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Obstructions to the local global principle

Given a variety X over a number field K one wants to know:

X (K )
?
= ∅

If AK is the ring of K -adeles we have X (K ) ⊂ X (AK ) and thus:

X (AK ) = ∅ ⇒ X (K ) = ∅

Theorem
Hasse-Minkowski If X ⊆ Pn is hypersurface given by one quadratic
equation then

X (A) 6= ∅ ⇒ X (K ) 6= ∅

I.e quadrics satisfy the ’local-global principle’.
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Obstructions to the local global principle

Not all varieties satisfy the ’local-global principle’. There many
known examples where

X (AK ) 6= ∅

But
X (K ) = ∅

E.g.
2y 2 = x4 − 17

[Lind].
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Obstructions to the local global principle

In 1971 Manin described a unified way to explain all
counter-examples that were known until then.

There is a natural
paring:

X (A)× Br X → Q/Z

such that
X (K ) ⊂ X (A)Br ⊂ X (A)

where X (A)Br is the left kernel of the pairing. All
counter-examples that were known until 1999 can be explained by

X (A)Br = ∅
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Obstructions to the local global principle

Later [2002] Harari and Skorobogatov defined other obstruction
sets related to torsors under algebraic groups over X .

We shall
consider in this talk the obstructions

X (K ) ⊂ X (A)fin ⊂ X (A)fin−Ab ⊂ X (A)

Where X (A)fin and X (A)fin−Ab are the obstruction sets related to
torsors under finite and finite-abelian groups respectively. Harari
and Skorobogatov also shoed that XSk (A)fin = ∅.
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Obstructions to the local global Principle

To conclude there is a diagram of obstruction sets

X (A)Br � � // X (A)fin−ab � � // X (A)

X (K ) �
� // X (A)fin,Br

?�

OO

� � // X (A)fin
?�

OO

We shall present a reinterpretation of this diagram in terms of
homotopy theoretic properties of X .
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Obstructions Related to ”homotopical realization”

The set X (K ) can be viewed ad the set of fixed points under the
Galois action of the set X (K̄ ). We want to think about X (K̄ ) as a
geomtircal/topological object with a continues action by ΓK and
study the fixed points.

For that assume we have such a ”topological
Realization”. I.e assume that we are given functor

F : Var/K → TopΓK

. Giving for a variety over K a topological space with a Galois
action We are going to think of F (X ) as some kind of topological
realization of X . We shall assume further that F (Speck) is
contractible. Note that Since F is a functor we get a map

X (K )→ MapΓ(F (Speck),F (X ))

. What is
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Fixed points and homotopy fixed points

The set X (K ) can be viewed ad the set of fixed points under the
Galois action of the set X (K̄ ). We want to think about X (K̄ ) as a
topological object with a continues action by ΓK and study the
fixed points.

First attempt - one can consider the topology of the
space X (C) Problems:

I there is no continuous action of ΓK on X (C).

I X (C) actually depend on a non-unique embedding K → C
I It is quite hard in general to analyze fixed points of a action

on topological spaces

Solutions:

I Use Artin and Mazur’s étale homotopy type instead of X (C)
(we explain what this is later).

I Use homotopy fixed points instead of fixed points (we explain
what this is in the next slide).
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Fixed points and homotopy fixed points

Fixed points are not preserve under maps which are both
equivariant and homotopy equivalence.

Example :

f : R→ {∗}

Z acts on R by translation.

Definition
Let G be a group acting on a topological space X , we define the
homotopy fixed points on G to be the space

X hG = MapG (EG ,X )

where EG is a constructible space with a trivial G action.

Note that every fixed point gives rise to a homotopy fixed point.
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Fixed points and homotopy fixed points

Homotopy fixed points:

I Preserved under equivariant homotopy equivalence.

I There is a sequence of obstructions for X hG 6= ∅ in
Hn+1(G , πn(X ))

I The first obstruction is an element in the non-abelian
cohomology set H2(G , π1(x)). Vanishing of this obstruction is
equivalent to the splitting of a certain short exact

1→ π(X )→ π(XhG )→ G → 1

to split.

I There is a spectral sequence

Hp(G , πq(X ))⇒ πq−p(X hG )
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