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1 Introduction

Let k be a number field and S a finite set of places of k. By an OS-variety
we understand a separable scheme of finite type over the ring OS ⊆ k of S-
integers. We will always denote by X = X⊗OS

k the base change of X to k. A
fundamental problem in Diophantine geometry is to understand the set X(OS)
of S-integral points, and in particular to determine when it is non-empty. A
typical starting point for such questions is to embed the set X(OS) of S-integral
points in the the set of S-integral adelic points

X(Ak)
def
=

∏
v∈S

X(kv)×
∏
v/∈S

X(Ov).

If X(Ak) = ∅ one may immediately deduce that X has no S-integral points.
In general, it can certainly happen that X(Ak) 6= ∅ but X(OS) is still empty.
One way to account for this phenomenon is given by the integral version of
the Brauer-Manin obstruction, introduced in [CTX09]. This is done by
considering the set

X(Ak)Br(X) def
= X(Ak) ∩X(Ak)Br.

When X(Ak)Br = ∅ one says that there is a Brauer-Manin obstruction to the
existence of S-integral points. Our motivation then leads to the following natural
question:

question 1.1. Given a family F of OS-varieties, does the property X(Ak)Br(X) 6=
∅ implies X(OS) 6= ∅ for every X ∈ F?

When the answer to Question 1.1 is yes one says that the Brauer-Manin
obstruction is the only obstruction to the existence of S-integral points for the
family F. In [CTX09] Colliot-Thélène and Xu show that if X is such that X =
X⊗OS

k is a homogeneous space under a simply-connected semi-simple algebraic
group G with connected geometric stabilizers, and G satisfies a certain non-
compactness condition over S, then the Brauer-Manin obstruction is the only
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obstruction to the existence of S-integral points on X. Similar results hold when
X is a principal homogeneous space of an algebraic group of multiplicative type
(Wei, Xu [WX12], [WX13]). On the other hand, there are several known types of
counter-examples, i.e., families for which the answer to Question 1.1 is negative.
One way to construct such counter-example is to consider varieties which are
not simply-connected. In this case, one can sometimes refine the Brauer-Manin
obstruction by applying it to various étale coverings of X (Colliot-Thélène,
Wittenberg, [CTW12, Example 5.10]). Other types of counter-examples occur
when X lacks a sufficient supply of local S-points “at infinity”. In [CTW12,
Example 5.9] it is shown that the affine surface X over Z given by the equation

2x2 + 3y2 + 4z2 = 1

has a non-empty integral Brauer set, but evidently no integral points. We note
that the surface X = X⊗OS

k is geometrically very nice: it can be compactified
X ⊂ X such that the complement D = X \ X is smooth and geometrically
irreducible and such that the divisor class −[D] − K(X) is ample. In other
words, X is a log del Pezzo surface. However, D has no real points, and
as a result the space of adelic point X(A) is compact. Since X is affine this
implies that X could a priori only have finitely many integral points, and it just
so happens that it has none. More generally, if X is an OS-variety and X ⊆ X
is a smooth compactification such that D = X \ X is geometrically irreducible
and has no kv-points for any v ∈ S then we should not expect X to be as well-
behaved as its geometric features might indicate. When D is not irreducible the
situation is even more delicate, since each component (and each intersection of
components) may or may not have a kv-point for each v ∈ S. In this case it
is not even clear under what circumstances should we expect X to match the
behavior predicted by its geometry. We hence see that Question 1.1 for integral
points is quite a bit more subtle than its rational points counterpart. In order
to obtain a better understanding of it it is important to have good tools to
establish the existence of integral points, when possible.

