Quasi-unital co-Categories

YONATAN HARPAZ

Inspired by Lurie’s theory of quasi-unital algebras we prove an analogous result for oco-
categories. By constructing a suitable model category of non-unital complete Segal spaces,
we show that the unital structure of an oco-category can be uniquely recovered from the
underlying non-unital structure once suitable candidates for units have been identified. The
main result of this paper can be used to produce a proof for the 1-dimensional cobordism
hypothesis, as described in a forthcoming paper of the author.

Introduction

The notion of units in higher category theory carries considerably more structure than the
corresponding discrete notion. Informally speaking, given an co-category € we are provided
not only with a unit morphism /- : C — C for every object C € €, but also with the precise
way in which these are units, i.e., with explicit homotopies of the form Ipof ~ f and folc ~ f
for every morphism f : C — D. Furthermore, we are provided with higher homotopies
exhibiting the inner coherence of the above data as well as its compatibility with composition of
morphisms (along with all of its higher structure).

This bundle of information is encoded differently in different models for the theory of oco-
categories. In this paper we will take up the point of view developed by Rezk in his foundational
paper [14]. In [14], Rezk constructs a model for the theory of co-categories in the form of
complete Segal spaces, which are simplicial spaces satisfying certain conditions. Such a
simplicial space X determines an oco-category € which can be described informally as follows:

(1) The space of 0-simplices of X corresponds to the objects of C.

(2) The space of 1-simplices of X corresponds to the morphisms of €, where the target
and source of a given morphism are provided by the face maps dy, d; : X; — Xp.

(3) The space of 2-simplices of X encodes the composition in €. In particular, we can think
of a triangle o € X, as encoding a homotopy from dy(o) o d»(o) to di(o).

(4) The space of 3-simplices of X provides us with associativity homotopies. Similarly,
the spaces of n-simplices of X for n > 3 provide us with higher coherence homotopies
for the associativity structure.
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In this setting it natural to ask what do the structure maps p* : X,, — X, for the various
p : [m] — [n] encode. This can be described as follows. The higher face maps give information
which is analogous to the source and target maps encoded by the face maps [0] — [1], i.e.
they tells us to which objects, morphisms, etc. a specific piece of structure applies to. The
degeneracy maps, on the other hand, have a different interpretation - they encode the unital
structure of C.

The 0’th degeneracy map sy : Xo — X; tells us for each object what its identity morphism
is. Similarly, the two degeneracy maps sg, s; : X; — X, provides us with homotopies of the
form Ip of ~ f and f o I >~ f for each morphism f : C — D. The higher degeneracy maps
can be interpreted as exhibiting the coherence of the unital structure with the composition and
associativity structure.

The fact that the unital structure is encoded in the collection of degeneracies shows that it
contains a somewhat intricate web of data. However, it also tells what we need to do in order to
forget it: we should simply consider X without the degeneracy maps, i.e. consider only the
underlying semi-simplicial space.

A first motivation for forgetting this data comes from situations in which there are no natural
choices for this vast unital structure. Such a case occurs, for example, when one is attempting to
construct various cobordism co-categories. Suppose that we want to describe the co-category
whose objects are closed n-manifolds and morphisms are cobordisms between them. Since
cobordisms have their own automorphisms we can’t simply take them as a set, but rather as the
space classifying the corresponding topological automorphism groupoid. Gluing of cobordisms
induces a weak composition operation on these classifying spaces.

As explained in [12, § 2.2], this composition structure naturally leads to a semi-simplicial
space semiCob,, satisfying the Segal condition. Such objects are referred to there as semiSegal
spaces. In order to promote semiCob,, to a full simplicial space, one needs to understand the
behaviour of units in these cobordism categories.

Now given an n-manifold M there will certainly be an equivalence class of cobordisms M — M
which are candidates for being the "identity" - all cobordisms which are diffeomorphic to M x I.
However it is a bit unnatural to choose any specific one of them. Note that even if we choose a
specific identity cobordism M x I we will still have to arbitrarily choose diffeomorphisms of
the form [M x I1][,, W = W for each cobordism W out of M as well as many other coherence
homotopies.

These choice problems can be overcome in various ways, some more ad-hoc than others, and
in the end a unital structure can be obtained. In other words, semiCob,, can be promoted to a
Segal space Cob,,. However, there is great convenience in not having to make these choices.
As claimed (but not proved) in [12], this unital structure is actually uniquely determined once
we verify that suitable candidates for units exist.

Exploring this issue further, we see that an obvious necessary condition for a semiSegal space to
come from a Segal space is that each object admits an endomorphism which is neutral with
respect to composition (up to homotopy). Following Lurie [10, §5.4.3], we will call such
morphisms quasi-units. Informally, one is led to consider the following questions:
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(1) Given a non-unital co-category C in which every object admits a quasi-unit, can C be
promoted to an oco-category C?

(2) If such a C exists, is it essentially unique?
(3) Given two co-categories C, D with underlying non-unital oo-categories@,@, can the

. ) —D
functor category CP be reconstructed from a suitable functor category €~ ?

In this paper we give a positive answer to the above questions. More precisely, we will construct
a monoidal model category Comp, which is a quasi-unital analouge of Rezk’s complete Segal
space model category Comp. We will then show that the forgetful functor Comp — Comp;
fits into a Quillen equivalence between Comp and Comp,. Furthermore, we will show that
this Quillen equivalence preserves suitable symmetric monoidal structures. This will yield an
affirmative answer to all three questions above.

Before outlining our construction, let us explain our motivation for considering this question. As
explained in [12], a result of this kind can be used to facilitate the construction of the cobordism
categories. However, the relationship between such questions and the cobordism hypothesis
goes beyond this mere added efficiency. In particular, one can actually use the result above in
order to prove the n = 1 case of the cobordism hypothesis (in the setting of co-categories).
This application is described in [3].

Let us now describe our approach to constructing Comp,. As explained above, when we encode
the structure of an oco-category in a simplicial space, what we need to do in order to remove the
unital structure is to remove the degeneracy maps. This leads to the notion of a semiSegal space,
which is defined formally in § 1.4. The data of a semiSegal space X describes a non-unital
oo-category with space of objects Xj.

The next step is to understand what it means for a morphism f € X such that dy(f) = d,(f) to
be a quasi-unit, i.e. to be neutral with respect to composition. This is defined formally in § 1.4.
We shall say that a semiSegal space is quasi-unital if it admits quasi-units for every object.
One can then phrase question (1) above in terms of quasi-unital semiSegal spaces. However,
in order to get any intelligent answer one should work not only with such semiSegal spaces
themselves, but also with a correct notion of mappings between them. In particular, questions
(1) and (2) should be considered together for an entire suitable co-category of quasi-unital
semiSegal spaces.

A first discouraging observation is that maps of semiSegal spaces need not in general send
quasi-units to quasi-units. This statement should be interpreted as follows: the structure of units
is not a mere condition. Indeed, if this was the case one would expect the forget-the-units
functor to be fully-faithful. Instead, we see that if X, Y are two Segal spaces with underlying
semiSegal spaces X, Y, then amap f : X — Y has a chance of coming fromamap f : X — ¥
only if it sends quasi-units to quasi-units. Hence we conclude that the collection of quasi-units
should be marked as part of the data. The main result of this paper says that this is in fact all one
needs to specify - all the additional unital structure is then essentially uniquely determined.

Our second observation is that instead of marking the quasi-units, one can mark the slightly
larger collection of invertible morphisms. These are the morphisms composition with which



4 Y. Harpaz

induces weak equivalences on mapping spaces. A simple lemma (which we prove in §1.5)
says that a map of semiSegal spaces sends quasi-units to quasi-units if and only if it sends
invertible edges to invertible edges. Furthermore, the condition that an object admits a quasi-unit
is equivalent to the condition that this object admits an invertible morphism out of it.

From this point of view we see that marking the invertible edges is essentially the same as
marking the quasi-units. Furthermore, this alternative is much more convenient in practice. This
is due to the fact that invertibility is a considerably more robust notion - for example, one does
not need to check that a morphism has equal source and target before considering its invertibility.
Furthermore, a morphism will stay invertible if we "deform it a little bit", i.e. the space of
invertible 1-simplices is a union of connected components of X .

Now in order to prove a result such as the one we are interested in here one might like a
convenient model category in which one can consider semi-simplicial spaces for which certain
1-simplices have been marked. This naturally leads to the category of marked semi-simplicial
spaces in which we will work from § 1.7 onward.

In [14] Rezk constructs two successive left Bousfield localizations of the Reedy model structure
on the category of 82" of simplicial spaces. Our strategy in this paper will be to mimic

P
Rezk’s constructions in the category Sﬁs of marked semi-simplicial spaces. We will start in
op
§ 1.7 where we will establish the existence of a (monoidal) model structure on Sﬁr which is

analogous to the Reedy model structure on the category 8™ . We will refer to this structure
as the marked model structure. We will then construct a Quillen adjunction (which is not an
equivalence)

g+
op F AP
8§87 —=8%
RKT

between the Reedy model structure on 82" and the marked model structure on Sﬁsp. This
Quillen adjunction will be the basis of comparison between the model category Comp, that will
be constructed in this paper and the model category Comp of complete Segal spaces.

We will continue our strategy in §2 where we will localize the marked model structure in
order to obtain the semiSegal model category Seg . This model structure is analogous to the
Segal model structure of [14]. The fibrant objects of Seg, will be called marked semiSegal
spaces. We will then say that a marked semiSegal space is quasi-unital if each object admits
an invertible edge out of it and if all invertible edges are marked. This will formalize the
intuition described above regarding how to describe quasi-unital co-categories. We will denote
by QsS C Seg§ib the full simplicial subcategory spanned by quasi-unital marked semiSegal
spaces.

Following the footsteps of Rezk we observe that QsS itself is still not a model for the correct
oo-category of quasi-unital co-categories. As in the analogous case of Segal spaces, the problem
is that equivalences in QsS are far too strict. To obtain the correct notion one needs to localize
the oo-category associated to QsS with respect to a certain natural family of Dwyer-Kan
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equivalences which will be studied in §2.2. We will consider this co-localization (see § 1.2) of
QsS as the co-category of (small) quasi-unital co-categories.

In order to obtain a model category that models this co-category we will construct in § 3 a final
left Bousfield localization of Seg , which we denote by Comp,. The fibrant objects of Comp,
will be referred to as complete marked semiSegal spaces. The purpose of § 3 is to prove the
following (see Theorems 3.1.3 and 3.2.1):

Theorem 0.0.1

(1) The underlying oo -category of Comp, (see §1.2) is equivalent to the oo-category of
quasi-unital oo-categories (in the above sense).

(2) The adjunction F* I RK™T above descends to a (suitably monoidal) Quillen equiva-
lence between Comp and Comp,. Passing to underlying oo -categories we obtain the
desired equivalence between quasi-unital and unital oo -categories.

Theorem 0.0.1 will then give us the desired positive answers to all three questions appearing
above.

Relation to other work

The theory developed here is closely related and much inspired by the theory of quasi-unital
algebras introduced by Lurie in [10, §5.4.3]. There he considers non-unital algebra objects
in a general monoidal co-category D. Enforcing an existence condition for quasi-units and
an appropriate unitality condition for morphisms one obtains the co-category of quasi-unital
algebra objects in D. It is then proven that

Theorem 0.0.2 ([10]) The forgetful functor from the oco-category of algebra objects in D to
the oo -category of quasi-unital algebra objects in D is an equivalence of oo -categories.

Note that if D is the monoidal co-category of spaces (with the Cartesian product) then algebra
objects in D can be identified with pointed co-categories with one object. Similarly, quasi-unital
algebra objects in D can be considered as pointed quasi-unital co-categories with one object.
Hence we see that there is a strong link between the main result of this paper and Theorem 0.0.2.
However, even when restricting attention to quasi-unital co-categories with one object, our
result is not a particular case of Theorem 0.0.2. This is due to the fact that the mapping space
between quasi-unital co-categories with one object does not coincide, in general, with the
corresponding space of pointed maps.

In the context of strict n-categories the notion of quasi-units has enjoyed a fair amount of
interest as well. In [9], Kock defines the notion of a fair n-category, which in our terms
can be called a strict quasi-unital n-category. For n = 2 and for a variation of the n = 3
case Kock and Joyal have shown that a (non-strict) unital structure can be uniquely recovered
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(see [7]). In [8] Kock and Joyal further show that every simply connected homotopy 3-type can
be modelled by a fair 3-groupoid (see [8]). The main difference between their work and the
present paper is that we address the (manifestly non-strict) case of quasi-unital co-categories
(or (oo, 1)-categories, as opposed to (n, n)-categories). Furthermore, our results are framed in
terms of a complete equivalence between the notions of unital and quasi-unital co-categories.

1 Preliminaries and overview

Let A denote the simplex category, i.e., the category whose objects are the finite ordered sets
[n] = {0, ...,n} and whose morphisms are non-decreasing maps. Let 8 = Set®” denote the
category of simplicial sets. The category 8§ can be endowed with the Kan model structure,
making it a model for the homotopy theory of spaces. When working with the Kan model
structure we will often refer to objects in & as spaces. We will say that two maps f, g : K — L
in 8§ are homotopic (denoted f ~ g) if they induce the same map in the homotopy category
associated to the Kan model structure. A point in a space K will mean a 0-simplex and a path
in K will mean a 1-simplex.

The category § can also be endowed with the Joyal model structure, making it a model
for the homotopy theory of oco-categories. We will refer to Joyal-fibrant simplicial sets as
oo -categories.

A simplicial category is a category enriched in 8. The category Catg of small simplicial
categories carries a model structure in which the weak equivalences are the Dwyer-Kan
equivalences (see [0]). This model category admits a Quillen equivalence

[
8§ — Catg
N

to the Joyal model category, where N is the simplicial nerve functor (see [11, Theorem
2.2.5.1]). In particular, Catg is an equivalent model for the homotopy theory of oco-categories.

1.1 Symmetric monoidal and simplicial model categories

In this paper we will work a lot with symmetric monoidal simplicial model categories. Let
us briefly review the relevant definitions:

Definition 1.1.1 Let M be a category and ® : M x M — M a symmetric monoidal product.
We say that ® is closed if there exists an internal mapping functor M x M — M, typically
denoted by (X,Y) — YX, together with natural maps vxy : Y ® X — Y which induce
isomorphisms

Hom (Z,Y*) — Hom(Z ® X, Y)

for every X, Y, Z. These isomorphisms are sometimes referred to as the exponential law.
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Remark 1.1.2 If M is presentable and ® is a symmetric monoidal product then ® is closed
if and only if it preserves colimits separately in each variable. This follows from the adjoint
functor theorem.

Definition 1.1.3 Let (C, ®), (D, X) be two symmetric monoidal categories and € é D
an adjunction. Let *
oxy : RX)QR(Y) — RXKXY) u:le— R(lp)
be a lax structure on R and
Bzw : LEZRW) — LR LW) v:L(e) — 1p

a colax structure on £. We will say that the lax-colax pair (o y, u), (Bz,w, V) is compatible
with the adjunction if the diagrams

ZoOW—— = REL@) O REW)  LRE) @ RY) " REK R )

J/ l"%(z),uw) lﬂﬂzo{),ﬂz(y) \L
R(Bz,w)

RL(Z @ W) —— R(L(Z) K L(W)) LARX))HLRY) —=XKY

commute (where the unnamed maps are given by the unit/counit of the adjunction £ - R). An
adjunction together with a compatible lax-colax pair is called a lax-monoidal adjunction. We
will say that a lax-monoidal adjunction is strongly monoidal if £ is monoidal, i.e. if 3w
and v are natural isomorphisms. We refer the reader to [17] for more details.

Remark 1.1.4 Let £ 4 R be an adjunction. Then for any lax structure (ax y,u) on R there is
a unique colax structure (37w, v) on £ such that the pair (ax y, u), (82w, v) is compatible with
the adjunction. Similarly, any colax structure on £ can be extended to a unique compatible
lax-colax pair.

Definition 1.1.5 Let M be a model category with a closed symmetric monoidal product ®
such that the unit of ® is cofibrant. We say that M is compatible with ® if for every pair of
cofibrations f : X’ — X, g : Y/ — Y the induced map

h:xey] [ XeV] —xov
X'®Y’
is a cofibration, and is further a trivial cofibration if at least one of f, g is trivial. This condition
is commonly referred to as the pushout-product axiom. In this case we say that M is a
symmetric monoidal model category.

Remark 1.1.6 The definition above can be extended to the case where the unit of ® is not
necessarily cofibrant (see [6] Definition 4.2.6). However, since in our case the units will always
be cofibrant it will simplify matters for us to assume this from now on.
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Example 1.1.7 The Kan model structure on 8 is compatible with the Cartesian monoidal
structure.

Definition 1.1.8 Let (M, ®), (N, X) be two symmetric monoidal model categories. A lax-
monoidal Quillen adjunction £ 4 R between M and N is a Quillen adjuntion equipped with a
lax-colax structure compatible with the adjunction (see Definition 1.1.3). We note that there is no
compatibility requirement between the lax-colax pair and the model structure. We will say that
a lax-monoidal Quillen adjunction is strongly monoidal if £ is monoidal, i.e., if the structure
maps of the colax structure are isomorphisms. We will say that a lax-monoidal adjunction is
weakly moneoidal if the structure maps of the colax structure are weak equivalences.

Definition 1.1.9 Let M be a symmetric monoidal model category. A simplicial sturcture on
M is a strongly monoidal Quillen adjunction

S—/—=M.
R
where 8 is endowed with the Kan model structure. In this case we say that M is a symmetric
monoidal simplicial model category. M then acquires a natural enrichment over 8 given by

Map,(X,¥) & R (¥¥)
and one has natural isomorphisms
Mapg (K, Mapy(X, Y)) 2 Mapy (£(K), Y¥) = Mapy(£(K) © X, Y)

for K € 8, X € M° and Y € M. When there is no room for confusion we will usually abuse
notation and denote £(K) simply by K.

