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1 Rational Surfaces

We now wish to study some examples of surfaces, i.e. algebraic varieties of
dimension 2. We will restrict our selves only to smooth complete varieties. The
theory of surfaces is more complicated then the theory of curves (though it is
still manageable) so we would like to start by constructing the simplest kind of
surfaces.

An important equivalence relation in algebraic geometry is that of birational-
ity: Two varieties X,Y are called birational if there exist open dense subsets
U ⊆ X,V ⊆ Y such that U ∼= V . We say that X and Y are birational over a
field k if V ∼= U over k. Note that it is possible, for example, that two varieties
would be birational over Q but not over Q.

The concept of birationality is connected to the concept of the function field.
Recall that the function field of an n-dimensional irreducible variety is some al-
gebraic extension of the field k(x1, ..., xn) of rational functions in n variables
over the base field k (we will usually consider the function field over an alge-
braically closed field k, so if our variety is defined over Q we will consider rational
functions with coefficients in Q). It turns out that two irreducible varieties are
birational if and only if their functions fields are isomorphic.

Hence the simplest kind of function field for an n-dimensional variety is
k(x1, ..., xn) itself i.e. varieties which are birational to Pn. Such varieties are
called rational.

It turns out that for n = 1 the following is true: if a curve C has k(x) as a
function field then C is actually isomorphic (over k) to P1. This is not the case,
however, for higher dimensions, and in particular for surface. Hence we want to
start by studying surfaces (usually defined over Q) whose function field over Q
is isomorphic to Q(x, y).

First examples are P2 and P1×P1 which both have A2 as a dense open set and
hence posses Q(x, y) as their function field. Note that these two varieties are not
isomorphic over Q. P2 satisfies Bezout’s theorem which implies in particular that
every two curves in P2 intersect. In contrast we havethe curves P1 × {p1},P1 ×
{p2} ⊆ P1 × P1 which don’t intersect for p1 6= p2 ∈ P1.
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2 Blow Ups

In the classification of rational surface the basic construction tool is called blow
up. Let us explain how this works. Let X be a variety of dimension n and
p ∈ X a point. It can be shown that there always exist an open affine subset
U containing x and regular functions f1, ..., fn on U such such that the ideal
generated by f1, ..., fn is exactly the maximal ideal of functions vanishing at p.
In particular all the fi’s vanish at p and do not vanish at any other point on U .

Now consider the projective space Pn−1 with projective coordinates x1, ..., xn.
Define the variety Ũ ⊆ U × Pn−1 by the equations

fixj = fjxi

for 1 ≤ i < j ≤ n. These are well defined equations because their dependence on
the projective coordinates x1, ..., xn is homogeneous. Note that at each q ∈ U
such that q 6= p the functions f1, ..., fn don’t all vanish and hence the equations
become

(x1 : x2 : ... : xn) = (f1(q) : f2(q) : ... : fn(q))

which means that (x1 : x2 : ... : xn) is determined by q. At the point p ∈ U ,
however, all the fi’s vanish and hence the equations don’t give any constraint
on the xi’s. In particular we see that the natural map π : Ũ −→ U which forgets
the (x1 : ... : xn) coordinate induces an isomorphism

Ũ \ π−1(p) ∼= U \ {p}

and the fiber above p is isomorphic to Pn−1. Define X̃ to be the gluing of Ũ
and X \ {p} along U \ {p}. X̃ is called the blow up of X at the point p. Note
that this construction required a choice of an appropriate neighborhood U and
functions f1, ..., fn but it can be shown that different choices (as long as the
condition on the ideal generated by f1, ..., fn is satisfied) would give isomorphic
blow ups, so the blow up only depends on the point we chose.

Note that the map π extends to a map π : X̃ −→ X which induces an
isomorphism

X̃ \ π−1(p) ∼= X \ {p}

and the fiber over p os Pn−1. This is why this is called a blow up: we replace a
point by an n− 1 dimensional variety, so its like the point blows into something
bigger.

Since X̃ and X have isomorphic open dense subsets they have the same
function field. Hence we can use this idea in order to construct new rational
surfaces. We can take the rational surfaces we know, like P2 and P1 × P1 and
start blowing them up at points of our desire (note that after blowing up at
a point we can choose some other point and blow up there, etc.). As a first
non-trivial observation we claim that

Proposition 2.1. The blow up of P1 × P1 at any point is isomorphic to the
blow up of P2 at any two different points.
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Proof. First of all we can use automorphisms of P1 × P1 to move any point to
any point and automorphisms of P2 to move any two different points to any two
different points. Hence the relevant blow ups don’t depend on specific choices
of points (complete the details in the exercise).

