Algèbre linéaire

Caroline Japhet

Version simplifiée du 19 novembre 2020

Table des matières

1	Vecteurs	1
2	Matrices	2
	2.1 Généralités	
	2.2 Matrices carrées	
	2.3 Matrices particulières	6
	2.4 Lien entre le déterminant / la trace, et les valeurs propres d'une matrice	6
3	Normes vectorielles et normes matricielles	7
4	Suites de vecteurs et de matrices	8
5	Complément : réduction des matrices	8

Références:

- [1] F. Cuvelier, Analyse numérique élémentaire, Notes de cours Ingénieurs MACS 1ère année, 2020 https://www.math.univ-paris13.fr/~cuvelier/
- [2] A. Quarteroni, R. Sacco, and F. Saleri, Méthodes numériques, Springer, 2007
- [3] P.G. Ciarlet, Introduction à l'analyse numérique matricielle et à l'optimisation, Dunod
- [4] P. Lascaux & R. Théodor, Analyse numérique matricielle appliquée à l'art de l'ingénieur, Masson

Soit E un **espace vectoriel** de dimension finie n, sur le corps \mathbb{R} des nombres réels, ou sur le corps \mathbb{C} des nombres complexes. Notons plus généralement \mathbb{K} le corps \mathbb{R} ou \mathbb{C} .

1 Vecteurs

Une base de E est un ensemble $\{e_1, e_2, \dots, e_n\}$ de n vecteurs linéairement indépendants. Le vecteur $\mathbf{v} = \sum_{i=1}^n v_i \mathbf{e}_i$ sera représenté par le vecteur colonne

$$\boldsymbol{v} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}.$$

On désigne par v_i ou $\boldsymbol{v}(i)$ la *i*-ème composante du vecteur \boldsymbol{v} , et par \boldsymbol{v}^t et \boldsymbol{v}^* les vecteurs lignes suivants

$$\boldsymbol{v}^t = \begin{pmatrix} v_1 & v_2 & \cdots & v_n \end{pmatrix}, \ \boldsymbol{v}^* = \begin{pmatrix} \overline{v_1} & \overline{v_2} & \cdots & \overline{v_n} \end{pmatrix}$$

où $\overline{\alpha}$ est le nombre **complexe conjugué** du nombre α .

Définition 1.1 — Le vecteur ligne v^t est le vecteur transposé du vecteur colonne v.

— Le vecteur ligne \mathbf{v}^* est le **vecteur adjoint** du vecteur colonne \mathbf{v} .

Définition 1.2 L'application $\langle \bullet, \bullet \rangle : E \times E \to \mathbb{K}$ définie par

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle = \boldsymbol{u}^t.\boldsymbol{v} = \boldsymbol{v}^t.\boldsymbol{u} = \sum_{i=1}^n u_i v_i, \quad si \quad \mathbb{K} = \mathbb{R}$$

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle = \boldsymbol{u}^*.\boldsymbol{v} = \overline{\boldsymbol{v}^*.\boldsymbol{u}} = \overline{\langle \boldsymbol{v}, \boldsymbol{u} \rangle} = \sum_{i=1}^n \overline{u_i} v_i, \quad si \quad \mathbb{K} = \mathbb{C}$$

est appelée **produit scalaire** euclidien si $\mathbb{K} = \mathbb{R}$, hermitien si $\mathbb{K} = \mathbb{C}$. Pour rappeler la dimension de l'espace,

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle = \langle \boldsymbol{u}, \boldsymbol{v} \rangle_n$$
.

Dans la suite de cette section, on considère $E = \mathbb{R}^n$ muni du produit scalaire euclidien, ou $E = \mathbb{C}^n$ muni du produit scalaire hermitien.

Définition 1.3 \diamond Deux vecteurs $\mathbf{u} \in E$ et $\mathbf{v} \in E$ sont orthogonaux si $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.

- \diamond Un vecteur $\mathbf{v} \in E$ est orthogonal à une partie U de E si $\forall \mathbf{u} \in U$, $\langle \mathbf{u}, \mathbf{v} \rangle = 0$. On note $\mathbf{v} \perp U$.
- \diamond Un ensemble de vecteurs $\{v_1, v_2, \dots, v_k\}$ de l'espace E est dit **orthonormal** si

$$\langle \boldsymbol{v}_i, \boldsymbol{v}_i \rangle = \delta_{ij}, \ \forall (i,j) \in [1,k]^2$$

où δ_{ij} est le **symbole de Kronecker** : $\delta_{ij} = \begin{cases} 1 & \text{si } i = j, \\ 0 & \text{si } i \neq j. \end{cases}$

Définition 1.4 Le vecteur nul est représenté par la lettre $\mathbf{0}_n$, ou $\mathbf{0}$ lorsqu'il n'y a pas d'ambiguité.

Définition 1.5 Soit $u \in E$ non nul. On définit l'opérateur de projection sur u par

$$\operatorname{proj}_{\boldsymbol{u}}(\boldsymbol{v}) = \frac{\langle \boldsymbol{u}, \boldsymbol{v} \rangle}{\langle \boldsymbol{u}, \boldsymbol{u} \rangle} \boldsymbol{u}, \ \forall \boldsymbol{v} \in E.$$

Propriété 1.1 (Procédé de Gram-Schmidt) Soit $\{v_i\}_{i\in [\![1,n]\!]}$ une base de E. On construit successivement les vecteurs u

$$oldsymbol{u}_i = oldsymbol{v}_i - \sum_{k=1}^{i-1} \operatorname{proj}_{oldsymbol{u}_k} \left(oldsymbol{v}_i
ight) = oldsymbol{v}_i - \sum_{k=1}^{i-1} rac{\langle oldsymbol{u}_k, oldsymbol{v}_i
angle}{\langle oldsymbol{u}_k, oldsymbol{u}_k
angle} oldsymbol{u}_k, \ orall i \in \llbracket 1, n
bracket.$$

Ils forment une **base orthogonale** de E. En posant $\mathbf{z}_i = \frac{\mathbf{u}_i}{\sqrt{\langle \mathbf{u}_i, \mathbf{u}_i \rangle}}$, $\forall i \in [1, n]$, on obtient une **base orthonormale** $\{\mathbf{z}_i\}_{i \in [1, n]}$ de E.

