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1 Simplicial Presheaves

Let C be a category. We wish to model the∞-category of∞-functors from C to
topological spaces. We will do this by putting a model structure on the category
Fun(Cop,Set∆) = Fun(Cop,Set)∆op

. We will refer to objects in Fun(Cop,Set)
as presheaves and objects in Fun(Cop,Set∆) as simplicial presheaves.

Note that for every objectX we have a representable presheaf rX ∈ Fun(Cop,Set).
By abuse of notation we will also sometimes consider rX as a (constant) sim-
plicial presheaf. It should be clear from the context which use is taken each
time.

The various options to put model structures Fun(Cop,Set∆) contain in some
sense two extreme choices:

Definition 1.1. 1. The projective model structure on Fun(Cop,Set∆). Here
weak equivalences and fibrations are object-wise and cofibrations are de-
fined via the left lifting property.

2. The injective model structure on Fun(Cop,Set∆). Here weak equiva-
lences and cofibrations are object-wise and fibrations are defined via the
right lifting property.

The advantage of the projective model structure is that fibrations are easy to
describe, and the advantage of the injective model structure is that cofibrations
are easy to described. However the projective model structure has another
advantage, which is not met by the injective model structure:

Theorem 1.2. The family of maps

∂∆n ⊗ rX −→ ∆n ⊗ rX

(where X ranges over all objects of C) generate the set of all cofibrations in the
projective model structure.

Proof. This is equivalent to saying that a map of simplicial presheaves is F −→
G is an object-wise fibration if and only if it satisfies the right lifting property
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with respect to all the maps ∂∆n ⊗X −→ ∆n ⊗X where X is representable.
This is clear once we recall Yoneda’s fundamental lemma saying that

MapFun(Cop,Set∆)(X,F ) ∼= F (X)

In particular if F is a projective-cofibrant simplicial presheaf then the pushout
along a diagram of the form

(∗) X ⊗ ∂∆n //

��

F

X ⊗∆n

is also a cofibrant object. In this way one can construct many projective-
cofibrant objects as sequential colimits of skeletons

F = colimFn

where F0 is coproduct of representables and Fn+1 is obtained from Fn via a
sequence of pushouts of the form (∗).

Example: If C is the one object category associated with a group G then a
simplicial presheaf is just a simplicial set with an action of G. The construction
above will gives us simplicial sets with a free G-action.

Note that in the group action example every simplicial G-set which is free
level wise will give us a cofibrant object. This example is slightly misleading
because in general not every simplicial presheaf which is representable level-wise
has to be cofibrant.

The technical problem is due to the fact that a simplicial object has de-
generacies, and so the realization might involves also ”collapsing” colimits, or
pushouts which are not along cofibrations. When C is a group category this
can’t happen but if C is a bit more complicated it is not always easy to ”separate
out” the degeneracies.

The technical condition that a simplicial object which is representable level-
wise needs to satisfy in order to be cofibrant is to be Reedy cofibrant, which is
also sometimes called having split degeneracies. In that case the realization
will coincide with the homotopy colimit and will be cofibrant. More technically
we will be able to describe the realization using only pushouts of the form (∗).

Now given a simplicial presheaf which is levelwise representable things are
still not that bad. We can apply to it the Reedy cofibrant replacement functor
and obtain a simplicial obejct in Fun(Cop,Set∆) whose realization can serve
as a cofibrant replacement of our object. Another way to think of the fibrant
replacement of such a U as the homotopy colimit of the diagram {Un}.

2 Grothendieck Topologies and ∞-Sheaves

We will use the ”covering sieve” approach to Grothendieck topologies:
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Definition 2.1. Let X ∈ C be an object and rX ∈ Fun(Cop,Set) the corre-
sponding representable presheaf. A sieve on X is a subfunctor R ↪→ rX, i.e.
a map of presheaves R −→ rX such that for each Y ∈ C the map

R(Y ) −→ rX(Y ) = HomC(Y,X)

is an injective map of sets.

Note that the data of a sieve R on X gives for each object Y ∈ C a collection
of maps R(Y ) = {f : Y −→ X} such that if f ∈ R(Y ) and g : Z −→ Y is any
map then

f ◦ g ∈ R(Z)

Examples:

1. Let X ∈ C be an object and f : Y −→ X a morphism. Then we can define
a sieve Rf by setting RY (Z) to be the set of all morphisms Z −→ X which
factor through Y .