Now consider the product P1 × P1 × P2 with projective coordinates (x1 :
x2), (y1 : y2), (z1 : z2 : z3) respectively. Let X ⊆ P1 × P1 × P2 be defined by the
equation

(1) z3x2 = z2x1

(2) z3y2 = z1y1

We claim that X is isomorphic to both the blow up of P2 at the points {(1 : 0 :
0), (0 : 1 : 0)} and to P1 × P1 blown up at ((0 : 1), (0 : 1)). First note that if
(z1 : z2 : z3) 6= (1 : 0 : 0), (0 : 1 : 0) then the first equation determines (x1 : x2)
from (z1 : z2 : z3) and the second determines (y1 : y2) from (z1 : z2 : z3). Hence
the projection from X to P2 identifies this open set with P2 \{(1 : 0 : 0), (0 : 1 :
0)}.

Now in the neighborhood U ⊆ P2 given by z1 6= 0 the second equation still
determines (y1 : y2) from (z1 : z2 : z3), but the first equation fails to determine
(x1 : x2) at (1 : 0 : 0). In fact we see that we get exactly the equations for blow
up at (1 : 0 : 0) using the functions f1 = z3

z1
, f2 = z2

z1
defined on U . Similarly

at the neighborhood V ⊆ P2 given by z2 6= 0 the second equation becomes the
equation for blowing up at (0 : 1 : 0). Hence we see that X is isomorphic to the
blow up of P2 at (1 : 0 : 0) and (0 : 1 : 0).

We now want to show that X is isomorphic to the blow up of P1 × P1 at
((0 : 1), (0 : 1)). First note that on the subset of X where x1, y1 aren’t both
0 then equations (1) and (2) determine the (z1 : z2 : z3) coordinate from (x1 :
x2), (y1 : y2). Hence this open subset is isomorphic to P1×P1 \ {((0 : 1), (0 : 1))}

Now let U ⊆ P1 × P1 be given by x2 6= 0, y2 6= 0 and use the functions
x = x1

x2
, y = y1

y2
as coordinates on U ∼= A2. The blow up of U at (0, 0) is the

subspace Ũ ⊆ U × P1 given by

xw2 = yw1

where (w1 : w2) are projective coordinates on P1. We now embed Ũ as an open
subset in X by the map

(x, y, (w1 : w2)) 7→ ((x : 1), (y : 1), (w1 : w2 : xw2))

Note that equation (1) is satisfied automatically and equation 2 is satisfied
because xw2 = yw1. The image of this map is the open subset V ⊆ X given by
x2 6= 0, y2 6= 0. On V we have an inverse to this map given by

((x1 : x2), (y1 : y2), (z1 : z2 : z3)) 7→
(
x1
x2
,
y1
y2
, (z1 : z2)

)
Note that equations (1), (2) imply that z1 and z2 can’t both be 0 on V (because

then z3 would be 0 as well). Hence we see that Ũ ∼= V . Hence we see that X is
the blow up of P1 × P1 at ((0 : 1), (0 : 1)).
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3 Rationality Over Q and Rational Points

Up to now we have dealt with surfaces which are rational over Q, i.e. whose
rational function field over Q is isomorphic to Q(x, y). If X is a surface defined
over Q then we can also inquire as to the rational functions on X defined over Q
(this can be defined intrinsically as rational functions which are Galois invariant
or on affine local neighborhoods as functions which have their coefficients in Q).
If the field of rational functions over Q is isomorphic to Q(x, y) then we say that
X is rational over Q.

If a variety is rational over Q then we can say a lot about the rational points
in it. As in the previous section we get that there exists an open U ⊆ X which
is isomorphic to some open set V ⊆ An, only this time U is defined over Q (one
simply checks that it is Galois invariant) and the isomorphism is defined over
Q as well. If we can find an explicit isomorphism V ∼= U then we can use in as
a parametrization of the rational points in U . It is then left to check the closed
set X \ U which is of a lower dimension.