2 Matrices

2.1Généralités

Soit $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$. Une matrice à m lignes et n colonnes est appelée matrice de type (m, n), et on note $\mathcal{M}_{m,n}(\mathbb{K})$ l'espace vectoriel sur le corps \mathbb{K} formé par les matrices de type (m,n) à éléments dans \mathbb{K} . Une matrice $\mathbb{A} \in \mathcal{M}_{m,n}(\mathbb{K})$ d'éléments $a_{i,j} \in \mathbb{K}$ est notée

$$\mathbb{A} = (a_{i,j})_{1 \leqslant i \leqslant m, \ 1 \leqslant j \leqslant n},$$

le premier indice i correspond aux lignes et le second j aux colonnes. On désigne aussi par $(\mathbb{A})_{i,j}$ ou $\mathbb{A}(i,j)$ l'élément de la $i^{\text{ème}}$ ligne et de la $j^{\text{ème}}$ colonne.

Définition 2.1 (voir TD)

 \diamond Soit une matrice $\mathbb{A} \in \mathcal{M}_{m,n}(\mathbb{R})$, on note $\mathbb{A}^t \in \mathcal{M}_{n,m}(\mathbb{R})$ la matrice transposée de la matrice \mathbb{A} , définie de façon unique par $(\mathbb{A}^t)_{i,j} = a_{j,i}, \ 1 \leq i \leq m, \ 1 \leq j \leq n, \ ce \ qui \ équivaut \ à$

$$\langle A\boldsymbol{u}, \boldsymbol{v} \rangle_m = \langle \boldsymbol{u}, A^t \boldsymbol{v} \rangle_n, \ \forall \boldsymbol{u} \in \mathbb{R}^n, \ \forall \boldsymbol{v} \in \mathbb{R}^m.$$

 \diamond Soit une matrice $\mathbb{A} \in \mathcal{M}_{m,n}(\mathbb{C})$, on note $\mathbb{A}^* \in \mathcal{M}_{n,m}(\mathbb{C})$ la **matrice adjointe** de la matrice \mathbb{A} , définie de façon unique par $(\mathbb{A}^*)_{i,j} = \overline{a_{j,i}}$, $1 \leq i \leq m$, $1 \leq j \leq n$, ce qui équivaut à

$$\langle \mathbb{A}\boldsymbol{u}, \boldsymbol{v} \rangle_m = \langle \boldsymbol{u}, \mathbb{A}^* \boldsymbol{v} \rangle_n, \ \forall \boldsymbol{u} \in \mathbb{C}^n, \ \forall \boldsymbol{v} \in \mathbb{C}^m.$$

Définition 2.2 La matrice nulle de $\mathcal{M}_{m,n}(\mathbb{K})$ est représentée par $\mathbb{O}_{m,n}$ ou \mathbb{O} lorsqu'il n'y a pas d'ambiguité. Si m=n on note aussi \mathbb{O}_n cette matrice.

Définition 2.3 Si $\mathbb{A} \in \mathcal{M}_{m,n}(\mathbb{K})$ et $\mathbb{B} \in \mathcal{M}_{m,n}(\mathbb{K})$, leur somme $\mathbb{A} + \mathbb{B} \in \mathcal{M}_{m,n}(\mathbb{K})$ est définie par

$$(A + B)_{i,j} = a_{i,j} + b_{i,j}, \quad \forall i \in [1, m], \ \forall j \in [1, n].$$

Définition 2.4 Si $\mathbb{A} \in \mathcal{M}_{m,n}(\mathbb{K})$, sa multiplication par un scalaire $\alpha \in \mathbb{K}$ est la matrice $\alpha \mathbb{A} \in \mathcal{M}_{m,n}(\mathbb{K})$ définie par

$$(\alpha \mathbb{A})_{i,j} = \alpha a_{i,j}, \quad \forall i \in [1, m], \ \forall j \in [1, n].$$

Définition 2.5 Si $\mathbb{A} \in \mathcal{M}_{m,p}(\mathbb{K})$ et $\mathbb{B} \in \mathcal{M}_{p,n}(\mathbb{K})$, leur **produit** $\mathbb{AB} \in \mathcal{M}_{m,n}(\mathbb{K})$ est défini par

$$(\mathbb{AB})_{i,j} = \sum_{k=1}^{p} a_{i,k} b_{k,j}, \quad \forall i \in [1, m], \ \forall j \in [1, n].$$

Propriété 2.1 On a

$$(\mathbb{A}\mathbb{B})^{t} = \mathbb{B}^{t}\mathbb{A}^{t}, \quad (\mathbb{A} + \mathbb{B})^{t} = \mathbb{A}^{t} + \mathbb{B}^{t}, \quad (\mathbb{A}^{t})^{t} = \mathbb{A}, \quad (\alpha\mathbb{A})^{t} = \alpha\mathbb{A}^{t}, \quad \forall \alpha \in \mathbb{R} \qquad (si \ \mathbb{K} = \mathbb{R}),$$
$$(\mathbb{A}\mathbb{B})^{*} = \mathbb{B}^{*}\mathbb{A}^{*}, \quad (\mathbb{A} + \mathbb{B})^{*} = \mathbb{A}^{*} + \mathbb{B}^{*}, \quad (\mathbb{A}^{*})^{*} = \mathbb{A}, \quad (\alpha\mathbb{A})^{*} = \overline{\alpha}\mathbb{A}^{*}, \quad \forall \alpha \in \mathbb{C}, \quad (si \ \mathbb{K} = \mathbb{C}).$$