Remark 1.1.10 A simplicial structure can be defined also for M which do not posses a
symmetric monoidal structure but instead carry an action of 8 which satisfies analogous
conditions to those of definition 1.1.5.

1.2 Underlying oo-categories and oo-localizations

Though working mostly with model categories, we will always consider them as strict incarnations
of their underlying co-categories. To give a precise definition let us follow the approach of [4]
via a universal property. We begin by recalling the notion of co-localization (see [4]).

Definition 1.2.1 Let f : ¢ — D be a map of co-categories (i.e., fibrant objects in the Joyal
model structure, see § 1) and let W be a collection of morphisms (edges) in C. We will say that
the map f exhibits D as the co-localization of C with respect W if for every co-category &
the restriction map

f* :Fun(D, &) — Fun(C, &)

is fully-faithful, and its essential image is spanned by those functors g : ¢ — € which
send every morphism in ‘W to an equivalence. In this case the co-category D is essentially
determined by this condition and will often be denoted simply by C[W~'].
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Now when W is a set the co-localization C[W~!] always exists (as a locally small co-category).

Furthermore, if M is a model category with a collection of weak equivalences W then it can be

shown that M, &f M[W~!] exists as a locally small co-category without requiring that W is

a set. We will refer to M, as the underlying co-category of M.

The oo-category M, can be explicitly constructed in various ways. By taking the Rezk nerve
of M with respect to W one can construct a simplicial space which is a model for M, in
the model category of complete Segal spaces (see [14]). Alternatively, one can construct the
Dwyer-Kan simplicial localization of M with respect to W (see [1]) to obtain a simplicial
category which is a model for M via the (derived) simplicial nerve functor ([4, Proposition
2.2.1]). Thirdly, and most relevant to us, is the last option, which exists when M carries the
structure of a simplicial model category. In this case, the full simplicial subcategory M C M
spanned by the fibrant-cofibrant objects is a model for M, (see [2]). Note that in this case e
will be a fibrant simplicial category, and so we can write directly N(M™) ~ M,

A particularly common case of oo-localization is the following (see [11, Definition 5.2.7.2]):

Definition 1.2.2 Let C be an co-category and W a collection of morphisms in €. We will say
that a map of oo-categories f : € — D exhibits D as a left co-localization of C with respect
to W if the following conditions are satisfied:

(1) The map f admits a fully-faitful right adjoint.

(2) A morphism « isin W if and only if f(«) is an equivalence.

It is not hard to verify that any left co-localization is in particular an oco-localization in the
sense above (see [11, Warning 5.2.7.3]). Note that if f : € — D is a left co-localization with
respect to some W then this W is completely determined by condition (2) above. One may
hence simply say that f is a left co-localization (without referring to W) whenever f has a
fully-faithful right adjoint. The most common source of left co-localizations is the following:

Lemma 1.2.3 Let M be a model category and let M be a left Bousfield localization of M.
Let W be the collection of weak equivalences of M. Then the natural left Quillen functor
M — M (given by the identity) induces a left co-localization Mo, — M, with respect to
the image of W in M .

Proof According to [4] the Quillen adjunction Id : M — M induces an adjunction M, 4 Mo
in the oco-categorical sense. Furthermore, by computing derived mapping spaces using
cosimplicial resolutions of the source one may easily verify that the right Quillen functor
Id : M — M induces a weak equivalence on derived mapping spaces, i.e., that the induced
functor

Ids : Moo — Moo

is fully-faithful. Finally, property (2) of Definition 1.2.2 is satisfied since model categories are
saturated as relative categories. O
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1.3 Semi-simplicial spaces and the Reedy model structure

Let Ay C A denote the subcategory consisting only of injective maps. A semi-simplicial set
is a functor Ay’ — Set. Similarly, a semi-simplicial spaces is a functor A;* — 8. The
category of semi-simplicial spaces will be denoted by ga"

We will denote by A" the standard n-simplex considered as a semi-simplicial set (it is given
by the functor A;® — Set represented by [n]). When we want to refer to the standard simplex
as a simplicial set we will denote it as |A”| € 8. This notation is consistent with our notation
for the geometric realization functor which we consider as the functor

L $A 8

o]
given by the coend |X| = fAS X. x |A*].

For a subset I C [n] we will denote by A’ C A" the semi-simplicial subset corresponding to
the sub-simplex spanned by /. We will denote by

(1-1) Sp" = A0l H AlL2} H ]_[ Alr=tn o An

At} a2t aAln=1}
the spine of A", i.e., the semi-simplicial subset consisting of all the vertices and all the edges
between consecutive vertices.

We will occasionally abuse notation and consider A" as a semi-simplicial space as well (levelwise
discrete). Orthogonally, we will sometimes consider a space K € § as a semi-simplicial space
which is concentrated in degree zero, i.e., as the semi-simplicial space given by Ky = K and
K, =0 for n > 0.

The category 82" carries the Reedy model structure with respect to the Kan model structure
on § and the obvious Reedy structure on A;. Since A; is a Reedy category in which all
non-trivial morphisms are increasing the Reedy model structure coincides with the injective
model structure. This is a particularly nice situation because we have a concrete description
for all three classes of maps. In particular, the weak equivalences and cofibrations are defined
levelwise, and fibrations are defined in terms of matching objects. We refer the reader to [5,
§ 15] for more details.

Consider the adjunction
8 A?p LK S AP
F
where F is the forgetful functor (or the pullback along the inclusion Ay < A) and LXK is the
left Kan extension functor. Given a simplicial space Z we shall denote by Core(Z) C F(Z)
the minimal semi-simplicial subspace of F(Z) containing all the non-degenerate simplices.

Now recall the standard (non-Cartesian) symmetric monoidal product X, Y — X ® Y on SA?p
defined, as in [15] § 3, by the formula

XY™ Core(LKX) x LK(Y))

The unit of ® is A°.



Quasi-unital oo-Categories 11

Remark 1.3.1 One can obtain an explicit description of the space of k-simplices in X ® Y as
follows: let P denote the set of injective order preserving maps

p: [k] — [n] x [m]

such that pp,; o p : [k] — [n] and pp, 0 p : [k] — [m] are surjective (such maps are
sometimes called shuffles). Then one has
XY= [] P" x X, x Ya.
n,m<k
In particular, the set of k-simplices of A" @ A™ can be identified with the set of all injective
order preserving maps [k] — [n] X [m].

Remark 1.3.2 The natural transformations Core(e) — JF(e) and LK(F(s)) — e may be
combined to produce a natural map

LKX ®Y) = LK(Core(LKX) x LK(Y))) — LKX) x LK(Y)

which is in fact an isomorphism (to see this it is enough to verify the case X = A", Y = A"
by a direct computation). Combined with the identity map LK(A?) — LK(A®) we see that
LXK carries the structure of a monoidal functor. This implies, in particular, that the geometric
realization functor |e| : 82" '8 is monoidal as well,

The symmetric monoidal product ® is closed and the corresponding internal mapping object
can be described explicitly as follows: if X, Y are two semi-simplicial spaces then the mapping
object Y* is given by

(Y, = Map(A" @ X, Y).

The Reedy model structure on 8" s compatible with ®. This can be easily verified using
the explicit formula in Remark 1.3.1. Furthermore, SAA'p admits a natural simplicial structure
(see Definition 1.1.9) given by the adjunction

L op
§—= SAs
R

where L£(K) is glven by K concentrated in degree 0 and R(X) = Xj. In particular, the Reedy
model category §4 s is a symmetric monoidal simplicial model category with respect to .
1.4 SemiSegal spaces and quasi-units

Definition 1.4.1 Let X be a semi-simplicial space. Let [n],[m] € A; be two objects and
consider the commutative (pushout) diagram

[0] —>— [m]

in lgn,m

[n] e [n+ m]
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where f,, ,,(i) =i and g, ,,({) = i + n. We will say that X satisfies the Segal condition if for
each [n], [m] as above the induced commutative diagram

*
gn,m
Xm+n > Xm

fn*,ml lo*

Xn"%.xo

is homotopy Cartesian. We will say that X is a semiSegal space if it is Reedy fibrant and
satisfies the Segal condition. Note that in that case the above square will induce a homotopy
equivalence

Xinn = Xin Xx, X

Remark 1.4.2 A simple induction argument shows that if X is a semiSegal space then the
natural map

X, = Map (A”,X) — Map (Sp”,X) ~ X Xx, X1 Xx, .- Xx, X1

is a weak equivalence (where Sp” C A" is the n’th spine, see 1-1). For X Reedy fibrant the
above property is equivalent to the Segal condition.

Example 1.4.3 Let D be a small non-unital simplicial category in which the mapping spaces
are Kan simplicial sets. We can associate with D a semiSegal space via a non-unital analogue
of the nerve construction as follows. For each n, let C°([n]) denote the non-unital category
whose objects are the numbers O, ..., n and whose mapping spaces are
0 i>j
Map s ) = .
apes () (/) {* i<
As C5([n]) depends functorially on [n] € Ay we can get a semi-simplicial space N(D) by setting
N(D), = Map,, (€*([n]), D).

Note that N(D) will generally not be Reedy fibrant, but after applying the Reedy fibrant
replacement functor (which is a levelwise equivalence) one indeed obtains a semiSegal space.

We think of a general semiSegal space as encoding a relaxed version of Example 1.4.3, i.e.
a non-unital co-category. This can be described as follows: the objects of this non-unital
oo-category are the points of Xy. Given two points x,y € X, we define the mapping space
between them by

MapX(xa Y) = {x}' ><XO Xl XXO {)’}7

i.e., as the fiber of the (Kan) fibration

X] (M) XO X X()
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over the point (x,y). The space X, of triangles then induces a "weak composition" operation on
these mapping spaces, which can be described as follows. Given three points x,y, z € Xp, let us
denote by

Comp(x, y,2) = {0 € X3 | 0| pq0) =X, 0| a0 =¥, 0a020 =2}

The three restriction maps o — |, i3 yield a diagram of the form

Comp(x, y, z)

/ X\
Map, (x,y) x Mapy(y, z) Mapy (x, 2)
Since X is a semiSegal space it follows that ¢ is a trivial Kan fibration. One can then construct
a candidate for the composition of f € Mapy(x,y) and g € Mapy(y, z) by choosing a triangle
o € Comp(x,y,z) lying above (f,g) and considering o|, 02} as the composition g o f. It
should be noted that the choice of ¢ (and hence of g o f) is not unique. However, since ¢ is a
trivial Kan fibration the space of choices for o is contractible. In this sense the operation of
composition is essentially well-defined. In a similar way one can use the Segal condition in
dimension 3 in order to show that this weak composition is associative up to coherent homotopy,
in a suitable sense. We will refer the reader to [14] for a more detailed description in the unital
case.

Remark 1.4.4 As in the unital case, a semiSegal space carries more information than the
non-unital co-categorical structure on Xy described above. One aspect of this is that X, itself is
not a set, but a space, and the homotopy type of this space is not determined by the non-unital
oo-categorical structure. In the unital case (as well as the quasi-unital case, as we will see in
§3) this issue can be resolved via the notion of completeness.

Example 1.4.5 Let Z be a Kan simplicial set. Applying the 0’th coskeleton functor one
obtains a semi-simplicial space
X = cosko(Z)

which is given by X,, = Map (sko(A"),Z) = Z"*+!. Itis then easy to verify that X is a semiSegal
space. This semiSegal space encodes a trivial non-unital structure in which all the mapping
spaces are contractible. However, it can admit arbitrary homotopy types for the space of objects
Xo (see Remark 1.4.4).

Definition 1.4.6 Let X be a semiSegal space. We define its non-unital homotopy category
Ho(X) to be the non-unital category whose objects are the points of X, and whose morphism
sets are given by
Hompou (x, ) = mo(Mapy(x, ).

The weak composition described above induces an honest composition in Ho(X) which
can be described as follows. A component [h] € my(Mapy(x,z)) is the composition of
[f] € mo(Mapy(x, y)) and [g] € mo(Mapy(y, 2)) if and only if there exists a triangle o € X, such
that o[, (0.1} =f,0|x(12y = & and 0], (0,23 = h. The Segal condition in dimension 3 ensures
that the composition on Ho(X) is associative. However, Ho(X) is not unital in general.
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Our first goal when dealing with semiSegal spaces is to understand when a morphism f : x — y
is neutral with respect to composition. For this we need to extract in some way the action of f
on mapping spaces.

Definition 1.4.7 Let x,y,z € X, be points and f : x — y a morphism in X (i.e. a point
f € Mapy(x,y)). Consider the space

Cf.={oeXy|olyn =f,0la10p =2} € Comp(x,y,2)
together with the two restriction maps

(1-2) C;iz

Mapy(z, ) Mapy(z,y)
By the Segal condition we see that ¢ is a weak equivalence. We then define a homotopy class
[f1 € Hompys) (Mapy(z, x), Mapy(z, y))

by setting [f]. o [4]o[e]~". This can be considered as the homotopy class of the almost-defined
map f. obtained by composition with f. Similarly, one can define a homotopy class

[f1* : Homp(s) (Mapy(y, 2), Mapy(x, 2))

describing the homotopy class of pre-composition with f.

Warning 1.4.8 The notations [f]. and [f]* are a bit abusive, as they implicitly depend on the
point z € Xy. We hope that this will not result in any confusion.

Remark 1.4.9 Given a point z € X, the definition above yields a functor of non-unital
categories R, : Ho(X) — Ho(8) given by

Rz(x) = MapX(Z7x)7 RZ([f]) = [f]*

Similarly, we can construct a functor R* : Ho(X)°® — Ho(8) by setting

R*(x) = Mapy(x,2), R(IfD) =fT"

Warning 1.4.10 The functors described in Remark 1.4.9 can be considered as the representable
and corepresentable functors of X after descending to the (non-unital) homotopy category.
However, they are not the representable and corepresentable functors of Ho(X) itself as they
take values in Ho(8) and not in Set. Note that in the non-unital setting there is no Yoneda
lemma, and so the associations z — R, and z — R? can lose information in general.

The above construction can be used to determine when a morphism is neutral with respect to
composition:
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Definition 1.4.11 Let x € X, be an object and f : x — x a morphism in X. We will say that
f is a quasi-unit if for each z € X, the homotopy classes

[f1« € Homp(s) (Mapy(z, x), Mapy(z, x))

and
[f1* € Hompys) (Mapy(x, 2), Mapy (x, 2))
of Definition 1.4.7 are both the identity in Ho(S).

Definition 1.4.12 Let X be a semiSegal space. We will say that X is quasi-unital if every
object x € Xp admits a quasi-unit ¢ : x — x. We will informally say that X models a
quasi-unital co-category.

Warning 1.4.13 Even if X and Y are quasi-unital, a general map X — Y need not send
quasi-units to quasi-units. For example, let C be the non-unital category with one object * € C
and one morphism f : * — * such that f o f = f. Let D be the non-unital category with
one object * € D and two morphisms g,/ : x — x suchthat gog=goh=hog= g and
hoh=h. Let X, Y be the non-unital nerves of C and D (see Example 1.4.3), so that X and Y
are (levelwise discrete) quasi-unital semiSegal spaces (where the edges corresponding to f and
h are the quasi-units). Then there is a map X — Y which sends f to g, even though f is a
quasi-unit and g is not.

Example 1.4.14 The semiSegal spaces semiCob,, constructed in [12] § 2.2 (which model
the underlying non-unital oco-category of the n’th cobordism category) are easily seen to
be quasi-unital. Informally speaking, any trivial cobordism from an n-manifold M to itself
corresponds to a quasi-unit in semiCob,, .

Remark 1.4.15 If X is a quasi-unital semiSegal space then Ho(X) acquires a unique structure
of a unital category. However, this structure is not natural: given amap f : X — Y between
quasi-unital semiSegal spaces, the induced map Ho(f) : Ho(X) — Ho(Y) need not send
identity maps to identity maps, see Warning 1.4.13.

For each x € Xy, we will denote by X C Mapy(x, x) the maximal subspace spanned by the
quasi-units f € (Mapx(x,x)) o- As [f1. and [f]* depend only on the path component of " in
Mapy (x, x), we see that X is a union of connected components of Mapy (x, x).

Lemma 1.4.16 Let X be a semiSegal space and x € X a point. If X" is not empty then it is
connected.

Proof Let g;,q> : x —> x be two quasi-units. We need to show that g, g, are in the same
connected component of X;". Since X" is a union of components of Mapy(x, x) it is enough
to show that g, g, are in the same connected component of Mapy(x,x). Now since g, is a
quasi-unit the homotopy class

[Cll]* : MapX(-xa .X') — MapX(xa-x)
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is the identity. Unwinding the definitions, this implies that there exists a triangle o € X, of the

form
X
P

X——>X

for some ¢3 : x — x which is in the same connected component in Mapy(x,x) as ¢. Then g3
is necessarily a quasi-unit, and so the homotopy class

[q3]* : MapX(xv x) — MapX(x,x)

is the identity. This implies ¢; and g, are in the same connected component of Mapy(x,x). O

1.5 From quasi-units to invertible edges

As explained above, a general map of quasi-unital semiSegal spaces need not preserve quasi-units.
However, our interest in this paper is to study quasi-unital co-categories and only functors which
respect quasi-units. With this in mind, it will be useful to weaken the definition of quasi-units
and consider the more robust notion of invertible edges:

Definition 1.5.1 Let x,y € X, be two objects and f : x — y a morphism in X. We will say
that f is invertible if for every z € X, the homotopy classes

[f1« € Hompys) (Mapy(z, x), Mapy(z, y))
and
[f]* S HomHO(S) (Mapx()’> Z)a MapX(-xa Z))

of Definition 1.4.7 are isomorphisms in Ho(S).

