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1 Introduction

The basic question in homotopy theory is to understand the set of (pointed)
homotopy classes of maps between two finite complexes, [X, Y ]∗. This is no-
toriously hard to compute, and in general this pointed set has no additional
structure.

A first step is to reduce the problem to computing the homotopy groups of
finite complexes:

πn(Y ) = [Sn, Y ]∗

Since finite complexes are hocolimits of spheres and since maps out of hocolimits
depend in a reasonable way on the maps from each of the components, we get
that in principle if we understand homotopy groups of finite complexes then we
understand maps between finite complexes.

Can we reduce the problem to computing only homotopy groups of spheres?
The answer is unfortunately no, and the reason is that maps into hocolimits
are not controlled in any reasonable way by the maps into the components.

A basic example is the following: if n ≥ 3 then π3(CPn) = 0 but

π3(CPn ∨ CPn) = Z

The one exception here is the fundamental group π1 for which we have Van-
Kampan theorem - i.e. it behaves nicely under homotopy pushouts (which are
the building blocks of the homotopy colimits constructing CW complexes) which
means that in principle it is relatively computable.

1.1 Stable Maps

A much nicer object to deal with is the set of stable maps between two com-
plexes

{X, Y } = lim
k→∞

[ΣkX, ΣkY ]

By Freudenthal’s suspension we know that this limit stabilizes as soon as the
connectivity of Y is at least half the dimension of X. This set is not exactly
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the set of maps from X to Y , but it is a good approximation of it and it posses
some very nice features:

1. {X, Y } has a natural structure of an abelian group. In fact, we can define
stable maps of degree n ∈ Z by

{X, Y }n = lim
k→∞

[Σn+kX, ΣkY ]

and obtain a graded group

{X, Y }∗ =
∑
n∈Z

{X, Y }n

{X, X}∗ has thus a natural structure of a graded ring (with respect to
composition).

2. The set {X, Y }∗ behaves well with respect to hocolimits in both direction.
In fact, the functor Y 7→ {X, Y }∗ is a generalized homology theory and
X 7→ {X, Y } is a generalized cohomology theory. Thus if we understand
{S0, S0}∗ we can in principle understand {X, Y }∗ for every two finite
complexes.

3. {S0, S0}n ⊗Q = Q if n = 0 and 0 otherwise. This implies that for every
finite complex Y we have

πs
n(Y )⊗Q = {S0, Y }n ⊗Q = Hn(Y, Q)

which is well understood. It is thus left to understand the torsion part of
πs

n(S0). It is also easy to show that πs
n(S0) = 0 for n < 0 so we are left

with n > 0.

2 Periodic Patterns

Here is a table of the first 19 stable homotopy groups of S0:
n 1 2 3 4 5 6 7 8 9 10

πs
n(S0) Z2 Z2 Z8 ⊕ Z3 0 0 Z2 Z16 ⊕ Z3 ⊕ Z5 (Z2)2 (Z2)3 Z2 ⊕ Z3

n 11 12 13 14 15 16
πs

n(S0) Z8 ⊕ Z9 ⊕ Z7 0 Z3 (Z2)2 Z2 ⊕ Z32 ⊕ Z3 ⊕ Z5 (Z2)2

n 17 18 19
πs

n(S0) (Z2)4 Z8 ⊕ Z2 Z8 ⊕ Z2 ⊕ Z3 ⊕ Z11

Although these are only the first portion of the homotopy groups of spheres,
we already see here the a basic periodic pattern.

Note that when 4 divides n+1 then we get a factor of the form Z2k in πs
n(S0)

where k is the largest number such that 2k−1 divides n + 1. For p = 3, 5, 7, 11
we see that if 2(p − 1) divides n + 1 then we get a factor of the form Zpk in
πs

n(S0) where k is the largest number such that pk−1 divides n + 1.
We see here that we get some sort of periodic phenomenon, but the period

depends on the prime. It is 2(p− 1) for p > 2 and 4 for p = 2. Very mysterious!
This suggests the two main themes of the study of stable homotopy groups:
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1. Study πs
n(S0) one prime at a time.

2. Look for periodic phenomena and try to explain it.

Let us try to give a general overview of where this periodicity comes from.
Let p ∈ {S0, S0}0 be the stable map of degree p and M(pr) the cofiber of the
map pr:

Sn pr

−→ Sn π−→ ΣnM(pr)

in particular M(r) is stably the CW complex with one cell at dimension n and
one cell at dimension n + 1 which is attached by the map pr. Then it turns out
that there is a stable map of degree d

f ∈ {M(pr),M(pr)}d

for d = 2(p−1)pr−1 if p > 2 and d = 4 ·2r−1 for p = 2. Now we have a boundary
map from the Pupe sequence ∂ ∈ {M(r), S0}−1. Assume that f is represented
by a map

f : Σd+mM(pr) −→ ΣmM(pr)

The map f induces the zero map on homology, but it is detected by complex
K-theory. Recall that

K̃∗(S0) = Z[t, t−1]

where |t| = 2. Hence from the Pupe sequence it is easy to see that

K̃∗(M(pr)) = Zpr [t, t−1]

It turns out that f induces multiplication by t
d
2 on K̃∗, and in particular an

isomorphism. Thus for each k the map

Σkd+mM(pr)
fk

−→ ΣmM(pr)

is not null-homotopic. By composing with π and ∂ we obtain an element αr
k ∈

πs
kd−1(S

0) for some m′ ≥ m:

Skd+m′ π−→ Σkd+mM(pr)
fk

−→ ΣmM(pr) ∂−→ Sm′+1

It turns out that these elements are all non-trivial, and account exactly for the
periodicity we saw above. This is part of a much more general phenomenon.

