SL}_2(\mathbb{C})$ representing the image of $\gamma_{i,j}$ in $\mathrm{PGL}_2(\mathbb{C})$. Then

$$\begin{split} \gamma_{i,j}(x) &= x - 2b(x,v_i)v_i - 2b(x-2b(x,v_i)v_i,v_j)v_j = \\ & x - 2b(x,v_i)v_i - 2b(x,v_j)v_j + 4a_{i,j}b(x,v_i)v_j \end{split}$$

So as a transformation from \mathbb{R}^4 to \mathbb{R}^4 we see that $\gamma_{i,j}$ has trace

$$4 - 2 - 2 + 4a_{i,j}^2 = 4a_{i,j}^2$$

From formula (*) we get that $Tr(m_{i,j}) = \pm a_{i,j}$ and so $a_{i,j}m_{i,j} = m_{i,j}^2 + I$. Now for any sequence $i_1, ..., i_m$ the product

$$\prod_{k=1}^{m} m_{i_k, i_{((k+1) \mod m)}} = \pm I$$

 So

$$m_{i_m,i_1}^{-1} = \pm \prod_{k=1}^{m-1} m_{i_k,i_{k+1}} = \prod_{k=1}^m \frac{m_{i_k,i_{k+1}}^2 - I}{a_{i,j}}$$

and by applying the trace we get

$$a_{i_m,i_1} = \prod_{k=1}^m \frac{\operatorname{Tr}(m_{i_k,i_{k+1}}^2 - I)}{a_{i,j}}$$

 \mathbf{so}

$$b_{(i_1,\dots,i_m)} = \prod_{k=1}^m a_{i_k,i_{((k+1) \mod m)}} = \prod_{k=1}^m \operatorname{Tr}(m_{i_k,i_{k+1}}^2 - I)$$

is in the invariant trace field of $\Gamma^+(P)$.

4 Example

We shall now calculate the invariant trace field and quaternion algebra for the simplest good polyhedron, which is the tetrahedron whose dihedral angles are all $\frac{\pi}{2}, \frac{\pi}{3}$ or $\frac{\pi}{4}$. We represent a polyhedron via its coxeter diagram

where each dot represents a face and the angle between two faces is $\frac{\pi}{n+2}$ where n is the number of lines between the vertexes. Now let $v_1, ..., v_4$ are normalized vectors representing the faces as before (where v_1 correspond to the lower right vertex of the coxeter diagram and the rest follow with counter clock wise order) and set $a_{i,j} = b(v_i, v_j)$. As we saw above $a_{i,j} = -\cos(\alpha_{i,j})$ where $\alpha_{i,j}$ is the dihedral angle. This means that $a_{i,j}$ is either 0, $\frac{1}{2}$ or $\frac{1}{\sqrt{2}}$.

Now note that the cyclic products $b_{\overline{i}}$ correspond to accumulated products taken over closed paths in the coxeter diagram. In our case each such closed path must pass a double edge an even number of times, which means that all the $b_{\overline{i}}$ are rational. Hence $K = \mathbb{Q}$.

Let V be the \mathbb{Q} form of q defined in the previous section and let \tilde{q} be the form q restricted to V. Then we see that V is spanned over \mathbb{Q} by the basis $B = \{v_1, \sqrt{2}v_2, \sqrt{2}v_3, 2v_4\}$. In this basis the form \tilde{q} is represented by the matrix

$$\begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 2 & 1 & 0 \\ 0 & 1 & 2 & 2 \\ 1 & 0 & 2 & 4 \end{pmatrix}$$

In a more familiar notation, if $\{x,y,z,w\}$ is a dual basis to B then \widetilde{q} can be written as

$$x^{2} + 2xy + 2xw + 2y^{2} + 2yz + 2z^{2} + 4zw + 4w^{2} =$$
$$(x + y + w)^{2} + (y - w + z)^{2} + (z + 3w)^{2} - 7w^{2}$$

and so an orthogonal basis $\{u_1, u_2, u_3, u_4\}$ for V is given by the dual basis to $\{x + y + z, y - w + z, z + 3w, w\}$. Then

$$\widetilde{q}(u_1) = 1$$
$$\widetilde{q}(u_2) = 1$$
$$\widetilde{q}(u_3) = 1$$
$$\widetilde{q}(u_4) = -7$$

so the determinant is -7 and the invariant trace field is $\mathbb{Q}(\sqrt{-7})$. Further more we see that the invariant quaternion algebra is $\mathbb{Q}(\sqrt{-7})(i, j)$ such that

$$i^2 = -q(u_1)q(u_2) = -1$$

$$j^2 = -q(u_1)q(u_3) = -1$$

Note that this quaternion algebra is non-trivial. To see this, note that this quaternion algebra is obtained from the (non-trivial) standard quaternion algebra $\mathbb{Q}(i, j)$ by tensoring with $\mathbb{Q}(\sqrt{-7})$.

By the theory of quaternion algebras we know that such a tensoring trivializes the algebra if and only if the field $\mathbb{Q}(\sqrt{-7})$ was a subfield of $\mathbb{Q}(i, j)$, i.e. if there was an element $x \in \mathbb{Q}(i, j)$ satisfying $x^2 = -7$. This element would have to be traceless, so x = bi + cj + dk $(b, c, d \in \mathbb{Q})$. such that

$$-b^2 - c^2 - d^2 = -7$$

This would means that there exist integers a, b, c, d, with $a \neq 0$, such that

$$7a^2 - b^2 - c^2 - d^2 = 0$$

A simple check shown that this equation has no non-zero solution mod 8, and so by decent has no non-zero integer solutions.

This quaternion algebra cannot ramify in an ideal of characteristic $\neq 2$. The reason is that mod every p there exists a solution to

$$a^2 + b^2 + c^2 + d^2$$

and if $p \neq 2$ then this equation is smooth so we can lift the solution to \mathbb{Q}_p , resulting in an element of norm zero in $\mathbb{Q}_p(i, j)$ (this actually shows that $\mathbb{Q}(i, j)$ has no finite ramification other then 2).

Since $\mathbb{Q}(\sqrt{-7})$ has no real embeddings we see that $\mathbb{Q}(\sqrt{-7})$ cannot ramify at ∞ . Since it must ramify it an even (and non-zero because its non-trivial) number of places we see that it must ramify exactly at the two ideals

$$P_2 = \left(\frac{1+\sqrt{-7}}{2}\right)$$
$$P'_2 = \left(\frac{1-\sqrt{-7}}{2}\right)$$

which sit over the prime 2 in $\mathbb{Q}(\sqrt{-7})$.