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One of Quillen’s important insights was that the notion of cohomology, as
constructed by algebraic topologists by identifying “holes” in spaces, and by ho-
mological algebraists by taking projective/injective resolutions, admit a common
view point. This common view point is essentially category theoretic in nature:
the notion of cohomology which we associate to some object should be defined in-
trinsically in terms of the category in which we view our object. To do this right
one needs a robust framework for higher category theory. One of the first such
frameworks was indeed suggested by Quillen: the theory of model categories.

Given a model category M (satisfying suitable conditions), and an object X ∈

M, Quillen considers the category Ab(M/X) of abelian group objects in the slice
category M/X . Under suitable conditions one may endow Ab(M/X) with a model
structure in such a way that the free-forgetful adjunction F ∶M/X

Ð→
⊥←Ð Ab(M/X) ∶ U

becomes a Quillen adjunction. Given an abelian group object M ∈ Ab(M/X),
Quillen defines the n’th cohomology group Hn(X;M) of X with coefficients in M
by the formula Hn(X;M) ∶= π0 MapAb(M)(LF(IdX),M[n]), where M[n] denotes

the n’th suspension of M in Ab(M/X). The object LF(IdX) ∈ Ab(M/X) later
became known as the cotangent complex of X, and consequently denoted by
LX ∈ Ab(M/X).

For example, if X is a simplicial set and M = X × M0 with M0 a discrete
abelian group then this definition recovers the usual definition of cohomology with
coefficients in M0. More generally, we recover cohomology with local and simplicial
coefficients. On the more algebraic side, Quillen’s framework became most well-
known for providing a useful cohomology theory for various types of algebras.
For example, if A is a commutative dg-algebra then the category of abelian group
objects over A is equivalent to the category of A-modules, and LA can be identified
with the classical cotangent complex. In this case Quillen cohomology groups can
be viewed in homological algebra terms as the derived functors of derivations.

Despite its success, the classical notion of Quillen cohomology can be limited in
others contexts. For example, from the formal point of view, the construction of
abelian group objects in a model category is problematic, since it is not invariant
under Quillen equivalences, and doesn’t always produce the most relevant object for
the purpose of taking coefficients. One way to overcome these difficulties is to re-
place abelianization by stabilization. In the setting of ∞-categories this approach
was developed by Lurie, who referred to it as the abstract cotangent complex
formalism (see [Lu14, §7.4]). Given a presentable ∞-category C and an object
X ∈ C, one can, as above, consider the ∞-category of C/X of objects overX, but now,
instead of taking abelian group obejcts, one considers the ∞-category Sp(C/X) of
Ω-spectrum objects in C/X . The latter is a stable presentable ∞-category which
is related to C/X via a canonical adjunction Σ∞

+ ∶ C/X
Ð→
⊥←Ð Sp(C/X) ∶ Ω∞, analogous
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to the free-forgetful adjunction we had before. Furthermore, this adjuction exhibits
Sp(C/X) as the stabilization of C/X , namely, as the universal stable presentable
∞-category admitting such an adjunction. Following [Lu14, §7.4], we will refer to
Sp(C/X) as the tangent ∞-category to C at X, and denote it by TXC ∶= Sp(C/X).
Similarly, the coCartesian fibration TC Ð→ C classifying the functor X ↦ Sp(C/X)

is called the tangnt bundle of C. Now if X ∈ S is a space then Sp(S/X) is the ∞-
category of parameterized spectra over X, i.e., families of spectra parameterized
by points of X. We will consequently adapt this terminology for any C and refer
to objects of Sp(C/X) as parameterized spectra over X. Working in this setting
one is lead to redefine the cotangent complex of X ∈ C simply as its suspension
spectrum LX ∶= Σ∞

+ (IdX) ∈ Sp(C/X). This yields a natural analogue of Quillen co-
homology: given a coefficients object M ∈ Sp(C/X) one defines the n’th (spectral)
Quillen cohomology by the formula Hn

Q(X;M) = π0(MapSp(C/X)(LX ,M[n]). In

fact, under the conditions imposed by Quillen one may view classical Quillen co-
homology as a particular case of the spectral one, where one restricts attention
to coefficients which are Eilenberg-Maclane spectra of strict abelian group objects.
We will hence drop the term spectral and simply refer to these invariants as Quillen
cohomology.