3 Morava K-theories and the Periodicity The-
orem

Before we continue we wish to localize our attention at a specific prime p. For
this we give the following definition
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Definition 3.1. A space X is called p-local in the stable category if every map
f : Y −→ Z which is a mod p homology isomorphism induces an isomorphism

{Z,X}∗ −→ {Y, X}∗

Using the Pupe sequence we see that this is equivalent to saying that {W,X}∗ =
0 whenever W has trivial reduced mod-p homology.

There exists an augmented localization functor X −→ Xp such that Xp is
p-local and the augmentation map is a mod-p equivalence. This localization
functor preserves all the p-part of the homotopy groups, and in particular:

πs
n(Xp) = πs

n(X)⊗ Zp

where Zp is now the p-adic integers.
We now return to our periodicity phenomenon. The following cohomology

theories are the key to the question:

Definition 3.2. For each p and n there exists a generalized (multiplicative)
cohomology theory K(n)∗, with reduced version K̃(n)∗ (we suppress the prime
p from the notation), such that

1.
K(0)∗(X) = H∗(X, Q)

2. For n > 0 we have
K(n)∗(pt) = Zp[vn, v−1

n ]

where |vn| = 2(pn − 1).

3. If X is a p-local finite CW-complex then

K̃(n + 1)∗(X) = 0 =⇒ K̃(n)∗(X) = 0

4. If X is a p-local finite then for large enough n we have

K̃∗(n)(X) = K∗(n)(pt)⊗ H̃∗(X, Zp)

The first Morava K-theory K∗(1) is a mod-p variant of complex K-theory.

Definition 3.3. A topological space is said to have type n if n is the smallest
number such that K̃(n)∗(X) 6= 0. If there is no such n then we say that X has
type ∞.

Note that the last property implies that if X is a non-contractible p-local
finite CW complex then K(n)∗(X) is non-zero for large enough n. Thus each
such space has a type n for some finite n.

Examples:

1. The p-localization of a sphere is a type 0 p-local space.
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2. Let S0
p be the p-localization of S0. Then

K̃(0)n(S0
p) = H̃n(S0

p) =
{

Qp n = 0
0 n 6= 0

Let pr ∈ {S0
p , S0

p}0 be the map induced by the degree pr map. Let M(pr)
be the cofiber of this map. Note that pr induces isomorphism on K̃(0)∗

and so from the Pupe sequence we get K̃(0)∗(M(pr)) = 0.

Also note that pr induces the zero map on all higher K(n)’s (because
their coefficient ring is a Zp-module). Hence from the Pupe sequence we
see that K(1)∗(M(pr)) 6= 0 so M(pr) is a type 1 space.

In fact, the map f defined above induces a map M(pr) −→ M(pr) which
is a K(1)-isomorphism: it induces multiplication by an appropriate power
of vn.

Note that both in the case of S1
p and M(pr) we has a map which induces

isomorphism on the lowest non-zero Morava K-theory. It turns out that this is
part of a general phenomenon which is called the periodicity theorem:

Theorem 3.4. 1. (Existence): Let X is a p-local finite complex. Then there
exists a self map f ∈ {X, X}d which induces isomorphism on K(n)∗(X)
and induces the zero map on K∗(m)(X) for m 6= n. In particular f
induces multiplication by some power of vn (where v0 is just p) and d is
the corresponding multiple of |vn| = 2(pn − 1). Such a map is called a
vn-map.

2. (Uniqueness): Let X, Y be p-local finite complexes of type n and f ∈
{X, X}d, g ∈ {Y, Y }e vn-maps on them. Then for each map h : X −→ Y
there exist numbers i, j such that di = ej and h ◦ f i is stably homotopic
to gj ◦ h. In particular a vn map is unique up to taking powers and all
continuous maps respect them.

Corollary 3.5. Let X be a finite p-local CW-complex of type n and f a vn-map.
Then the cofiber of f is a space of type n + 1. In particular there exist spaces of
all types.

Let us now explain how this theorem gives the periodicity phenomenon.
Suppose we want to consider the p-part of the stable homotopy groups of spheres,
i.e. πs

∗(S
0
p). Consider an element α ∈ πs

∗(S
0
p). If for every r we have prα 6= 0

then we obtain an infinite family of non-trivial elements, all with the same
degree as α.

Now suppose that prα = 0 for some r. Then α reduces to a well defined map
in {M(pr), S0}0. On M(pr) we have a v1-map f so we can compose it in the
entrance with f many times and obtain elements in {M(pr), S0}∗ which can be
sent to elements in πs

∗(S
0) via the map π ∈ {S0,M(pr)}0.

If all these elements are non-trivial then we have obtained an infinite family
of elements in πs

∗(S
0) whose degrees form an arithmetic sequence with jump

5



divisible by 2(p−1). This is called a v1-periodic family. If one of these elements
(and so all the rest) is trivial (say the one obtained by composing with fr1)
then it induces a map in {M(pr, vr1

1 ), S0}0 where M(pr, vr1
1 ) is the cofiber of

the map fr1 .
Now M(pr, vr1

1 ) is a type 2 space so we have a v2-map and we can repeat
the process to obtain a possibly infinite sequence of elements in πs

∗(S
0) which is

periodic with period a multiple of 2(p2− 1) (this is called a v2-periodic family).
If we fail we continue to the appropriate cofiber and so on.

This gives us filtration on the ring πs
n(S0) into periodic families which is

called the chromatic filtration. It is a theorem that all elements in πs
∗(S

0)
fit in one of these infinite families. The theory that studies this phenomenon in
order to get a global understanding of stable homotopy groups is what we want
to study coming weeks.
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