Remark 1.5.2 Let f : x — y be a map and let z € X, be a point. Recall the maps ¢, ¢ of
diagram 1-2. Since v is a Kan fibration we see that [f], = [¢] o [<,9]’1 is an isomorphism if
and only if v is a trivial fibration. We hence conclude the following: [f]. is an isomorphism
for every z € X, if and only if each map of the form o : A3 — X such that o (A{2) =
has a contractible space of extensions @ : A> — X. A completely analogous argument shows
that [f]* is an isomorphism for every z if and only if each map of the form o : A% — X such
that o (A{%1}) = f has a contractible space of extensions & : A2 — X.

Invertible morphisms can be described informally as morphisms composition with which (on
either side) induces a weak equivalence on mapping spaces. Note that the notion of invertibility
does not presuppose the existence of identity morphisms, i.e., it makes sense in the non-unital
setting as well.

We will denote by X’ iI“V C X the maximal subspace spanned by the invertible vertices f € (X})o.
Observe that since X is Reedy fibrant the two restriction maps

Map (Az,X) — Map (A%,X) — Map (A{l’z},X)
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are fibrations. It is then an immediate corollary of Remark 1.5.2 that the subspace of X; spanned
by those f’s for which [f]. is an isomorphism (for every z € Xy) is a union of connected
components. Applying the analogous argument to [f]* we see that Xi™ C X; is a union of
connected components.

Given a morphism [f] € MapHQ(X) (x,y) = mo(Mapy(x, y)) in the homotopy (non-unital) category
of X, we will say that [f] is invertible if the image of [f] in my(X;) belongs to o(X™).

Definition 1.5.3 Let X be a semiSegal space. We will say that X is a semiKan space if every
edge in X; is invertible.

We frame the following lemma for future use:

Lemma 1.5.4 Let X be a semiSegal space. The collection of invertible morphisms in Ho(X)
satisfies the following closure properties:

(1) (2-out-of-3) If two of [f], [g] and [f o g] are invertible then the third is invertible as well.

(2) (2-out-of-6) If [f] o [g] is invertible and [g] o [h] is invertible then [f], [g] and [h] are
invertible.

Proof This follows from the fact that invertible edges are created by the collection of functors
R;,R*: Ho(X) — Ho(8)

for all z € X (see Remark 1.4.9) and the class of isomorphisms in Ho(8) satisfies 2-out-of-3
and 2-out-of-6. O

Our next goal is to verify that for the purpose of studying quasi-unital co-categories one can
replace the notion of quasi-units with that of invertible edges. We begin with the following
observation:

Lemma 1.5.5 Let X be a semiSegal space and x € Xy a point. Then x admits a quasi-unit if
and only if there exists an invertible edge with source x.

Proof If x has a quasi-unit then this quasi-unit is in particular an invertible edge with source x.
On the other hand, if f : x — y is an invertible edge then according to Remark 1.5.2 there
exist a triangle o : A2 — X of the form

y
N
q
X———=X

In light of Remark 1.4.9 we conclude that for every z € Xy the equality
[f1« = lflx o lgl«
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holds in Hompo(s)(Mapy(z, x), Mapy(z, y)) and the equality
f1* = [gl" o [fI"

holds in Homps)(Mapy(y, z), Mapy(x, z)). Since f is invertible this implies that g is a
quasi-unit. O

This means that the existence condition for quasi-units can be phrased equivalently in terms of
invertible edges. Our next proposition verifies that the associated restrictions on functors are
equivalent as well:

Proposition 1.5.6 Let ¢ : X — Y be a map between quasi-unital semiSegal spaces. The
following are equivalent:

(1) ¢ sends quasi-units to quasi-units.

(2)  sends invertible edges to invertible edges.

Proof First assume that ¢ sends invertible edges to invertible edges and let x € X, a point.
Since X is quasi-unital there exists a quasi-unit g : x — x. Then ¢ is invertible, and hence
according to Remark 1.5.2 there exists a triangle of the form

X
/ X
/
q
X————X

Arguing as in the proof of Lemma 1.5.5 we see that ¢’ is a quasi-unit as well. The map ¢ then
sends this triangle to a triangle of the form

o(x)

> X
/

o) ——2 )

where (q) is invertible, and hence ¢(q’) is a quasi-unit by the same argument. From
Lemma 1.4.16 we get that ¢ maps all quasi-units of x to quasi-units of (x).

Now assume that ¢ sends quasi-units to quasi-units and let g : x — y be an invertible edge.
Since X is quasi-unital there exist quasi-units ¢ : x — x and r : y — y. Since g is invertible
we get from Remark 1.5.2 that there exist triangles of the form

N N

X—>X y—m—m>Yy

(1-3)

Applying ¢ to these triangles and using the fact that ¢(q), ¢(r) are quasi-units we get from
Lemma 1.5.4 (2) that (g) is invertible. This finishes the proof of Proposition 1.5.6. O



Quasi-unital oo-Categories 19

Lemma 1.5.5 and Proposition 1.5.6 suggest that the notion of a quasi-unital co-category can
be encoded as semiSegal spaces in which every object admits an invertible edge out of it.
Furthermore, in order to consider only functors which respect quasi-units one can instead study
maps of semiSegal space which preserve invertible edges.

At this point it is worthwhile to consider the particular case of quasi-unital semiKan spaces
(see Definition 1.5.3). In this case every map automatically respects invertible edges (and hence
quasi-units) and so we can study it without any additional technicality. This analysis, which
will be explained in the next subsection, will be used in subsequent parts in order to establish
the main results of this paper.

1.6 Quasi-unital semiKan spaces and their classifying spaces

Recall that a semiSegal space is called a semiKan space if every morphism in X is invertible.
In this subsection we will study quasi-unital semiKan spaces via the geometric realization
functor

A s

o]
given by
A
|X]| :/ X x A" = diag(X)
where diag(X) is the diagonal simplicial set of X (when X is considered as a bisimplicial set).
When X is a quasi-unital semiKan space we will also refer to |X| as the classifying space of X.

We will say that X is connected if for each x,y € X, the mapping space Mapy(x,y) is non-
empty. Every quasi-unital semiKan space is a coproduct (in the category of simplicial spaces)
of connected quasi-unital semiKan spaces. We then observe that the geometric realization
functor commutes with coproducts (in fact with all colimits) and sends connected quasi-unital
semiKan spaces to connected simplicial sets. We will consequently refer to mo(|X|) as the set of
connected components of X.

Definition 1.6.1 We will say that a map f : X — Y of quasi-unital semiKan spaces is a
DK-equivalence if it induces a weak equivalence

Mapy (x, y) — Mapy (fo(x), fo(»))

for each x,y € X and a surjective map on connected components.

The functor |e| has a right adjoint IT : § — gav given by
1(Z), = Mapg(|A"[,Z)

for Z € §. When Z is a Kan simplicial set, the semi-simplicial space II(Z) is Reedy fibrant, and
one can easily verify that it is a quasi-unital semiKan space. Furthermore, the semiSegal space
1I(Z) clearly extends to a full Segal space (given by the same formula), which is a model for
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the fundamental co-gropoid of Z. In this section we will show that every quasi-unital semiKan

—

X space is DK-equivalent to 11 (|X \) where ® denotes the functorial Kan replacement functor
(see Corollary 1.6.6 below). In particular, every quasi-unital co-groupoid can be promoted to a
unital one, which is given explicitly as the fundamental co-groupoid of its classifying space.
This is a first step in proving the equivalence of quasi-unital and unital co-categories, and will
be used in subsequent parts in order to establish the main results of this paper.

We begin with the following lemmas:

Lemma 1.6.2 Let X be a semiSegal space. Let T,, C A" be the simplicial subset given by the
union of all triangles A4 +1} for i = 1,...,n — 1. Then the restriction map

(1-4) X, = Map(A", X) — Map (T, X)

is a trivial Kan fibration.

Proof Since X is Reedy fibrant we already know that 1-5 is a fibration, and so it is left to
prove that it is a weak equivalence. The simplicial subset T, contains the spine Sp" C A" (see
§ 1.3) and may be obtained from Sp” by performing pushouts along inclusions of the form
A? C A?. From the Segal condition we may then conclude that the restriction map

Map (T,,, X) — Map (Sp",X)

is a weak equivalence. Furthermore, the restriction map X, — Map (Sp”,X) is a weak
equivalence as well (see Remark 1.4.2) and so the map X, — Map(7,,,X) is a weak
equivalence. O

Lemma 1.6.3 Let X be a semiKan space. For 0 < i < n let Sf1 C A" be the simplicial subset
given by the union of the edge A% and the edges AU/} for j = 1,....n — 1. Then the
restriction map

(1-5) X, = Map(A", X) — Map (S, X)

n’

is a trivial Kan fibration.

Proof Since X is Reedy fibrant we already know that 1-5 is a fibration, and so it is left to
prove that it is a weak equivalence. Let T,, C A” be as in Lemma 1.6.2. Then T, contains Sﬁl
and may be obtained from S by performing pushouts alongs inclusions of the form A? C A2
and A3 C A%, In light of Remark 1.5.2 we may conclude that the restriction map

Map (T,,, X) — Map (., X)
is a weak equivalence. The desired result now follows from Lemma 1.6.2. O

Given a Kan simplicial set Z and points x,y € Z we will denote by €2(Z, x, y) the space of paths
in Z from x to y and by P(Z, x) the space of paths in Z which start at x.
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Theorem 1 6.4 Let X be a semiKan space an and x,y € Xy two points. Consider x and y as
points in |X | via the natural inclusion X, — |X |. Then the natural map

Mapy (x,y) — Q2 (|X|,x, y)

is a weak equivalence.

Proof We will rely on the main result of [13] which can be stated as follows:

Theorem 1.6.5 (Puppe) Let X,Y be two semi-simplicial spaces and let ¢ : X — Y be a
map such that for each f : [k] — [n] in Ay the square

is homotopy Cartesian. Then the square

Xo — [X]

|

Yo —— Y]

is homotopy Cartesian as well.

Let us now prove Theorem 1.6.4. Let x € X, be a point and define the semi-simplicial space
P(X,x) by:
P(X,x), = {0 € Xpq1 | 0| pq0y = x} C Xop1.

Fixani=1,..,n+1andlet S, ; C A""! be as in Lemma 1.6.3. Let Q, € Map (S, |, X)
be the subspace of those maps f : S¢ 41 — X which send A%} to x. In particular, the natural
map P(X,x), — Qy is a pullback of the restriction map X,y —> Map (8% |, X) which is
a trivial Kan fibration by Lemma 1.6.3. We hence get that P(X, x), — O, is a trivial Kan
fibration as well.

Now consider the map p : P(X,x) — X which sends o € P(X,x), to 0|, (1,..nt1y € X, Let
gn : On — Map (Sp", X) be the map induced by the restriction along the map ¢ : Sp" < S .,
which sends the vertices 0, ...,n of Sp” to the vertices 1,...,n + 1 of Si¢+1- Then for each

i=1,...,n+ 1 we obtain a commutative diagram of the form

i

(1-6) P(X,x), —— On P(X,x)

Xn —:> Map(spnv X) J—> XO
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where r; is induced by restriction along A{%% C §i | and s is the restriction along A{=1} C
Sp”. In particular, the horizontal maps of the external rectangle are the simplicial structure
maps of the inclusion AU=1} C A”_ Since the right square is homotopy Cartesian we conclude
that the external rectangle is homotopy Cartesian as well. This, in turn, implies that for every
map p : [k] — [n] in Ay the square

P(X, x)y —— P(X, x)
lpn ipk
f*
X, ————X;

is homotopy Cartesian. Hence by Puppe’s theorem the left square in the diagram

PX,x)y — |P(X,x)| ——= P <|3(\|x)

T

Xo ——— X| ———=IX|

is a homotopy Cartesian (where ev; is the function which associates to a path ~ its value ~y(1)).
Now note that py and ev; are both fibrations. Identifying the fibers of these fibrations we
see that the desired result is equivalent to the exterior rectangle being homotopy Cartesian, or

equivalently, that the right square is homotopy Cartesian. As P ( |X|,x ) is contractible, in order

to finish the proof of Theorem 1.6.4 it will suffice to show that the space |P(X, x)| is contractible.

Forn>0let T,y C A"t be as in Lemma 1.6.2. Let R,+1 C T, be the simplicial subset
given by the union of all edges of the form A{%% for i = 1,...,n+ 1. Then T,,, may be
obtained from R, by performing pushouts alongs inclusions of the form A3 C A2. From
Remark 1.5.2 we then conclude that the restriction map

Map (T,41,X) — Map (R,11,X)
is a trivial Kan fibration, and hence by Lemma 1.6.2 the map
Xy41 —> Map (Ry41,X)
is a trivial Kan fibration as well. Since the square
P(X, x), > Xupi

| |

(P(X,x)0)" ! —— Map (R,+1,X)

is Cartesian we see that the map P(X,x), — (P(X ,x)0)" ! is a trivial Kan fibration. This
means that the natural map (see Example 1.4.5)

P(X,x) — cosky(P(X, x)o)
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is a levelwise weak equivalence. It will hence suffice to show that |cosko(P(X,x)o)| is
contractible. This, in turn, is due to the fact that any semi-simplicial space of the form cosky(Z)
for Z # () admits a canonical semi-simplicial null-homotopy A' ® cosko(Z) — coskg(Z). O

Corollary 1.6.6 Let X be a semiKan space. Then the counit map X — II <|3(\|) is a
DK-equivalence.

Proof By Theorem 1.6.4 the counit map induces weak equivalences on mapping spaces. Since
the map Xo — |X| is surjective on connected components we see that the map f is in fact a
DK-equivalence. O

Corollary 1.6.7 Let f : X — Y be a map between quasi-unital semiKan spaces. Then f is a
DK-equivalence if and only if the induced map f. : |X| — |Y| is a weak equivalence.

Proof First note that the connected components of X as a semiKan space are in bijection with
the connected components of |X| as a space. Hence Theorem 1.6.4 tells us that f : X — Y isa
DK-equivalence if and only if it induces a bijection

o () — = )

and for each x,y € |3(\| the induced map
@ (IX],x.y) — @ ([¥Y].70.0))

is a weak equivalence. But this is equivalent to f, : |X| — |Y| being a weak equivalence and
we are done. O

We finish this subsection with an application which we record for future use. Recall that in
general geometric realization does not commute with Cartesian products of semi-simplicial
spaces (i.e., levelwise products). The following corollary shows that in the specific case of
semiKan spaces, geometric realization does commute with Cartesian products:

Corollary 1.6.8 Let X, Y be two quasi-unital semiKan spaces. Then the natural map |XxY| —
|X| x |Y] is a weak equivalence.

Proof First note that if X, Y are semiKan spaces then X x Y is a semiKan space as well.
Furthermore, it is clear that the natural map
7T0(|X X Y|) — 7T0(‘X|) X 7T0(|Y|)

is an isomorphism (as both sides can be identified with the set of connected components of the
semiKan space X x Y).

Now let x;,x, € X,y;,y> € Y be points and consider the natural map
Q(IX x Y|, (1, 31), (02, 2)) — Q (IX] % |Y], (&1, 30, (2, 32)) -
Theorem 1.6.4 shows that this map is weakly equivalent to the isomorphism

Mapy,y((x, ), (x, ) — Mapy(x,x) X Mapy(y. y)
and so is itself a weak equivalence. The desired result now follows. O
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1.7 Marked semi-simplicial spaces

The purpose of this paper is to generalize the analysis made in the previous section in order to
obtain our desired comparison between quasi-unital and unital co-categories. For this we will
first need to construct the correct oco-category of quasi-unital co-categories. This will require
some modifications to the constructions reviewed so far in order to guarantee that we consider
only functors which send invertible edges to invertible edges.

In order to keep track of invertible edges it will be useful to work in a variant of the category of
semiSegal spaces where the invertible edges can be somehow marked. For this one needs to
replace the notion of a semi-simplicial space with that of a marked semi-simplicial space. Let
us open with the basic definition:

Definition 1.7.1 A marked semi-simplicial space is a pair (X, A) where X is a semi-simplicial
space and A C X is a subspace. In order to keep the notation clean we will often denote a
marked semi-simplicial space (X,A) simply by X. Given two marked semi-simplicial spaces
(X,A), (Y, B) we denote by

Map™t (X, Y) C Map(X, Y)

the subspace of maps which send A to B. We will refer to this kind of maps as marked maps.

We denote by Sﬁ?p the S-enriched category of marked semi-simplicial spaces and marked maps
between them.

Remark 1.7.2 The analogous notion of marked simplicial sets plays an essential role in the
theory of co-categories as developed in [11]. Our definition above as well as many of the
associated notations follow their analogues in [11].

Definition 1.7.3 Given a semi-simplicial space X we will denote by X* the marked semi-
simplicial space (X, X)) in which all edges are marked. The association X — X* is right adjoint
to the forgetful functor (X,A) — X.

Definition 1.7.4 Given a semi-simplicial space X we will denote by X° the marked semi-
simplicial space (X, (}) in which no edges are marked. The association X — X” is left adjoint to
the forgetful functor (X,A) — X.

Definition 1.7.5 Let (X, A) be a marked semi-simplicial space. We will denote by A C mo(X;)
the image of the map
mo(A) — mo(X),

i.e., the set of connected components of X; which meet A. We refer to A as the set of marked

connected components of X .

Definition 1.7.6 We will say thatamap f : (X,A) — (Y, B) of marked semi-simplicial spaces
is a marked equivalence if
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(1) The underlying map f : X — Y is a levelwise equivalence.

(2) The induced map f, : A — B is an isomorphism of sets.

op
Theorem 1.7.7 There exists a left proper combinatorial model category structure on Sﬁx such
that

(1) The weak equivalences are the marked equivalences.

(2) The cofibrations are the maps f : (X,A) — (Y, B) for which the underlying map
X — Y is a cofibration (i.e., levelwise injective).