The descent-fibration method we wish to adapt first appeared in Swinnerton-
Dyer’s paper [SD95], where it was applied to the intersection of two diagonal
quadrics in P4 (i.e., diagonal Del-Pezzo surfaces of degree 4). It was later ex-
panded and generalized by authors such as Swinnerton-Dyer, Collot-Thélène,
Skorobogatov, Wittenberg and Bender (see [BSD01],[CT01],[Wit07][SD01], [SDS05],
[HS]). There are two important things to keep in mind when considering this
method. The first is that the method typically requires assuming two hard con-
jectures. Schinzel’s hypothesis, a number theory conjecture concerning polyno-
mials taking simultaneously prime values, and the Tate-Shafarevich conjecture,
stating that the Tate-Shafarevich group of ellitic curves is finite (sometimes a
statement concerning more general abelian varieties is needed. On the other
hand, sometimes it is enough to know the conjecture only for a certain class of
elliptic curves). The second conjecture is considered more legitimate than the
first. Recent work of Bhargava, Skinner and Zhang shows that this conjecture
holds for a 100% of elliptic curves over Q. Schinzel’s hypothesis, on the other
hand, contains as a particular case the twin prime conjecture. Only one special
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case of the conjecture is known, the one involving a single linear polynomial, in
which case the conjecture reduces to Dirichlet’s theorem on primes in arithmetic
progressions. In some applications of Swinnerton-Dyer’s method this is the only
case needed, and hence Schinzel’s hypothesis can be removed. The second thing
to keep in mind is that if one admits the required conjectures, the domain of
applicability of this method includes varieties which are not accessible in any
other way, such as K3 surfaces. It is hence the only source of information
towards the rational point variant of Question 1.1 for K3 surfaces.

In a typical setup for this method one is studying a variety X which is fibered
over P1

k into genus 1 curves with an associated Jacobian fibration E −→ P1
k. The

first step is to apply the fibration method in order to find a t ∈ P1(k) such that
the fiber Xt has points everywhere locally (this part typically uses the vanish-
ing of the Brauer-Manin obstruction, and often requires Schinzel’s hypothesis).
The second step then consists of modifying t until the Tate-Shafarevich group
X1(Et) (or a suitable part of it) vanishes, implying the existence of a k-rational
point on Xt. This part usually assumes, in additional to a possible Schinzel hy-
pothesis, the finiteness of the Tate-Shafarevich group for all relevant elliptic
curves, and crucially relies on the properties of the Cassels-Tate pairing.

The goal of this talk is to describe such an adaptation, where one replace tor-
sors under elliptic curves with torsors under algebraic tori. This adaptation
can applied, in particular, to certain log K3 surfaces.

For reasons that will become clear soon it will be convenient to call our
initial set of finite places S0 (instead of S). Let d ∈ OS0

be a non-zero S0-
integer satisfying the following condition

Assumption 1.2. For every v /∈ S0 we have valv(d) ≤ 1 and valv(d) = 1 if v
lies above 2.

Let K = k(
√
d) and let T0 denote the set of places of K lying above S0.

Assumption 1.2 implies that the ring OT0
is generated, as an OS0

-module, by 1
and d. Let T0 denote the algebraic group given the equation

x2 − dy2 = 1

We may identify the S-integral points of T0 with the set of units in Od whose
norm is 1 (in which case the group operation is given by multiplication in OT0

).
We note that technically speaking the algebraic group T0 is not an algebraic
torus, since it does not split over an étale extension of the base ring. For every
divisor a|d we may consider the affine OS0

-scheme Za0 given by the equation

ax2 + by2 = 1 (1)

where b = − da . Our goal is to construct an adaptation of Swinnerton-Dyer’s
method where curves of genus 1 are replaced by the schemes Za0 , and their
correponding Jacobians are replaced by T0. Let Ia ⊆ OT0 be the OT0 -ideal
generated by a and

√
d. The association (x, y) 7→ ax +

√
dy identifies the set

of S0-integral points of X with the set of elements in Ia whose norm is a. We
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note that Ia is an ideal of norm (a) (in the sense that OT0/Ia
∼= OS0/(a)),

and hence we may consider the scheme Za0 above as parameterizing generators
for Ia whose norm is exactly a. We have a natural action of the algebraic
group T0 on the scheme Za0 corresponding to multiplying a generator by a unit.
Now Assumption 1.2 implies that a and b are coprime in OS0

(i.e., the ideal
(a, b) ⊆ OS0 generated by a, b is equal to OS0). It can then be shown that
then this action exhibits Za0 as a torsor under T0, locally trivial in the étale
topology, and hence classified by an element in the étale cohomology group
αa ∈ H1(OS0

,T0). The solubility of Za0 is equivalent to the condition αa = 0.
Hence our search of S0-integral points on Za0 naturally leads to the study of étale
cohomology groups as above, analogous to how the study the curves of genus 1
leads to the study of the Galois cohomology of their Jacobians.