2.2 Matrices carrées

Définition 2.6 Une matrice de type (n,n) est dite matrice carrée, ou matrice d'ordre n. On note

$$\mathcal{M}_n(\mathbb{K}) = \mathcal{M}_{n,n}(\mathbb{K})$$

l'ensemble des matrices carrées d'ordre n, à éléments dans le corps K.

Définition 2.7 On dit que deux matrices $\mathbb{A}, \mathbb{B} \in \mathcal{M}_n(\mathbb{K})$ commutent si $\mathbb{AB} = \mathbb{BA}$.

Les matrices considérées jusqu'à la fin de ce chapitre sont dans $\mathcal{M}_n(\mathbb{R})$.

Définition 2.8 Si $\mathbb{A} \in \mathcal{M}_n(\mathbb{R})$ alors les éléments $a_{i,i} = (\mathbb{A})_{i,i}$ sont appelés éléments diagonaux et les éléments $a_{i,j} = (\mathbb{A})_{i,j}$, $i \neq j$ sont appelés éléments hors-diagonaux.

Définition 2.9 On appelle matrice identité de $\mathcal{M}_n(\mathbb{R})$ la matrice dont les éléments diagonaux sont tous égaux à 1 et les éléments hors-diagonaux nuls. On la note \mathbb{I} ou encore \mathbb{I}_n et on a

$$(\mathbb{I})_{i,j} = \delta_{i,j}, \ \forall (i,j) \in [1, n]^2,$$

où $\delta_{i,j}$ est défini dans la Définition 1.3.

Définition 2.10 Une matrice $\mathbb{A} \in \mathcal{M}_n(\mathbb{R})$ est inversible s'il existe une unique matrice de $\mathcal{M}_n(\mathbb{R})$, notée \mathbb{A}^{-1} et appelée matrice inverse de la matrice \mathbb{A} , telle que

$$\mathbb{A}\mathbb{A}^{-1} = \mathbb{A}^{-1}\mathbb{A} = \mathbb{I}$$

Dans le cas contraire, on dit que la matrice A est singulière ou non inversible.

Propriété 2.2 Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{R})$. On a

$$(\mathbb{A}^t)^{-1} = (\mathbb{A}^{-1})^t,$$

$$(\mathbb{A}^{-1})^{-1} = \mathbb{A}.$$

De plus, si et $\mathbb{A} \in \mathcal{M}_n(\mathbb{R})$ et $\mathbb{B} \in \mathcal{M}_n(\mathbb{R})$ sont inversibles, alors leur produit \mathbb{AB} est inversible et

$$(\mathbb{A}\mathbb{B})^{-1} = \mathbb{B}^{-1}\mathbb{A}^{-1}.$$

Définition 2.11 Une matrice $\mathbb{A} \in \mathcal{M}_n(\mathbb{R})$ est

- $\diamond \ \textit{symétrique} \ si \ \mathbb{A} = \mathbb{A}^t,$
- \diamond orthogonale si $\mathbb{AA}^t = \mathbb{A}^t \mathbb{A} = \mathbb{I}$. Alors \mathbb{A} est inversible et $\mathbb{A}^{-1} = \mathbb{A}^t$
- $\diamond \ \mathbb{A} \in \mathcal{M}_n(\mathbb{C})$ est unitaire si $\mathbb{A}\mathbb{A}^* = \mathbb{A}^*\mathbb{A} = \mathbb{I}$. Alors \mathbb{A} est inversible et $\mathbb{A}^{-1} = \mathbb{A}^*$.

Définition 2.12 Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{R})$ une matrice symétrique. On dit que \mathbb{A} est définie positive si

$$\langle A\boldsymbol{u}, \boldsymbol{u} \rangle > 0, \ \forall \boldsymbol{u} \in \mathbb{R}^n \setminus \{0\}.$$

Exercice 2.1 Soit $n \in \mathbb{N}^*$. Considérons la matrice du problème de l'élastique : $\mathbb{A}_h = (a_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R})$ définie par : $a_{i,i} = 2$, $\forall i \in [1,n]$, $a_{i,i+1} = -1$, $\forall i \in [1,n-1]$, $a_{i,i-1} = -1$, $\forall i \in [2,n]$, $a_{i,j} = 0$, $\forall i,j \in [1,n]$ avec |i-j| > 2, c'est-à-dire

$$\mathbb{A}_h = \frac{1}{h^2} \begin{pmatrix} 2 & -1 & 0 & \dots & 0 \\ -1 & 2 & -1 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & -1 & 2 & -1 \\ 0 & \dots & 0 & -1 & 2 \end{pmatrix}.$$

- 1. Montrer que \mathbb{A}_h est symétrique.
- 2. Montrer, par récurrence sur n (i.e. la taille de \mathbb{A}_h), que

$$\langle \mathbb{A}_h \boldsymbol{u}, \boldsymbol{u} \rangle = \frac{1}{h^2} \left(u_1^2 + \sum_{i=1}^{n-1} (u_{i+1} - u_i)^2 + u_n^2 \right), \ \forall \boldsymbol{u} \in \mathbb{R}^n.$$

3. En déduire que \mathbb{A}_h est symétrique définie positive.

Exercice 2.2 Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice symétrique définie positive.