The Bousfield Kan obstruction theory. When C = S is the ∞-category of
spaces the above form of Quillen cohomology reproduces generalized cohomology
with twisted coefficients: if X ∈ S is a space then Sp(S/X) is the ∞-category of
parameterized spectra over X and the Quillen cohomology groups are then given by
global sections up to homotopy. The following classical context can be viewed from
the perspective of Quillen cohomology: recall that a powerful tool to understand
maps X Ð→ Y between spaces is to apply the machinery of Bousfield and Kan
to the Postnikov tower of Y . This yields an obstruction theory and an associated
spectral sequence to compute the homotopy groups πnMap(X,Y ) starting from the
cohomology of X with (local) coefficients in the homotopy groups of Y , something
that we may think of as a particular case of Quillen cohomology. The main reason
why this works is that for n ≥ 1 the map Pn+1(X) Ð→ Pn(X) is a torsor under
the E∞-group K(πn+1(X), n+1) over Pn(X).Such torsors can be in fact be defined
in a completely abstract setting, where they are known as small extensions. In
particular, whenever an ∞-category admits a suitable structure of “Postnikov”
decompositions into towers of small extensions, one obtain a Quillen obstruction
theory and associated spectral sequence allowing one to compute homotopy groups
of mapping spaces. Such Postnikov structures are actually quite common: under
mild conditions, they are inherited from a symmetric monoidal C to any ∞-category
of algebras in C, as well as to the ∞-category of ∞-categories enriched in C.

Deformation theory. A theorem of Lurie (special cases of which were previously
established by Basterra-Mandell and Schwede) asserts that if D is a presentably
symmetric monoidal stable ∞-category and P is some (unital, coherent) ∞-operad
then the notion of an Ω-spectrum over a P-algebra A in D can be identified with
the relevant notion of an A-module. In other words, we have a natural equiva-
lence of ∞-categories Sp(AlgP(D))/A) ≃ ModA(D) (see [Lu14, Theorem 7.3.4.13]).
Given an A-module M the Quillen cohomology of A with coefficients in M can be
understood in terms derivations, when the last term is suitable interpreted.
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This type of Quillen cohomology often arises in the context of deformation
theory. Indeed, a “metatheorem” in deformation theory states that whenever an
object X is “deformable” then the tangent complex TX of the associated deforma-
tion theory can be obtained from the cotangent complex LX of X by taking the
mapping spectrum MapTXC(LX ,MX) to a suitable coefficient object MX ∈ TXC.
This happens, essentially, because first order deformations are also small extensi-
ons, and so we may consider this metatheorem as identifying deformation theory
as a form of a Quillen obstruction theory. In many situations one would like
to deform an object which is itself categorical, for example, a dg-category, maybe
equipped with some kind of a monoidal structure. To compute the tangent com-
plexes of these deformation problems one needs to know how to compute Quillen
cohomology of (possibly structured) enriched categories.

Quillen cohomology of enriched categories. Motivated by the points above,
the goal of a current work in progress with Matan Prasma and Joost Nuiten is to
understand the tangent categories and Quillen cohomology of enriched categories.
This includes, on the one hand, structures such as (∞, n)-categories, and on the
other hand, more algebraic type of enrichment, such as dg-categories. The first
step towards all of these questions is to understand the notion of a parametertized
spectrum over an algebra object in an ∞-category C which is not necessarily stable.
Our first result is hence an extension of Lurie’s comparison to the non-stable case:

Theorem 1 ([HNP16a]). Let C be a closed symmetric monoidal, differentiable
presentable ∞-category and let O⊗ = N⊗(P) be the operadic nerve a fibrant simplicial
operad. Then for any O-algebra A in C the forgetful functor induces an equivalence
of ∞-categories

TAAlgO(C)
≃
Ð→ TAModO

A(C).