(3) A map is a fibration if and only if it satisfies the right lifting property with respect to all
morphisms which are both cofibrations and weak equivalences.

Proof We will use a general existence theorem which is a slightly weaker version of Proposition
A.2.6.13 of [11] (which in turn is based on work of Smith). In the following the term presentable
is used as in [11] (which in classical terminology is often called locally presentable).

Theorem 1.7.8 (Lurie, Smith) Let M be a presentable category. Let C, W be two classes of
morphisms in M such that

(1) C is weakly saturated and is generated (as a weakly saturated class of morphisms) by a
set of morphisms Cy.

(2) W is perfect (see Definition A.2.6.10 of [11]).
(3) W is stable under pushouts along C, i.e., if

X——Y

Pk
Z—W

is a pushout square such that f € C and g € W then g’ € W as well.

(4) If a morphism f in M has the right lifting property with respect to every morphism in C
(or equivalently in Cy) thenf € W.

Then there exists a left proper combinatorial model structure on M such that the weak
equivalences are W and the cofibrations are C.

Let us first prove that Sf)p is presentable. Consider the category D whose objects are pairs
(X,A,f) where X is a semi-simplicial space, A is a space and f : A — X, is a map. Then
D can be identified with a suitable category of pre-sheaves (of sets), and is hence presentable.
Furthermore, there is an evident functor R : Sﬁo — D sending (X,A) to (X,A, ) where
t : A — Xj denotes the inclusion. The functor J is clearly fully-faithful, and admits a left
adjoint £ : D — Sﬁop sending (X, A, f) to (X, Im(f)) where Im(f) C X; denotes the image of
f. Finally, since filtered colimits preserve injective maps of sets we see that R preserves filtered
colimits. It follows that Sﬁop is an accessible localization of D and is hence presentable.
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Now let W be the class of marked equivalences and C the class of marked maps which
are levelwise injective. We need to show that the classes (W, C) meet the requirements of
Theorem 1.7.8. We start by finding a set of morphisms which generates C as a weakly saturated
class.

Let Cy be the set containing all the morphisms

(1-7) loatje (ar)] IT [1ake (0a7)"] < 1A% @ @any
|aAK| @AM

and all the morphisms

(1-8) [oake (A TT  [ae (a)] = ak e (ah).
|oAk|@(Al)

Applying the standard theory of Reedy categories to the category A; we observe that the
morphisms of type 1—7 generate in particular all maps of the form X* < ¥ where X < Y is a
cofibration in $°, and hence all injective maps of the form (X,A) — (¥, A) where the marked
subspace does not change. Furthermore, it is clear that the morphisms of type 1-8 generate in
particular all morphisms of the form (X,A;) — (X,A;) where the underlying semi-simplicial
space does not change. Since any injective map is a composition of these two types of maps it
follows that C generates C.

We will now show that the pair (W, C) satisfies the assumptions 2 and 3 of Theorem 1.7.8.
Consider the category Set with its trivial model structure (i.e., the weak equivalences are
the isomorphisms and all maps are fibrations and cofibrations). We endow 8A" % Set with
the product model structure (i.e., weak equivalences, fibrations and cofibrations are defined
coordinate-wise, where on the left we use the Reedy model structure). Let W', C’ be the classes
of weak equivalences and cofibrations in SA?p x Set respectively.

Since both 82" and Set are left proper combinatorial model categories it follows that 82" Set
is a left proper combinatorial model category. This means that W’ is stable under pushouts
along C’ and that W’ is perfect (this is part of Smith’s theory of combinatorial model categories,
cited for example in [11] A.2.6.6).

Now let F : Sﬁﬁp —5 88" % Set be the functor given by F(X,A) = (X,A). Then it is clear
that F preserves colimits. Since W = F~!(W’) and C = F~!(C’) we get that W is stable under
pushouts along C and that W is perfect (see [11] A.2.6.12). It is then left to check the last
assumption of Theorem 1.7.8.

Let f : (X,A) — (Y, B) be a morphism which has the right lifting property with respect to all
maps in Cy. Since Cj contains all maps of the form
b b
[oake (a)]  TT  [1ak® (0a7)] < A% @ @any
|oAk|@aam?

it follows that f is a levelwise equivalence. It is left to show that f induces an isomorphism
A — B. Note that since f is a levelwise equivalence it induces an isomorphism m(X;) —
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mo(Y1) and so the map A — B is injective. The fact that it is surjective follows from having
the right lifting property with respect to (Al)b — (Al)t1 which is one of the maps in Cy. This
completes the proof of Theorem 1.7.7. O

Definition 1.7.9 We will use the terms marked fibrations and marked cofibrations to denote
fibrations and cofibrations in the marked model structure. We will use the term marked-fibrant
semi-simplicial spaces to denote fibrant objects in the marked model structure.

Remark 1.7.10 The forget-the-marking functor @ : Sﬁ?p — 82" isboth a left and a right
Quillen functor. As mentioned above, it has a right adjoint X — X* and a left adjoint X — X°.
Furthermore, it is easy to verify that both the forgetful functor and its left adjoint preserve
cofibrations and weak equivalences.

Lemma 1.7.11 A marked semi-simplicial space (X, A) is marked-fibrant if and only if
(1) X is Reedy fibrant.

(2) A is a union of connected components of X .

Proof Let (X,A) be a marked-fibrant object. From Remark 1.7.10 we see that X is Reedy
fibrant. Now consider the maps

(1810 )] IT [afe @) ] = ke @
INETOND

for k > 1 and 0 < i < k. By definition we see that these maps are trivial marked cofibrations.
Since (X,A) is Reedy fibrant it satisfies the right lifting property with respect to such maps,
which in turn means that the inclusion A — X satisfies the right lifting property with respect to
the inclusion of spaces |A¥| < |A*| for k > 1. This means that the inclusion A — X; is Kan
fibration and hence a union of components of Xj .

In the other direction assume that X is Reedy fibrant and A C X; is a union of components.
Consider an extension problem

(¥, B) —~ (x,4)

|

Z,C)

such that (Y,B) — (Z,C) is a trivial marked cofibration. In this case Y — Z will be a
trivial Reedy cofibration and so there will exist an extension f : Z — X in the category of
semi-simplicial spaces. We claim that f will necessarily send C to A. In fact, let W C Z; be
a connected component which meets C. Since (Y,B) — (Z, C) is a marked equivalences it
follows that W also meets the image of B. Since A is a union of components of X; we get that
f sends all of W to A. This means that f sends C to A and we are done. O
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Corollary 1.7.12 A map f : X — Y between marked-fibrant semi-simplicial spaces is a
marked equivalence if and only if it is a levelwise equivalence which induces a weak equivalence
on the corresponding spaces of marked edges.

op
We shall now show that Sﬁs can be endowed with a structure of symmetric monoidal simplicial
model category. Let (X,A),(Y,B) be two marked semi-simplicial spaces. According to
Remark 1.3.1 one has

X®Y), =& x Yo) [J o x ) [J 1 x 1)
We will extend the monoidal product & to marked semi-simplicial spaces by defining (X, A) ®
(Y, B) to be the marked semi-simplicial space (X ® Y, C) where the marking C is given by
C=(Ax YO)H(XO X B)H(A xB)C (X®Y),.

We shall abuse notation and denote the resulting monoidal product on Sﬁs by ® as well. This
can be justified by noting that the product of two marked semi-simplicial spaces with empty
markings again has an empty marking. Furthermore, the unit of the monoidal product ® is

(AO) ’ , which has an empty marking. We can hence consider the definition above as an extension
of the monoidal product ® from the full subcategory of marked semi-simplicial spaces with
empty markings to all of Sﬁs. This can be encoded by saying that the functor b : §% — Sﬁs
has a natural colax structure

XY X oy

(&%) = (&%)’
making it into a monoidal functor. As explained in Remark 1.1.4, the right adjoint @ : Sﬁf —
§As (see Remark 1.7.10) then admits a unique compatible lax structure, and the adjunction

b
op (®) AP
8§ —=¢8%

becomes a strongly monoidal Quillen adjunction (see Definition 1.1.8).

The monoidal product ® on Sﬁx is again closed and the corresponding internal mapping object
is defined as follows:

Definition 1.7.13 Let X, Y be two marked semi-simplicial spaces. The marked mapping
object from X to Y is the marked semi-simplicial space (YX JH ) given by

(r¥), =Map* (X x (a7)’,¥)
where the marking H is given by

H = Map* (X x (A1)F,7) € Map™ (X x (A1), ¥) = (¥),.

op
Lemma 1.7.14 The marked model structure on Sﬁf is compatible with the symmetric
monoidal structure ® (see Definition 1.1.5).
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Proof Since the Reedy model structure on SAgp is compatible with the unmarked version of ®
we only need to verify the following: if X’ — X is a marked cofibration and Y’ — Y is a
trivial marked cofibration then the map

h:(xeY), [ Xerv), — &)
X'®Y")
induces an isomorphism on the set of marked connected components. Since this map is
already a weak equivalence it is enough to check that it is surjective on marked components.
But this is a direct consequence of the fact that the map Y| — Y, induces an isomorphism on
the set of marked connected components. O

Finally, the simplicial structure of & A% can be composed with the strongly monoidal Quillen
A°P
adjunction 88 o SA‘ to obtain a simplicial structure on the model category 8 ¢ . To conclude

op
8$‘ is a symmetric monoidal simplicial model category.

We finish this subsection with the following definition which we frame for future use:

Definition 1.7.15 Let W be a marked semi-simplicial space with marking M C W;. We will
denote by W C W the marked semi-simplicial space such that

W,={oeW,|foceMNf:[1] —s [n]}.

In particular, all the edges of W are marked.

1.8 The marked right Kan extension

The Reedy model structures on simplicial and semi-simplicial spaces may be related via a
Quillen adjunction
ga” T oa?
RK
where J is the forgetful functor and RX is the right Kan extension. The purpose of this section

is to construct an analogous Quillen adjunction between 82" and the marked model structure
on Sﬁ ’

We begin by defining the marked forgetful functor

()p

Ft.sA" st

as follows: given a simplicial space X we will define F(X) to be the marked semi-simplicial
space (F(X), D) where D C X is the subspace of degenerate 1-simplices, i.c., the image of
so - Xo — Xi.



30 Y. Harpaz

Remark 1.8.1 The motivation for this definition comes from the fact that when working
with simplicial spaces as models for co-categories (via Rezk’s model category of complete
Segal spaces) the degenerate edges encode the identity morphisms. On the other hand, in the
model categories of marked semi-simplicial spaces we shall consider later in the paper, the
marked edges are going to be the invertible morphisms. Since identity morphisms are inherently
invertible it is natural to mark them when forgetting the degeneracy maps. We will later see that
this construction leads to the correct equivalence between unital and quasi-unital oco-categories.

The functor F* preserves all colimits and hence admits a right adjoint
REF 2 A s A7

In order to obtain an explicit formula for RK™ we will need a bit of terminology.

Definition 1.8.2 Let f : [m] — [n] be a map in A. We will say that an edge ¢ € (A™); is
f-degenerate if f maps both its vertices to the same element of [n]. We will denote by (A™)
the marked semi-simplicial space (A™, Ay) where A™ is considered as a semi-simplicial space
which is levelwise discrete and Ay C (A™); is the set of f-degenerate edges. Now given a
marked semi-simplicial space (X, A) we define

X, =Map™ ((A™Y,(X,A)).

m

Note that we have a natural inclusion X{; CX,.

We will now construct the functor RK ™ as follows. For each [n] € A consider the fiber product
category
— op op
Gn = As X Aop A[n]/
The objects of €, can be identified with maps f : [m] — [n] in A and a morphism from
f:[m] — [n] to g : [k] — [n] in C, can then be described as a commutative triangle

k] — " [m]
NS
[n]

such that & is injective. Now let (X, A) be a marked semi-simplicial space and let G, : €, — &
be the functor which associates to each f : [m] — [n] the space G,(f) = Xﬁl Note that for
each map [n] — [#'] in A one has a functor &, : €, — €, and a natural transformation
F»G,, — G,. We can then define iRKJr(X,A) by setting

RKT (X, A), = lim G,
which is functorial in [n] € A.

Remark 1.8.3 The category G, carries a Reedy structure which is induced from that of A;. If
(X, A) is marked-fibrant then the functor f +— X{n will be a Reedy fibrant functor from €, to 8.
This means that in this case the limit above will coincide with the respective homotopy limit.
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Remark 1.8.4 One has natural maps
RKT(X,A), = liem X — lieme = RKX),

which assemble together to form a natural transformation
RKT(X,A) — RK(X).

From Lemma 1.7.11 we see that when (X,A) is marked-fibrant the map above identifies
RKT (X, A), with a union of connected components of RK(X),.

Evaluating at the object Id : A" — A" of C, we obtain maps
RKT (X, A), = liGmX/:n — X=X,

which fit together to form a natural map of semi-simplicial spaces
(1-9) F(RKF(X,4)) — X
We then observe that composition
RKH (X, A)y = RKT (X, A), —s X,
is given by evaluating the limit lime, X}, at the object of Cy corresponding to the map

s : [1] — [0]. By the definition of X/, it follows that the map 1-9 sends degenerate edges to
marked edges, and so induces a natural map

vea s I (RKT(X,A)) — (X,A)

It is then straightforward to verify that vy 4 determines a counit map which exhibits RKT as
right adjoint to F+. The resulting adjunction

op F + AP
88" —=38
RKF
. . . . . . . . op . .
is easily seen to be a Quillen adjunction: since any Reedy cofibration in 8§27 is a levelwise
injection it follows that ¥+ preserves cofibrations. Furthermore, it is not hard to check that F+
maps levelwise equivalences to marked equivalences, and hence trivial cofibrations to trivial

marked cofibrations.

Now the forgetful functor J : 828" 5 88 factors through . This means that the Quillen
adjunction

op F op
S
RK

op
factors through Sﬁ" as the composition

g+ -
op F AP . op
82 82 8%
RKT 0%

where ® denotes the forgetful functor (X,A) — X.
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2 Marked semiSegal spaces

In his paper [14], Rezk constructs a left Bousfield localization of the Reedy model structure on
82" in which the new fibrant objects are the Segal spaces. The purpose of this section is to
construct a similar working environment for a suitable notion of a marked semiSegal spaces.
Let us introduce the basic definitions:

op
Definition 2.0.5 Let (W, M) € Sﬁs be a marked-fibrant semi-simplicial space. We will say
that (W, M) is a marked semiSegal space if the following conditions are satisfied:

(1) W is a semiSegal space.
(2) Every marked edge is invertible, i.e., M C Wil“".

(3) M is closed under 2-out-of-3, i.e., if there exists a triangle o € W, with two marked
edges then the third edge is marked as well.

Example 2.0.6 Let X be a semiSegal space. We will denote by X? the marked semi-simplicial
space whose underlying semi-simplicial space is X and whose marking is given by Xi™. Then
it is easy to verify that X% is a marked semiSegal space.

Example 2.0.7 Let X be a semiSegal space. Then X" is also a marked semiSegal space: since
the space of marked edges is empty, conditions (2) and (3) are satisfied vacuously.

Example 2.0.8 Let Z be a Kan simplicial set. The 0’th coskeleton functor (see Example 1.4.5)
has a marked analogue cosk(f 18— Sﬁ’?p which is given by coskar ) = (Cosko(Z))ti (this
marked analogue is again the right adjoint to the functor X — Xj;). Since cosky(Z) is a
semiSegal space in which all edges are invertible we get that coskar (Z) is a marked semiSegal
space.

We consider a marked semiSegal space as encoding a non-unital co-category in which a certain
(suitably closed) subspace of the invertible morphisms has been marked. Given a marked
semiSegal space (W, M) we will denote by

Mapy;(x, y) € Mapyy(x, y)
the subspace of marked edges from x to y, i.e. the fiber of the map
M — Xo X Xo
over (x,y).
Definition 2.0.9 We will say that W is a marked semiKan space if W is a marked semiSegal

space in which all edges are marked. Note that in this case the underlying semi-simplicial space
of W is a semiKan space.
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Definition 2.0.10 We will say that a marked semiSegal space (W, M) is quasi-unital if the
following additional conditions are satisfied:

(1) The restricted map d; : M — Xj is surjective (i.e., every object admits a marked
morphism out of it).

(2) Every invertible edge in W is marked.

We will denote by QsS C Segglb the full simplicial subcategory spanned by quasi-unital marked
semiSegal spaces.

Remark 2.0.11 If (X, M) is a quasi-unital marked semiSegal space then M = X"V, i.e., the
marking coincides with the subspace of invertible edges.

As explained in § 1.5 we can consider a quasi-unital marked semiSegal space as encoding a
quasi-unital co-category in which the invertible morphisms have been marked. As a result
(see Proposition 1.5.6) maps in QsS are the "unital" ones - they are maps of the underlying
semiSegal spaces which send quasi-units to quasi-units.

As in the Segal space case, the co-category N(QsS) is a good starting point for understanding
the homotopy theory of quasi-unital co-categories. However, it is still not the correct model
for it. The reason for this is that equivalences in QsS are too strict. The correct notion will
be obtained after suitably localizing N(QsS) with respect to a natural notion of Dwyer-Kan
equivalences (see §2.2).

It will be useful to describe the property of being quasi-unital in terms of a suitable right lifting
property.

Definition 2.0.12 Consider the following three maps of marked semi-simplicial sets (considered
as levelwise discrete semi-simplicial spaces):

(1) The inclusion 6y : A% < (ADE,
(2) The inclusion 6, : AT} 5 (A,
(3) The inclusion 6, : (A3, M) — (A3)ti where M = {A102 AL}

We then have the following simple observation:

Lemma 2.0.13 Let (X, M) be a marked semiSegal space and let x be the terminal marked
semi-simplicial space (i.e. *, is a point for every n and the edge in *; is marked). Then X is
quasi-unital if and only if the terminal map X — * has the right lifting property with respect
to 6y, 01,0, above.