- 1. Montrer que les éléments diagonaux de \mathbb{A} sont strictement positifs.
- 2. Montrer que les sous matrices principales de \mathbb{A} (voir la définition 2.24) sont elles aussi symétriques et définies positives.

Définition 2.13 La trace d'une matrice $\mathbb{A} = (a_{i,j})_{1 \leq i,j \leq n}$ de $\mathcal{M}_n(\mathbb{R})$ est définie par

$$\operatorname{tr}\left(\mathbb{A}\right) = \sum_{i=1}^{n} a_{i,i}.$$

Définition 2.14 Soit \mathcal{T}_n le groupe des permutations de l'ensemble $\{1, 2, ..., n\}$. A tout élément $\sigma \in \mathcal{T}_n$, on associe la matrice de permutation

$$P_{\sigma} = \left(\delta_{i\sigma(j)}\right).$$

Remarque 2.3 Une matrice de permutation est orthogonale.

Définition 2.15 Le déterminant d'une matrice $\mathbb{A} = (a_{i,j})_{1 \leq i,j \leq n}$ de $\mathcal{M}_n(\mathbb{R})$ est défini par

$$\det\left(\mathbb{A}\right) = \sum_{\sigma \in \mathcal{T}_n} \varepsilon_{\sigma} \prod_{j=1}^n a_{\sigma(j),j}$$

4

oà ε_{σ} désigne la signature de la permutation σ . Pour calculer le déterminant de \mathbb{A} , on utilise la formule suivante (loi de Laplace) : on note $\mathbb{A}_{ij} \in \mathcal{M}_{n-1}(\mathbb{R})$ la matrice obtenue à partir de \mathbb{A} en supprimant la ligne i et la colonne j. On a alors le développement par rapport à la colonne $j \in [1, n]$:

$$\det(\mathbb{A}) = \begin{cases} a_{1,1}, & si \ n = 1, \\ \sum_{i=1}^{n} (-1)^{i+j} a_{i,j} \det(A_{ij}), & pour \ n > 1. \end{cases}$$
 (2.1)

Notons que l'on a aussi le développement par rapport à la ligne $i \in [1, n]$:

$$\det(\mathbb{A}) = \sum_{j=1}^{n} (-1)^{i+j} a_{i,j} \det(A_{ij}), \quad pour \ n > 1.$$

Le terme $(-1)^{i+j} \det(\mathbb{A}_{ij})$ est appelé le **cofacteur** de $a_{i,j}$.

Propriété 2.4 Soient $\mathbb{A} \in \mathcal{M}_n(\mathbb{R})$, $\mathbb{B} \in \mathcal{M}_n(\mathbb{R})$, et $\lambda \in \mathbb{R}$. On a alors les relations suivantes

Définition 2.16 *Soit* $\mathbb{A} \in \mathcal{M}_n(\mathbb{R})$.

- \diamond On note $\operatorname{Ker}(\mathbb{A}) = \{ \boldsymbol{v} \in \mathbb{R}^n \ t.q. \ \mathbb{A}\boldsymbol{v} = \boldsymbol{0} \}$ le **noyau** de la matrice \mathbb{A} .
- $\diamond \ \ On \ note \ \mathrm{Im}(\mathbb{A}) = \{ \boldsymbol{v} \in \mathbb{R}^n \ \ t.q. \ \exists \mathbf{w} \in \mathbb{R}^n, \boldsymbol{v} = \mathbb{A}\mathbf{w} \} \ \ l'image \ \ de \ \mathbb{A}.$

Définition 2.17 Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{R})$. On dit que $\lambda \in \mathbb{C}$ est valeur propre de \mathbb{A} s'il existe $\mathbf{u} \in \mathbb{C}^n$ non nul tel que

$$\mathbb{A}\boldsymbol{u} = \lambda \boldsymbol{u}.$$

Le vecteur \mathbf{u} est appelé **vecteur propre** associé à la valeur propre λ . Le couple (λ, \mathbf{u}) est appelé **élément propre** de \mathbb{A} .

Définition 2.18 Soit $A \in \mathcal{M}_n(\mathbb{R})$. Soit $\lambda \in \mathbb{C}$ une valeur propre de A. Le sous-espace

$$E_{\lambda} = \{ \boldsymbol{u} \in \mathbb{C}^n : \mathbb{A}\boldsymbol{u} = \lambda \boldsymbol{u} \} = \operatorname{Ker}(\mathbb{A} - \lambda \mathbb{I})$$

est appelé sous-espace propre associé à la valeur propre λ .

Définition 2.19 Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{R})$. Le polynôme de degré n défini par

$$\mathcal{P}_{\mathbb{A}}(\lambda) = \det(\mathbb{A} - \lambda \mathbb{I})$$

est appelé polynôme caractéristique de la matrice A.

Propriété 2.5 Les racines complexes du polynôme caractéristique $\mathcal{P}_{\mathbb{A}}$ sont les valeurs propres de la matrice \mathbb{A} :

$$\lambda \in \mathbb{C}$$
 est une valeur propre de $\mathbb{A} \iff \det(\mathbb{A} - \lambda \mathbb{I}) = 0$.

Propriété 2.6 Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{R})$.

- \diamond La matrice $\mathbb A$ possède n valeurs propres distinctes ou non $(\mathcal P_{\mathbb A}$ est de degré n par rapport à $\lambda)$.
- \diamond Comme \mathbb{A} est à coefficients réels, alors $\mathcal{P}_{\mathbb{A}}(\lambda)$ est à coefficients réels et les valeurs propres complexes sont donc deux à deux conjuguées.
- \diamond Si $\mathbb A$ est symétrique, ses valeurs propres sont réelles.