Theorem 1 can be understood as computing the stablization of the complicated
object (AlgO(C))/A in terms of the stabilziation of the simpler object (ModO

A(C))/A.
In some situations, it is better to have a formulation which presents TAAlgO(C)

in terms which only involve the tangent categories of C itself. One way to do so
is to employ the language of O-monoidal ∞-categories. If A ∈ C is an O-algebra
object then C/A acquires a natural structure of an O-monoidal ∞-category such
that AlgO(C/A) ≃ AlgO(C)/A. Furthermore, for every O-algebra object f ∶ B Ð→ A

in C/A we have ModO
f (C/A) ≃ (ModO

B(C))/A, where we consider A as a B-module via

f . We may hence identify Sp((ModO
A(C))/A) with the stabilization of the module

category ModO
IdA

(C/A). Using the machinery of Day convolutions, as developed
in [Lu14, §2.2.6], one can also construct an induced O-monoidal structure on TAC =

Sp(C/A), such that Σ∞
+ ∶ C/A Ð→ Sp(C/A) is naturally an O-monoidal functor. One

can then show that the functor Σ∞
+ induces an equivalence

Sp(ModO
f (C/A))

≃
Ð→ModΣ∞

+
(f)(Sp(C/A)).

One may then rephrase Theorem 1 as follows:

Corollary 2. Let C and O be as in Theorem 1. Then for any O-algebra A in C the
forgetful functor induces an equivalence of ∞-categories

TAAlgO(C)
≃
Ð→ModL

A
(TAC)

where LA denotes the cotangent complex of the underlying object A ∈ C of A.
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Let us say a few words about the method of proof of Theorem 1. While the
statement of Theorem 1 is phrased for ∞-categories, it is actually proven in the
context of model categories, where the ∞-categorical statement is obtained by
choosing a model categorical lift to each of the entities. This is the reason for the
assumption that the ∞-operad in question is the nerve of a simplicial operad - an
assumption that is expected to hold for all ∞-operad. The proof on the level of
model categories allows one to deal, in effect, with more general cases, since the
model categorical tools which can be applied to simplicial operad work equally well
for operads enriched in essentially anything else. We are hence able to obtain the
above results for say, dg-operads, without extra cost. This extra generality is also
used in the proof to reduce to the case where A is the initial algebra by replacing
the operad P with the enveloping algebra PA. Now when A is initial one usually
refers to algebras equipped with a map to A as augmented algebras. On the
other hand, modules over the initial algebras can be identified with P≤1-algebras,
where P≤1 is the operad obtained from P by removing all operations in arity ≥ 2.
The statement of Theorem 3 then reduces to proving that restriction of structure
induces an equivalences

Sp(Algaug
P

)
≃
Ð→ Sp(Algaug

P≤1
)

between the stabilization of augmented P-algebras and the stabilization of augmen-
ted P≤1-algebras. We note that the restriction of structure functor admits a left
adjoint, the free algebra functor, which, under suitable hypothesis, becomes part of
a Quillen adjunction Sp(Algaug

P≤1
)
Ð→
⊥←Ð Sp(Algaug

P
), in which the right adjoint detects

equivalences. The proof then proceed by consideration the natural filtration

P≤1 ↪ P≤2 Ð→ ...P≤n Ð→ ...

of P, together with the induced filtration on the unit map of the free-forgetful
adjunction. Finally, one can show that each step in this filtration is a stable equi-
valence by showing that the gaps are given by diagonals of multi-reduced functors,
and are hence stably trivial.