4 Example : The Cubic Surface

Question: what are all the non-trivial rational solutions to the equation

(∗) y30 + y31 + y32 + y33 = 0

First we need to understand the geometry of the surface X ⊆ P3 defined by this
equation over Q. We claim that this surface is isomorphic over Q to the blow
up of P1 × P1 at 5 points (and hence by the theorem above also to P2 blown
up at 6 points). This is in fact true for every smooth surface which is defined
inside P3 by a single cubic equation (such surfaces are called cubic surfaces),
but we will show it here only for this surface. In particular we can use this to
get a parametrization of the rational points solutions to (∗).

Let Y be the blow up of P1 × P1 at five points. In order to construct a map
from Y to X we first find two disjoint lines in X. Recall that a line in P3 is a
subset of the form {tv + su|t, s ∈ Q} for some fixed v, u ∈ P3. The projective
geometry is very elegant, and in particular one has a unique line through every
two points and every two lines meet at a unique point.

Let ω be a third root of unity. The we have the following 27 lines on X:

l1i,j : {(y0, y1, y2, y3)|y0 + ωiy1 = y2 + ωjy3 = 0}

l2i,j : {(y0, y1, y2, y3)|y0 + ωiy2 = y1 + ωjy3 = 0}

l3i,j : {(y0, y1, y2, y3)|y0 + ωiy3 = y1 + ωjy2 = 0}

It can be shown that these are all the lines which lie on X. In fact, every
smooth cubic surface has exactly 27 lies on it. Note that only the three lines
l10,0, l

2
0,0 and l30,0 are defined over Q. The rest are defined over the extension field

4



Q(ω). Hence we will start by working over the Q(ω) (but we will see in the end
that we can actually make everything be defined over Q).

We start by finding two disjoint lines. The pair l11,1, l
1
2,2 (which we will call

l1, l2 from now for short) has this property. It also has the property that they
are preserved (as an unordered pair) by the Galois group Γ = Gal(Q(ω)/Q).
We will see that this will come handy later when we’ll want to make things work
over Q.

Let Y = l1 × l2. Now the idea is as follows: for every (v, u) ∈ Y there exists
a unique line which passes through both v and u. By bezout’s theorem, if this
line is not contained in X then it intersects X in exactly three points: v, u and
some third point w. We then get a map ϕ(v, u) = w which defined on some open
subset U ⊆ Y where we remove the (finite number of) pairs (v, u) for which the
line {tv + su} is contained in X.

It turns out that there are exactly 5 such pairs. It is worth while to go over
the 27 lines above and check that only five of them meet both l1 and l2. We
will instead write an explicit equation and see exactly who these pairs are.

We will use the projective coordinates (x0 : x1), (z0 : z1) on Y in the following
way:

v = (x0 : −ωx0 : x1 : −ωx1)

u = (z0 : −ω2z0 : z1 : −ω2z1)

We want to find the point on the line between u and v that is in X. Now a
point on the line between them can be written as

Pt,s = tv + su = (tx0 + sz0 : −ωtx0 − ω2sz0 : tx1 + sz1 : −ωtx1 − ω2sz1)

If we substitute this expression in the cubic we get

(tx0 + sz0)
3

+
(
−ωtx0 − ω2sz0

)3
+ (tx1 + sz1)

3
+
(
−ωtx1 − ω2sz1

)3
=

3ts
[
t(1− ω)(x20z0 + x21z1) + s(1− ω2)(x0z

2
0 + x1z

2
1)
]

Hence we see that if x20z0 +x21z1 and x0z
2
0 +x1z

2
1 are not both zero then the

unique solution (up to rescaling) is

(∗∗) (t, s) = ω(x0z
2
0 + x1z

2
1), ω2(x20z0 + x21z1)

If x20z0+x21z1 and x0z
2
0+x1z

2
1 are both zero then the line going through v and u is

contained completely in X. When can this happen? clearly if (x0 : x1) = (1 : 0)
then (z0 : z1) = (0 : 1) and vice-versa, so we found two solutions. The rest of
the solutions satisfy x1 6= 0 and z1 6= 0 and then we can normalize by them and
get

x20z0
x21z1

= −1

x0z
2
0

x1z21
= −1
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which means that x0 = z0 and are both a cube root of −1, i.e. x0, z0 ∈
{−1,−ω,−ω2}. Hence we have found that there are exactly 5 solutions:

S = {((0 : 1), (1, 0)), ((1 : 0), (0, 1)), ((−1 : 1), (−1, 1)), ((−ω : 1), (−ω, 0)), ((−ω2 : 1), (−ω2, 1))}

and hence exactly 5 lines in X that meet both l1 and l2.
Returning to the case where ((x0 : x1), (z0 : z1)) is not is S, we can substitute

in the expression (∗∗) and get our desired map

ϕ((x0 : x1), (z0 : z1)) = tv + su =

(−x20z20 + ωx0x1z
2
1 + ω2x21z0z1 : x20z

2
0 − ω2x0x1z

2
1 − ωx21z0z1 :