Définition 2.20 Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{R})$. On note λ_i , $i \in [1, n]$, lesvaleurs propres de \mathbb{A} . Le **spectre** de \mathbb{A} est défini par

$$\operatorname{Sp}(\mathbb{A}) = \bigcup_{i=1}^{n} \{\lambda_i\}$$

.

Définition 2.21 Le rayon spectral d'une matrice $\mathbb{A} \in \mathcal{M}_n(\mathbb{R})$ est le nombre ≥ 0 défini par

$$\rho(\mathbb{A}) = \max_{i \in [\![1,n]\!]} \left\{ |\lambda_i| \right\},\,$$

où $|\lambda_i|$ désigne le module de λ_i .

Soient $\mathbb{A} \in \mathcal{M}_n(\mathbb{R})$. On a alors les relations suivantes

$$\rho(\mathbb{A}) = \rho(\mathbb{A}^t),
\rho(\alpha \mathbb{A}) = |\alpha|\rho(\mathbb{A}), \forall \alpha \in \mathbb{R},
\rho(\mathbb{A}^k) = (\rho(\mathbb{A}))^k, \forall k \in \mathbb{N}.$$

Exercice 2.3 Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice symétrique.

- 1. (a) Montrer que $(A\mathbf{u}, \mathbf{u}) \in \mathbb{R}, \ \forall \mathbf{u} \in \mathbb{C}^n$.
 - (b) Soit $\lambda \in \mathbb{C}$ une valeur propre de \mathbb{A} et $\mathbf{x} \in \mathbb{C}^n$ un vecteur propre de \mathbb{A} associé à λ . Déduire de (a) que $(\mathbb{A}\mathbf{x},\mathbf{x}) \in \mathbb{R}$, puis que $\lambda \in \mathbb{R}$.
- 2. On suppose que A est définie positive. Montrer que les valeurs propres de A sont strictement positives. En déduire que A est inversible.

Définition 2.22 On appelle **déterminant extrait d'ordre** q $(q \ge 1)$, celui de n'importe quelle matrice d'ordre q obtenue à partir de \mathbb{A} en éliminant n-q lignes et n-q colonnes.

Définition 2.23 Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{R})$. Le rang de \mathbb{A} est l'ordre maximum des déterminants extraits non nuls de \mathbb{A} .

On a alors les propriétés suivantes :

rg(A) = nombre maximum de vecteurs colonnes de A linéairement indépendants,

rg(A) = nombre maximum de vecteurs lignes de A linéairement indépendants,

rg(A) + dim(Ker(A)) = n,

 $\operatorname{rg}(\mathbb{A}) = \operatorname{rg}(\mathbb{A}^t),$

 $\det(\mathbb{A}) \neq 0 \iff \mathbb{A} \text{ inversible } \iff \operatorname{Ker}(\mathbb{A}) = \{\mathbf{0}\} \iff \operatorname{rg}(\mathbb{A}) = n.$

2.3 Matrices particulières

Définition 2.24 On appelle **sous-matrice** d'une matrice donnée, la matrice obtenue en supprimant certaines lignes et certaines colonnes. En particulier, la **sous matrice principale** d'ordre k de A est définie par

$$\Delta_k = \begin{pmatrix} a_{11} & \cdots & a_{1k} \\ \vdots & & \vdots \\ a_{k1} & \cdots & a_{kk} \end{pmatrix}, \ 1 \leqslant k \leqslant n.$$

Définition 2.25 Une matrice carrée $A \in \mathcal{M}_n(\mathbb{R})$ est :

- \diamond **diagonale** si $a_{i,j} = 0$ pour $i \neq j$,
- \diamond triangulaire supérieure si $a_{i,j} = 0$ pour i > j,
- \diamond triangulaire inférieure si $a_{i,j} = 0$ pour i < j,
- ♦ triangulaire si elle est triangulaire supérieure ou triangulaire inférieure.

Exercice 2.4 Soient $\mathbb{A} = (a_{ij})_{(i,j) \in [1,n]^2}$ une matrice triangulaire supérieure de $\mathcal{M}_n(\mathbb{R})$.

- 1. Quelle est la structure de la matrice \mathbb{A}^t ?
- 2. Calculer $\det(\mathbb{A})$ (Indication : faire une récurrence sur la taille de la matrice \mathbb{A}).

 A quelle(s) condition(s) la matrice \mathbb{A} est-elle inversible?
- 3. Déterminer les valeurs propres de A.

2.4 Lien entre le déterminant / la trace, et les valeurs propres d'une matrice

Théorème 2.7 (admis) Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{R})$. On a alors les relations suivantes

$$\operatorname{tr}(\mathbb{A}) = \sum_{i=1}^{n} \lambda_{i}, \quad \operatorname{det}(\mathbb{A}) = \prod_{i=1}^{n} \lambda_{i}.$$

Pour la preuve de ce résultat, voir la section 5.

3 Normes vectorielles et normes matricielles

Définition 3.1 Une norme sur $V = \mathbb{R}^n$ est une application $\| \bullet \| : V \to \mathbb{R}^+$ qui vérifie les propriétés suivantes

- $\diamond \|\boldsymbol{v}\| = 0 \Longleftrightarrow \boldsymbol{v} = \boldsymbol{0},$
- $\diamond \|\alpha \boldsymbol{v}\| = |\alpha| \|\boldsymbol{v}\|, \ \forall \alpha \in \mathbb{R}, \ \forall \boldsymbol{v} \in V,$
- $||\mathbf{u} + \mathbf{v}|| \le ||\mathbf{u}|| + ||\mathbf{v}||, \ \forall (\mathbf{u}, \mathbf{v}) \in V^2 \ (inégalité \ triangulaire).$

Une norme sur V est également appelée norme vectorielle.