We next observe that the torsor Za0 is not an arbitrary torsor of T0. The
condition (a, b) = OS0

implies that I2a = (a). In particular, if β = ax+
√
dy ∈ Ia

has norm a then β2

a ∈ OT0 has norm 1. This operation can be realized as a map
of OS0

-varieties
q : Za0 −→ T0.

The action of T0 on Za0 is compatible with the action of T0 on itself via the

multiplication-by-2 map T0
2−→ T0. We will say that q is a map of T0-torsors

covering the map T0
2−→ T0. It then follows that the element αa ∈ H1(OS0 ,T0)

is a 2-torsion element. We are hence naturally lead to study the 2-torsion
group H1(OS0

,T0)[2].
Finally, an obvious necessary condition for the existence of S0-integral points

on Za0 is that Za0 carries an S0-integral adelic point. This condition restricts
the possible elements αa to a suitable subgroup of H1(OS0 ,T0), which we may
call X1(T0, S0). We are now interested in studying the 2-torsion subgroup
X1(T0, S0)[2]. This is in analogy, for example, with the situation one faces
when studying curves of genus 1 which are given as the intersection of two
quadrics. Such curves always admit a map to their Jacobian E which covers

the multiplication by 2 map E
2−→ E. When the curve has points everywhere

locally one is lead to study the group X1(E)[2].
Before we proceed to analyze the solubility in OS of Za0 , let us note what

type of theorems we can expect to get. Let f(t, s), g(t, s) ∈ OS [t, s] be two
homogeneous polynomials of even degrees n,m respectively, let V −→ P1 be
the vector bundle O(−n)⊕O(−m)⊕O(0) and let Y ⊆ P(V ) be the conic bundle
surface given by the equation

f(t, s)x2 + g(t, s)y2 = z2 (2)

Let Y ⊆ Y be the complement of the divisor D given by z = 0. The variety Y
admits a natural OS0

-model Y ⊆ O(−n)⊕ O(m) given by the equation

f(t, s)x2 + g(t, s)y2 = 1 (3)

Our main theorem is the following:
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Theorem 1.3. Let f(t, s), g(t, s) ∈ OS [t, s] be homogeneous polymoials such
that f(t, s)g(t, s) is separable and has only even degree prime factors. Assume
that the homogeneous Schinzel’s hypothesis holds and that f, g satisfy a certain
Condition (D). Assume in addition that there exists an S-integral adelic point
(Pv) = (tv, sv, xv, yv) such that

1. There exists a v ∈ S such that −f(tv, sv)g(tv, sv) is a square in kv,

2. For every v /∈ S we have valv f(tv, sv)g(tv, sv) ≤ 1.

3. (Pv) is orthogonal to the vertical Brauer group of Y over P1
k.

Then Y has an S-integral point.

Remark 1.4. If deg(f) = 2 and deg(g) = 0 then Y is a log del Pezzo surface. If
deg(f) = deg(g) = 2 then Y is a log K3 surface.

Remark 1.5. The homogeneous version of Schinzel’s hypothesis is known in more
cases than the non-homogeneous version. Most importantly, the case where all
the polynomials are linear follows from the Hardy-Littlewood conjecture, in the
form proved by Green, Tao and Ziegler.

Current work in progress allows one to dispense with the hypothesis that
the prime factors of f(t, s)g(t, s) have even degrees. This generalization has
the following attractive feature: when all the irreducible factors of f(t, s)g(t, s)
are linear one may use the above proven case of the homogeneous Schinzel’s
hypothesis, rendering Theorem 1.3 completely unconditional.