Proof First assume that X — * has the right lifting property with respect to 6y, ¢; and 6,.
For 6y, 6, this lifting property implies that every object x € X, has a marked edge out of. In
particular, Condition (1) of Definition 2.0.10 holds. Let us now prove that Condition (2) holds
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as well, i.e., that every invertible edge in X is marked. Let f : x — y be an equivalence in X.
In light of the above there exist marked edges of the form g : x — z and A : w — y. Since f
is invertible we can embed these edges in a diagram of the form

This diagram can in turn be extended to a map ¢ : A> — X which sends At"2} to £, AL0:2}
to h and A3} to g. Since X — * has the right lifting property with respect to 6, we see
that ¢ must factor through a map (A3)* — X. In particular, f is marked.

Now assume that X is a quasi-unital marked semiSegal space. Condition (1) of Definition 2.0.10
implies that X — * has the right lifting property with respect to y. To show the lifting
property with respect to ; we need to show that every object x € X, has a marked edge into it.
According to the above, there exists a marked edge f : x — y out of x. From condition (2) of
Definition 2.0.5 we know that f is invertible, and hence there exists a triangle of the form

X
N
f
X Z
for some g : x — x. From condition (3) of Definition 2.0.5 we may now deduce that ¢ is a
marked edge into x, and so X has the right lifting property with respect to ¢, . Finally, since X

is quasi-unital we have M = Xilnv and so by Lemma 1.5.4 this subspace of edges satisfies the
2-out-of-6 rule. This implies that X has the right lifting property with respect to 6. O

The remainder of this section is organized as follows. To begin, we will localize the marked

model structure on Sﬁgp so that marked semiSegal spaces will coincide with the new fibrant
objects. The construction of this localization as well as the verification of its compatibility with
the monoidal structure will be taken up in §2.1. In particular, we will obtain a notion of internal
mapping objects for marked semiSegal spaces.

In §2.2 we will study the notions of fully-faithful maps and Dwyer-Kan equivalences (DK-
equivalences for short) between marked semiSegal spaces. Our suggested model for the
homotopy theory of quasi-unital co-categories is the co-localization of N(QsS) with respect to
DK-equivalences. In §2.3 we will attempt to study the notion of quasi-unitality from a model
categorical point of view. This will allow us to establish some useful results which will be
exploited in the final section, e.g., we will prove that the full subcategory QsS is closed under
taking mapping objects. This can be considered as a step towards the main theorem as well as it
essentially says that when quasi-units exist then they can be chosen coherently over arbitrary
families.
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2.1 The marked semiSegal model structure

The purpose of this subsection is to show that one can identify the full subcategory of marked
semiSegal spaces with the subcategory of fibrant objects in a suitable left Bousfield localization

of the marked model category Sﬁ“p. In order to do this we will need to identify a set of
maps such that the condition of being a marked semiSegal space can be expressed as a locality
condition with respect to these maps. To describe this conveniently we will need a bit of
terminology.

We will use the phrase marked horn inclusion to describe an inclusion of marked semi-simplicial

sets of the form
(A7, A) C (A", B)

such that A = BN (A});. We will be interested in the following kind of marked horn inclusions:

Definition 2.1.1 We will say that a marked horn inclusion
(A}, A) € (A", B)
is admissible if B = A, n > 2 and in addition one of the following (mutually exclusive)
conditions is satisfied:
(1) 0<i<nandA=0.
(2) i=0and A= {AOI}
(3) i=nand A= {Al—ln}

Our purpose is to show that conditions (1) and (2) of Definition 2.0.5 can be formulated in terms
of locality with respect to admissible marked horn inclusions. We begin with the following
technical lemma:

Lemma 2.1.2 Let n > 2 and 0 < i,j < n. Define A = {0,....j — 1} U {i} and B =
{,..,nt U{i}. Let
x=A"J][ A% car
A}

be the corresponding subcomplex of A" and let M C X, be the set of all edges of the form
AU C X for x € B,x < i and all edges of the form A3 for x € A,x > i. Then the
marked semi-simplicial set (A;’, M ) can be obtained from (X, M) be performing pushouts along
admissible marked horn inclusions.

Proof We will say that a simplex A’ C A" for |J| > 3 is spread if J contains i and J has a
non-empty intersection with both A \ {i} and B \ {i}. Now define

X=X1CX, C..CX,

inductively by letting X; be the union of X;_; and all the spread simplices of dimension k. Note
that if A’ C A" is spread of dimension |J| = k then A’ NX; is the horn of A’ which contains
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all the (k — 1)-faces except the face opposite the vertex i € J. Furthermore, if i is a maximal
element of J then the second biggest element of J is in B and so the last edge of A’ is marked.
Similarly if i is a minimal element of J then the second smallest element of J is in A and so the
first edge of A’ is marked. In either case the addition of A’ can be performed by a pushout
along an admissible marked horn inclusion. To finish the proof note that X,,_; = (A;’, M ) . O

Lemma 2.1.2 has the following corollary:

Corollary 2.1.3 Let (X, M) be a fibrant marked semi-simplicial space. Then

(1) X satisfies condition (1) of Definition 2.0.5 (i.e. the Segal condition) if and only if X is
local with respect to inner admissible horn inclusions.

(2) Assume that X satisfies the Segal condition. Then X satisfies condition (2) of Defini-
tion 2.0.5 if and only if X is local with respect to non-inner admissible horn inclusions.

Proof Part (1) follows from Lemma 2.1.2 with 0 < i = j < n (in which case no marking is
involved) together with a simple inductive argument. Now assume that X satisfies the Segal
condition. If X is local with respect to admissible horn inclusions then in particular X is local
with respect to the inclusions

() (a2 s
({02 (a2 a0

and so by Remark 1.5.2 every marked edge in X is invertible.

and

Now assume that every marked edge is invertible. Then X is local with respect to admissible
horn inclusions of dimension 2. Assume by induction that X is local with respect to all
admissible horn inclusions of dimension k for some k > 2.

Consider the diagram of marked simplicial sets

AL, k—1} 11 Afk=1k+1} 11 (A{k,k—&-l})ﬁ AL0, k=1 k41} 11 (A{k,k+1})ﬁ
A{k—1} A{k+1} A{k+1}

| l

From the Segal condition it follows that X is local with respect to both horizontal maps.
Furthermore, since X is local with respect to admissible horn inclusions of dimension 2 we see
that X is local with respect to the left vertical map. It follows that X is local with respect to the
right vertical map as well. Finally, applying Lemma 2.1.2 forthe case j = k,i=n=k+ 1 we
get that X is local with respect to the inclusion

A0 k=1 k1) AHI} (A{k,k—&-l})ﬁ o (Aiiiv {A{k,k+1}}) .

A{k*l}
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It hence follows that X is local with respect to

(Aliﬂv {A{k,k+1}}> o (Akﬂ7 {A{k7k+1}}> .

A similar argument establishes the case of

(o) - (5 a0}

O

Now let W € SJAr?p be a marked-fibrant object. In light of Corollary 2.1.3 we see that W will be
a semiSegal space if and only if W is local with respect to the set S defined as follows:

Definition 2.1.4 Let S be the set which contains:

(1) All admissible marked horn inclusions.
(2) All the maps of the form
(8%,4) = (4%

where A C (A2)1 is a set of size 2.

We are now in a position to define our desired model category. Since the marked model structure

is combinatorial and left proper, the left Bousfield localization of i +5 with respect to S exists.
In particular, there exists a (combinatorial, left proper) model category Seg, whose underlying

. QAP
category is 8, such that

(1) Weak equivalences in Seg, are maps f : X — Y such that for every marked semiSegal
space W the induced map

Map+(Y, W) — Map(X, W)

is a weak equivalence.
(2) Cofibrations in Seg, are the cofibrations of the marked model structure (i.e., levelwise
injective maps).

(3) The fibrant objects in Seg, are precisely the marked semiSegal spaces.

Definition 2.1.5 We will refer to Seg, as the marked semiSegal model structure. We
will denote by MS-equivalences, MS-fibrations and MS-cofibrations the weak equivalences,
fibrations and cofibrations in Seg respectively (to avoid confusion compare to the terminology
in Definition 1.7.9). Note that the notions of an MS-cofibration and a marked cofibration
coincide.

The following kind of trivial MS-cofibration will be useful to note:
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Definition 2.1.6 Let X be a marked semi-simplicial space and B C C C X, two subspaces.
We will say that the map
X,B) = (X, C)

is a triangle remarking if (X, C) can be obtained from (X, B) by a sequence of pushouts along
maps of the form

e-1) Le@a)] JI [ke@)]re @
K®(A2A)

for f : K < L an inclusion of spaces and |A| = 2 (here we consider spaces as marked
semi-simplicial spaces which are concentrated in degree 0).

Lemma 2.1.7 Any triangle remarking is a trivial MS-cofibration.

Proof Note that the claim is clearly true if K = () and L is discrete. Hence the claim is also
true for maps of the form K < K[]L' where L’ is discrete. Orthogonally, if the inclusion
K — L is surjective on connected components then the map 2-1 is a marked equivalence and
so in particular an MS-equivalence. The result now follows by factoring a general inclusion
K< LasK < K[[L' — L where L' is discrete and the map K [[ L' — L is surjective on
connected components. O

This notion is exemplified in the following lemma:

Lemma 2.1.8 Forevery i =0,...,n the map
(A9)" — (&)

is a trivial MS-cofibration.

Proof Let M C (A"), be the set of edges that are contained in A?. Then (A", M) is obtained

from (A,’A‘)ﬁ by performing a pushout along an admissible marked horn inclusion. The desired
result now follows from the fact that the map

(a".m) < (A7)

is a triangle remarking. O

Corollary 2.1.9 If W is a marked semiSegal space then W (see Definition 1.7.15) is a marked
semiSegal space as well. Furthermore, since all the edges in W are marked we see that W is in
fact a marked semiKan space.

Proof First of all it is clear that W is marked-fibrant (see Lemma 1.7.11). From Lemma 2.1.8
it follows that W is local with respect to all admissible marked horn inclusions and so by
Proposition 2.1.3 W satisfies properties (1) and (2) of Definition 2.0.5. Since clearly the marked
edges in W are closed under 2-out-of-3 we get that W is a marked semiSegal space. O
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Remark 2.1.10 If W is a quasi-unital marked semiSegal space then W is quasi-unital as well.
Furthermore, in this case W contains all invertible edges of W.

op
Now recall that Sﬁs is a symmetric monoidal model category with respect to the marked
monoidal product ®. We would like to show that this monoidality survives the localization:

Theorem 2.1.11 The marked Segal model structure is compatible with the marked monoidal
product ®. In particular, the localization Quillen adjunction

: . : . o op
is strongly monoidal and Seg, inherits the simplicial structure of §& .

Proof Arguing as in [14] Proposition 9.2, we see that it will be enough to show that for every

n\b 1 #
marked semiSegal space W the objects w(A")" and W(A ) are marked semiSegal spaces for
every n > 0. This, in turn, can be easily reduced to checking that forevery f : Y — Z in S
(see Definition 2.1.4) the inclusions

(amy wz] T [(am) ev] = (am) ez
@AM @Y
and ,
(@Y ezl T [(AYer] = (@) ez
@ ey
are trivial MS-cofibrations. Note that the case m = 0 above is trivial so we can assume m > 1.
We begin by clearing up some trivial cases. Observe that for a pair of inclusions of the form
[ (X,A) = (Y, A)
8§:(Z,B)—=(Z,0)

such that f; : Xy — Y is surjective the resulting map

(Z.Oox,Al [ @B, — Z 0,4
ZB)B(X,A)

is in fact an isomorphism (and in particular a trivial MS-cofibration). Considering the various
types of maps in S one sees that the only cases which are not covered by the above argument
are the following:

(1) The maps of the form
(@Ye@ia)] T |[@)e@)] — @) e@) = (@aea?
(A1) @(a2,4)

where |A| = 2.
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(2) The maps of the form
@A™’ @ (an4a) I (A™ @ (ALA4) <= (A™) @ (A",A)
(aAm)b@)(Ay,A)
where (A?’,A) < (A", A) is an admissible marked horn inclusion.
For case (1), note that this map induces an isomorphism on the underlying semi-simplicial

sets. Furthermore, the marking on the left hand side contains all edges except exactly one edge
e € (Al ® Az) -

Note that each triangle in A' ® A? has three distinct edges. Furthermore, every edge in A! ® A2
lies in some triangle. Hence one can find a triangle which contains e such that its other two
edges are not e. This means that there exists a pushout diagram of marked semi-simplicial sets
of the form

(4%,4) (a2)°

(4 & (A2 0)| L aarn [(A) © (497] —= (a1 & %)’

Since the upper horizontal row is a trivial MS-cofibration we get that the lower horizontal map
is an MS-cofibration as well.

The proof of case (2) is considerably more technical and is taken on in lemma 2.1.12 below. O

Lemma 2.1.12 Let (A;‘,A) < (A", A) be an admissible marked horn inclusion. Then the
marked semi-simplicial set (A™) @ (A", A) can be obtained from the marked semi-simplicial
set
m\ P n m\b n
x=(oan o ana) I (A" e (na)
@amPe(Af,)
by successively performing pushouts along admissible marked horn inclusions. In particular,

the inclusion
X C (A" @ (A",A)

is a trivial MS-cofibration.

Proof If m = O then the claim is immediate, so we can assume m > 0. In this case the
marking of (A’")b ® (A", A) is the same as the marking of X, so that we don’t need to worry
about adding marked edges in the course of performing the desired pushouts. Note that we can
harmlessly assume that 0 < / < n (as the case 0 < I < n follows from symmetry).

According to Remark 1.3.1 the k-simplices of A” ® A" are in one-to-one correspondence with
injective order preserving maps

o=(f,g : k]l — [m] x [n].
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We will consider a k-simplex o = (f, g) as above as an injective marked map
o (AF,B) = (A™)’ @ (A", A)
where B is defined to be {AU=141 if o (AT=14}) js marked and () otherwise.

We will say that a k-simplex of A™ @ A" is full if it is not contained in X. If we describe our
k-simplex by a map o = (f, g) as above this translates to the condition that f is surjective and
that the image of g contains {0, ...,n} \ {/} (so that g is either surjective or misses /). Our
purpose is to add all the full simplices to X in a way that involves only pushouts along admissible
horn inclusions. For this we distinguish between two kinds of k-simplices of A™ ® A”":

Definition 2.1.13 Let
o=(f,g: k] — [m] x [n]

be a k-simplex of A” @ A". We will say that o is special if
(1) o isfull.
@ ¢ ' #0.
(3) f(ming='())) =f (maxg~'(l - 1)).

If o is full but not special then we will say that ¢ is regular.

Now for i =0, ...,m + 1 let X; denote the union of X and all special (i + n — 1)-simplices of
A" ® A". We now claim the following:

1 Xo=X.

(2) For i = 0,...,m the semi-simplicial set X;;; is obtained from X; by a sequence of
pushouts along admissible horn inclusions of dimension i + n.

(3) Xpit = A" @ A",

The first claim just follows from the fact that there are no special simplices of dimension less than
n. Now X; is the union of X; and all special (i + n)-simplices. Hence in order to prove the
second claim we will need to find the right order in which to add these special (i 4 n)-simplices
to X;. We will do this by sorting them according to the following quantity:

Definition 2.1.14 Let
o= (f,g) : k] — [m] x [n]

be a full k-simplex of A” @ A”". We define the index of o to be the quantity

indlo) =k+1—n—|g” (D).
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Note that for a general full simplex the index is a number between 0 and k+ 1 — n. By definition
we see that for a special k-simplex the index is a number between 0 and k — n. In particular,
the index of a special (i + n)-simplex is a number between 0 and i.

Now fix an i = 0, ...,m and for each j = 0, ...,i + 1 define X;; to be the union of X; and all
special (i + n)-simplices o whose index is strictly less than j. We obtain a filtration of the form

Xi=Xi0CXi) C... CX;ip1 = Xiy1.
We will show that if ¢ is a special (i + n)-simplex of index j then the intersection
on Xl'_J'

is an admissible horn of o (with respect to the marking induced from o). This means that
Xij+1 can be obtained from X;; by performing pushouts along admissible horn inclusions of
dimension m + i, implying the second claim above. We start by noting that if 7 = (f, g) is a
regular k-simplex then 7 is a face of the special (k + 1)-simplex

0 = (f ° Smaxg=1(—1)> 8 © Sming—1(1))
where s, : [k + 1] — [k] is the degeneracy map hitting r twice. Furthermore, we see that
ind(o) = ind(7). This means that X;; contains in particular all regular (i + n — 1)-simplices
whose index is < j. Since taking faces cannot increase the index we see that an (i+n— 1)-simplex
T is contained in X;; exactly when 7 is not regular of index > j.

Now let o = (f, g) be a special (i + n)-simplex of index j and let 7 be the (i + n — 1)-face of
o which is opposed to the v’th vertex for v =0, ..., i + n. Then we see that 7 will be regular
of index > j if and only if v = ming~!(/), in which case ind(7) = ind(c) = j. Since g is
surjective we get that

O0<ming '()<i+I<i+n

and so X; ;N o is aright horn of o which is inner if / < n. In fact, the only case where this right
horn inclusion is not inner is when min g~'(/) = k. By the definition of special we then have

f)y=fk—1
and so the {k — 1,k}-edge of o is mapped to a marked edge in (A™)” ® (A", A). This means
that indeed the addition of ¢ can be done by a pushout along an admissible horn inclusion.

It is left to prove the third claim, i.e., that X,,; = A™ ® A”". From the considerations above we
see that X;; contains all full k-simplices for k < n+ i (as well as all special (n + i)-simplices).
Since all the full (m + n)-simplices are special we get that X, contains all full simplices of
A™ ® A" of dimension up to m + n, yielding the desired result. O

Corollary 2.1.15 Let W be a marked semiSegal space and X a marked semi-simplicial space.
Then WX is a marked semiSegal space and WX is a marked semiKan space.