Les normes suivantes sont les plus couramment utilisées sur \mathbb{R}^n :

$$\left\| oldsymbol{v}
ight\|_1 = \sum_{i=1}^n \left| v_i
ight|, \qquad \left\| oldsymbol{v}
ight\|_2 = \left\langle oldsymbol{v}, oldsymbol{v}
ight
angle^{rac{1}{2}} = \left(\sum_{i=1}^n \left| v_i
ight|^2
ight)^{1/2}, \qquad \left\| oldsymbol{v}
ight\|_{\infty} = \max_{i \in \llbracket 1, n
rbracket} \left| v_i
ight|,$$

 $\|\boldsymbol{v}\|_{\mathbb{A}} = (\mathbb{A}\boldsymbol{v}, \boldsymbol{v})^{\frac{1}{2}}$, avec $\mathbb{A} \in \mathcal{M}_n$, $\boldsymbol{v} \in \mathbb{R}^n$, et \mathbb{A} symétrique définie positive.

Théorème 3.1 Inégalité de Cauchy-Schwarz.

Pour tout $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $|\langle \mathbf{x}, \mathbf{y} \rangle| \leq ||\mathbf{x}||_2 ||\mathbf{y}||_2$. On a l'égalité si et seulement si $\mathbf{y} = \alpha \mathbf{x}$ pour un $\alpha \in \mathbb{R}$.

Définition 3.2 Deux normes $\|\bullet\|$ et $\|\bullet\|'$ sur V, sont **équivalentes** s'il existe des constantes C > 0 et C' > 0 telles que

$$C \|\boldsymbol{v}\|' \leqslant \|\boldsymbol{v}\| \leqslant C' \|\boldsymbol{v}\|'$$
 pour tout $\boldsymbol{v} \in V$.

Remarque 3.2 $Sur \mathbb{R}^n$ toutes les normes sont équivalentes.

Définition 3.3 Une norme matricielle sur $\mathcal{M}_n(\mathbb{R})$ est une application $\|\bullet\|: \mathcal{M}_n(\mathbb{R}) \to \mathbb{R}^+$ vérifiant

- 1. $\|\mathbb{A}\| = 0 \iff \mathbb{A} = \mathbb{O}_n$,
- 2. $\|\alpha\mathbb{A}\| = |\alpha| \|\mathbb{A}\|, \ \forall \alpha \in \mathbb{R}, \ \forall \mathbb{A} \in \mathcal{M}_n(\mathbb{R}),$
- 3. $\|\mathbb{A} + \mathbb{B}\| \leq \|\mathbb{A}\| + \|\mathbb{B}\|, \ \forall (\mathbb{A}, \mathbb{B}) \in \mathcal{M}_n(\mathbb{R})^2$ (inégalité triangulaire)
- 4. $\|\mathbb{AB}\| \leq \|\mathbb{A}\| \|\mathbb{B}\|, \ \forall (\mathbb{A}, \mathbb{B}) \in \mathcal{M}_n(\mathbb{R})^2$

Théorème 3.3 Etant donné une norme vectorielle $\|\bullet\|$ sur \mathbb{R}^n , l'application $\|\bullet\|_s : \mathcal{M}_n(\mathbb{R}) \to \mathbb{R}^+$ définie par

$$\left\|\mathbb{A}\right\|_{s} = \sup_{\substack{\boldsymbol{v} \in \mathbb{R}^{n} \\ \boldsymbol{v} \neq 0}} \frac{\left\|\mathbb{A}\boldsymbol{v}\right\|}{\left\|\boldsymbol{v}\right\|} = \sup_{\substack{\boldsymbol{v} \in \mathbb{R}^{n} \\ \left\|\boldsymbol{v}\right\| \leq 1}} \left\|\mathbb{A}\boldsymbol{v}\right\| = \sup_{\substack{\boldsymbol{v} \in \mathbb{R}^{n} \\ \left\|\boldsymbol{v}\right\| = 1}} \left\|\mathbb{A}\boldsymbol{v}\right\|,$$

est une norme matricielle, appelée norme matricielle subordonnée (à la norme vectorielle donnée). Par définition de $\|\mathbb{A}\|_s$, on a

$$\|\mathbb{A}\boldsymbol{v}\| \leq \|\mathbb{A}\|_{s} \|\boldsymbol{v}\|, \quad \forall \boldsymbol{v} \in \mathbb{R}^{n},$$

 $\|\mathbb{I}\|_{s} = 1.$

Théorème 3.4 (admis) Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{R})$. On a

$$\begin{split} \|\mathbb{A}\|_1 &\stackrel{\text{def.}}{=} \sup_{\substack{\boldsymbol{v} \in \mathbb{C}^n \\ \boldsymbol{v} \neq 0}} \frac{\|\mathbb{A}\boldsymbol{v}\|_1}{\|\boldsymbol{v}\|_1} = \max_{j \in [\![1,n]\!]} \sum_{i=1}^n |a_{i,j}| \\ \|\mathbb{A}\|_2 &\stackrel{\text{def.}}{=} \sup_{\substack{\boldsymbol{v} \in \mathbb{C}^n \\ \boldsymbol{v} \neq 0}} \frac{\|\mathbb{A}\boldsymbol{v}\|_2}{\|\boldsymbol{v}\|_2} = \sqrt{\rho\left(\mathbb{A}^t\mathbb{A}\right)} = \sqrt{\rho\left(\mathbb{A}\mathbb{A}^t\right)} = \|\mathbb{A}^t\|_2 \\ \|\mathbb{A}\|_{\infty} &\stackrel{\text{def.}}{=} \sup_{\substack{\boldsymbol{v} \in \mathbb{C}^n \\ \boldsymbol{v} \neq 0}} \frac{\|\mathbb{A}\boldsymbol{v}\|_{\infty}}{\|\boldsymbol{v}\|_{\infty}} = \max_{i \in [\![1,n]\!]} \sum_{j=1}^n |a_{i,j}| \end{split}$$