−x21z21 + ωx0x1z
2
0 + ω2x20z0z1 : x21z

2
1 − ωx20x1z0 − ω2x20z0z1)

This gives us a map ϕ : U = Y \S −→ X. You will show in the exercise that
this map is actually an isomorphism onto its image, which is the dense open set
V ⊆ X obtained by removing the corresponding 5 lines. Hence X and Y have
an isomorphic dense open subsets so they are birational.

Since Y is isomorphic to P1×P1 over Q we get that X is a rational surface.
In fact, if Ỹ is the blow up of Y along S then we can extend the map ϕ to
Ỹ which actually results in an isomorphism Ỹ ∼= X. You will prove this nice
geometric fact in the exercise.

Now what about rational points? Note that up until know we have been
working over Q, or more precisely over Q(ω). Now X is defined over Q, and
this structure can be encoded by the action of the Galois group Gal(Q,Q) on
X(Q). V ⊆ X is defined by removing a set of 5 lines which is actually invariant
(as a set) under the Galois action (even though not all the lines are defined over
Q). Hence we have a well defined Galois action on V (Q).

Now we have an isomorphism ϕ over Q between U and V so it induces a
bijection U(Q) ∼= V (Q). Hence there exists a unique Galois action on U(Q) such
that ϕ becomes equivariant. This action defines on U a structure of a variety
over Q and ϕ will respect this structure, i.e. it will become an isomorphism over
Q.

In order to see what this action looks like, note that:

1. If σ ∈ Gal(Q,Q) satisfies σ(ω) = ω then

σ(ϕ((x0 : x1), (z0 : z1))) = ϕ((σ(x0) : σ(x1)), (σ(z0) : σ(z1)))

so we define σ((x0 : x1), (z0 : z1)) = ((σ(x0) : σ(x1)), (σ(z0) : σ(z1))).

2. If σ ∈ Gal(Q,Q) satisfies σ(ω) = ω2 then

σ(ϕ((x0 : x1), (z0 : z1))) = ϕ((σ(z0) : σ(z1)), (σ(x0) : σ(x1)))

so we define σ((x0 : x1), (z0 : z1)) = ((σ(z0) : σ(z1)), (σ(x0) : σ(x1))).
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Hence we see that ((x0 : x1), (z0 : z1)) is Galois invariant if and only if
(x0 : x1), (z0 : z1) ∈ P1(Q(ω)) and

(z0 : z1) = (σ(x0) : σ(x1))

There is exactly one such point which does not lie on the open set x1 6= 0, z1 6= 0,
and that the point

p = ((1 : 0), (1 : 0))

for which we get
ϕ(p) = (−1, 1, 0, 0)

The rest of the rational points can be written as

((t+ (ω − ω2)s : 1), (t+ (ω2 − ω)s : 1))

for t, s ∈ Q. Substituting in we get

ϕ(t, s) = ϕ((t+ (ω − ω2)s : 1), (t+ (ω2 − ω)s : 1)) =

(−(t2 + 3s2)2 − (t+ 3s) :

(t2 + 3s2)2 + (t− 3s) :

−(t2 + 3s2)(t− 3s)− 1 :

(t2 + 3s2)(t+ 3s) + 1)

The only point where this is ill defined is (t, s) = (−1, 0) (the other four ill
definition points of ϕ are not rational). Hence we get a parametrization of the
rational points on the cubic by a pair of rational points. This parametrization
doesn’t cover the points in X which are not on the image of ϕ. But these
points lie on the 5 lines of which only one, l20,0 is Galois invariant and contains
a rational point. Hence we know that the rational points on the cubic are:

1. Points on l20,0 which are of the form (a, a,−a,−a) for some a ∈ Q.

2. The point (−1 : 1 : 0 : 0).

3. Points of the form ϕ(t, s) for t, s ∈ Q such that (t, s) 6= (−1, 0).

Examples:

ϕ(0,−1) = (−6 : 12 : −10 : −8) = (−3 : 6 : −5 : −4)

ϕ(−3/2, 1/2) = (−9 : 6 : 8 : 1)

ϕ(−1/2,−3/2) = (−44 : 53 : −29 : −34)
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