Proof The first claim follows from the fact that the fibrant objects in Seg, are exactly the
marked semiSegal spaces, and all object are cofibrant. It is then a standard fact about monoidal
model categories that raising a fibrant object to the power of a cofibrant object yields a fibrant
object. Then second claim follows from Corollary 2.1.9. O
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2.2 Fully-faithful maps and Dwyer-Kan equivalences

The purpose of this section is to study the notion of fully-faithful maps and Dwyer-Kan
equivalences in the setting of marked semi-simplicial spaces. We begin with the basic
definition:

Definition 2.2.1 Let f: (W,M) — (Z,N) be a map of semi-simplicial spaces. We will say
that f is fully-faithful if the squares

W, ——=7, M— >N
e o |
(Wo)y™ ——= (zp)"t! Wox Wo ——=Zy x Zp

are homotopy Cartesian for every n > 1.

In this paper we will often encounter maps f : W — Z of marked semiSegal spaces which
are simultaneously fully-faithful and a marked fibration. This case admits a particularly nice
description. It will be convenient to employ the following terminology (which makes sense in
any simplicial category):

op
Definition 2.2.2 Let g: X — Y, f: W — Z be two maps in 8$“ . We will say that f has
the contractible right lifting property with respect to g if the map

2-3) Map , (Y, W) — Map (Y, Z) X Map , (X,2) Map, (X, W)

is a trivial Kan fibration.

Remark 2.2.3 Definition 2.2.2 is equivalent to saying that f has the right lifting property with
respect to the maps
A" ey [ 1AM eX < |A" ey
|oAm| @x

for every m > 0.

Remark 2.2.4 When f : W — Z is a marked fibration and g : X — Y is a marked
cofibration then the map 2-3 is a fibration. Furthermore, in this case the fiber product on the
right hand side coincides with the homotopy fiber product. From this observation we see that a
marked fibration f : W — Z is fully-faithful if and only if is satisfies the contractible right
lifting property with respect to the maps

n+1

ATT-TTA° < (a7’

AT A% < (A1)

for every n > 1 and the map
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We are now ready to prove our main characterization theorem concerning fully-faithful marked
fibrations:

Proposition 2.2.5 Letf : W — Z be a map of semi-simplicial spaces. Then the following
assertions are equivalent:

(D
€

3)

A

4)
(6)

Proof

(=2

2)=3)

f is a fully-faithful marked fibration.
f is a marked fibration and satisfies the contractible right lifting property with respect to
the maps (DA™Y < (A"Y for every n > 1 and the map OA! — (Al)rj

f satisfies the right lifting property with respect to every marked cofibration g : X — Y
such that g : Xo — Yy is a weak equivalence.

f satisfies the contractible right lifting property with respect to every marked cofibration
g : X — Y such that gy : Xy — Yy is a weak equivalence.

f 1is a fully-faithful MS-fibration.

f is an MS-fibration and satisfies the contractible right lifting property with respect to
the maps OA! — (Al)b and OA! — (Al)tl

Invoking Remark 2.2.4 we note that the semi-simplicial set (8A")I’ can be obtained from
n+1

A° H H AP by successively performing pushouts along maps of the form

(0A%)" < (A%
for k < n. Hence the claim follows by induction on 7.

Assume f satisfies (2) andlet g : X < Y be amarked cofibration such that gy : Xo — Yj
is a weak equivalence. Then one can factor g as

/ 2
x5 x 2y

such that g’ is a trivial marked cofibration and g” induces an isomorphism g : X — Yo.
Since f is a marked fibration it will suffice to show that f satisfies the right lifting
property with respect to g”’. But this follows by Remark 2.2.3 from the fact that g”” can
be written as a (transfinite) composition of pushouts along maps of the form

|:|Am‘®(aAn)b:| H |:|6Am|®(An)b:| SN |Am|®(An)b
|oAm|@@Am

and
lam@oall T [loa" @ (A)] a7 e (Al
|oAm| @dA!
for m > 0.
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(3) = (4) This implication follows from the fact that the family of cofibrations g : X — Y such

that go : X9 — Y is a weak equivalence is stable under replacing g with

A" ey [ A" eX—|A" @Y.
|[oAm|@x

(4) = (5) Assume that f satisfies (4). Then it is straightforward (using Remark 2.2.4) to deduce

that f is fully-faithful. To show that f is an MS-fibration it will be enough to show that if
g : X — Y is atrivial MS-cofibration then gy : Xy — Yy is a weak equivalence. This
in turn follows from the fact that if Z is a Kan simplicial set then coskar (Z) is a marked
semiSegal space (see Example 2.0.8) which means that Mapg (Y, Z) — Mapg(Xo, Z)
is a weak equivalence for every Z.

(5) = (6) Follows from Remark 2.2.4.
(6) = (1) First note that if f satisfies (6) then it has the contractible right lifting property with

respect to the map
n+1

AT -T2 < (sp?)

where Sp” C A" is the n-spine (see 1-1). The desired result now follows from the fact
that the inclusion

(sp") = (&)’
is a trivial MS-cofibration and that f is an MS-fibration.
O
Corollary 2.2.6 Letf : W — Z be a fully-faithful marked fibration. Let X be a marked

semi-simplicial space and g : X — Z a map. Then every lift g, : Xo — W, of g¢ extends to
aliftg: X — W ofg.

Proposition 2.2.5 allows us in particular to obtain the following description of fully-faithful
maps between marked semiSegal spaces, relating them to the classical meaning of the notion:

Corollary 2.2.7 Letf : W — Z be a map of marked semiSegal spaces. Then f is fully-faithful
if and only if for every x,y € Wy the map f induces weak equivalences

(2-4) Mapy, (x,y) — Map,(fo(x), fo())
and
(2-5) Mapy,(x, ) — Mapy (fo(x), fo))-

Proof Factor f as W T w1 7 where f is a trivial marked cofibration and f” is a
marked fibration. Then W’ is marked fibrant and marked equivalent to W, and so W’ is a
marked semiSegal space. It then follows from the general theory of left Bousfield localizations
(see [5, Proposition 3.3.16]) that f” is in fact an MS-fibration. Now since f’ is a marked
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equivalence we see that f is fully-faithful if and only if f” is fully-faithful. We may hence
assume without loss of generality that f itself is an MS-fibration. In particular, the maps 2—4
and 2-5 are Kan fibrations, which means that they will be weak equivalences if and only if their
fibers are contractible. The desired result now follows from the equivalence of (1) and (6) of
Proposition 2.2.5. O

The following corollary of Proposition 2.2.5 will be useful later:

Corollary 2.2.8 Let f : X — Y be a map of marked semi-simplicial spaces. Then the
following assertions are equivalent:

(1) For every MS-fibration p : W — Z and every MS-cofibration g : X' < Y’ such that
go : X\, — Y| is a weak equivalence the induced map
W — 7" 0 WX
satisfies the right lifting property with respect to f .

(2) For every MS-cofibration g : X' — Y’ such that g : X{, — Y|, is a weak equivalence
the induced map

xov] ] Yex]—rey
X®X'

is a trivial MS-cofibration.
(3) For every MS-fibration p : W — Z the induced map
WY — 7V xx WX
is a fully-faithful MS-fibration.
(4) f is an MS-cofibration and the maps

2-6) xe @] II [reoal] — [re(al)]
@-7) e (a] I [reoal] — [re (@A)

are trivial MS-cofibrations.

Proof The equivalence (1) < (2) follows directly from the exponential law. The equivalence
(2) < (3) follows from the exponential law together with Proposition 2.2.5. We will now prove
that (3) < (4). The direction (4) = (3) follows from the exponential law and Proposition 2.2.5.
Now assume f satisfies (3). Then for every trivial MS-fibration W — Z the induced map

WY — 77 xx WX
is a trivial MS-fibration. This implies that f has the left lifting property with respect to every

trivial MS-fibration and so is an MS-cofibration. The second part of (4) then follows from
Proposition 2.2.5. O
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Remark 2.2.9 The class of maps f : X — Y satisfying the equivalent conditions of
Corollary 2.2.8 is weakly saturated in view of characterization (1) and contains all trivial
MS-cofibrations.

Remark 2.2.10 If f : X — Y is a map whose underlying map of unmarked semi-simplicial
spaces is an isomorphism then f satisfies condition (4) of Corollary 2.2.8. To see this, note that
such an f is automatically an MS-cofibration. In addition, the map 2—6 is an isomorphism and
the map 2—7 is a triangle remarking (see Definition 2.1.6).

We now turn to the notion of Dwyer-Kan equivalences. This notion will be obtained from the
notion of fully-faithful maps by requiring an appropriate analogue of "essential surjectivity".
This notion is most well behaved for quasi-unital marked semiSegal spaces (see Lemma 2.2.12),
but it will be convenient to have it defined in more generality.

Definition 2.2.11 Let X be a marked semi-simplicial space. Let x ~ y denote the weakest
equivalence relation satisfying the following properties:

(1) If x,y are in the same connected component of X, then x ~ y.
(2) If there exists a marked edge f € X such that d,(f) = x and dy(f) = y then x ~ y.

Lemma 2.2.12 Let (X, M) be a quasi-unital marked semiSegal space and x,y € X, two points.
Then x ~ y if and only if there exists a marked morphism x — y.

Proof We first observe that the relation of having a marked morphism from x to y is already
an equivalence relation when X is a quasi-unital marked semiSegal space. It will hence suffice
to prove that this relation contains the relation of being in the same connected component. Let
X,y € Xp be two points which lie in the same connected component. Since X is marked fibrant
Xo is Kan and so there exists a path 7y : |A!| — X, connecting x to y. As X is quasi-unital
there exists a marked edge g € M from x to itself. Since X is marked-fibrant the map

d()ZMXXO {X} — X

is a Kan fibration (where the fiber product is taken along d;) and so we can lift v to a path
5 : |A'| — M from q to some edge f € M xx, {x} such that do(f) = y. In other words, f is
a marked edge from x to y. O

Definition 2.2.13 Let f : X — Y be a map between semi-simplicial spaces. We will say that
f is a Dwyer-Kan equivalence (DK for short) if it is fully faithful and induces a surjective map
on the set of equivalence-classes of ~.

We are now ready to formally define our co-category of quasi-unital co-categories:

Definition 2.2.14 Let DK denote the collection of edges of the co-category N(QsS) corre-
sponding to DK-equivalences. We will refer to the co-localization (see Definition 1.2.1)

Cat® & N(QsS)[DK ]

as the oo-category of (small) quasi-unital oco-categories.
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Remark 2.2.15 Even though DK is not a set we will see in § 3 that N(QsS)[DK ' is locally
small by constructing an explicit model for it.

We will finish this subsection by showing that under a mild additional hypothesis a marked-fibrant
semi-simplicial space which is "close enough" to a quasi-unital marked semiSegal space is
itself a quasi-unital marked semiSegal space. This will be useful for us when constructing
completions (see §3.1).

Lemma 2.2.16 Let X be a quasi-unital marked semiSegal space, W a marked-fibrant semi-
simplicial space and f : X — W a fully-faithful map such that fy : Xo — W, is surjective
on connected components. Then W is a quasi-unital marked semiSegal space and f is a
DK-equivalence.

Proof The fact that f is a DK-equivalence follows directly from the definition. Hence it will
suffice to prove that W is a quasi-unital marked semiSegal space.

We can factor f as X f—/> X' L”> W such that f’ is a trivial marked cofibration and " is
a marked fibration. Then X’ is marked-fibrant and marked-equivalent to X, so that X’ is
necessarily a quasi-unital marked semi-simplicial space and f” is fully-faithful. Hence we can
assume without loss of generality that f itself is a marked fibration and that f : Xo — W, is
surjective.

We start by showing that W is a marked semiSegal space. Let f : Y — Z be amap in S (see
Definition 2.1.4). We need to show that the map

Map™ (Z, W) — Map™ (Y, W)

is a weak equivalence. Note that in all cases the 0’th level map fy : Yo — Zj is an isomorphism.
Condition (4) of Proposition 2.2.5 then tells us that

Map*(Z, X) — Map™ (Z, W)

| |

Map* (Y, X) — Map™ (Y, W)

is homotopy Cartesian. Furthermore, all maps appearing in this diagrams are fibrations. We
wish to show that the right vertical fibration is trivial. Since X is a marked semiSegal space the
left vertical Kan fibration is trivial. Now since Kan fibrations are trivial if and only if all their
fibers are contractible it will be enough to show that the lower horizontal map is surjective. In
light of Corollary 2.2.6 it will be enough to show that the map

Mapg (Yo, Xo) — Mapg (Yo, Wo)

is surjective. But this just follows from the fact that Y} is discrete and the map Xo — W, is
surjective.
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We now show that W is quasi-unital. According to Lemma 2.0.13 we need to show that the map
W — « (where * is the terminal marked semi-simplicial space) has the right lifting property
with respect to the maps 6y, 0y, 6,. Let D; be the domain of ;. Since the D;’s are levelwise
discrete and the map Xy — W, is surjective we can use Corollary 2.2.6 in order to lift any
map D; — W to amap D; — X. Since X is quasi-unital it satisfies the right lifting property
with respect to each 6; and so the result follows. O

2.3 Q-fibrations and Q-anodyne maps

In the beginning of §2 we saw that the property of being quasi-unital can be expressed as a
certain right lifting property (see Lemma 2.0.13). This idea leads one to define the following
relative version of quasi-unitality:

Definition 2.3.1 Let f : W — Z be a map of marked semi-simplicial spaces. We will say
that f is a Q-fibration if it is an MS-fibration and satisfies the right lifting property with respect
to the maps 6y, 6, 6, of Definition 2.0.12.

Example 2.3.2 Let W be a quasi-unital marked semiSegal space. Then the terminal map
W — % is a Q-fibration.

The notion of Q-fibrations has a left-hand-side counterpart:

Definition 2.3.3 Let f : X — Y be an MS-cofibration. We will say that f is Q-anodyne if it
satisfies the left lifting property with respect to all Q-fibrations.

Example 2.3.4 Since any Q-fibration is an MS-fibration we see that any trivial MS-cofibration
is Q-anodyne

op
Remark 2.3.5 The maps 6y, 0; and 6, are Q-anodyne. In fact, since Sﬁs is presentable one
can identify the collection of all Q-anodyne maps with the weakly saturated class of maps
generated by 6y, 01, 0,.

Remark 2.3.6 Since the class of Q-anodyne maps is weakly saturated and contains all trivial
MS-cofibrations it is also closed under certain homotopy pushouts. More precisely, if we have
a homotopy pushout square

X——Z

Y —W
in Seg such that the left vertical map is Q-anodyne then the right vertical map will be Q-anodyne

as well as long as the square is Reedy cofibrant, i.c., as long as the induced map Y [ [, Z — W
is an MS-cofibration.
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Remark 2.3.7 Although one cannot identify QsS with the subcategory of fibrant objects in

some localization of Sﬁ?p, one can still associate with QsS the weak factorization system
formed by Q-fibrations and Q-anodyne maps. Although not part of a model category, it enables
many model categorical arguments and manipulations. The purpose of this section is to exploit
this point of view to obtain results which will be used in the next section.

Lemma 2.3.8 Letf : X — Y be a Q-anodyne map. Then f satisfies the equivalent conditions
of Corollary 2.2.8.

Proof In view of Remark 2.2.9 it will suffice to prove that the 6;’ satisfy condition (4) of
Corollary 2.2.8. For 6, this is a special case of Remark 2.2.10. For 6;,i = 0,1 we need to
check that the maps

(@ xoal] T [a0x(a)] — (@) e @)
INUSEYN

and
(@) xoal] T a0« (a)] — (@) e @A)
INUPEYN
are trivial MS-cofibrations. Now in the first map the right hand side can be obtained from the

left hand side by performing two pushouts along admissible horn inclusions of dimension 2. In
the second map one needs to perform in addition a triangle remarking (see Definition 2.1.6). O

Corollary 2.3.9 Letf : X — Y be a Q-anodyne map and let p : W — Z be a Q-fibration.
Then the induced map

frowr — Z" o WX

is a DK-equivalence.

Proof From Lemma 2.3.8 it follows that f? is a fully-faithful MS-fibration. Since f satisfies
the left lifting property with respect to p we get that the induced map of sets

(W") o = Hom(Y, W) — Hom(Y, Z) X ptomx,z) Hom(X, W) = (Z" x,x W¥) o

is surjective. It hence follows that f is essentially surjective and so a DK-equivalence. O

We will now apply some of the ideas collected so far in order to prove that the full subcategory
QsS C Seg;ib is closed under mapping objects. In fact, we will prove that for any semi-simplicial
space A and any quasi-unital marked semiSegal space W the mapping object W* is quasi-unital.

Proposition 2.3.10 Let W be a quasi-unital marked semiSegal space and A a marked semi-
simplicial space. Then WA is quasi-unital.
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Proof Letf : X — Y be a Q-anodyne map. To show that the terminal map WA — x
satisfies the right lifting property with respect to f is equivalent to showing that the map
S®A: X®A — Y ® A satisfies the left lifting property with respectto W — .

Consider the space Ag as a marked semi-simplicial space concentrated in degree 0. We have a
natural inclusion g : Ay < A such that g, is an isomorphism. By Lemma 2.3.8 we get that the
natural map
XxoAl [ real —rea
X®Ag
is a trivial MS-cofibration. Hence it will suffice to prove that the map f ® Ay satisfies the left
lifting property with respect to W — x, and it will suffice to do so for f = 6;,

Let us start with 6. Let Ag o be the set of vertices of Ag. Then 0, ® Ag o satisfies the left lifting
property with respect to W — x. The same claim for 6, ® Ay follows from the fact that

Aow (A m)] T [aee® (A% = 40w (&%)
Ag 0@ (A3,M)

is a marked equivalence (where M = {A{0:2} A{13}1),

Let us now prove the case 6; for i = 0, 1. Unwinding the definitions we need to show that the
map of spaces d; : Wi — W, satisfies the right lifting property with respect to any map of
the form () — Ay, or, equivalently, admits a section.