Remarque 3.5 1. Si une matrice $\mathbb{A} \in \mathcal{M}_n(\mathbb{R})$ est symétrique, alors on a $\|\mathbb{A}\|_2 = \rho(\mathbb{A})$.

2. Si une matrice $\mathbb{A} \in \mathcal{M}_n(\mathbb{R})$ est orthogonale, alors on a $\|\mathbb{A}\|_2 = 1$.

Exercice 3.1 Montrer les théorèmes 3.1 et 3.3, ainsi que la remarque 3.5.

Exercice 3.2 (Norme de Frobenius) On considère l'application $\|\bullet\|_F : \mathcal{M}_n(\mathbb{R}) \to \mathbb{R}^+$ définie, pour $\mathbb{A}in\mathcal{M}_n(\mathbb{R})$ par

$$\|\mathbb{A}\|_{F} = \left(\sum_{(i,j)=\in[1,n]^{2}} |a_{ij}|^{2}\right)^{1/2} = \sqrt{\operatorname{tr}(\mathbb{A}^{*}\mathbb{A})}.$$
(3.1)

- 1. Montrer que $\|\bullet\|_F : \mathcal{M}_{n(\mathbb{R})} \to \mathbb{R}^+$ est une norme matricielle.
- 2. Calculer $\|\mathbb{I}_n\|_F$ où \mathbb{I}_n est la matrice identité de $\mathcal{M}_n(\mathbb{C})$.

Théorème 3.6 1. Soit $\mathbb A$ une matrice carrée quelconque et $\|\cdot\|_s$ une norme matricielle subordonnée à la norme vectorielle $\|\cdot\|$. Alors

$$\rho(\mathbb{A}) \leqslant \|\mathbb{A}\|_{s}.\tag{3.2}$$

2. (admis) Etant donné une matrice \mathbb{A} et un nombre $\varepsilon > 0$, il existe au moins une norme matricielle subordonnée $\|\cdot\|_*$ (dépendant \mathbb{A} et ε), telle que

$$\|\mathbb{A}\|_{*} \leqslant \rho(\mathbb{A}) + \varepsilon. \tag{3.3}$$

4 Suites de vecteurs et de matrices

Définition 4.1 (Convergence d'une suite de vecteurs) Soit E un espace vectoriel muni d'une norme $\|\bullet\|$. On dit qu'une suite $\{v^{(k)}\}_{k\in\mathbb{N}}$ d'éléments de E converge vers un élément $v\in E$, si

$$\lim_{k \to \infty} \left\| \boldsymbol{v}^{(k)} - \boldsymbol{v} \right\| = 0$$

et on écrit

$$v = \lim_{k \to \infty} v^{(k)}$$
.

Définition 4.2 (Convergence d'une suite de matrices) On dit qu'une suite de matrices $\{\mathbb{A}^{(k)}\}_{k\in\mathbb{N}}$, avec $\mathbb{A}^{(k)} \in \mathcal{M}_n(\mathbb{R})$, converge vers $\mathbb{A} \in \mathcal{M}_n(\mathbb{R})$ si:

 $\lim_{k \to \infty} \|\mathbb{A}^{(k)} - \mathbb{A}\| = 0,$

et on écrit

$$\mathbb{A} = \lim_{k \to \infty} \mathbb{A}^{(k)}.$$

Théorème 4.1 Soit $\mathbb{B} \in \mathcal{M}_n(\mathbb{R})$. Les conditions suivantes sont équivalentes :

- 1. $\lim_{k\to\infty} \mathbb{B}^k = \mathbb{O}_n$,
- 2. $\lim_{k\to\infty} \mathbb{B}^k \boldsymbol{v} = \boldsymbol{0}$ pour tout vecteur $\boldsymbol{v} \in \mathbb{R}^n$,
- 3. $\rho(\mathbb{B}) < 1$,
- 4. $\|\mathbb{B}\|_{s} < 1$ pour au moins une norme matricielle subordonnée $\|\bullet\|_{s}$.

Exercice 4.1 Montrer le théorème 4.1.

5 Complément : réduction des matrices

Définition 5.1 On dit que la matrice carrée $\mathbb{A} \in \mathcal{M}_n(\mathbb{R})$ est **diagonalisable sur** \mathbb{R} s'il existe une matrice inversible $\mathbb{P} \in \mathcal{M}_n(\mathbb{R})$ telle que la matrice $\mathbb{D} = \mathbb{P}^{-1}\mathbb{A}\mathbb{P} \in \mathcal{M}_n(\mathbb{R})$ soit diagonale. Notons que dans ce cas

$$A = \mathbb{PDP}^{-1}.$$
 (5.1)

Propriété 5.1 Dans le cas où $\mathbb{A} \in \mathcal{M}_n(\mathbb{R})$ est diagonalisable, c'est-à-dire de la forme (5.1), alors

- les éléments diagonaux de la matrice $\mathbb D$ sont les valeurs propres $\lambda_1, \lambda_2, \ldots, \lambda_n$ de la matrice $\mathbb A$,
- le j-ème vecteur colonne \mathbf{p}_j de la matrice \mathbb{P} est un vecteur propre de \mathbb{A} associé à la valeur propre λ_j , pour $j \in [1, n]$.