Remark 1.6. Condition (D) appearing in the formulation of Theorem 1.3 is
analogous to Condition (D) appearing in[CTSSD98b]. It is an explicit condition
which is straightforward to verify, and implies, in particular, that Br(Y )[2] is
contained in the vertical Brauer group of Y . The conditions on the adelic
point are more specific to our integral points setting. The first and third imply
together that Y(Ak)Brvert(Y ) is non-compact, i.e., Y does not suffer from the
problems at infinity described above. The second condition is a more technical
feature of our application, and is meant to guarantee Assumption 1.2 above.
It is most likely that this condition can be removed, if the arithmetic duality
theory of algebraic tori would be extended to more general group schemes.

Let us now return to our torsors Za0 . It turns out that the groups H1(OS0 ,T0)
are more well-behaved when the algebraic group T0 is a algebraic torus, i.e,
splits in an étale extension of the base ring. Let S be the union of S0 with all
the places which ramify in K and all the places above 2, and let T be the set of
places of K which lie above S. Let OT denote the ring of T -integers in K. Let T
be the base change of T0 from OS0

to OS . We note that T becomes isomorphic
to Gm after base changing from OS to OT , and OT /OS is an étale extension of
rings. This means that T is an algebraic torus over OS . We will denote by
T̂ be the character group of T considered as an étale sheaf over spec(OS). We
will use the notation Hi(OS ,F) to denote étale cohomology of spec(OS) with
coefficients in the sheaf F.
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Definition 1.7.

1. We will denote by X1(T, S) ⊆ H1(OS ,T) the kernel of the map

H1(OS ,T) −→
∏
v∈S

H1(kv,T ⊗OS
kv).

2. We will denote by X2(T̂, S) ⊆ H2(OS , T̂) the kernel of the map

H2(OS , T̂) −→
∏
v∈S

H2(kv, T̂ ⊗OS
kv).

Since T is an algebraic torus we may apply [Mil, Theorem 4.6(a), 4.7] and

deduce that the groups X1(T, S) and X2(T̂, S) are finite and that the cup
product in étale cohomology with compact support induces a perfect pairing

X1(T, S)×X2(T̂, S) −→ Q/Z (4)

Since 2 is invertible in OS the multiplication by 2 map T −→ T is surjective
when considered as a map of étale sheaves on spec(OS). We hence obtain a
short exact sequence of étale sheaves

0 −→ Z/2 −→ T
2−→ T −→ 0.

We define the Selmer group Sel(T, S) to be the subgroup Sel(T, S) ⊆ H1(OS ,Z/2)
consisting of all elements whose image in H1(OS ,T) belongs to X1(T, S). We
hence obtain a short exact sequence

0 −→ TS(OS)/2 −→ Sel(T, S) −→X1(T, S)[2] −→ 0

where TS(OS)/2 denotes the cokernel of the map T(OS)
2−→ T(OS). Similarly,

we have a short exact sequence of étale sheaves

0 −→ T̂
2−→ T̂ −→ Z/2 −→ 0

and we define the dual Selmer group Sel(T̂, S) ⊆ H1(OS ,Z/2) to be the sub-

group consisting of all elements whose image in H2(OS , T̂) belongs to X2(T̂, S).
The dual Selmer group then sits in a short exact sequence of the form

0 −→ H1(OS , T̂)/2 −→ Sel(T̂, S) −→X2(T̂, S)[2] −→ 0

The map H1(OS ,Z/2) −→ H1(OS ,T) can be described explicitly as follows.
Since S contains all the places above 2 the Kummer sequence associated to the
sheaf Gm yields a short exact sequence

0 −→ O∗S/(O
∗
S)2 −→ H1(OS ,Z/2) −→ Pic(OS)[2] −→ 0

More explicitly, an element of H1(OS ,Z/2) may be represented (mod squares)
by a non-zero element a ∈ OS such that valv(a) is even for every v /∈ S. The map
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H1(OS ,Z/2) −→ Pic(OS)[2] is then given by sending a to the class of div(a)
2 ,

where div(a) is the divisor of a when considered as a function on spec(OS).