Let
Wit = {f € W™ [ do(f) = i ()} € W™

be the subspace of self equivalences. It will be enough to show that the map d : Wi — W,
(induced by either dj or d;) admits a section. Since this claim involves only marked edges it
will be convenient to switch to the maximal semiKan space Z = w C W. In particular, we
want to show that the natural map Z{"* — Z admits a section.

1

— 5
Consider the Kan replacement |Z| of the realization of Z. Let |Z| be the space of continuous
1

_ S _—
paths v : S' — |Z| and let p : |Z] — |Z| be the map p(y) = ~(1). Consider the
commutative diagram

!

z 2]

-

o~

Zy —|Z]

Since @ is a Kan simplicial set the right vertical map is a fibration. The left vertical map is
pullback of the fibration (dy, d) : Z) — Zy X Zy along the diagonal Zy — Zy X Zy, and is hence
a fibration as well. By Theorem 1.6.4 the square is homotopy Cartesian. Now since the right
vertical map admits a section (given by choosing for each x the constant path at x) we get that
the left vertical map admits a section as well. This finishes the proof of Proposition 2.3.10. O
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Corollary 2.3.11 Letf : X — Y be a Q-anodyne map and W a quasi-unital marked semiSegal
space. Then the map WY — WX admits a section.

Proof It is enough to prove that the map W' — WX satisfies the right lifting property with
respect to every map of the form () < A. Using the exponential law we see that this is equivalent
to saying that W — x satisfies the right lifting property with respectto X ® A — Y ® A.
Applying the exponential law again we reduce to proving that WA — x satisfies the right
lifting property with respect to f : X — Y. The result now follows from Proposition 2.3.10 as
W4 is quasi-unital and f is Q-anodyne. O

Our final goal of this subsection is to show that the following types of maps are Q-anodyne.
Let f : [n] — [k] be a surjective map in A and let & : [k] — [n] be a section of f. Let
M C (Sp*); be a marking on the k-spine and let M C (AF), be the marking generated from
it, i.e., the smallest set containing M which is closed under 2-out-of-3. Let My C (Sp”)1 be
the set of all pairs {i,i + 1} such that either f(i) = f(i + 1) or AV®SG+D} igin M and let
M; C (A™); be the marking generated from it. We wish to prove the following:

Proposition 2.3.12 In the notation above, the map
h- (A",IVI) . (N,Mf)
is Q-anodyne.
Proof Foreachi=0,...,nletS; C A" be the 1-dimensional semi-simplicial subset containing

all the vertices and all the edges of the form A¥v+1} such that f(j) = f(j + 1) = i. Then clearly
the inclusion AU®} C §; is Q-anodyne. Let § C A” be the (disjoint) union of all the S;’s.

Let Ay, hy be two sections of f. We will define the marked semi-simplicial subset T'(h, hy) C
(A", ]l71f> to be the (not necessarily disjoint) union of S* C (A”, ]l71f) and all edges of the form

Am@mED} for j =0, ..., n. In particular,
T(hy,hy) = <S U U A{hl(i),hz(i-‘rl)},N) C (An,Mf)
where N is the marking induced from 1\7If, i.e., N contains all the edges of S and the edges

A@:mGD} for which AU} s in M. Note that when hy = hy = h we have
T(h,h) = S* ]_[ (h(Sp"), h(M)) .

A% {0,...,k}

Now consider the commutative square

(Sp*, M) LG (A",Ir/l)

I

T(h, h) — (N,Mf)
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Since h: A x {0, ...,k} < S* is Q-anodyne we get that the top horizontal row is Q-anodyne.
In light of Remark 2.3.6 it will now be enough to show that this square is a Reedy cofibrant
homotopy pushout square in the marked Segal model structure. As Reedy cofibrancy is
immediate it will be enough to show that both horizontal maps are trivial MS-cofibrations. The
top horizontal map is very easy:

Lemma 2.3.13 The inclusion ¢ : (Sp]‘,M) — (Ak,]\~/[) is a trivial MS-cofibration.

Proof Factor ¢ as
I

(spt,m) & (8, m) & (ak ).

. .. . b . .
Then ¢/ is a pushout along the trivial MS-cofibration (Sp*)" — (A")b and . is a triangle
remarking (Definition 2.1.6). O

To show that bottom horizontal map is a trivial MS-cofibration it will be convenient to prove a
slightly stronger lemma:

Lemma 2.3.14 For any two sections hy, h, of f the inclusion
T, ho) € (A", 1)

is a trivial M S-cofibration.

Proof We begin by arguing that it is enough to prove the lemma for just one pair of sections
hi, hy. We say that two pairs (hy, hy), (b}, h}) are neighbours if

D I = K@ + [hali) — K@) = 1.

i=0
It is not hard to see that the resulting neighbouring graph is connected, i.e., that we can
get from any pair (h;,h,) to any other pair (h],h}) by a sequence of pairs such that each
consecutive couple of pairs are neighbours. Hence it is enough to show that the property of

T(hy, hy) — (A’",M,c) being a trivial MS-cofibration respects the neighbourhood relation.
To see why this is true observe that if (hy, k) and (A}, h)) are neighbours then one can add
to T(hy,hy) a single triangle ¢ C A™ such that R def T(hy, hy) U o contains T(h}, k) and
such that R can be obtained from either T'(h,, k), T(h}, h,) by performing a pushout along a
2-dimensional admissible marked horn inclusion and possibly a remarking. Hence the claim for

either T(hy, hy) or T(h},h}) is equivalent to R — (A”Zl\?,«) being a trivial MS-cofibration.

Now that we know that it is enough to prove for a single choice of (h, h,) let us choose the pair
max(i) = max(f ~'(i)) and Amin(i) = min(f~"(i)). Then we see that T(Amax, hmin) = (Sp™, My)

and the map (Sp”,M;) < (A’”, 1\71f) is a trivial MS-cofibration from Lemma 2.3.13. O

This finishes the proof of Proposition 2.3.12. O
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3 Complete marked semiSegal spaces

In this section we will further localize the model category Seg, to obtain our target model
category Comp,. We will then show the underlying co-category (Comp,), is equivalent to
the oo-category Catdl of quasi-unital co-categories (see Definition 2.2.14). Finally, we will
prove the main theorem of this paper by showing that Comp, is Quillen equivalent to the Rezk’s
model category Comp, and that this Quillen equivalence preserves mapping objects.

We begin with a description of the fibrant objects in Comp,, which are called complete marked
semiSegal spaces. The notion of completeness, the construction of the completion functor and
many of the related proofs are inspired by their respective analogues in [14]. We begin with the
basic definition:

Definition 3.0.15 Let (X, M) be a marked semiSegal space. We will say that X is complete if
the following two conditions are satisfied:

(1) X is quasi-unital.

(2) The restricted maps dp : X™ — Xo and d; : X" — X, are both homotopy
equivalences.

Remark 3.0.16 If W is a complete marked semiSegal space then W is complete as well.

Remark 3.0.17 If W is a marked semiKan space then W is complete if and only if it is
homotopy-constant as a semi-simplicial space (i.e., levelwise equivalent to a constant semi-
simplicial space). This follows from the Segal condition and the fact that A is weakly
contractible (see Lemma 3.2.7 below).

Let CsS C QsS denote the full simplicial subcategory spanned by complete marked semiSegal
spaces. Our next goal is to construct a suitable left Bousfield localization Comp, of Seg, such
that CsS will coincide with the full subcategory of fibrant (and cofibrant) objects in Comp; .

We begin with the following characterization of complete marked semiSegal spaces (compare
with Lemma 2.0.13):

Lemma 3.0.18 Let (X, M) be a marked semiSegal space. Then X is complete if and only if X
is local with respect to the class of Q-anodyne maps (see Definition 2.3.3).

Proof The class of Q-anodyne maps is the weakly saturated class of maps generated by
0o, 01, 0> (see Definition 2.0.12 and Remark 2.3.5). Hence to be local with respect to Q-anodyne
maps is equivalent to being local with respect to 8y, 0, 6, . Let us first assume that X is complete.
Then in particular X is quasi-unital and so M = Xi™. It then follows from condition (2) of
Definition 3.0.15 that (X, M) is local with respect to 6, 6, . Furthermore, by Lemma 1.5.4 we
now get that M satisfies the 2-out-of-6 property and hence (X, M) is local with respect to 6,.

Now assume that X is local with respect to 6y, 01, 0>, so that dy, d; : M — X, are equivalences.
In light of Lemma 2.0.13 we may deduce that X is quasi-unital unital, and hence in particular
M = Xi™ . This shows that X is complete. ]
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Since Seg, is combinatorial and left proper the left Bousfield localization of Seg, with respect
to the maps 6y, 01, 0, exists. We will denote the resulting localization by Comp,. Then Comp,
is a combinatorial model category satisfying the following properties:

(1) Amapf:X — Y of marked semi-simplicial spaces is an equivalence in Comp;, if and
only if for every complete marked semiSegal space W the induced map

Map_ (Y, W) — Map_ (X, W)

is a weak equivalence.

(2) Amap f: X — Y of marked semi-simplicial spaces is a cofibration in Comp, if and
only if it is a cofibration in Seg (i.e. a levelwise inclusion).

(3) A marked semi-simplicial space W is fibrant in Comp; if and only if it is a complete
marked semiSegal space.

Remark 3.0.19 Since CsS can be identified with the full simplicial subcategory of fibrant-
cofibrant objects in Comp, we may conclude that the underlying oco-category (Comp,).o is
equivalent to the simplicial nerve N(CsS).

Theorem 3.0.20 The complete model structure is compatible with the marked monoidal
product ®. In particular, the localization Quillen adjunction

AP Id
Seg’* ——= Comp;
1d

is strongly monoidal and Comp, inherits the simplicial structure of Seg,.

Proof Arguing as in [14] Proposition 9.2, we see that it will be enough to establish the
following:

Proposition 3.0.21 Let X be a marked semi-simplicial space and W a complete marked
semiSegal space. Then WX is complete.

Proof From Proposition 2.3.10 we get that WX is quasi-unital. In particular, the marked
edges of WX are exactly the equivalences. Let us now prove that WX satisfies condition (2) of
Definition 3.0.15.

For i = 0, 1 consider the restriction map
A?)

pow(®) o w(®) _y,

Since W is complete we get by definition that the maps

Py (W(Al)u)o — Wo
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are weak equivalences. By Corollary 2.3.9 we get that p’ is also a DK-equivalence and hence a
marked equivalence. Using the exponential law this implies that the restriction map

Map™ (X ® (Al)li , W) — Map™ (X @ Al W)

is a weak equivalence. Applying the exponential law again we get that WX satisfies condition
(2) of Definition 3.0.15. O

O

Remark 3.0.22 In the above notation, since W* is complete we get that WX is complete as well.
In particular, WX is a homotopy-constant marked semi-simplicial space (see Remark 3.0.17).

3.1 Completion

In this section we will prove that (Comp,), = N(CsS) is equivalent to the left co-localization
of N(QsS) with respect to DK-equivalences (see Definition 1.2.2). In particular, (Comp,)s is
equivalent to the co-category Catle of quasi-unital co-categories. In order to prove this we
will construct a completion functor

®:QsS — CsS
such that
(1) The induced map of oco-categories
N(®) : N(QsS) — N(CsS)
is left adjoint to the (fully-faithful) inclusion N(CsS) < N(QsS).

(2) A map in N(QsS) is a DK-equivalence if and only if its image under N(®) is an
equivalence.

To construct the completion functor we proceed as in [14]. Let X be a quasi-unital marked
semiSegal space. Consider the bi-semi-simplicial spaces X. ., Yoo : AP x AP — 8 given by

Xom = Map™ ((87)" @ (A7) X)
and
Yom = Map((A")F @ (A"), X).
We define the marked semi-simplicial space (7 M ) by setting
Xy = | X,

and
M=1Y,.

C X1

We then define the completion X of X to be the marked-fibrant replacement of (7 M ) .
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Theorem 3.1.1 Let X be a quasi-unital marked semiSegal space. Then

(D Xisa complete marked semiSegal space.

(2) The natural map X — Xisa DK-equivalence.

Proof Let n > 0 be an integer. From Proposition 2.3.12 we conclude that for each map
f:[k] — [m] in A, the map
f* : X.,m — X.7k

is a DK-equivalence and in particular fully-faithful. Hence the induced square
X —> Xom)"!
e
X — Xo )"

is homotopy Cartesian. From Corollary 1.6.8 the natural map

|n+l

n+1
Xo,-

— |X()’.
is a weak equivalence and so Puppe’s Theorem (see Theorem 1.6.5) implies that the square
X0 — Xo,0)" ™!

o

Koo —— [Xo,.""!

is homotopy Cartesian. The same argument with Y. . instead of X. . shows that the square
Y10 — (Yo,0)°

|

V1| — Yo

is homotopy Cartesian. This implies that the map X — X (and hence also the map X — X)is
fully-faithful. We now observe that the map Xy — X is surjective on connected components.
Since X is marked-fibrant we deduce from Lemma 2.2.16 that X is a quasi-unital marked
semiSegal space and the map X — Xisa DK-equivalence.

It is left to show that X is complete. Since X is quasi-unital we know that all invertible edges in
X are marked. Hence it will suffice to show that the maps

dol, |d1] = |Y1e] — |Yo..| = Xo

are weak equivalences. But this follows from Corollary 1.6.7 since the maps dy,d; : Y1 . — Yp.
are DK-equivalences of marked semiKan spaces. O
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Our goal now is to show that the completion functor exhibits N(CsS) as the left co-localization
of N(QsS) with respect to DK-equivalences. We start by showing that the notions of DK-
equivalence and marked equivalence coincide in CsS.

Proposition 3.1.2 Let f : X — Y be a DK-equivalence between complete marked semiSegal
spaces. Then f is a marked equivalence.

Proof Since f is in particular fully-faithful it will be enough to show that the map fy : Xo — Yo
is a weak equivalence. Lethf : X —> Y be the induced map between the corresponding maximal
semiKan subspaces. Then clearly f is a DK-equivalence as well. From Corollary 1.6.7 it
follows that the induced map

i |¥ = 7]
is a weak equivalence. But since X, Y are complete their corresponding maximal semiKan

space are homotopy-constant and so their realization is naturally equivalent to their space of
objects. It follows that fj is an equivalence and we are done. O

We are now ready to state the main theorem of this subsection:

Theorem 3.1.3 The induced functor N(®) : N(QsS) — N(CsS) exhibits N(CsS) as the left
oo-localization of N(QsS) with respect to DK-equivalences.

We will postpone the proof of Theorem 3.1.3 until the end of this subsection. Before that, we
will need to establish some way to spot weak equivalences in Comp,. This will be achieved
using a weak notion of cylinder object:

Definition 3.1.4 Let M be a model category and X € M and object. We will say that a
cofibration of the form

XHX@QM
exhibits /X as a weak cylinder object for X if the two maps ¢p,¢; : X —> IX are weak

equivalences which become equal in Ho(M). Given a weak cylinder object as above and two
maps f, g : X — Y we will say that f, g are homotopic via X if the corresponding map

xJ[x sy
factors through 7X. This notion is in general stronger then f, g being equal in Ho(M).

Our reason for introducing this notion is that in the model category Comp, we have very natural
choices for weak cylinder object, namely:

Lemma 3.1.5 Let X be a marked semi-simplicial space. Then the natural map
x[[x = xe (A

exhibits X ® (A')u as a weak cylinder object of X .
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Proof Clearly the map in question is a cofibration. It will hence be enough to show that the
two maps g, ¢; : A — (A')lj are equal in Ho(Comp,). Let p : (AI)jj — W be a fibrant
replacement of (Al)ti in Comp,. We need to show that p o ¢y and p o+ are in the same
connected component of Map +(A0, W) = Wp. But this is clear because the map p determines
a marked edge from p o ¢y to po ¢y and W is complete (so that W is homotopy-constant). [

The notion of homotopy between maps which is associated to the above choice of weak cylinder
objects will be called (A' )ﬁ -homotopy. There is a corresponding notion of a (A!) * homotopy
equivalence, which in general is stronger then being a weak equivalence in Comp,. These
types of equivalences are analogous to the notion of categorical equivalences in [14].

Proposition 3.1.6 Let p : W — Z be a DK-equivalence between quasi-unital marked
semiSegal spaces which admits a section g : Z — W. Then f is a weak equivalence in Comp, .

Proof We can assume without loss of generality that f is a marked fibration. We claim that g
is a homotopy inverse of f. On one direction the composition f o g is the identity. We need
to show that g o f is equivalent to the identity Comp,. For this it will suffice to produce a
(Al) ' -homotopy from g o f to the identity, or in other words a marked edge from g o f to the
identity in WV

Since the mapping object Z" is quasi-unital (Proposition 2.3.9) there exists a marked edge
h € (Z"), from f to itself. The edge h corresponds to a map

#

h:We (A — 2z

whose restriction to each Z @ Al} is f. Now consider the commutative square

W x 0A! ——= W

_ 7
l h// ‘/
. f
-

Wx (AN 7

where the top horizontal map is given by (g o f) [[Id. Since the right vertical map is a fully-
faithful marked fibration and the left vertical map is a cofibration which induces an isomorphism
on the 0’th level we get from Proposition 2.2.5 that a lift /2 : W x (Al)tj — W indeed exists.
Then & gives an equivalence from g o f to the identity in W" and we are done. O

Corollary 3.1.7 Letf : X — Y be a Q-anodyne map and let W be a quasi-unital marked
semiSegal space. Then the map f* : W¥ — WX is an equivalence in Comp, .