En effet, soit \mathbb{D} la matrice diagonale, dont les éléments diagonaux sont $d_{i,i} = \lambda_i$, $i \in [1, n]$. On a

$$\mathbb{P}^{-1}\mathbb{AP} = \mathbb{D} \iff \mathbb{AP} = \mathbb{DP} \iff \mathbb{A}\boldsymbol{p}_i = \lambda_i \boldsymbol{p}_i, \ \forall j \in [1, n].$$

Une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est diagonalisable si, et seulement si, il existe une base de \mathbb{R}^n formée de vecteurs propres de A.

On admettra les deux résultats suivants :

Théorème 5.2 (Décomposition de Schur) (admis) Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{C})$. Alors il existe une matrice uni $taire \ \mathbb{U} \in \mathcal{M}_n(\mathbb{C}) \ telle \ que \ la \ matrice \ \mathbb{T} = \mathbb{U}^{-1}\mathbb{A}\mathbb{U} \in \mathcal{M}_n(\mathbb{C}) \ soit \ triangulaire \ supérieure :$

$$\mathbb{T} = \mathbb{U}^* \mathbb{A} \mathbb{U} = \begin{pmatrix} \lambda_1 & t_{1,2} & \cdots & t_{1,n} \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & t_{n-1,n} \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix}$$

Les valeurs propres de A sont les éléments diagonaux de T

Théorème 5.3 (admis) Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{R})$ une matrice dont toutes les valeurs propres sont réelles. Alors il existe une matrice orthogonale $\mathbb{Q} \in \mathcal{M}_n(\mathbb{R})$ telle que la matrice $\mathbb{T} = \mathbb{Q}^{-1}\mathbb{A}\mathbb{Q}$ soit triangulaire supérieure :

$$\mathbb{T} = \mathbb{Q}^t \mathbb{A} \mathbb{Q} = \begin{pmatrix} \lambda_1 & t_{1,2} & \cdots & t_{1,n} \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & t_{n-1,n} \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix}$$

Les valeurs propres de A sont les éléments diagonaux de l'

Corollaire 5.4 Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{R})$ une matrice symétrique. Alors il existe une matrice orthogonale \mathbb{Q} telle que la matrice $\mathbb{D} = \mathbb{Q}^{-1}\mathbb{A}\mathbb{Q}$ soit diagonale :

$$\mathbb{D} = \mathbb{Q}^t \mathbb{A} \mathbb{Q} = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix}$$

La matrice \mathbb{A} est donc diagonalisable sur \mathbb{R} . La valeurs propres de \mathbb{A} sont les éléments diagonaux de \mathbb{D} , et les vecteurs propres de \mathbb{A} sont les vecteurs colonnes de \mathbb{Q} . Ils forment une base orthonormale de \mathbb{R}^n .

Preuve. Comme A est symétrique, d'après l'exercice 2.3, question 1), les valeurs propres de A sont toutes réelles. Alors, d'après le Théorème 5.3, on a $\mathbb{T} = \mathbb{Q}^t \mathbb{A} \mathbb{Q}$, avec \mathbb{Q} orthogonale et \mathbb{T} triangulaire supérieure, dont les éléments diagonaux sont les valeurs propres de A. La matrice A étant symétrique, on a aussi $\mathbb{A}=\mathbb{A}^t$, c'est-à-dire

$$\mathbb{T} = \mathbb{O}^t \mathbb{A} \mathbb{O} = \mathbb{T} = \mathbb{O}^t \mathbb{A}^t \mathbb{O} = \mathbb{T}^t.$$

 $\mathbb T$ étant triangulaire, l'égalité $\mathbb T=\mathbb T^t$ implique que $\mathbb T$ est diagonale. \blacksquare

Corollaire 5.5 Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{R})$. On a alors les relations suivantes

$$\operatorname{tr}(\mathbb{A}) = \sum_{i=1}^{n} \lambda_{i}, \quad \operatorname{det}(\mathbb{A}) = \prod_{i=1}^{n} \lambda_{i}.$$

Preuve. Si les toutes valeurs propres de A sont réelles, le résultat découle du Théorème 5.3 et des propriétés 2.4 :

$$\operatorname{tr}\left(\mathbb{A}\right) = \operatorname{tr}\left(\mathbb{Q}\mathbb{T}\mathbb{Q}^t\right) = \operatorname{tr}\left(\mathbb{Q}^t\mathbb{Q}\mathbb{T}\right) = \operatorname{tr}\left(\mathbb{T}\right) = \sum_{i=1}^n \lambda_i \qquad \text{(vu en TD pour la dernière égalité),}$$

$$\operatorname{det}(\mathbb{A}) = \operatorname{det}(\mathbb{Q}\mathbb{T}\mathbb{Q}^t) = \operatorname{det}(\mathbb{Q}^t\mathbb{Q}\mathbb{T}) = \operatorname{det}(\mathbb{T}) = \prod_{i=1}^n \lambda_i \quad \text{(vu en TD pour la dernière égalité).}$$

$$\det(\mathbb{A}) = \det(\mathbb{Q}\mathbb{T}\mathbb{Q}^t) = \det(\mathbb{Q}^t\mathbb{Q}\mathbb{T}) = \det(\mathbb{T}) = \prod_{i=1}^n \lambda_i \quad \text{(vu en TD pour la dernière égalité)}$$

Si A a des valeurs propres complexes, on utilise le Théorème 5.2.