Let Ia ⊆ OT be the ideal corresponding to the pullback of div(a)
2 from OS

to OT . Then Ia is an ideal of norm (a) and we can form the OS-scheme Za

parameterizing elements of Ia of norm a (such a scheme admits explicit affine
equations locally on spec(OS0

) by choosing locally generators for the ideal Ia).
The scheme Za is a torsor under TS , and the classifying class of Za is the image
of a in H1(OS ,TS). We note that such a scheme automatically has Ov-points for
every v /∈ S. Hence we see that the class H1(OS ,Z/2) represented by a belongs
to Sel(T, S) if and only if the torsor Za has local points over S, i.e., if and only
if it has an S-integral adelic point.

We note that if a is such that div(a) = 0 on spec(OS) (i.e., a is an S-unit),
then Za is the scheme parameterizing T -units in K whose norm is a, and can
be written as

x2 − dy2 = a (5)

Furthermore, if a is a divisor of d (so that in particular a is an S-unit), then
the scheme Za coincides with the base change of the our scheme of interest Za0
(see 1) from OS0

to OS .

Lemma 1.8. Assume Condition 1.2 is satisfied and let a|d be an element di-
viding d. Let Za0 be the OS0

-scheme given by 1 and let Za = Za0 ⊗OS0
OS be

the corresponding base change. If Za has an S-integral point then Za0 has an
S0-integral point.

On the dual side, we may consider the short exact sequence

0 −→ T̂ −→ T̂ ⊗Q −→ T̂ ⊗ (Q/Z) −→ 0

Since T̂ ⊗Q is a uniquely divisible sheaf we get an identification

H2(OS , T̂) ∼= H1(OS , T̂ ⊗ (Q/Z))

By the Hochschild-Serre spectral the latter may be identified with the ker-
nel of the corestriction map Cores : H1(OT ,Q/Z) −→ H1(OS ,Q/Z). The

map H1(OS ,Z/2) −→ H2(OS , T̂) can then be identified with the restriction

map H1(OS ,Z/2)
res−→ H1(OT ,Z/2) ⊆ H1(OT ,Q/Z) Sending a class [a] ∈

H1(OS ,Z/2) to the class of the quadratic extensionK(
√
a). The group X2(T̂, S)[2]

is then the group classifying everywhere unramified quadratic extensions of K,
splitting over T , whose corestriction to k vanishes. Indeed, it is not hard to
show that such extensions must always come from quadratic extensions of k.
We then obtain the following explicit description of Sel(T̂):

Corollary 1.9. Let [a] ∈ H1(OS ,Z/2) be a class represented by an element

a ∈ OS (such that valv(a) is even for every v /∈ S). Then [a] ∈ Sel(T̂, S) if and
only if every place in T splits in K(

√
a).

Corollary 1.10. The kernel of the map Sel(T̂, S) −→X2(T̂, S) has rank 1 and

is generated by the class [d] ∈ Sel(T̂, S).
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Our proposed formalism enables the following Corollary, which is the core
point behind the adaptation of Swinnerton-Dyer’s method:

Corollary 1.11. Assume Condition 1.2 is satisfied. If Sel(T̂) is generated by [d]
then for every a|d the OS0-scheme Za0 given by 1 satisfies the S0-integral Hasse
principle.

Proof. Assume that Za0 has an S-integral adelic point. If Sel(T̂) is generated

by [d] then X2(T̂, S)[2] = 0 and by the perfect pairing 4 we may deduce that
X1(TS)[2] = 0. Since Za0 has an S0-integral adelic point the base change Za =
Za0⊗OS0

OS has an S-integral adelic point. The class classifying Za as a T-torsor

hence lies in X1(T, S)[2], and since the latter group vanishes it follows that Za

has an S-integral point. Then result now follows from Lemma 1.8.
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