2. Let X is a topological space and C = O(X) is the category of open subsets
of X and inclusions. Let U ∈ O(X) and F = {Uα} an open covering of
U . Then we can define a sieve RF by letting RF (V ) contain the inclusion
V ↪→ U if and only V is contained in Uα for some α. This is the way in
which sieves can encode the information of coverings.

Given a sieve R on X and a morphism f : Y −→ X we define the pullback
f∗R as the pullback of the diagram

R

��
rY // rX

in the category Fun(Cop,Set) of presheaves (which in turn is just pullback
object-wise). Since a pullback of an injective map is injective it follows that
the pullback of a sieve is a sieve.

We now come to the definition of a Grothendieck topology.

Definition 2.2. Let C be a category. A Grothendieck topology on C con-
sists of the following data: for each object X ∈ C, a collection of sieves J(X)
on X which are called covering sieves. This data is required to satisfy the
following axioms:

1. The sieve rX on X is a covering sieve for every X.

2. If R ∈ J(X) is a covering sieve on X and f : Y −→ X is any morphism
then the pullback f∗R is a covering sieve on Y .

3. Let R be a covering sieve on X and S any sieve on X. Suppose that for
each morphism f : Y −→ X which belongs to R the pullback f∗S is a
covering sieve of Y . Then S is a covering sieve of X.
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A category C together with a Grothendieck topology τ is called a Grothendieck
site.

Examples:

1. Let X is a topological space and C = O(X) is the category of open subsets
of X and inclusions. We can define the covering sieves on U to be exactly
those of the form RF for some open covering F = {Uα}. This is the
standard Grothendieck topology on X.

2. Let S be a base schemes. We can do the same with the category of
smooth (affine/general) schemes over S by replacing the notion of an open
covering U = {Uα} with families of open inclusions/ étale maps/fpqc
maps/fppf maps/smooth maps {Uα −→ U} whose images cover U . All
these constructions have both ”big” and a ”small” versions. We will not
elaborate on that here.

We now wish to construct a model structure on Fun(Cop,Set∆) which will
model the notion of an ∞-sheaf, or a sheaf of topological spaces. For this we
will need the notion of a hypercovering. In order to phrase the notion of a
hypercovering through covering sieves we will need the following notion:

Definition 2.3. A map F −→ G of presheaves is called locally surjective
(or a generalized cover) if for every object X ∈ C and every point x ∈ G(X)
there exists a covering sieve R on X such that for every f : Y −→ X in R the
point f∗x ∈ G(Y ) is in the image of the map F (Y ) −→ G(Y ).

Definition 2.4. Let X ∈ C be an object. We say that a map of simplicial
presheaves U −→ rX is a hypercovering if

1. Each Un is a coproduct of representable.

2. The following maps of presheaves

U0 −→ X

U1 −→ U0 ×X U0

Un −→ U∂∆n

, n ≥ 2

are locally surjective where U∂∆n

is the presheaf which associates to each
object Y the set of maps ∂∆n −→ F (Y ).

Remark 2.5. This can also be phrased using a single condition by saying
that for every n the associated map of presheaves

Un −→ U∂∆n

×rX∂∆n rX

is locally surjective.
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Another way to phrase the second property is that every diagram of the form

rY ⊗ ∂∆n //

��

U

��
rY ⊗∆n // rX

admits a lift when restricting to an appropriate covering sieves. Note that if our
Grothendieck topology was trivial then this condition is just the right lifting
property with respect to cofibrations, so we would get that the second condition
is that U −→ rX is a trivial fibration. In general this property is sometimes
called a local trivial fibration but one should be careful with that terminology
because this will not be the definition of fibrations in the model structure we
will construct.

We now return to the issue of defining a model structure capturing the
notion of an ∞-sheaf. We will do so by taking the projective model structure
on Fun(Cop,Set∆) and do a left Bousfield localization with respect to a certain
family of maps. There are essentially two inequivalent to do this, yielding two
different notions of ∞-sheaves:

1. We can localize with respect to all maps of the form R −→ rX when
R is a covering sieve (here we consider presheaves as constant simplicial
presheaves).