The statement of Theorem 1 can be applied to compute the tangent categories
and Quillen cohomology of enriched categories. The main idea is that S-enriched
categories with a fixed set of objects can be identified with the category of algebras
over a suitable operad. Theorem 1 can then be used to deduce the following result:

Theorem 3 ([HNP16b]). Let S be a sufficiently nice symmetric monoidal model
category and let TS Ð→ S be the tangent bundle of S. Let CatS be the model
category of S-enriched categories and let C be a fibrant S-enriched category. Then
the tangent model category TC CatS is naturally Quillen equivalent to the model
category FunS

/S(C
op ⊗ C,TS) consisting of the S-enriched lifts

(1) TS

π

��
Cop ⊗ C

::v
v

v
v

v

MapC

// S

Furthermore, under this equivalence, the cotangent complex of C corresponds to the
desuspension of the composite functor Σ∞

∫ ○MapC ∶ C
op ⊗ CÐ→ SÐ→ TS.
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The way to deduce Theorem 3 from Theorem 1 is to show that the stabilization

of (CatS)/C is equivalent to the stabilization of (Cat
Ob(C)
S )/C, where (Cat

Ob(C)
S ) is

the category of S-enriched categories with a fixed object set Ob(C). On the other

hand, (Cat
Ob(C)
S ) is now a category of algebras over a suitable (colored) operad

POb(C), and the corresponding category of operadic C-modules is equivalent to the
category of enriched functors Cop ⊗ C Ð→ S, where the module corresponding to C

itself is the mapping space functor MapC. One can then deduce from Theorem 1
that the functor

TC CatS ≃ TC Cat
Ob(C)
S

≃
Ð→ TMapC

Fun(Cop
⊗ C,S)

which is induced by the forgetful functor (Cat
Ob(C)
S )C//C Ð→ Fun(Cop ⊗ C,S) is an

equivalence. On the other hand, parameterized spectrum objects in Fun(Cop⊗C,S)

over MapC can be identified with lifts as in (1). The identification of the cotangent
complex then requires identifying LC ∈ TC CatS on the LHS with LMapC

[−1] ∈

TC Fun(Cop ⊗ C,S) on the RHS. To show this, the first step is to use the fact
that the tensor product of enriched categories preserves homotopy colimits in each
variable separately in order to reduce to the case where C = ∗ is the enriched
category with one object whose endomorphism object is 1S. In this case the above
identification gives T∗ CatS ≃ T1S

S and one just need to check that under this
equivalence L∗ ∈ T∗ CatS corresponds to L1S

[−1] ∈ T1S
S. The proof then proceeds

by observing that the image of 1S in Cat∗S under the left adjoint to the forgetful
functor Cat∗S Ð→ Fun(∗,S) = S sends 1S to the category with one object whose
endomorphisms are the free associative algebra object generated from 1S. This
needs to be compared to the (unpointed) suspension of ∗ in CatS, which in turn
can be identified with the enriched category with one object whose endomorphism
object is the free group-like associative algebra generated from 1S. While these two
one-object categories are not the same, one can show that they become equivalent
after a single suspension, and hence have equivalent suspension spectra.

Example 4. When S is the category chain complexes over a field one obtains the
notion of a dg-categories. The conclusion is then that parameterized spectrum ob-
jects over a dg-category C coincides with the notion of a C-bimodule. Furthermore,
the Quillen cohomology groups with coefficients of in a C-bimodule F ∶ Cop⊗CÐ→ S
coincide with the corresponding Hoschshild cohomology, up to a shift.

Example 5. When S is the category of simplicial sets one obtains the notion of
simplicial categories, which is a model for the theory of ∞-categories. In this
case, one can make an additional formal maneuver, and translate Theorem 3 into an
identification of TC Cat∞ with the ∞-category of functors Tw(C) Ð→ Sp from the
twisted arrow category of C to spectra. Under this equivalence the cotangent
complex of C corresponds to the constant functor with value S[−1] and we may
identify Quillen cohomology with functor cohomology on Tw(C), up to a shift.