Proof From Proposition 2.3.9 and Corollary 2.3.11 we know that if f : X — Y is Q-anodyne
then the map W¥ — WX is a DK-equivalence which admits a section. The desired result now
follows from Proposition 3.1.6. O
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Proof of Theorem 3.1.3 From the second part of Theorem 3.1.1 we get that a map f X—Y
of quasi-unital semiSegal spaces is a DK-equivalence if and only if f X —» Y is a DK-
equivalence. In view of Proposition 3.1.2 we deduce that the collection of maps sent by ® to
equivalences are precisely the DK-equivalences. Hence it is left to prove that N(®) is indeed
a left adjoint to the inclusion N(CsS) < N(QsS). For this it will be enough to show that the
natural map

X—X

is a weak equivalence in Comp,. Indeed, in this case the restriction map
Mape,s (X, W) — Mapos(X, W)

will be a weak equivalence for every W € CsS and hence we would be able to consider X — X
as a unit transformation (see [11, Proposition 5.2.2.8]). Now the marked semi-simplicial space
X is the homotopy colimit of the AP -diagram [m] > X.,» where X.p = X. Since A; is
weakly contractible it will suffice to show that for each p : [k] — [n] in A, the natural map

N’ %
pr Xy = x(&") —)X(A ) =Xk
is a weak equivalence in Comp,. Now from Proposition 2.3.12 we know that the inclusion
(Ak)ﬁ SN (An)’i

is Q-anodyne. The desired result now follows from Corollary 3.1.7. O

3.2 Proof of the main theorem

Let Comp denote Rezk’s model cate§ory of complete Segal spaces (so that the underlying
category of Comp is the category $§A7 of simplicial spaces). Recall the Quillen adjunction

+
AP F AOP
8§ —=8,
329<+

described in § 1.8. The purpose of this section is to prove the following theorem, which is the
main result of this paper:

Theorem 3.2.1 The Quillen adjunction F+ + RK™ descends to a Quillen equivalence

g:+
3-1) Comp ———= Comp;,
RKt

Note that a-priori it is not even clear that this is a Quillen adjunction. Even though F+ preserves
cofibrations, to show that it preserves trivial cofibrations is equivalent to showing that RK ™
maps complete marked semiSegal spaces to complete Segal spaces. Fortunately, this claim as
well as the desired Quillen equivalence will both follow from the following theorem:
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Theorem 3.2.2 Let X be a complete marked semiSegal space. Then the counit map
vy : TP (RKT (X)) — X

is a marked equivalence.

Before we proceed to prove Theorem 3.2.2 let us derive two short corollaries of it, which
together imply that 3—1 is a Quillen equivalence. We start with the following observation:

Corollary 3.2.3 Assume Theorem 3.2.2 and let X be a complete marked semiSegal space.
Then RK ™ (X) is a complete Segal space.

Proof Firstsince X is marked-fibrant we get that RK " (X) is Reedy fibrant. Since F (RK " (X)) ~
X we get that RK™ (X) satisfies the Segal condition and hence is a Segal space. Furthermore,
we get that RK™ (X)" ~ X" and in particular the map

dy : RKT (X' — RKT (X),

is a weak equivalence. Since sy is a section of dy we get that s¢ is a weak equivalence and
hence RK™ (X) is a complete Segal space. O

Now Corollary 3.2.3 implies that

F+
Comp ———= Comp;,
RKT

is indeed a Quillen adjunction. We then get a derived adjunction
Ho (Comp) ——= Ho (Comp,)

between the respective homotopy categories. Since every object in Comp is cofibrant Theo-
rem 3.2.2 tells us that the counit of the derived adjunction is a natural isomorphism. To show
that the unit map is an isomorphism it will be enough to show that ¥ detects equivalences,
i.e. thatif f : X — Y is a map of simplicial spaces such that F(f) is a weak equivalence in
Comp;, then f is an equivalence in Comp (the unit transformation is then an equivalence by a
standard argument).

Corollary 3.2.4 Assume Theorem 3.2.2. Then the functor F* detects equivalences.

Proof By definition the equivalences in Comp are detected by mapping into complete Segal
spaces. Hence the claim that 7+ detects equivalences will follow once we show that every
complete Segal space is in the image of RK™ (up to a levelwise equivalence).

Let Y be a complete Segal space. Note that F1(Y) is then almost a complete marked
semiSegal space in the following sense: let F%(Y) be the marked simplicial space which
has the same underlying semi-simplicial space as F+(Y) but whose marking is given by
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M = (FH(Y))™ = Y™ Since every degenerate edge in Y is an equivalence in F+(Y) we have
an inclusion
L FHY) = FNY)

which is a levelwise equivalence by definition. Since Y is complete we get that Y™ is the union
of all connected components which contain degenerate edges. This means that ¢ is a marked
equivalence. Furthermore, the completeness of ¥ implies the completeness of F(Y), and so
¢ can serve as a fibrant replacement of 7 (Y). The upshot of this is that F(Y) is marked
equivalent to its fibrant replacement (and not just weakly equivalent in Comp, ).

Now let uy be the map given by the composition
Y — RKT (FH(Y)) — RKT (FHD))).

From the discussion above we see that we can consider uy as the derived unit in the pre-localized
Quillen adjunction

AOP 5t+ ASP
e
RKT

This means that the composition

5 W 5 (R (FED))) 2D ()

is a marked equivalence. Since the second map is a marked equivalence by Theorem 3.2.2 we
get that F 1 (uy) is a marked equivalence. This means that uy is a levelwise equivalence and
hence Y is in the essential image of RK ™. O

Let CS & Comp™ C Comp be the full simplicial subcategory spanned by complete Segal
spaces. In light of Corollary 3.2.3 the functors RK™ and F* above restrict to an adjunction

Fh
CS —/—=CsS
RKT
which is an equivalence of fibrant simplicial categories. We hence obtain the following version
of our main theorem:
Corollary 3.2.5 The forgetful functor
Cato, >~ N(CS) — N(CsS) ~ Catl?
is an equivalence of co-categories.
Now in order to prove Theorem 3.2.2 we will need a few lemmas which will help us compute

RX T (X) more easily. The outline of our strategy is inspired by the proof of [10, Proposition
5.4.3.16].

We begin by introducing the following replacement for the category C,,.
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Definition 3.2.6 For n > 0 let us denote by C¥ C €, the full subcategory spanned by objects
of the form f : [m] — [n] such that f is surjective.

The following lemma seems to be well-known to experts, but we were unable to find a short
proof in the literature.

Lemma 3.2.7 The category A is weakly contractible.

Proof Consider the simplicial set Z which is the left Kan extension of the terminal semi-
simplicial set. Then Z has a unique non-degenerate simplex in each dimension and the face of
any non-degenerate simplex of Z is again non-degenerate. This means that the nerve of A can
be identified with the barycentric subdivision of Z, and so it will be enough to show that Z is
weakly contractible. This, in turn, can be verified directly: Z has trivial homology groups in
each dimension and is simply connected by virtue of Van-Kampen’s theorem. O

Corollary 3.2.8 The category €0 is weakly contractible.

Proof The category €V is isomorphic to (A{F)": the isomorphism is given by sending a
surjective map f : [m] — [n] to the vector of linearly ordered sets (f~'(0),....f~'(n))
considered as an object of (Ag”)". The result now follows from Lemma 3.2.7. O

We will say that a functor f : € — D is coinitial if for every d € D the nerve of the
category C xp D, is contractible. Equivalently, if the functor f°° : €°° — DP is cofinal
(see [11, Theorem 4.1.3.1]). We recall that restricting a diagram along a coinitial map induces
an equivalence on homotopy limits (see [11, Theorem 4.1.1.8] for cofinal maps, or [5, Theorem
19.6.7], where the property coinitial is called "homotopy left cofinal").

Lemma 3.2.9 The inclusion €0 — C, is coinitial.

Proof We need to show that for every object X € €, the category C x¢, C, /x 1s weakly
contractible. Let X be the object corresponding to a morphism g : [k] — [n]. The objects of
the category €2 x¢e, C, /x can be identified with commutative diagrams of the form

(3-2) k] — " [m]

N

[n]

such that f is surjective and 4 is injective (and g remains fixed). A morphism €0 x¢, C, /X
between two diagrams as above is a morphism of diagrams in the opposite direction which is
the identity on [k] and [n]. Let us denote

AY g =0
A

ex —
?p/gfl(,') I OF

1



64 Y. Harpaz

There is a natural functor
T : 62 Xe, Gn/X — HE?
i=0
which sends the diagram 3-2 to the vector

O, € [T &F
i=0
where f~1(i) is considered as a finite ordered set equipped with a natural injective map from
g '(i). The functor T admits an inverse

s:[]eX — €l xe, Cux
i=0
which sends a vector (A, ...,A,) of finite ordered sets to their concatenation Ay * A * ... x A,
considered as an object in A fitting naturally into a diagram of the form 3-2. We may then
conclude that T is an equivalence of categories.
Now when g~!(i) # () the category €X has a terminal object and so is weakly contractible. When
g () = 0 we have ¥ = A which is weakly contractible as well (see Lemma 3.2.7). We
conclude that €) x¢, €, x = [T, & is weakly contractible and so the proof is complete. [J

In view of Remark 1.8.3 we now have the following corollary:

Corollary 3.2.10
RKT (X), ~ holim o Gy,

Proof of Theorem 3.2.2 In light of Corollary 3.2.10 and Corollary 3.2.8 the proof of Theo-
rem 3.2.2 will be done once we show that for each n the restricted functor 9,,|62 is homotopy-
constant. Let X be a complete marked semiSegal space and suppose we are given a diagram

h
(k] ——————[m]
X /
[n]

such that both f, g are surjective and % is injective. We wish to show that 4 induces an
equivalence

B XE = X5
Since g is a surjective map between simplices it admits a section s : [n] — [k]. One then
obtain a sequence

X, 2 xs 2 x4

From the 2-out-of-3 rule we see that it will be enough to prove the lemma for k = n and g = 1d.
Note that in this case X! = X, and we can consider  as a section of f.

According to Proposition 2.3.12 we get that the map x(A"A) X(A")b is a DK-equivalence.
By Propositions 3.0.21 and 3.1.2 this map is a levelwise equivalence. Evaluating at level 0 we
get the desired result. O
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3.3 Monoidality

Since both Comp and Comp, are monoidal model categories, the underlying co-categories
Comp_, and (Comp,)~, inherit natural structures of symmetric monoidal co-categories (see
[11, Example 4.1.3.6]). It is then natural to ask whether the Quillen equivalence ¥+ 4 RK™
can be promoted to a weakly monoidal one in the sense of Definition 1.1.8, yielding a similar
structure on the underlying adjunction of co-categories. Unfortunately, this is not exactly the
case. However, we seem to be in a somewhat dual situation, in which we have a lax structure
on the left functor F* (as opposed to a colax one), whose structure maps are weak equivalences
(this in turn determines no structure on JQiK"", and we do not know if RK™ carries any colax
structure).

To avoid this technicality we will work directly with the fibrant simplicial categories CS and CsS
whose coherent nerves are equivalent Comp_, and (Comp,)., respectively. As explained above
(see Corollary 3.2.5 and the discussion preceding it), the forgetful functor Cat,, — Catd can
be modelled directly by a functor of simplicial categories

F.CS — CsS

Now the monoidal structure on Comp is the Cartesian one, and as such is inherited by the full
subcategory CS C Comp of fibrant (-cofibrant) objects. Unfortunately, the same statement does
not hold for Comp,. In particular, the tensor product of two object in CsS might not lie in CsS.
This difficulty can be overcome as follows. Following [10, §4.1.3] we may regard CS and CsS
as simplicial colored operads whose multi-mapping spaces are given by

Mul(X, ... Xp, ¥) & Map(X; @ ... @ X,,, ¥)
(where the tensor product is computed inside Comp or Comp, respectively). According to [10,
Proposition 4.1.3.10] and [10, Corollary 4.1.3.16] the oco-operads N®(CS) and N®(CsS) are
in fact symmetric monoidal co-categories which are equivalent to the underlying symmetric
monoidal oo-categories Comp,, and (Comp,)., respectively (here N® is the operadic nerve,
see [10, Definition 2.1.1.23.])

In this section we shall exhibit a lax structure on the functor 2. Such a structure naturally leads
to a map of oco-operads
N® (F7) : N®(CS) — N®(CsS)

Furthermore, we will show that the structure maps of this lax structure are equivalences. Since
F% itself is also an equivalence we may deduce that N® (3" h) is an equivalence of co-operads,
and hence in particular an equivalence of symmetric monoidal co-categories.
To begin, consider the adjunction
S Agp LK 8 AP
F

where J is the forgetful functor and £X is the left Kan extension functor. This adjunction
carries a compatible lax-colax structure (o, y, i), (Bz,w, V) (see Definition 1.1.3). The colax
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structure was described in Remark 1.3.2. Here we shall be mostly concerned with the lax
structure (ay,y, u), and so it will be worth while to give an explicit description. First observe
that the map

u: A — FLK(AY)

is just the unit of the adjunction. Second, the maps
axy : FX) @ F(Y) = Core(LK(TF(X)) x LK(TF(Y)) — FX x Y)

are induced by the tensor of counit maps LK(F(X) x LK(F(Y)) — X x Y followed by the
natural inclusion Core(X X Y) — F(X x Y).

Now let X, Y be two simplicial space let M C X;, N C Y; be the union of components meeting
degenerate edges. By definition (see § 1.7) the marked subspace of F(X) ® F(Y) may be
identified with

(s*(Xo) x ¥o) [T (%0 x s*(¥0) [ (s*(Xo) x s*(X1)) € (FX) @ F(YV)),
which is mapped by ay y onto the subspace
5" (Xo) x s*(Yp) C F(X x V).
Similarly, the marked subspace of F4(X) ® F%(Y) may be identified with
M x Yo) [T o x M) [T x N) € (F(X) @ F(¥)),
which is mapped by ay y onto the subspace

M xNCTFXxY).

‘We may hence conclude that oy y gives rise to natural maps
oy FFOFHY) — FrX@Y)

and
ayy : FHO @ FHY) — FHA R Y).

Combined with the obvious natural map

ut : A — FT (LK (AY))
and

u: A" — (LK (AY))

we hence obtain lax structures on F+ and F? respectively. Our goal in this section is to
prove that the structure maps o and u? are equivalences. Since the natural transformation
FHX) — FUX) is a weak equivalence in Comp, it will suffice to show that the natural

transformations «;f , and u™ are weak equivalences in Comp; .

We start with the following direct corollary of Theorem 3.2.2:
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Lemma 3.3.1 Let Z be an (unmarked) semi-simplicial space. Then the composition of natural
maps
7" — (FLKZ)) — FHLKZ))

is a weak equivalence in Comp;.

Proof Let (W, M) beacomplete marked semi-simplicial space. Mapping the above composition
into W yields the map

Map, (F(LX@)), W) — Map,, (2, W)
By adjunction the above map can be written as
(3-3) Map (Z, 9’((RfK+(W))) — Map (Z, W)

where the map is induced by the map J (RJC+(W)) — W of semi-simplicial spaces underlying
the counit map. By Theorem 3.2.2 this counit map is a marked equivalence and so the underlying
map is a levelwise equivalence. Since both F (iRiK"’(W)) and W are Reedy fibrant we get
that the map 3-3 is a weak equivalence. Since this is true for any complete marked semi-
simplicial space W we get that the map Z° — FH(LK(Z)) is a weak equivalence in Comp;
as desired. O

Now, applying Lemma 3.3.1 for Z = A we obtain that u™ is a weak equivalence in Comp,. It
is left to prove the following:

Proposition 3.3.2 The natural map
oy 1 FFO@FHY) — FFX xY)

is a weak equivalence in Comp, for every two simplicial spaces X,Y .

Proof Note that for every n, the left Kan extension LXK (A") is the standard n-simplex
(considered as a levelwise discrete simplicial space). Now any simplicial space is a colimit of
such LX(A")’s, which is simultaneously a homotopy colimit with respect to the Reedy model
structure (and hence also with respect to the model structure of Comp). Since F* preserves
colimits and sends levelwise equivalences to marked equivalences it will be enough to prove
the claim for X = LK (A"),Y = LK (A™). In particular, we need to show that the lower
horizontal map in the diagram

A" @ Am F+ (LK (A" @ A™))

| 5

FH (LK (AY) @ FH (LK (A™) ——= FT (LK (A") x LK (A™))

is a weak equivalence (to check that this diagram commutes note that the underlying diagram of
semi-simplicial spaces is one of the compatibility diagram of the lax structure of I and the colax
structure of LXK, see Definition 1.1.3). Now from Lemma 3.3.1 we get that upper horizontal



68 Y. Harpaz

map and the left vertical map are weak equivalences (for the left vertical map one uses the fact
that in a symmetric monoidal model category the product of two weak equivalences between
cofibrant objects is again a weak equivalence). Since the right vertical map is an isomorphism
(see Remark 1.3.2) the result follows from the 2-out-of-3 property. O

Remark 3.3.3 By using adjunction and the exponential law one sees that the lax structure on
F7 induces a natural map

F(RKF (V) — ¥7 X

for every X € Comp, Y € Comp,. Proposition 3.3.2 then implies that this map is a weak
equivalence whenever Y is fibrant, i.e. a complete marked semiSegal space. In particular, if
Y = F8(Y’) for some complete Segal space Y’ then we get a sequence of weak equivalences

F (YY) = Ft ((fRJ<+ (S’”(Y’)))X) = gy T & FhyyTEO
which induces an equivalence
7 (1)) = )
This equivalence can be interpreted as follows: if €, D are two co-categories and €, D their

. . . . . Lo =D .
respective underlying quasi-unital co-categories, then the quasi-unital functor category €™ is
equivalent to the underlying quasi-unital co-category of the functor category CP .
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