2. We can localize with respect to all maps of the form U −→ rX which are
hypercoverings.

It turns out that the second localization factors through the first localization
- i.e. if we localize with respect to all hypercoverings then the maps of the form
R −→ rX where R is a covering sieve will automatically becomes equivalences,
but the converse is not true in general. We refer the reader to Lurie’s book
”higher topos theory” where he defines the notion of a hypercomplete∞-topos.
In that language the second localization results in the ∞-topos which is the
hypercompletion of the first ∞-topos.

We call the second model structure the local projective model struc-
ture on Fun(Cop,Set∆). The projective model structure from before is also
sometimes referred to as the global projective model structure.

Remark 2.6. We can of course localize the injective model structure instead.
This will be equivalent, but just less convenient for us.

Since we are doing a left localization the cofibrant objects in the local projec-
tive model structure will be the same as in the global projective model structure.
The fibrant objects, however, will encode the ”sheafness” essence:

Theorem 2.7. Let F ∈ Fun(Cop,Set∆) be a simplicial presheaf. Then F is
fibrant in the local projective model structure if and only if

1. F is fibrant in the global projective model structure, i.e. F (X) is a Kan
simplicial set for every X.
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2. For each hypercovering U −→ rX such that Un =
∐
α∈In

Uα. Then the
induced map

F (X) −→ holim∆

∏
α∈In

F (Uα)

is a weak equivalence.

The second property is also called descent with respect to hypercover-
ings.

Proof. In a left Bousfield localization the new fibrant objects are the objects
which a fibrant in the old model structure and are local. This means that F is
fibrant if and only if each F (X) is Kan and for each hypercovering U −→ rX
the induced map

Hom(rXcof , F ) −→ Hom(U cof , F )

is a weak equivalence.
Since rX is representable it is cofibrant so rXcof = rX. Since each Un

is representable we the homotopy colimit U ′ = hocolim∆op Un can serve as a
cofibrant replacement of U . We then have that

Hom(rXcof , F ) = Hom(rX, F ) = F (X)

and

Hom(U cof , F ) = Hom(U ′, F ) ' holim∆(Hom(Un, F )) = holim∆

( ∏
α∈In

F (Un)

)

Which finishes the proof.

Remark 2.8. An alternative description of the weak equivalences in the local pro-
jective model structure are given by notion of sheaves of homotopy groups.
Let F be a simplicial presheaf and X ∈ C be an object. Given any base point
x0 ∈ F (X) we define the sheaf πn(F, x0) on the induced Grothendieck site C/X
as ths sheafification of the presheaf which associates to each f : Y −→ X the
(pointed set/group/abelian group) πn(Y, f∗x). It can be shown that the weak
equivalences in the local model structure are exactly the maps which induce an
isomorphism on all sheaves of homotopy groups.

3 Application

Here is a nice application of the notion of ∞-sheaf which is connected to work
in progress with T.Schlank. Let S be a base scheme and f : X −→ S a nice
scheme over S. Consider the étale sites Sét and Xét of S and X respectively.

Suppose that the pullback functor f∗ : Sét −→ Xét has a left adjoint f! :
Xét −→ Sét. For example if S = spec(k) then f!(Y ) = π0(Y ) considered as
a 0-dimensional scheme over k. If S = spec(Ok) for a number ring then Ok
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then π0(Y ) can be given an integral structure so f! exists as well (at least for
sufficiently nice X’s).

Given a hypercovering U −→ rX in Xét we can apply the functor f! to it
level-wise and obtain a simplicial presheaf in Sét. Applying the fibrant replace-
ment functor (∞-sheafification) one gets an ∞-sheaf FU over S. This gives us
an inverse system of∞-sheaves {FU} indexed by the filtered simplicial category
of hypercoverings. The inverse system of sheaves of homotopy groups can be
thought of as the relative homotopy groups of X over S.

If X has an S-rational point then all the ∞-sheaves FU will admits a sec-
tion. In other words if any one of FU does not have a section then X can’t
have an S-rational point. Using standard tools from homotopy theory one can
construct obstructions to the existence of a section which take values in certain
cohomology groups which can informally be written as

Hn+1(S, πn(FU ))

These obstructions then give obstructions to the existence of S-rational points
on X.
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