Example 6. When S is the category of marked simplicial sets one obtains the
notion of marked-simplicial categories, which is a model for the theory of
(∞,2)-categories. In this case, one can apply Theorem 3 twice and use a series
of formal maneuvers in order to identify TC Cat(∞,2) with the ∞-category of func-
tors Tw2(C)Ð→ Sp, where Tw2(C) is now a certain analogue of the twisted arrow
category, which we call the twisted 2-cell category. Under this equivalence the
cotangent complex of C corresponds to the constant functor with value S[−2].
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We note that the cotangent complex of C as an object of CatS is not the same as

the cotangent complex of C as an object of Cat
Ob(C)
S . For example, for Ob(C) = ∗

the cotangent complex of a one-object enriched category is not the same as the
cotangent complex of the corresponding algebra in S. However, the two objects are
not that far from each other. We note that Fun(BAop ⊗ BA,S) ≅ BiModA(S) can
simply be identified with the category of A-bimodules. Let us denote the underlying
A-bimodule of A by AAA and the underlying left (resp. right) A-module of A by AA
(resp. AA). We already know that both TAAlg(S) and TBACatS can be identified
with Sp(BiModA(S)A//A). One can then show that LA and LBA are related inside
Sp(BiModA(S)A//A) by a natural homotopy cofiber sequence

(2) LA Ð→ LΣ∞
+ (AA⊗AA)Ð→ LΣ∞

+ (AAA) ≃ LBA[1].

Remark 7. When S is stable, the cofiber sequence 2 can be written as

(3) LA Ð→ Aop
⊗AÐ→ A

where we view all objects as A-bimodules. This is the n = 1 case of the cofiber
sequence appearing in [Lu14, Theorem 7.3.5.1] and in [Fra13, Theorem 1.1]. When
tensored with the A-bimodule A one obtained a long exact sequence relating the
Quillen cohomology and Hochschild cohomology of A.

Example 8. When S = Chk is the category of chain complexes over a field k, A
is a discrete algebra and M is a discrete A-bimodule, the cofiber sequence (3)
identifies the Quillen cohomology groups Hn

Q(A,M) for n ≥ 1 with the Hochschild

cohomology group HHn+1(A,M). For n = 0 we obtain instead a surjective map
f0 ∶ H0

Q(A,M) Ð→ HH1(A,M). Unwinding the definitions we see that H0
Q(A,M)

is the group of derivations AÐ→M , HH1(A,M) is the group of derivations modulo
the inner derivations, and f0 is the natural map between these two types of data.

Example 9. One may try to combine Corollary 2 and Theorem 3 in order to compute
Quillen cohomology of monoidal dg-categories. Given a monoidal dg-category
C (with underlying dg-category C), the dg-category Cop ⊗ C inhertis a monoidal

structure, and the induced monoidal structure on T
C

Catdg ≃ Fun(C
op
⊗ C,Chk) is

given by the associated shifted Day convolution. By Theorem 3 the cotangent
complex LC of C is given by the shifted mapping object functor LC ≃ MapC[−1],
which carries a natural algebra structure with respect the shifted Day convolution.
Conjugating everything by a shift, we may use Corollary 2 to identify parameterized

spectrum objects over the monoidal dg-category C with bimodules F ∶ C
op
⊗ C Ð→

Chk equipped an action of MapC. Informally speaking, such an action is given by
maps of the form

MapC(x, y)⊗ F(a, b)⊗MapC(x
′, y′)Ð→ F(xax′, yby′)

for every x, y, a, b, x′, y′ ∈ C, subject to natural compatibility conditions. We note,
however, that the cotangent complex of C as a monoidal dg-category is not MapC.
Instead, the underlying bimodule of LC sits in a short exact sequence of the form (2)
involving MapC and the left Kan extension of MapC⊗MapC ∶ (Cop ⊗ C) ⊗ (Cop ⊗

C)Ð→ Chk along the map (Cop⊗C)⊗(Cop⊗C)Ð→ Cop⊗C induced by the monoidal
structure.
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